
Development of 2.5D visual puzzle game
through a dimension change mechanic

Sergio Gómez García

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

June 28, 2024

Supervised by: Sandra Catalán Pallarés, PhD.

http://creativecommons.org/licenses/by-nc-sa/3.0/

To my mother, my father, my sister and my friends for being by my side on this
arduous path of personal evolution.

Acknowledgments

First of all, I would like to thank my family for watching with enthusiasm how the project
was progressing and encouraging me to continue.

Special thanks to my great friend Pau for testing each version that I sent him in
order to improve the experience.

Thanks to my sister for the help in the artistic part of the video game.
Of course, I would also like to thank my supervisor Sandra Catalán Pallarés for her

patience and effort in carrying out this project.
I also would like to thank Sergio Barrachina Mir and José Vte. Martí Avilés for their

inspiring LaTeX template for writing the Final Degree Work report, which I have used
as a starting point in writing this report.

i

http://lorca.act.uji.es/curso/latex/

Abstract

This document presents the project report of the Video Games Design and Development
Degree Final project by Sergio Gómez García. It is a video game titled Salva a tu
humano that consists in a set of visual puzzles that you must overcome if you want to
save a kidnapped human represented by the main character. To pass the levels it is
necessary to use a mechanic that allows you to exchange between a 2D world and a 3D
one. In addition, this mechanic is combined with a shooting system that allows you to
advance through different puzzles.

Keywords: Roguelike, Switch dimension, Shoot, Puzzle, 2D to 3D

iii

Contents

Contents v

1 Introduction 1
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 2

2 Planning and resources evaluation 5
2.1 Planning . 5
2.2 Resource Evaluation . 6

3 System Analysis and Design 9
3.1 Requirement Analysis . 9
3.2 System Design . 10
3.3 System Architecture . 22
3.4 Interface Design . 23

4 Work Development and Results 27
4.1 Work Development . 27
4.2 Results . 40

5 Conclusions and Future Work 41
5.1 Conclusions . 41
5.2 Future work . 42

Bibliography 43

A Other considerations 45
A.1 Source Code . 45

v

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 2

This chapter is an explanation of the initial motivations and objectives that have
driven the development of this project as well as how it began to be implemented.

1.1 Work Motivation

I have always found it interesting and enriching to implement game mechanics that
marked my path as a gamer.

When I was little my parents gave me the Wii [14] and, some time later, Super
Paper Mario [13], a game that would remain in my mind forever. In this game you could
alternate between 2D and 3D views in order to find hidden areas, overcome visual puzzles,
reveal secrets, etc. On the other hand, many years later, I discovered a roguelike called
Enter the Gungeon [12] that I loved from the first moment. Its fluid and comfortable
gameplay made the game a very dynamic experience. Due to the admiration I felt for this
game I decided to investigate how it had been programmed and, to my surprise, it was not
a game designed in a 2D world but, thanks to some visual tricks, it was implemented in a
3D world which, apparently, provided certain facilities when developing some mechanics.
Upon discovering this I thought it would be a good idea to combine the best of Super
Paper Mario with the best of Enter the Gungeon.

1

2 Introduction

My main motivation has been to be able to design and program a video game that
fuses the most important mechanics of both games, that is, the change of dimension and
a shooting system in a roguelike game.

1.2 Objectives
The main objective of this project is to design and implement a complete game based
on visual puzzles, utilizing original mechanics, and ensuring that the movement and
shooting systems are especially fluid and comfortable for the player.

More specifically, and based on the motivation behind this project, these are the
objectives to achieve:

• Develop a game with two main mechanics: alternate between 2D and 3D views
and a shooting system.

• Program a polished player movement based on the context and genre of the video
game.

• Design and implement different and original visual puzzles in which the player
needs to use both main mechanics.

• Create an immersive experience in which the player feels that their actions really
matter.

• Get a build of a game that provides a complete experience from start to finish.

1.3 Environment and Initial State
Initially the idea of the project was to create a complete roguelike game in all its aspects
but discovering that my reference game in this genre, Enter the Gungeon, was actually
a visually 2D game developed in a 3D environment made me think about the possibility
of creating a game that mixed the best of the roguelike genre with the aforementioned
dimension change mechanics of Super Paper Mario on the Wii.

Once the base idea was clear, I thought about what key components the game should
contain, such as the way to implement the mechanics, the design of the possible visual
puzzles to implement, scenes and the story that surrounds the context of the game.

