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Abstract
Applying malleability to HPC systems can increase their productivity without 
degrading or even improving the performance of running applications. This paper 
presents Proteo, a configurable framework that allows to design benchmarks to 
study the effect of malleability on a system, and also incorporates malleability 
into a real application. Proteo consists of two modules: SAM allows to emulate the 
computational behavior of iterative scientific MPI applications, and MaM is able to 
reconfigure a job during execution, adjusting the number of processes, redistributing 
data, and resuming execution. An in-depth study of all the possibilities shows that 
Proteo is able to behave like a real malleable or non-malleable application in the 
range [0.85, 1.15]. Furthermore, the different methods defined in MaM for process 
management and data redistribution are analyzed, concluding that asynchronous 
malleability, where reconfiguration and application execution overlap, results in a 
1.15× speedup.
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1 Introduction

Today, we are on the verge of crossing the exascale frontier in high-performance 
computing (HPC). Each year, the computing capabilities of the large-scale 
facilities show steady growth, a trend reflected in the prestigious TOP 500 
list [1]. This progress is being driven by two main approaches. On the one hand, 
hardware improvements in memory, storage, or network communications, as well 
as massive parallelism in processors, provide brute force to the systems. On the 
other hand, novel programming models, runtimes, and libraries are capable of 
leveraging these new technologies.

In HPC systems, it is common to find distributed parallel jobs usually 
developed using the de facto standard Message Passing Interface (MPI)  [2], 
while Resource Management Systems (RMSs) are responsible for controlling the 
available resources of HPC systems and determining how they are allocated to 
jobs. However, it is often the case that some resources are not used while there 
are jobs in the queue, since the resource requirements of the waiting jobs are 
greater than the available resources. In addition, some jobs in progress do not use 
all their resources efficiently during execution, for example, because they do not 
use all of their resources during the entire execution or because they have spare 
nodes for fault tolerance [3].

In the context of future exascale systems, it would be highly beneficial for 
applications to have dynamic behavior capable of adapting resources to the 
needs and/or availability of the system. Consequently, the system should be able 
to allocate resources dynamically, while applications should adapt to this mode 
of operation at runtime, all the while ensuring that the system can run at peak 
performance without compromising application performance.

Malleability allows applications to change their allocated computational 
resources during runtime. When and how to enable this change is controlled by 
the RMS, which must balance two different benefits when making its decision. 
From the point of view of each individual application, it can improve the 
application performance when expanding the job. From the perspective of the 
global system, it can increase its throughput in terms of jobs completed per unit 
of time.

In this paper, we consider malleability as the ability of a distributed parallel 
job to change its size, in terms of MPI ranks, by changing the computational 
resources initially allocated to the job at any point in the execution as many times 
as required. This is triggered at a specific point where processes are synchronized 
throughout execution, called the Malleability Point (MP). Defining MPs at the 
beginning of a loop may be the simplest option for iterative applications, while 
for non-iterative applications, defining a MP at the beginning of each phase is a 
good alternative.

The first task in a MP is to contact the RMS to find out whether the application 
needs to be reconfigured, since the RMS is responsible for making that decision. 
If a reconfiguration is proposed, i.e., the number of processes in a parallel job is 
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changed from NS processes (sources) to NT (targets), the following stages must 
be performed: 

1. Stage 1: Resources reallocation. Allocate new resources and/or release previously 
allocated resources to/from a job.

2. Stage 2: Process management. Spawn/kill processes according to the 
reconfiguration decision in the previous stage.

3. Stage 3: Data redistribution. Communicate data between NS and NT processes 
so that execution continues properly using the target processes.

4. Stage 4: Resuming execution. Resume execution of the job at the same point as 
before the reconfiguration began.

This paper presents a highly configurable framework, named Proteo,1 that allows to 
set up benchmarks to study the effect of malleability and also to integrate malleability 
in real applications. This tool has been developed using a modular structure, with 
two main independent components: the Synthetic Application Module (SAM) and 
the Malleability Module (MaM), both of which include performance monitoring. 
One is used to emulate the computational behavior of iterative scientific MPI 
applications, although it can be extended to non-iterative applications. The other 
provides the ability to reconfigure a job during its execution, simulating RMS 
demands, by expanding or shrinking the number of assigned processes. Moreover, 
each benchmark is generated from a configuration file that details the main features 
of the computational behavior of the emulated application as well as the description 
of the different reconfigurations.

Proteo can also be used to facilitate the development of artificial workloads for 
a system, so that it is possible to analyze the impact of the malleability in their 
execution. Thus, a workload is composed of a set of benchmarks, each of which 
emulates a real application with certain computational properties described in the 
configuration file. This file also simulates how RMS adjusts system resources as 
their availability changes and determines when the benchmarks must release or 
acquire new resources. These workload emulations allow users to analyze the impact 
of malleability from both an application (overhead) and system (productivity) 
standpoint.

Following the previous comments, the main contributions of this work are 
presented below:

• Introduce Proteo and describe its main features, structure, and operation, 
showing how SAM is able to emulate the computational behavior of MPI 
scientific applications.

• Analyze in detail the emulation of a real application, defined by the parameters 
stored in a configuration file, and compare the behavior of the real and emulated 
application.

1 Its name draws inspiration from Greek mythology, specifically from Proteus, the son of Poseidon, 
known for his ability to transform into various animal forms.
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• Describe how Proteo using MaM is able to integrate malleability into an 
application, explaining the different mechanisms implemented for process 
management and data redistribution.

• Analyze the performance of a malleable application using the different 
mechanisms available in Proteo and compare the behavior of the real and 
emulated application when they become malleable.

In the analysis of the emulation of a real application and the corresponding malleable 
version, we will use the parallel implementation of the Conjugate Gradient (CG).

The rest of this paper is organized as follows: Section 2 introduces motivation and 
discusses previous works related to dynamic resources and malleability, mainly for 
MPI. Related work on malleability and simulation/emulation is discussed in Sect. 3. 
Section 4 describes the architecture and main features of Proteo, while Sect. 5 shows 
how Proteo emulates the behavior of a certain MPI parallel application when it is 
malleable and when it is non-malleable. Finally, Sect. 6 summarizes the paper and 
discusses future work.

2  Motivation and background

According to Feitelson and Rudolph’s classification  [4], applications executed 
in large-scale facilities can be categorized into four groups. These categories 
are defined by who and when determines the initial size (number of processes) 
of parallel jobs to be run and also by who and when the new sizes are set, if 
reconfiguration is supported. Thus, the job classification is the following:

• Static job: It maintains the initial resource allocation while running it.

• Rigid job: It can only be run with a fixed number of processes.
• Moldable job: It can be started with a variable number of processes. The size 

is determined by the RMS just before the job execution is launched.

• Dynamic job: It can change the initial allocation of resources during the 
execution of the job.

• Evolving job: It is provided with a user-defined reconfiguration scheme that 
specifies how and when the job changes its resources. The RMS must meet 
the requests, or the job will not be able to continue its execution.

• Malleable job: It can be reconfigured during its execution if the RMS decides 
to do so.

At the first level, the criterion is whether the resources allocated to the jobs may 
vary during their execution and, therefore, whether jobs should include some code 
to manage reconfigurations, as is the case with dynamic jobs. At the second level, 
the criterion is who determines the resources allocated to the jobs: For rigid and 
evolving jobs, it is the user, whereas for moldable and malleable jobs, the RMS 
should make the decision. Therefore, malleable jobs are the most flexible because 
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they can adapt to system workloads and reallocate their resources at any time, to 
enhance system throughput. The current studies conducted in the USA Exascale 
project  [5] show that including malleable jobs will be very profitable for both, 
applications and systems.

From an application point of view, it would allow a job to start with a suboptimal 
resource allocation and later, when available, claim an efficient amount of resources 
for the job. This would reduce the waiting time and, thus, the turnaround time. A 
number of papers have demonstrated a reduction in both metrics by employing 
malleable jobs [6–8]. Another beneficial consideration for jobs is to take advantage 
of situations where there are free nodes and no jobs in the queue that require those 
nodes. In this case, these nodes would be requested to reduce the job execution time.

From a system point of view, there are two main benefits. The first is based on a 
higher utilization of system resources, avoiding situations where there are free nodes 
while there are jobs in the queue or in execution that could use them. An efficient dis-
tribution of nodes makes it possible to assign to each job only the number of nodes that 
will give it maximum efficiency. In this way, it is possible to increase the throughput of 
the system [6–8]. On the other hand, it is possible to focus on another efficient distribu-
tion related to increasing the energy efficiency of each job [9–11]. In this distribution, 
the amount of resources given to each job is focused on improving its performance per 
watt. Therefore, a system can be made green and sustainable through malleability.

An in-depth analysis of how malleability can be applied in a system and its 
impact on the performance of both the running workload and the system itself is 
provided in  [12]. This paper shows that there are many malleability solutions that 
aim to reconfigure jobs on-the-fly with different approaches for managing the 
MPI processes  [6, 13–16], the most relevant of which are introduced below. In 
Elastic-MPI  [14], the MPI-2.0 standard is extended along with modifications to 
SLURM [17] to allow the execution of moldable and malleable jobs. ReSHAPE [13] 
developed a framework consisting of three components: an application scheduler 
based on the DQ/GEMS project  [18], a monitoring module, and a programming 
model for reconfigurations. Furthermore, AMPI [19] presents a regular MPI imple-
mentation used for the dynamic runtime system CHARM++ [20] and integrated 
for Maui/Torque [15], allowing the execution of evolving jobs. Another solution is 
Flex-MPI [16], a library built on top of MPICH [21], to improve the performance of 
applications by making them malleable. A malleability framework is presented in 
DMR [6], which consists of two components: a parallel distributed runtime based 
on MPI and an extension of SLURM to enable the execution of malleable jobs. All 
these solutions require an RMS to support the scheduling of malleable jobs. Some 
works explore the new concept of MPI Sessions, extending it to implement on-the-
fly malleability [22, 23].

In works where malleability is integrated using MPI, the authors evaluate their 
frameworks generating synthetic workloads of both: benchmarks such as Conjugate 
Gradient, N-body, NAS Parallel,2 etc.,  [24–26] and scientific applications such as 
LAMMPS, HPG-aligner, LeanMD,3 etc. [9, 27–33].

2 http:// www. nas. nasa. gov/ Softw are/ NPB
3 http:// charm. cs. illin ois. edu/ resea rch/ leanmd

http://www.nas.nasa.gov/Software/NPB
http://charm.cs.illinois.edu/research/leanmd
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These codes have been developed ad-hoc for each particular malleability 
framework and flocked together in workloads to evaluate each malleability solution 
and measure its impact on HPC systems.

Other studies implement malleability by focusing on fine-grained malleability, 
where jobs are divided into a task graph with dependencies. These tasks are executed 
based on the specified dependencies, and each task can use a different amount of 
resources [34, 35]. Alternatively, in some cases, the number of threads allocated to a 
task can be dynamically modified during its execution [36, 37].

Finally, there is ongoing research on scheduling policies for RMS aware of 
malleable jobs using simulators [7, 8, 38, 39] and execution time [40], which aims 
to evaluate how malleable workloads can improve the makespan of RMS and/or 
applications.

3  Related work

Proteo is a very powerful tool for analyzing in advance how the dynamic allocation 
of resources will affect the performance of both the system and the applications 
themselves during execution. Currently, there are not many parameterizable tools 
that can emulate the behavior of parallel applications running with dynamic 
resources while monitoring the entire execution. The most similar solutions that 
have been found are explained in this section.

In this context, ElastiSim  [39] is a batch-system simulator for testing different 
scheduling algorithms for rigid and/or malleable workloads. It is based on the 
framework SimGrid  [41], a simulator for distributed computing systems that 
characterizes resources as compute nodes, network topologies, and file systems. 
ElastiSim consists of the simulation engine built on top of SimGrid, enhanced with 
resource management, GPU utilization, and new I/O semantics that integrate model-
relevant interactions into workload management for large distributed computing 
infrastructures. Thus, the simulator provides an interface for users to implement 
their own scheduling protocols. It also describes workload modeling, where jobs are 
broken down into a set of properties, and the application model. The former contains 
information relevant to the scheduler, while the latter describes the application so 
that it can be simulated.

The main difference between ElastiSim and Proteo is that the former is a 
simulator, while the latter is an emulator, so the execution can be performed in the 
actual architecture where the user application is running. In addition, ElastiSim 
focuses on how the system responds to a malleable workload with different 
scheduling algorithms, while Proteo analyzes how applications would respond 
to different reconfiguration alternatives and can be used to generate malleable 
workloads.

Similar works can be found in BatSim  [42] and Alea  [43], simulators built on 
top of SimGrid for testing different scheduling algorithms for rigid workloads. They 
have many similarities to ElastiSim, but they do not take malleability into account.
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Another simulator is Elastic-Sim  [8], which focuses on partially or completely 
transforming real rigid workloads into malleable ones. It then uses a variety of 
metrics, such as system utilization or turnaround time, to determine whether adding 
malleable jobs to HPC systems is beneficial. The simulator takes a rigid workload 
from a real system as input and simulates its execution using four different queues. 
Jobs move from one queue to the next until they are completed. Malleable operations 
are divided into expansion and shrinkage operations, which double and halve the 
amount of resources used by a job, respectively. In addition, these operations can 
use two different policies: conservative or aggressive. The former allows a single 
malleable operation to be applied to a job, while the latter allows the same operation 
to be applied multiple times to a job in a single reconfiguration.

As with ElastiSim, the main difference between Elastic-Sim and Proteo is 
that the latter is an emulator. Also, Elastic-Sim focuses on how system metrics 
are affected by malleable jobs and does not consider all the overheads caused by 
reconfigurations, whereas Proteo gives more importance to these overheads and how 
they can be reduced. Furthermore, Proteo allows you to perform reconfigurations on 
any number of resources.

A technique for generating malleable workloads is presented in  [44], which 
employs LIMITLESS  [45], an HPC framework that provides strategies for 
monitoring clusters. With this monitor, it is possible to create synthetic micro-
benchmarks (proxies) based on monitored data from real applications, which are 
made malleable by using Flex-MPI  [16], a performance-aware reconfiguration 
library.

A limitation of Flex-MPI is that the initial amount of resources cannot be reduced 
or removed, whereas in Proteo, it is possible to reconfigure from any number to 
any other number. Another important difference is found in the reconfiguration 
stages, where Flex-MPI has only one way to complete them, while Proteo has 
several alternatives to choose from. On the other hand, the monitoring provided by 
LIMITLESS simplifies the modeling of applications.