This project has been developed solely by me, Sergio Gómez García in the well-
known Unity video game engine [8]. For the assets, the most of them have been chosen
from websites such as the Unity Asset Store or Itch.io [2] since this project is focused on
programming mechanics. The only assets that are not taken from these web pages have
been the antagonist character and the images that act as a tutorial, for all of which I
have had the help of my sister.

When I started developing it I had a lot of free time despite working in the afternoons,
so I was able to move forward and create a movement and shooting system as polished

1.3. Environment and Initial State 3

as I wanted but, with the arrival of exams, assignments and external practices I had to
take a break until that I was a little freer.

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 5
2.2 Resource Evaluation . 6

This chapter is the most technical of the entire document and is where the project
planning and resources will be specified.

2.1 Planning
Planning a project is essential to be able to organize the different goals and objectives
that you want to achieve. It is for this reason that below is explained the planning that
has been used for developing Salva a tu humano.

The order of the tasks has not been strictly linear since some have been carried out
at the same time as others.

This section also includes a Gantt chart showing in a visual way how each of this
tasks has been done (Figure 2.1).

• Task 1 (15 hours): Study the different ways in which a 2.5D video game can be
implemented and decide which one best suits my project.

• Task 2 (10 hours): Choice of the types of sprites and art that would be used in
the video game, taking into account the type of movement intended for the player.

• Task 3 (30 hours): Player movement programming. Different possibilities were
considered when programming the movement and, once the decision was made, it

5

6 Planning and resources evaluation

was implemented together with a dash and a crosshair that influences the rotation
of the character and the position of the camera.

• Task 4 (40 hours): Understand how to develop the dimension change mechanics
and implement it in the video game. The initial version was modified until the
polished result that was sought was achieved.

• Task 5 (40 hours): Build a system that allows the weapon to rotate towards
the location where the player is aiming, considering that it must change hands if
a certain degree of inclination is exceeded. This task also includes the animation
of the weapon and the ability to shoot.

• Task 6 (25 hours): The implementation of animations for the character, the
weapon and its bullets.

• Task 7 (60 hours): Design and programming of visual puzzles within which
we find interactions with objects such as levers, buttons and torches, rotations of
structures and enemies.

• Task 8 (20 hours): Creation of other components of the video game such as the
menu, UI, the sound section and videos.

• Task 9 (60 hours): Project report and other documents.

2.2 Resource Evaluation
The resources used for this project have been:

• HP Pavilion i5 CPU, 16GB RAM and NVIDIA GeForce GTX 1050
GPU (600€): The laptop used to develop the game.

• Unity 3D 2022.3.12f1 (Free): The video game engine used to create the
project [8].

• Visual Studio 2019 (Free): It is an IDE that, attached to Unity, makes easy
the task of programming, in this case, with C Sharp [6].

• Github Desktop (Free): A tool used for version control in which I have a
repository where I upload every progress in the project [5].

• Pyxel Edit (9€): It is a program to create and edit pyxel art [4].

• Unity Asset Store (Free): A website where everyone can obtain price or free
assets. In my case every asset i had downloaded has been free [9].

• Itch.io (Free): As Unity Asset Store, it is website for obtain free and paid assets.
Afresh, every asset i had downloaded has been free [2].

2.2. Resource Evaluation 7

• Capcut (Free): It is a video editor that I have used for making every video in
the game [1].

• Voicemaker (Free): A website where you can convert text to speech [10].

Considering the cost of the materials used, both software and hardware, the total
cost of the project would be approximately 609 euros.

8 Planning and resources evaluation

Figure 2.1: Gantt chart of the tasks (made with Gantt Project) [11].

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Requirement Analysis . 9
3.2 System Design . 10
3.3 System Architecture . 22
3.4 Interface Design . 23

This chapter presents the requirements analysis, design and architecture of the pro-
posed work, as well as its interface design.

3.1 Requirement Analysis
To carry out a job, it is necessary to make clear both functional and non-functional
requirements. It is for this reason that the same are explained in detail below.

3.1.1 Functional Requirements

A functional requirement defines a function of the system that is going to be developed.
In this project we can find these functional requirements:

• R1. The player can start the game.

• R2. The player can quit the game .

• R3. The player can move.

• R4. The player can switch between dimensions.

9

10 System Analysis and Design

• R5. The player can interact with levers.

• R6. The player can aim.

• R7. The player can shoot.