In other cases, a sleep-based benchmark [46] has been developed to implement 
malleability. This type of benchmark is useful for configuring custom iteration times, 
but it is not able to distinguish between compute/communication stages within 
an iteration. Stage differentiation and parameterization can provide the freedom 
needed to emulate the workflow of a particular application. For this purpose, Proteo 
is highly configurable to reproduce behavior profiles of scientific applications. In 
this regard, users will be able to create synthetic twins of their application where 
malleability can be easily adopted and evaluated in workloads.

In summary, Proteo can be used to generate a synthetic malleable workload that, 
once executed, can be compared to its traditional non-malleable counterpart and to 
determine the best way to perform reconfigurations in different applications. The 
adoption of malleability in the HPC system, as well as the malleability fine-tuning 
configuration of the applications, will be evaluated after a post-mortem analysis of 
these workload executions.
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4  Description of Proteo operation

Proteo is a framework designed with a modular structure, as shown in Fig. 1. The 
tool has two main independent modules: the Synthetic Application Module (SAM) 
and the Malleability Module (MaM), each of which is decomposed into several 
submodules. A monitoring submodule is included in both of them, to measure the 
performance of each, which is stored in an output file for later analysis. There is also 
an input configuration file where the parameters for emulating the computational 
behavior of a real application and the malleability are stored.

The following subsections introduce the Proteo modules and how they work, 
before describing the application workflow and how to configure it.

4.1  Synthetic application module

This module is able to emulate the computational behavior of any type of MPI 
parallel iterative application from the parameters stored in the configuration file. 
This task is performed in four main parts: Initialization, Emulation, Monitoring, and 
Completion.

Initialization: It is in charge of starting the execution of Proteo, and its main 
task is performed by the first process group (the ones that start the execution), 

Fig. 1  Architecture of Proteo
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which reads the parameters from the configuration file. Later, these parameters are 
transferred through the process groups after each reconfiguration. This module is 
also responsible for initializing MaM and starting the emulated execution.

In addition, (non-direct) configuration parameters are also calculated by 
combining other parameters from the configuration file and, in some cases, 
by combining the number of source (NS) and target (NT) processes. Source 
processes indicate the number of processes before a reconfiguration, while 
target processes indicate the number after a reconfiguration. These non-direct 
configuration parameters should be recalculated after each reconfiguration.

Emulation:  It is able to emulate iterative applications where an iteration is 
composed of a sequence of processing stages, in which some computations or 
communications are performed. Thus, an iteration is considered to be terminated 
when all its processing stages have been completed. There are two types of 
computation:

• Compute-bound applications (0): where most of the computation are done by 
the CPU. The emulation executes a � estimator based on Monte Carlo method.

• Memory-bound applications (1): where most of the execution time is wasted 
on memory accesses. The emulation is based in a matrix-matrix product in a 
column-major order.

In addition, there are other types of communication, as described below:

• Point-to-Point (2): All processes are involved in a MPI_Sendrecv, 
choosing a communication pattern that ensures that all processes perform 
communication across nodes.

• Collective one-to-all (3): All processes take part in a MPI_Bcast.
• Collective all-to-all (4): All processes participate in a MPI_Allgatherv.
• Reduction (5 and 6): All processes execute a MPI_Reduction, or 

MPI_Allreduce, with a MPI_SUM operation.
• Non-Blocking Point-to-Point (7): All processes are involved in a MPI_Isend 

and MPI_Irecv, choosing a communication pattern that ensures that 
all processes perform communications across nodes. When used, a Wait 
communication stage should also be included.

• Wait communication (8): Performs a MPI_Waitall function over a previous 
set of non-blocking communications.

The total number of iterations and the parameters that define the computation and 
communication operations associated with each processing stage of an iteration 
are stored in the configuration file.

Monitoring:  This submodule supervises the execution and measures the 
performance of the application, using the MPI_Wtime function to obtain the 
times of each part of the emulation. One of the main goals of Proteo is to measure 
how the computation and communication operations are executed, allowing a very 
detailed analysis of the application behavior when malleability is incorporated.
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Completion:  This submodule is responsible for completing the execution of 
each process group and saving the measurements taken by the monitoring submod-
ule to an output file for further analysis. It is executed when a process group com-
pletes its execution after a reconfiguration or when the last process group ends.

4.2  Malleability module

This module is responsible for reconfiguring applications by changing the number 
of running processes. The values of NS and NT are set in the configuration file, as 
well as when the malleability is applied.

In an application, the reconfiguration triggered at a MP is completed in the 
following four steps: 

1. Communicate with the RMS to indicate the availability of the application to be 
reconfigured, increasing or decreasing the number of processes if necessary.

2. If the RMS has approved the reconfiguration, create new set/group of MPI 
processes.

3. When the RMS has approved the reconfiguration, redistribute data from sources 
to targets.

4. Targets resume execution at the point where the sources stopped the application.

Step 1 is simulated by the input parameters in the configuration file, which 
indicate whether the application will be expanded or shrunk, thus consuming 
more or less computing resources on the system. Since MaM simulates the 
amount of resources, it is designed as a framework independent of the RMS used, 
if any. Instead, the process management and data redistribution submodules 
perform Steps 2 and 3. In addition, the monitoring submodule works similarly as 
described in 4.1.

Process management: The creation of processes in MPI is based on the 
MPI_Comm_spawn function, which is a collective operation on a given 
communicator.

Using this MPI function, two main methods can be used to change the number 
of processes in execution:

• Baseline method, where NT new processes are always spawned to continue 
execution as targets while all sources terminate.

• Merge method, where some sources continue executing after reconfiguration: 
When expanding, only NT–NS new processes are spawned, while NS sources 
persist; when shrinking, NT–NS processes are stopped, while NT sources 
persist.

For Baseline, the use of inter-communicators is the most common alternative to 
communicate between sources and targets, although the use of intra-communica-
tors is also possible. For Merge, on the other hand, the use of intra-communica-
tors is the only alternative to complete the communication.
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There are also two additional strategies that can be used in combination with 
the methods described above:

• Asynchronous spawning of processes: Auxiliary threads are used to perform 
the operation. This allows source processes to continue executing the 
application while the reconfiguration is performed by threads. This strategy 
requires starting the MPI environment with MPI_Init_thread and the 
argument MPI_THREAD_MULTIPLE.

• Single operation: When this strategy is enabled, only rank 0 will execute the 
MPI_Comm_spawn function instead of all the processes in the communicator.

Figure  2 shows a diagram of the different methods and strategies that can be 
selected to perform the application reconfiguration. One method should always be 
selected, while none, one, or both strategies may be enabled. Although all of these 
techniques are explained in detail in [47], some combinations are described below.

Figure 3 shows some examples using both methods. It can also show examples 
with and without asynchronous and single strategies. Examples include expan-
sion, when the application is reconfigured from 2 source to 4 target processes, 
and shrinkage, from 4 source to 2 target processes. In all cases, the source pro-
cesses are initially available to run the application, and after the reconfiguration, 
the target processes eventually continue to run the application while the sources 
terminate. Figure  3a,  b, and  c shows a synchronous operation using Baseline 
and Merge methods, where the source processes stop their execution before the 
reconfiguration begins and continue on the target processes after the reconfigura-
tion. Two figures are shown for Merge because the procedure for expanding and 
shrinking is different for this method than for Baseline. Figure 3d, e, and f shows 
the asynchronous versions of the previous combinations, where each source cre-
ates an auxiliary thread which is responsible for spawning the new processes, 
while the source processes continue execution. In these cases, the auxiliary 
threads will terminate as soon as the target processes are spawned, but these pro-
cesses may need to wait for the sources to be notified that the reconfiguration is 
complete; these waits are marked by striped blocks in the figures. Figure 3g and 
h shows how asynchronous and single strategies can be combined for both meth-
ods. Finally, the combination of Merge and single strategy is shown in Fig. 3i.

Fig. 2  Methods and strategies 
for process management
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Data redistribution:  To move data from source to target processes, a 
communicator is needed to connect the appropriate groups of processes. 
Depending on the type of communication, two main methods can be used:

• Point-to-Point (P2P): is initially based on simple MPI functions such 
as MPI_Send and MPI_Recv where the operation is performed by 
communicating between two processes at a time. However, a more efficient 
implementation suggests using MPI_Isend and MPI_Irecv along with 
MPI_Wait.

• Collective (COL): based on MPI functions like MPI_Alltoall or 
MPI_Alltoallv, where all active processes are involved at the same time.

Data redistribution is an expensive task that could be reduced by overlapping it with 
application execution in source processes. The first consideration is that the com-
municator used for data redistribution and the one used for the application should 
be different to avoid communication deadlocks. This is usually true since data redis-
tribution uses the inter- or intra-communicator created during process management. 

Fig. 3  Reconfiguration methods from Source to Target processes. ItX is iteration number, Spw: spawn, 
Mrg: merge processes, and Con: connect operation. Striped blocks are waiting time. Methods and strate-
gies: Baseline-/Merge-with S (only rank 0 performs spawn), T (threading), or nothing
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The second consideration is that the overlapping can only be done on data that are 
maintained throughout the execution of the application (constant data), whereas the 
other data (variable data) require the sources to stop before the data are redistributed.

There are several strategies to ensure that sources continue to compute while 
constant data communication is completed:

• Non-blocking MPI functions: For P2P, the alternative is to combine MPI_Isend 
and MPI_Irecv functions with the MPI_Test function, while for COL, the 
use of the MPI_Ialltoallv function is the most common solution, and the 
verification of the function completion also requires the use of the MPI_Test 
function. In this case, there are two options: (i) wait sources: The redistribution 
is considered complete for sources when all of their data have been sent or (ii) 
wait targets: Communication is complete for sources when all data have been 
successfully received at all targets.

• Managing threads: The main goal of creating auxiliary threads is to relieve sources 
of the responsibility of redistributing data. This way, the auxiliary threads handle 
the communication, while the main ones continue to compute. The simplest alter-
native is to launch a new thread in each source that will take care of data redistribu-
tion using the selected method. This strategy also requires starting the MPI environ-
ment with MPI_Init_thread and the argument MPI_THREAD_MULTIPLE.

Figure 4 shows a diagram of all the methods and strategies that can be selected to 
perform data redistribution during application reconfiguration. Again, one method 
should always be selected, while none, one, or both strategies can be enabled. These 
techniques are explained in more detail in [48].

4.3  General workflow

Figure 5 shows the workflow diagram of the tool, with the different parts of Proteo 
being highlighted by colors as shown in Fig. 1: Initialization in green, Emulation in 
yellow, Malleability in purple, Monitoring in blue, and Completion in red.

Fig. 4  Methods and strategies 
for data redistribution



 I. Martín-Álvarez et al.

1 3

The first process group starts the execution at the Initialization submodule. In 
fact, a single process in this group is responsible for reading all the parameters 
from the configuration file and storing them in an internal data structure. Later, this 
structure will be broadcasted to the other processes in its group and also to the other 
process groups after each reconfiguration.

Then, Emulation submodule starts, which is responsible for computing the 
total iterations programmed for each process group, taking into account the appli-
cation computational behavior described in the configuration file. At the MP of 
each iteration, this module checks whether a new reconfiguration is defined in the 
benchmark. If this is the case, execution continues at the Malleability module, 
where two tasks are accomplished: process management and data redistribution 
from sources to targets. Then the new group will continue the application execu-
tion from the Initialization submodule, which will lead it to execute Emulation 
again, and the execution will continue to run the iterations defined for this new 
group. When the malleability is finished, sources (or part of them) complete their 
execution in Completion, which is responsible to store the application performance 
recorded by Monitoring submodule in an intermediate file.

Listing  1 shows the skeleton of the emulation using Proteo, where the lines 
associated with each module and part are grouped by color. Lines 2–11 initialize 
the application and process groups; lines 15–19 represent an iterative computation 

Fig. 5  Flowchart of Proteo
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with its different computation and communication stages (processing_stage); 
reconfigurations take place from lines 22– 24; and the results are stored in line 27.

Listing 1  Basic skeleton of the synthetic application module
Figure 6 shows the emulation of a parallel iterative application using Proteo with 

a reconfiguration from 2 to 4 processes, running 20 iterations before and after the 

Fig. 6  Emulation of an iterative 
application with two stages: 
computation and communica-
tion. Reconfiguration from 2 to 
4 processes
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reconfiguration using ExtraE.4 The upper part of the figure shows the computation 
time, whereas the lower part includes the MPI calls. In this example, SAM is con-
figured with two stages: a compute-bound computation and a MPI_Allgather 
communication. For MaM, the baseline method without strategies for reconfigura-
tion is used. Therefore, after the reconfiguration, the two sources stop executing, 
and the four targets start executing. The purple box in the figure identifies the two 
main reconfiguration steps: the processes management and the data redistribution. 
In the figure, each row has three numbers on the left (X.Y.Z) that indicate the group 
identifier, the process identifier within the group, and the thread identifier within the 
process.

4.4  Configuration

The configuration file contains two types of parameters to generate a malleable 
benchmark: One defines the computational behavior of the emulated applica-
tion (SAM), and the other specifies when and how reconfigurations are performed 
(MaM).

The parameters that determine how the application execution is emulated are as 
follows:

• Total_Stages: The number of processing stages into which each iteration of 
the emulated application is broken down. Each processing stage will be defined 
by a computation or communication operation, and its value will always be equal 
to or greater than 1.

• Granularity: Problem size for computation stages. Lower values allow the 
use of finer-grained tasks when emulating a stage, so that the execution time can 
be better adjusted.

For each stage, the parameters described below should be specified:

• Stage_Type: Computation(0–1); Communication(2-8).
• Stage_Time: Computational or communication time in seconds.
• Stage_Bytes: Bytes communicated among processes.

SAM never considers a single stage which combines communication along 
computation, although there are some implicit computations in the reduction 
communication stages. Nevertheless, a non-blocking communication could be 
carried out while performing other stages.

With respect to MaM, the following parameters describe how the reconfiguration 
will be developed in the malleable benchmark:

• Total_Reconfigurations: Number of reconfigurations to perform during 
the benchmark execution. A value of zero indicates that the benchmark is not 
malleable.

4 https:// tools. bsc. es/ extrae.

https://tools.bsc.es/extrae
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• Total_Data_Redistribution: Number of bytes to redistribute in each 
reconfiguration.