• R8. The player can activate colored buttons.

• R9. The player can light torches.

• R10. The player can dash.

• R11. The player can change the color of the bullets.

• R12. The player can interact with signs to see instructions.

3.1.2 Non-functional Requirements

Non-functional requirements impose conditions on the design or implementation. In this
project we can find these non-functional requirements:

• R12. The game will be playable on PC.

• R13. The game will use both sprites and 3D models.

• R14. The player will have to think to solve puzzles in a certain time.

• R15. The puzzles will be solved using dimension change and weapon mechanics.

• R16. The UI will be simple for not obstructing the vision of the player.

• R17. The movement control will be extremely comfortable for the player.

• R18. The player will feel truly immersed in the game.

3.2 System Design

This section must present the (logical or operational) design of the system to be carried
out. In the following pages the cases of use (detailed from Table 3.1 to Table 3.12) and
a case of use diagram (Figure 3.1) are defined:

3.2. System Design 11

Requirements: R1
Actor: Player
Description: The player can start the game.
Preconditions:

1. The player must be in the main menu.

Normal sequence:
1. The player press the Play button.

2. The game loads the introduction video.

Alternative sequence: None.

Table 3.1: Case of use «CU01. Start game».

Requirements: R2
Actor: Player
Description: The player can quit the game.
Preconditions:

1. The player must be in the main menu.

Normal sequence:
1. The player press the Exit button.

2. The game system quits the game.

Alternative sequence: None.

Table 3.2: Case of use «CU02. Quit game».

12 System Analysis and Design

Requirements: R3
Actor: Player
Description: The player moves trough the level.
Preconditions:

1. The player must be in some of the three visual puzzles.

2. The video of the current level must have finished.

3. The player must have the instructions panel closed.

Normal sequence:
1. The player press W, A, S or D keys.

2. The player moves in the corresponding direction to that
key.

Alternative sequence:
1. The player can not move because some instruction panel

is open.

Table 3.3: Case of use «CU03. Move».

3.2. System Design 13

Requirements: R4
Actor: Player
Description: The player alternates between two and three dimensions.
Preconditions:

1. The player must be in some of the three visual puzzles.

2. The video of the current level must have finished.

3. The player must have the instructions panel closed.

4. The player is not in the process of changing dimensions.

Normal sequence:
1. The player press Space key.

2. The dimension changes from 2D to 3D.

Alternative sequence: The dimension changes from 3D to 2D.

Table 3.4: Case of use «CU04. Alternate dimensions».

14 System Analysis and Design

Requirements: R5
Actor: Player
Description: The player activates a lever.
Preconditions:

1. The player must be in the first or second level.

2. The video of the current level must have finished.

3. The player must have the instructions panel closed.

4. The player is not in the second dimension.

5. The player is inside the lever zone.

Normal sequence:
1. The player press E.

2. The lever makes an animation.

3. A pillar is rotated showing a secret.

Alternative sequence: None.

Table 3.5: Case of use «CU05. Activate lever».

3.2. System Design 15

Requirements: R6
Actor: Player
Description: The player aims with the mouse.
Preconditions:

1. The player must be in some of the three visual puzzles.

2. The video of the current level must have finished.

3. The player must have the instructions panel closed.

4. The player is not in the third dimension.

Normal sequence:
1. The player moves the mouse.

2. The cross hair moves to the corresponding point on the
screen.

Alternative sequence: None.

Table 3.6: Case of use «CU06. Aim».

16 System Analysis and Design

Requirements: R7
Actor: Player
Description: The player shoots with the gun.
Preconditions:

1. The player must be in some of the three visual puzzles.

2. The video of the current level must have finished.

3. The player must have the instructions panel closed.

4. The player is not in the third dimension.

5. The player has get the gun.

Normal sequence:
1. The player presses the left click of the mouse.

2. A bullet is shot.

Alternative sequence: None

Table 3.7: Case of use «CU07. Shoot».

3.2. System Design 17

Requirements: R8
Actor: Player
Description: The player activates colored buttons.
Preconditions:

1. The player must be in the second level.

2. The video of the current level must have finished.

3. The player must have the instructions panel closed.

4. The player is not in the third dimension.

5. The player has get the gun.

Normal sequence:
1. The player aims to a colored button.

2. The player presses the left click of the mouse.

3. A bullet is shot.

4. The bullet hits the button.

5. The button makes an animation.

6. The number related to the color is added in the code.

Alternative sequence: None.