• Asynch_Percentage_Redistribution: Percentage of 
Total_Data_Redistribution that will be distributed asynchronously 
(constant data), while the rest will be distributed synchronously (variable data). 
It is a number between 0 and 100.

Next, �����_���������������� + 1 sets of parameters are included characterizing 
each reconfiguration. For each set, the parameters are the following:

• Iters: Total iterations to execute before starting a new reconfiguration or 
ending the application.

• Procs: Number of processes in the group.
• Dist: Strategy applied to emulate the node allocation: spread or compact, i.e., 

minimize or maximize the number of processes per host.
• Spawn_Method: Spawn method to use during reconfiguration: Baseline (0) or 

Merge (1).
• Spawn_Strategy: Spawn strategy to use during reconfiguration: none (1), 

one of them (threading 2, or single 3), or both (6).
• Redistribution_Method: Data redistribution method to use during 

reconfiguration: Collectives (0) or Point-to-Point (1).
• Redistribution_Strategy: Data redistribution strategy, either using 

none (1); using MPI non-blocking primitives with sources wait (2) or target wait 
(3); or threads (5).

• FactorS: This parameter describes how the performance of computation stages 
is affected by the number of processes. For ideal scalability, its value is 1/Procs, 
and greater values characterize loss of performance.

The parameters Spawn_Method, Spawn_Strategy, Redistribution_Method, 
and Redistribution_Strategy are ignored for the first process group, as they are 
created by mpirun or similar commands.

Some other parameters have to be computed each time a new process group is 
started. If computations have to be done in one stage, i.e., Stage_Time is greater 
than 0, the tool has to calculate:

• Top : Time to execute a single operation of Stage_Type ( � estimator or matrix-
matrix product), when problem size is equal to Granularity. The different 
values of Top are set when Proteo is installed or the first time it is executed.

• op: How many times the Stage_Type has to be executed in a stage to achieve 
the scalability defined in FactorS, and it is calculated as follows: 

 This parameter has to be computed after each reconfiguration.
The user manual of Proteo appears in  [49], where all parameters are explained in 
detail, and examples of configuration files are shown.

op = Stage_Time ∗ FactorS∕Top
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5  Results

This section evaluates Proteo as an emulation tool and shows how it can be used 
to integrate malleability into an application. The analysis is divided into several 
sections, each focusing on the evaluation of different aspects of Proteo.

First, we describe the main features of the Conjugate Gradient application, since 
this is the real application that we will emulate with SAM, considering both the 
algorithm and the problem size, before introducing the setup for the experiments. 
Finally, we present the multiple tests that have been carried out to validate the 
usefulness of Proteo: first, to emulate an iterative application using SAM; then, 
to build malleability into a real application using MaM; and finally, to emulate a 
malleable version of the application using a combination of SAM and MaM. Sources 
and experimental results can be found in the GitLab repositories for Proteo [50] and 
the CG [51], and in Zenodo [52].

5.1  Description of the use case

Our experiments with SAM emulate the execution of the Conjugate Gradient 
application (CG), which solves a sparse linear system defined by a sparse matrix.

CG is the most common solver for the resolution of positive-definite sparse lin-
ear systems ( Ax = b) . It is an iterative method in which the solution is obtained as 
the projection of an initial vector on to a Krylov subspace defined by the coefficient 
matrix and the residual  [53]. In each iteration, one sparse matrix–vector product 
(SpMV), two Dot products, and three Axpy(-like) operations are computed. Given 
its relevance, a High-Performance Conjugate Gradient benchmark5 was ultimately 
defined as a complement to the High-Performance LINPACK, which is currently 
used to rank the TOP5006 computing systems.

Assuming that a row-block distribution is used for sparse matrix and vectors, 
parallelizing CG requires a proper implementation of its operations:

• Parallel computation of  SpMV: Each process needs a full version of the 
distributed vector before it can perform local computation. For this reason, the 
MPI_Allgatherv function is executed.

• Parallel computation of  Dot product: The Dot products calculate scalars that 
are needed in all processes. Therefore, after the local calculations with the 
distributed vectors, the MPI_Allreduce function is executed.

• Parallel computation of Axpy: As the same distribution is applied to all vectors, 
this computation can be fully parallelized, requiring no communication.

In summary, it can be concluded that the parallel CG algorithm consists of three 
communication operations: one MPI_Allgatherv and two MPI_Allreduce.

5 https:// hpcg- bench mark. org.
6 https:// www. top500. org.

https://hpcg-benchmark.org
https://www.top500.org
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Therefore, to emulate the parallel CG algorithm, six different processing stages 
need to be defined in SAM. Three of these stages involve intensive matrix computa-
tion, while the other three involve communication: two MPI_Allreduce opera-
tions, each for accumulating a double, and one MPI_Allgatherv operation for 
obtaining a duplicate vector of N doubles. Here, N represents the number of rows in 
the matrix.

5.2  Hardware and software setup

The experiments were conducted using three different clusters of nodes; although 
depending on the type of experiment and evaluation, only one of them was used. 
Below is a brief description of each system:

• System_1: Consists of eight servers with two 10-core Intel Xeon 4210 processors 
for a total of 160 cores. The nodes are interconnected with an EDR Infiniband 
network of 100 Gb/s. The used version of MPI was MPICH 4.0.3 [21], compiled 
with CH4:OFI netmod (Infiniband)7. The analysis considers the simulation for 2, 
10, 20, 40, 80, 120, 160 processes.

• System_2: Consists of 32 servers with two 10-core Intel Xeon E5-2680 V2 
processors for a total of 640 cores in which IntelMPI 2021.6.0 is used. The nodes 
are interconnected via an EDR Infiniband (100 Gb/s) network, using the Open 
UCX interface. The analysis considers the simulation for 2, 10, 20, 40, 80, 120, 
160 processes.

• System_3: Consists of 36 servers with two 16-core Intel Xeon E5-2697A V4 
processors for a total of 1.152 cores in which IntelMPI 2021.6.0 is used. The 
nodes are interconnected via an EDR Infiniband (100 Gb/s) network, using the 
Open UCX interface. The analysis considers the simulation for 2, 16, 32, 64, 
128, 192, 256 processes.

In order to ensure a fair comparison between systems in the experiments, the number 
of processes considered in each system has been taken into account. Therefore, with 
the exception of the case of 2 processes, the remaining values are related to the 
number of cores in each node, evaluating 0.5, 1, 2, 4, 6, and 8 nodes.

The benchmark that emulates the parallel CG was used to provide results, which 
were analyzed using various systems. Several BSC tools8 were used to assess the 
impact of computation and communication on the parallel CG execution, and the 
resulting parameters were used to describe the application in the SAM configuration 
file. ExtraE was used to gather information about the performance of the application, 
and ParavEr was used to visualize the execution of the application so that unbal-
anced process executions and bottlenecks could be detected. Both tools were used 
to determine the computation and communication time of the real application in its 

7 MPICH supports dynamic processes for Netmod OFI but not for UCX [21].
8 https:// tools. bsc. es/ extrae.

https://tools.bsc.es/extrae
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various processing stages. These data were then transferred to the configuration file 
so that SAM can emulate the computational behavior of the parallel CG.

For this study, two different matrices, obtained from the SuiteSparse Matrix Col-
lection9, were also used for the CG evaluation:

• audikw_1 is a 943, 595 × 943, 595 sparse matrix with 77,  651,  847 nonzeros. 
Approximately a total of 0.965 GB of memory is allocated when using this 
matrix.