Table 3.8: Case of use «CU08. Activate button».

18 System Analysis and Design

Requirements: R9
Actor: Player
Description: The player lights torches.
Preconditions:

1. The player must be in the first or third level.

2. The video of the current level must have finished.

3. The player must have the instructions panel closed.

4. The player is not in the third dimension.

5. The player has get the gun.

Normal sequence:
1. The player aims to a torch.

2. The player presses the left click of the mouse.

3. A bullet is shot.

4. The bullet hits the torch.

5. The torch is lit with a flame of the same color as the
bullet.

Alternative sequence: None.

Table 3.9: Case of use «CU09. Light torch».

3.2. System Design 19

Requirements: R10
Actor: Player
Description: The player dashes.
Preconditions:

1. The player must be in some of the three visual puzzles.

2. The video of the current level must have finished.

3. The player must have the instructions panel closed.

Normal sequence:
1. The player presses the right click of the mouse.

2. The player makes a dash.

Alternative sequence: None.

Table 3.10: Case of use «CU010. Dash».

20 System Analysis and Design

Requirements: R11
Actor: Player
Description: The player changes the color of the bullet.
Preconditions:

1. The player must be in the second room of the third level.

2. The video of the current level must have finished.

3. The player must have read the instructions panel.

4. The player has get the gun.

Normal sequence:
1. The player rolls the mouse wheel up or down.

2. The bullet color changes.

3. The UI that shows the bullet color changes.

Alternative sequence: None.

Table 3.11: Case of use «CU011. Change bullet color».

3.2. System Design 21

Requirements: R12
Actor: Player
Description: The player interacts with instructions signs
Preconditions:

1. The player must be in some of the three visual puzzles.

2. The video of the current level must have finished.

3. The player is not in the third dimension.

4. The player is inside the sign zone.

Normal sequence:
1. The player press E.

2. The panel makes an animation.

Alternative sequence:
1. The player press X.

2. The panel closes.

Table 3.12: Case of use «CU012. Interact with sign».

22 System Analysis and Design

Figure 3.1: Case use diagram (made with Virtual Paradigm) [3].

3.3 System Architecture
The minimun requirements to play the build of this project in a PC are:

• The operating system Windows 7 (SP1+).

• A CPU with x86, x64 architecture with SSE2 instruction set support.

• A GPU with DX10.

• 8GB of RAM.

The requirements have been taken from Unity [8] documentation.

3.4. Interface Design 23

3.4 Interface Design

The UI design is determined by the needs of each puzzle. In each level, there is a sign
that provides essential information needed to solve the puzzle. For example, in the first
level, it explains how to switch dimensions, in the second one, it provides the code you
need to obtain and in the third level, it informs the player that they need to memorize
the relationships between letters and colors, in addition to a second sign that explains
how to change the color of the bullets (Figures 3.2 to 3.6).

Figure 3.2: Interactive sign.

Figure 3.3: Instructions panel level 1.

24 System Analysis and Design

Figure 3.4: Instructions panel level 2.

Figure 3.5: Instructions panel level 3 Room 1.

Figure 3.6: Instructions panel level 3 Room 2.

3.4. Interface Design 25

When interacting with certain elements, an animation of the E key appears to make
the player understand that they can perform certain actions (Figure 3.7).

Figure 3.7: E key interaction.

Additionally, in each level, you have a specific amount of time to complete the puzzle,
creating a defeat condition if the time runs out. This countdown is shown at the top
right (Figure 3.8).

Figure 3.8: Countdown.

26 System Analysis and Design

In the second level, the player must shoot the colored buttons in a specific order to
obtain a code. The status of their solution is continuously updated in the top left corner
(Figure 3.9).

Figure 3.9: Code level 2.

In the third level, there are torches with associated letters. Each letter is linked to a
specific color. The player must shoot the torches and light them with the correct color.
The color of the selected bullet is displayed in the top left corner (Figure 3.10).

Figure 3.10: Bullet color.

Finally, since the player needs to use the shooting mechanic in all the puzzles, a
crosshair is displayed at the point where they are aiming.

C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Work Development . 27
4.2 Results . 40

Once all the information related to the project has been exposed, it is time to explain
how the development process of the video game has been step by step and its evolution
until the final result of which I will evaluate its result.