• Queen_4147 is a 4, 147, 110 × 4, 147, 110 sparse matrix with 316,  548,  962 
nonzeros. Approximately a total of 3.947 GB of memory is allocated when using 
this matrix.

Apart from their different sizes, the main difference is the effect of the row-block 
distribution on the performance of parallel CG, leading to unbalanced distributions 
for audikw_1 and balanced ones for Queen_4147.

In contrast, for the malleability evaluation, only System_1 has been used. The 
reason for this is that the other two systems did not support process spawning dur-
ing execution10. For each experiment, we consider a single reconfiguration from 2, 
10, 20, 40, 80, 120, and 160 processes to any of the same numbers. The number of 
occupied nodes in each execution is calculated by taking the upper bound of ⌈N∕20⌉ , 
where N is the maximum between the number of sources (NS) and targets (NT), 
in order to minimize the number of nodes allocated by the RMS. For reconfigura-
tions, two groups of processes, sources and targets, are defined, with the malleability 
stage starting at iteration 500 of 1000. These experiments were carried out using 
the Queen_4147 matrix, which allocates approximately 3.947 GB of memory for 
the matrix and vectors. This is the number of bytes that will be redistributed during 
reconfiguration. 96.6% of these can be redistributed asynchronously. In the defini-
tion of the configuration file, all methods and asynchronous strategies included in 
MaM are used and evaluated, with the exception of children wait (see Sect. 4.2).

For all experiments, a total of five runs are conducted and the mean, 
standard deviation, and median of the measurements are calculated. Then, the 
Shapiro–Wilk  [54], Kruskal–Wallis  [55], and Post-hoc Conover  [56] statistical 
tests are used to characterize the different configurations in relation to each pair of 
process groups. All configurations reject the Shapiro–Wilk null hypothesis (H0) that 
the data are from a normal distribution, so medians and nonparametric tests should 
be used. The Kruskal–Wallis test is used to check the H0 of the 12 configurations 
having the same median. For pairs of groups that reject H0, the Post-hoc Conover is 
performed to determine which configurations are different.

9 https:// sparse. tamu. edu.
10 IntelMPI has a limitation that does not support calls to MPI_Comm_spawn() from within a Slurm 
allocation with PMIx. https:// slurm. sched md. com/ mpi_ guide. html.

https://sparse.tamu.edu
https://slurm.schedmd.com/mpi_guide.html
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5.3  Emulation of a non‑malleable application

This subsection evaluates the emulation of the parallel CG provided by SAM in 
three steps. Firstly, is evaluated the computation part. Secondly, is analyzed the 
MPI_Allgatherv function, which is the heaviest communication operation used 
in the emulation. Finally, we study how SAM emulates parallel CG by comparing 
the computation, communication, and total execution time of both.

Figure 7 shows the growth rate of SAM computational time with respect to the 
original one. It is computed as the quotient of the computational times of the two 
CG implementations using the same system and sparse matrix. Values greater than 
1 indicate an increase in the cost of the emulated CG, while values lower than 1 
indicate a decrease. Values close to 1 confirm a similar behavior. Since the computa-
tional emulation is implemented as a loop until the total time is reached, in general, 
the results of SAM are slightly more expensive than the original ones, falling within 
the interval [1, 1.05]. There are only a few cases of higher growth, all of which are 
related to the audikw_1 matrix, as this matrix produces unbalanced workloads.

The most communication-intensive operation in the CG is MPI_Allgatherv. 
Therefore, a detailed analysis of its performance is conducted, showing the stabil-
ity of this MPI function on various HPC systems. An experiment was conducted to 
measure the cost of performing the same function 1.000 times for different sizes, 
which were communicating 100 KB, 10 MB, and 1 GB. Initially, the data are evenly 
distributed among the processes before the function is executed, while a copy of the 
concatenated data appears in each process after the function is completed.

Table 1 presents the results of the experiments conducted on the three HPC sys-
tems. Each column denotes the average times (AVG) and standard deviation (STD) 
for data sizes of 100 KB, 10 MB, and 1 GB, with varying numbers of processes. The 
first conclusion of their analysis is that the communications in System_1 are more 
expensive than in the other two systems with similar behavior, probably because of 
the communication interface. For communications of data size 100 KB, System_1 
and System_2 present worse stability than System_3 using multinode configura-
tions (4, 6, and 8 nodes), System_1 being even worse for the other configurations 

Fig. 7  Growth rate of the computational time of SAM with respect to parallel CG for each sparse matrix 
and HPC system
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(2 processes, half, one, and two nodes). Additionally, in System_2 and System_3, 
the average values for large number of processes (2, 4, 6, and 8 nodes) and big com-
munications (1 GB) seem independent of the number of processes, but this situation 
never happens in System_1.

The next step in evaluating MPI_Allgatherv is to compare AVG values in 
Table 1 with respect to similar values obtained in SAM. To achieve this, a configura-
tion file is parameterized for each tuple (amount of bytes, HPC system, and number 
of processes) to emulate 1000 executions of the communication step.

Table 2 shows the average growth rate of SAM with respect to the original execu-
tion (column AVG(%)), as well as the standard deviation of the quotient between the 
two times (column STD). The first conclusion is that the execution of the tool in Sys-
tem_3 is the most stable, since all AVG values are close to 100% and STD is small 
enough. For System_1 and System_2 with small size communications (100  KB), 
there are many cases in which the simulation is unstable, and this behavior is 

Table 1  Average time and standard deviation of MPI_Allgatherv for different data size and number 
of processes in three HPC systems

NP 100 KB 10 MB 1 GB

AVG(s) STD AVG(s) STD AVG(s) STD

System_1

2 2.11E−02 2.96E−03 2.79E+00 3.75E−02 3.79E+01 6.25E−01
10 4.58E−02 8.79E−03 6.95E+00 2.77E−01 7.28E+01 3.53E+00
20 1.38E−01 5.69E−02 8.85E+00 1.05E+00 9.67E+01 6.64E+00
40 4.96E−01 1.85E−01 1.26E+01 7.23E−01 1.25E+02 5.34E+00
80 1.13E+00 3.42E−01 1.56E+01 1.56E+00 1.59E+02 9.28E+00
120 1.99E+00 2.09E−01 1.87E+01 2.21E+00 1.86E+02 1.15E+01
160 2.84E+00 6.15E−01 1.97E+01 1.33E+00 2.16E+02 9.25E+00
System_2

2 1.04E−02 8.41E−05 1.62E+00 1.61E−02 2.62E+01 1.36E+00
10 3.35E−02 2.55E−04 2.74E+00 3.21E−02 3.23E+01 1.41E−01
20 4.73E−02 4.24E−04 4.26E+00 3.47E−02 5.69E+01 4.67E−02
40 1.34E−01 4.36E−04 5.83E+00 1.57E−01 6.58E+01 1.14E−01
80 2.29E−01 7.36E−02 5.54E+00 6.98E−02 6.57E+01 2.76E−01
120 3.65E−01 4.13E−02 7.71E+00 3.75E−01 6.55E+01 3.74E−01
160 3.73E−01 7.01E−02 7.72E+00 7.35E−01 6.55E+01 2.85E−01
System_3