4.1 Work Development

The first step was to study how a 2.5D view could be implemented and adapt it to
this project (Figure 4.1). After a while I decided that the camera had to be rotated
45 degrees towards the player. Since the character is a sprite rather than a 3D model,
a script was used to modify the camera matrix to ensure everything was displayed
correctly. Subsequently, the Cinemachine tool [7] was utilized to easily implement a
system in which the camera follows the character. This initial camera was orthographic
(Figure 4.2).

27

28 Work Development and Results

Figure 4.1: Enter the Gungeon “Behind scenes”.

Figure 4.2: Camera and player rotation.

4.1. Work Development 29

Once I had a basic camera setup, I began programming the player’s movement,
evaluating different possibilities. Given the nature of the video game, I decided to
use the MovePosition function of the Rigidbody in a simple way since I wanted to
provide the player with a fluid movement that would immediately respond to his actions.
Subsequently, I added a dash ability and integrated all the player animations using blend
trees. These animations were later modified to adapt seamlessly to the dimension change
mechanic and the shooting system (Figure 4.3).

Figure 4.3: Player Animator.

When a decent movement system was achieved, I began implementing one of the
project’s key mechanics: the dimension change. This was an arduous process since it is
not a very common mechanic and, therefore, there was not much information available
on Unity forums or, in general, on the Internet. Despite this, with patience and help
from various sources, progress was made, and each iteration became more polished.

Initially, I added a second camera to the scene, this one being a perspective camera.
Thanks to Cinemachine, transitioning between cameras is straightforward. However,

30 Work Development and Results

when trying to transition between the initial orthographic camera and the perspective
camera, there was a noticeable cut, creating a notable shift. In Unity, unlike other
engines, it is not possible to transition seamlessly between cameras of different types.

To address this, I added a third perspective camera and set its Vertical FOV pa-
rameter to a very low value and its Camera Distance parameter to a very high value,
simulating an orthographic camera effect despite being a perspective camera. With these
three cameras, I programmed a transition that first moved from the orthographic cam-
era to the perspective camera with the orthographic effect, and then from this to the
3D perspective camera. Returning from the 3D view to the 2D view followed the same
path in reverse. Finally, I added one last camera to make the final transition smoother
(Figures 4.4 and 4.5).

Figure 4.4: List of cameras.

Figure 4.5: Cameras on Scene.

4.1. Work Development 31

Depending on the dimension in which the player was located, I wanted the move-
ment to differ. In the perspective view, I preferred the player not to have a weapon. For
this reason, I programmed the distinction in movement mechanics based on the dimen-
sion. This ensured that the gameplay experience was tailored to the specific dimension,
enhancing the overall immersion and challenge (Listing 4.1).

� �
1 public void movement()

2 {

3 if (!dashing)

4 {

5 horizontal = Input.GetAxisRaw("Horizontal"); //GetAxisRaw elimina la

progresión de movimiento (antes utilizaba GetAxis)

6 vertical = Input.GetAxisRaw("Vertical");

7 }

8

9 if (dimension == 2) //cambian los controles dependiendo de la dimension

10 {

11 movementDirection = new Vector3(horizontal, 0, vertical).normalized;

12 }

13 else

14 {

15 movementDirection = new Vector3(vertical, 0, -horizontal).normalized;

16 }

17

18 //Mueve al jugador

19 Vector3 newPosition = rb.position + movementDirection * speed *
Time.deltaTime;

20 rb.MovePosition(newPosition);

21 }� �
Listing 4.1: Script Player Movement

Next, I implemented a shooting system. The first step was to program a crosshair
that indicated where the player was pointing with the mouse. To enhance the camera
movement, I made it so that depending on where the player aimed, the camera would
move smoothly in that direction, maintaining a position at a medium distance between
the mouse pointer and the player. This provided a more pleasant and dynamic visual
experience.

Once the crosshair was finished, I programmed the rotation of the weapon using
vector calculations. This allowed the gun to rotate directly towards the point on the
screen where the player was aiming. Although this system worked perfectly, I wanted to
replicate a feature I had seen in Enter the Gungeon. In that game, the weapon changes

32 Work Development and Results

hands depending on the area where the player is aiming at. I set out to program a
similar system and achieved a fairly successful result (Figures 4.6 and 4.7).

Figure 4.6: Gun on right hand.

Figure 4.7: Gun on left hand.