2 1.04E−02 1.01E−04 1.88E+00 9.38E−03 2.23E+01 1.63E−01
16 2.47E−02 6.53E−05 2.80E+00 2.12E−02 3.14E+01 5.42E−02
32 3.72E−02 9.39E−05 4.58E+00 3.44E−02 5.78E+01 7.12E−02
64 8.91E−02 4.92E−04 5.09E+00 2.31E−02 6.42E+01 1.46E−01
128 3.15E−01 2.56E−03 6.30E+00 2.97E−01 6.49E+01 9.06E−01
192 1.39E−01 1.14E−03 7.29E+00 1.33E−01 6.49E+01 5.02E−01
256 1.31E−01 9.92E−04 7.82E+00 1.51E−01 6.43E+01 3.62E−01
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slightly maintained for medium sizes (10 MB), whereas the emulations are almost 
stable for big sizes (1 GB). Moreover, in general, STD values around 1E− 01 iden-
tify abnormal AVG values, where MPI_Allgatherv emulations produce widely 
scattered values. There are other outliers, like communication of 100 KB using 128 
processors in System_3, whose AVG value in Table 1 is too large, and therefore, the 
corresponding AVG value in Table 2 is too small, although STD values in both cases 
show that executions have been stable.

Lastly, the parallel CG execution time and the SAM emulations are evaluated, 
limiting the maximum number of iterations for each execution to 1000. Figure  8 
shows the growth rate of SAM with respect to the parallel CG, considering only 
their average values. As previously mentioned, the growth rate is calculated by 
dividing the execution times of the two CG implementations using the same sys-
tem and sparse matrix. The first conclusion is that, in general, the emulations in 

Table 2  Comparison between Table 1 and synthetic application

AVG (%) shows the growth rate of synthetic application, whereas STDQ is the standard deviation of the 
quotient

NP 100 KB 10 MB 1 GB

AVG (%) STDQ AVG (%) STDQ AVG (%) STDQ

System_1

2 105.60 1.51E−01 97.37 1.86E−02 98.55 1.83E−02
10 115.34 2.09E−01 104.83 6.31E−02 97.01 8.26E−02
20 80.08 4.80E−01 98.73 7.68E−02 97.88 3.11E−02
40 84.10 3.93E−01 98.90 1.10E−01 99.05 2.86E−02
80 94.10 2.68E−01 94.63 8.33E−02 102.10 4.14E−02
120 73.12 1.45E−01 95.37 5.99E−02 98.74 3.26E−02
160 93.98 2.35E−01 98.02 6.94E−02 97.85 3.73E−02
System_2

2 113.15 2.23E−02 100.60 1.21E−02 98.88 2.46E−02
10 105.19 6.10E−03 99.13 1.61E−02 100.26 5.21E−03
20 101.15 4.08E−03 99.95 8.52E−03 100.05 1.34E−03
40 101.55 6.32E−03 96.98 3.12E−02 117.63 1.16E−01
80 80.81 4.99E−02 106.92 1.15E−01 103.59 6.07E−02
120 74.24 9.55E−02 84.42 5.49E−02 100.41 1.12E−02
160 78.54 1.01E−01 89.66 4.70E−02 106.25 7.64E−02
System_3

2 111.45 3.71E−02 101.44 1.79E−02 101.07 7.47E−03
16 103.65 3.67E−03 99.65 5.02E−03 99.99 2.25E−03
32 104.15 3.89E−03 99.24 6.63E−03 102.25 1.64E−02
64 103.38 3.48E−02 100.66 2.94E−03 100.46 5.94E−03
128 35.09 3.76E−03 105.61 5.25E−02 100.91 2.85E−02
192 101.37 1.03E−02 101.14 1.67E−02 100.53 3.22E−03
256 101.45 7.90E−03 101.67 8.36E−03 102.18 2.54E−02
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System_3 are more stable than in the other HPC systems, being System_1 where the 
instability is greater. It makes sense since the emulations of the communications in 
System_3 are more accurate, and less in System_1, than in the rest. Additionally, the 
emulations using Queen_4147 are usually more stable than using audikw_1 in all 
HPC systems, because the latter one generates an unbalanced workload.

5.4  Emulation of a malleable application

This subsection is divided into three main parts: Firstly, the different 
implementations of reconfigurations in MaM are analyzed in order to identify 
malfunctions. Next, the reconfiguration time of a malleable parallel CG using MaM 
is evaluated. Finally, the total execution time of the application is evaluated and how 
it is affected by malleability. The last two studies compare the malleable parallel 
CG with its emulation using Proteo. It is important to note that these experiments 
were only conducted on System_1, as the other two systems did not support process 
spawning during execution.

5.4.1  Evaluation of the reconfiguration techniques in isolation

In Sect.  4.2, are described several methods related to process management and 
other related to data distribution. For the former, we consider Baseline using 
inter-communicators, Baseline using intra-communicators and Merge, while 
for redistribution, the use of Point-to-Point or Collectives is presented. We now 
evaluate all these methods when a reconfiguration occurs, redistributing 3.947 GB 
of memory.

Figure 9 shows the reconfiguration time, in seconds, for the synchronous methods 
when processes are either shrunk (top) or expanded (bottom) during the application 
reconfiguration. This time is measured from the start of process spawning in the 
sources until the data have been fully received in the targets (data redistribution 
has ended). In both plots, the reconfigurations based on Merge method always 
outperform any Baseline combination. The main reason for this is that the total 

Fig. 8  Growth rate of the execution time of SAM with respect to the parallel CG for each sparse matrix 
and HPC system
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number of processes handled by the Merge method is always lower. This becomes 
even more noticeable when there is oversubscription, i. e., there are more processes 
existing than cores available in a node.

In general, the performance differences between the Merge and Baseline exe-
cutions can be more than 2  s for shrinking and slightly less for expanding. How-
ever, this is not the case for “Baseline Inter-COLS” which is much more expen-
sive than the others. This combination redistributes data synchronously using the 
MPI_Alltoallv function on inter-communicators, which is implemented by 
MPICH 4.0.3 using the PairWise Exchange algorithm  [57]. This algorithm 
generates a serialized synchronous communication based on the MPI_Sendrecv 
function, which communicates data from a source to a target, generating a lot of 

(a) Shrinkage

(b) Expansion

Fig. 9  Reconfiguration times for synchronous methods and combinations
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latency between the processes, since a process cannot start a new communication 
until the previous one has finished.

In conclusion, the use of the MPI_Alltoallv function on inter-communica-
tors with MPICH is not recommended and therefore will not be considered Baseline 
using inter-communicator to spawn processes in the rest of this subsection.

5.4.2  Evaluation of the reconfiguration in a malleable application

The first analysis compares the behavior of the parallel CG and the emulated CG 
created using SAM when a reconfiguration is performed. To achieve this objective, 
is measured the reconfiguration time from the start of the process management 
until the data are fully received in the targets. The corresponding tasks define the 
malleability Stages 2 and 3, which are both included in MaM. To determine Proteo’s 
ability to emulate a malleable application, the parallel CG also relies on MaM to be 
reconfigured. The solution was to include an interface to MaM, which can be used 
by real applications to convert them to malleable easily.

Figure  10 shows the reconfiguration time for the malleable parallel CG using 
all the described combinations and different numbers of sources and targets for 
shrinking (top) and expansion (bottom). Note that suffixes in data redistribution 
methods define the strategy used: no strategy or synchronous (S), non-blocking 
MPI functions with wait sources (A), and managing threads (T). To minimize the 
overhead of malleability, it is important to obtain small values for the reconfiguration 
time.