4.1. Work Development 33

Of course, the next step was to implement the shooting mechanics. This included the
shot itself, its animation, the bullet animation, the bullet collision animation, a reloading
system every eight shots and its corresponding animation. I have to admit that adding
recoil animations when shooting was more problematic than I initially expected due to
the gun’s rotation (Figures 4.8 to 4.10).

Figure 4.8: Gun animation.

Figure 4.9: Reload animation.

34 Work Development and Results

Figure 4.10: Bullet collision animation.

At this point, I had implemented the dimension change mechanic, the shooting sys-
tem and the player movement. The next step was to design and implement visual puzzles
that took full advantage of these features.

First level: When designing the first level, I wanted the player to start without the
gun. A sign explains to the player that they can change dimensions (Figure 3.3). Upon
doing so, they can see a lever hidden behind a pillar. The player can operate the lever
by pressing the E key, which causes the pillar to rotate, revealing a part of the pillar
where the weapon is located. The weapon can then be picked up with the E key. Then,
to introduce a mechanic of one of the next puzzles, the player must shoot some torches
to light them, thereby activating a mechanism that opens the doors of the room (Figures
4.11 and 4.12).

4.1. Work Development 35

Figure 4.11: Level 1 Initial State.

Figure 4.12: Level 1 Final State.

36 Work Development and Results

Second level: I had the idea of taking advantage of the change dimension system
by putting some clues about a code visible only in the second dimension and others only
in the third. In this level there is also a lever that rotates a pillar, thus revealing a new
clue and a new button. Once the player had all the clues, which relate a number to a
color, he should go to some colored buttons and shoot them in the correct order to form
the key that the game asks for at the sign of the level (Figure 3.4, 4.13 and 4.14).

Figure 4.13: Level 2 Second dimension.

Figure 4.14: Level 2 Third dimension.

4.1. Work Development 37

Third level: In this level, a new game mechanic has been introduced: the ability
to switch between four different projectile types, each of a different color. The level
consists of two main rooms: the first room features flags displaying letters associated
with specific colors, which players need to memorize in thirty seconds (Figure 4.15).
In the second room, there are several torches, each one with a letter in a flag above.
Players must shoot each torch with a projectile matching the color associated with the
corresponding letter (Figure 4.16). The player can change the color of the bullet with
the mouse wheel and, so that he know in every moment which type of bullet he has
selected, I added an image on the canvas that indicates the color of the current bullet.
(Figure 3.10).

Figure 4.15: Level 3 First room.

Figure 4.16: Level 3 Second room.

38 Work Development and Results

After implementing the main mechanics and puzzles for each level, I focused on
developing the narrative aspect of the game. A key objective of this project is to immerse
the player deeply, ensuring their actions feel meaningful with significant consequences.
To achieve this, I crafted a storyline centered around a kidnapped person whose life is in
the player’s hands. To save his life the player must complete all the puzzles, otherwise
he will be killed.

The way to tell the story is through edited videos in which appears a doll inspired by
the Saw movies (Figure 4.17). In these videos, the doll explains to the player what his
situation is and he guides him throughout the game. Depending on whether the player
successfully solves all the puzzles, one of two possible endings will unfold.

Figure 4.17: Video doll.

4.1. Work Development 39

To enhance realism and immersion, with the help of my sister, we recorded videos of
myself acting like the kidnapped person (Figure 4.18).

Figure 4.18: Video kidnapped person.

Finally, I created a simple menu (Figure 4.19), integrated all puzzles with the videos,
added appropriate sound effects and music, and implemented a countdown mechanism
to introduce a sense of urgency and a potential defeat condition in each level.

Figure 4.19: Menu.

40 Work Development and Results

4.2 Results
Looking back at the objectives set out in Section 1.2, I am pleased to say that I have
successfully completed all of them. I am proud to have implemented a unique and rarely
seen mechanic like the dimension change, along with the intriguing puzzles it introduces.
Additionally, I am very satisfied with the final state of the player’s movement and the
shooting system, as they feel exceptionally polished.

Furthermore, I believe the chosen narrative makes the game an immersive experience
where players feel their actions are significant, thus fully meeting that objective. Finally,
I have achieved a completely playable version from start to finish, which I can share with
friends and family. Overall, I am very happy and proud of the results obtained.

C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusions . 41
5.2 Future work . 42

5.1 Conclusions

At the driving school you learn the basics of driving but it is not until you get your
license and start driving by your own that you really learn to drive. Degrees remind me
a lot of driving schools precisely for this reason. In our case, we learn a lot about different
sections of video game design and programming, but it is not until we sit down to develop
our own ideas that we learn the reality of this world, acquire new skills and evolve as
video game creators. Thus, this final degree project has been a great opportunity to face
new problems, overcome difficulties and learn along the way.

During our degree we have had all kinds of subjects but, without a doubt, the ones
that seemed most interesting to me were those in which we developed a game. The
moment you must face the challenge of implementing a game in all its aspects is when
you really learn how video game design and development works, being a very nutritious
experience. Likewise, I found this project to be a very fruitful process during which I
have learned to implement new mechanics and where I have shown myself what I am
capable of, using the foundations of the degree to expand my knowledge and overcome
new goals.

41

42 Conclusions and Future Work

5.2 Future work
Due to my personal situation and lack of time, I would like to continue developing the
project in order to polish certain aspects of it and add new mechanics and puzzle ideas
that have crossed my mind but that I have not had time to implement. In any case, I am
proud of the project in general, from the idea to the execution and the result obtained.

Bibliography

[1] ByteDance. Capcut. urlhttps://www.capcut.com/es-es/. Accessed: 2024-06-26.

[2] Leaf Corcoran. Itch.io. https://itch.io/. Accessed: 2024-06-26.

[3] Visual Paradigm International. Visual paradigm. https : / / online .

visual-paradigm.com/es/. Accessed: 2024-06-26.

[4] Daniel Kvarfordt. Pyxel edit. https://pyxeledit-com.translate.goog/?_x_tr_sl=

en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=sc. Accessed: 2024-06-26.

[5] Microsoft. Github desktop. https://github.com/. Accessed: 2024-06-26.

[6] Microsoft. Visual studio. https : / / visualstudio . microsoft . com / es / vs /

older-downloads/w. Accessed: 2024-06-26.

[7] Unity Technologies. Cinemachine tool. https://docs.unity3d.com/Packages/com.

unity.cinemachine@3.1/manual/index.html. Accessed: 2024-06-26.

[8] Unity Technologies. Unity. https://unity.com/es. Accessed: 2024-06-26.

[9] Unity Technologies. Unity asset store. https://assetstore.unity.com/. Accessed:
2024-06-26.

[10] Voicemaker Technologies. Voice maker. https://voicemaker.in/. Accessed: 2024-
06-26.

[11] Alexandre Thomas and Dmitry Barashev. Ganttproject. https : / / www .

ganttproject.biz/. Accessed: 2024-06-26.

[12] Wikipedia. Enter the gungeon. https://es.wikipedia.org/wiki/Enter_the_

Gungeon. Accessed: 2024-06-26.

[13] Wikipedia. Super paper mario. https://es.wikipedia.org/wiki/Super_Paper_

Mario. Accessed: 2024-06-26.

[14] Wikipedia. Wii. https://es.wikipedia.org/wiki/Wii. Accessed: 2024-06-26.

43

https://itch.io/
https://online.visual-paradigm.com/es/
https://online.visual-paradigm.com/es/
https://pyxeledit-com.translate.goog/?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=sc
https://pyxeledit-com.translate.goog/?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=sc
https://github.com/
https://visualstudio.microsoft.com/es/vs/older-downloads/w
https://visualstudio.microsoft.com/es/vs/older-downloads/w
https://docs.unity3d.com/Packages/com.unity.cinemachine@3.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.cinemachine@3.1/manual/index.html
https://unity.com/es
https://assetstore.unity.com/
https://voicemaker.in/
https://www.ganttproject.biz/
https://www.ganttproject.biz/
https://es.wikipedia.org/wiki/Enter_the_Gungeon
https://es.wikipedia.org/wiki/Enter_the_Gungeon
https://es.wikipedia.org/wiki/Super_Paper_Mario
https://es.wikipedia.org/wiki/Super_Paper_Mario
https://es.wikipedia.org/wiki/Wii

A
p

p
e

n
d

ix A
Other considerations

A.1 Source Code
Since this is a project dedicated to programming and the number of scripts is large, I
consider it a better option to offer the link to the github repository of the game.

Github repository: https://github.com/sergiogomez30/Toy-Nightmare

45

https://github.com/sergiogomez30/Toy-Nightmare

A.1. Source Code 47

	Contents
	Introduction
	Work Motivation
	Objectives
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Requirement Analysis
	System Design
	System Architecture
	Interface Design

	Work Development and Results
	Work Development
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Other considerations
	Source Code