The first conclusion is that Merge methods always perform better than all 
Baseline methods. In fact, the reconfiguration times for all Merge combinations are 
very similar and always less than 3 s. This promotes the use of data redistribution 
strategies, where reconfiguration and application execution overlap, since the 
overhead of these strategies is close to zero.

Reconfiguration times for Baseline methods are higher than for Merge methods, 
mainly due to the impact of the oversubscription in the former, and a similar situa-
tion occurs with the use of data redistribution strategies on Baseline methods. Thus, 
no strategy is faster than the use of non-blocking MPI functions, since these func-
tions work slowly when the application is executing. Moreover, using non-blocking 
MPI functions is faster than managing threads, since the latter increases the oversub-
scription problem. These comments are easier to observe in the expansion plot than 
in the shrinkage plot.

Figure 11 compares the reconfiguration time obtained for the malleable versions 
of the parallel CG and the emulated CG created using SAM. With this objective, the 
quotient of the reconfiguration times of the two CG implementations using the same 
combination is computed and shown in the figure.

The analysis of this figure is more complex, but there are some interesting 
trends to note. In general, most of the values are in the interval [0.75,  1.25], 
with Baseline combinations are usually greater than 1 and Merge combinations 
lower than 1. This different trend is also related to the effect of oversubscription. 
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Moreover, the use of strategies in data redistribution grows the value of the 
quotient, showing the complexity of the overlapping of reconfiguration and the 
execution of SAM. It should be noted, however, that with the exception of the 
Asynchronous Baselines alternatives, most of the reconfiguration times are less 
than 5 s (Fig. 10), so the percentile differences are easy to identify.

Further studies will be needed to analyze some of the anomalous results of 
the P2PS and P2PT Merge combinations for both expansion and contraction.

(a) Shrinkage

(b) Expansion

Fig. 10  Reconfiguration times for the malleable parallel CG
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5.4.3  Evaluation of a malleable emulated application

The final analysis compares the behavior of the malleable version of the parallel 
CG and the emulated CG created using SAM, when the complete execution is per-
formed, including the reconfiguration. To ensure a fair comparison, both use MaM 
to complete the reconfiguration. The main goal is to conclude the impact on the per-
formance of the different reconfiguration combinations defined in the paper.

Figure  12 compares the different reconfiguration combinations on malleable 
parallel CG, showing the speedup over a reference combination, Baseline-COLS, 
which uses the Baseline method for spawning processes and collective MPI functions 

(a) Shrinkage

(b) Expansion

Fig. 11  Reconfiguration times difference of all reconfiguration methods between the malleable versions 
of the parallel CG and the emulated CG using SAM
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for data redistribution. In this way, values greater than 1 mark combinations that 
are faster than the reference, and values lower than 1 identify combinations that are 
slower than the reference.

Analyzing the plots, we can see that there are no major differences between the 
combinations, since all values are in the interval [0.85, 1.15], although many values 
are closer to 1. These latter values are more common in Merge combinations for the 
expansion. In addition, there are many extreme values from/to two processes, which 
may be caused by the congestion of messages sent/received by these two processes.

In general, Merge combinations are faster than the reference, while Baseline 
combinations are slower, and even slower if threads are managed. The behavior 

(a) Shrinkage

(b) Expansion

Fig. 12  Speedup with respect to Baseline-COLS of the other combinations, when executing malleable 
parallel CG with a reconfiguration
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of Baseline combinations may be due to the oversubscription, which is closely 
related to this process management.

Figure 13 compares the execution time obtained for the malleable versions of 
the parallel CG and the emulated CG created using SAM. With this objective, the 
quotient of the execution times of the two CG implementations using the same 
reconfiguration combination is computed and shown in the figure.

Analyzing the figure, we can see that most of the values are in the interval 
[0.90,  1.15], showing a good correspondence between the two CG implemen-
tations. There are only a few Merge combinations that show lower values for 

(a) Shrinkage

(b) Expansion

Fig. 13  The ratio of the execution times of all reconfiguration methods between the malleable versions of 
the parallel CG and the emulated CG created using SAM
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shrinkage, corresponding to cases from two nodes (40 cores) to one node (2 and 
10 cores). Further analysis will be required to justify these low values.

There is a trend toward higher values when more targets are involved in a shrink-
age, but there is no clear trend for expansion; only that higher values occur when 
more sources and targets are involved. In the future, it would be interesting to see 
whether this increasing trend for shrinkage is maintained when using a larger num-
ber of nodes. Instead, there is no clear difference between the Baseline and Merge 
combinations, perhaps because MaM is used for both CG implementations. 

Figure  14 shows graphically the best method for each pair (NS sources, NT 
targets), when the malleable versions of the parallel CG (left) and emulated CG 
created using SAM (right) are executed. The name of the axes, vertical for NS and 
horizontal for NT, determines that the upper triangular part of the matrix is related 
to expansion, while the lower part refers to shrinkage. Moreover, the number in each 
cell, along with the color, identifies the fastest method for each pair according to 
the Kruskal–Wallis and the Post-hoc Conover tests. If there is a tie in one cell, the 
nearest cells are checked, and the method with the highest number of occurrences is 
selected.

The first conclusion is that both figures are quite homogeneous, but the color in 
each one is not the same. For malleable parallel CG, Merge-P2PA appears in 38 
out of 42 cells, while for malleable emulated CG, Merge-COLT appears in 36 out 
of 42 cells. However, this is not a relevant difference, since a broader statistical 
analysis shows that Merge-COLT is equivalent to Merge-P2PA in 33 out of 42 cells 
for malleable parallel CG, and Merge-P2PA is equivalent to Merge-COLT in 35 
out of 42 cells for malleable emulated CG. Therefore, the best combination of two 
malleable CG implementations should use Merge for process management, and an 
asynchronous alternative, COLT or P2PA, for data redistribution.

But there are cells whose colors are not the most common in each plot. Most of 
these values occur when only one node is involved in the reconfiguration, that is, 
when NS and NT are not more than 20. For malleable parallel CG, the three corre-
sponding cases prefer Baseline combinations, two using COLS and one using P2PA 
for data redistribution. Instead, there are four cases for malleable emulated CG, 
which differ in the process management method: three use Baseline for expansion, 
and only one uses Merge for shrinkage, but all of them use COLS for data redistri-
bution. The other non-homogeneous cells, one Merge-COLA for malleable parallel 

Fig. 14  Preferred methods when reconfiguring to reduce execution time depending on the number of NS 
and NT, malleable parallel CG (left), and malleable emulated CG using SAM (right)
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CG and two Merge-P2PS for malleable emulated CG, are statistically equivalent to 
the most common combinations.

6  Conclusions

This work presents Proteo, a framework for the generation and evaluation of 
malleable applications, both synthetic and real. This tool has been developed 
using a modular structure, with the two main independent components being 
SAM and MaM. SAM is used to emulate the computational behavior of iterative 
MPI applications, taking into account different computation and communication 
operations. MaM provides the ability to reconfigure an application during execution, 
expanding, or shrinking the number of assigned processes and redistributing data 
between source and target processes. Both modules include a Monitoring submodule 
that measures the performance of the emulation and malleability steps and writes 
them to an output file for further analysis. This flexible tool makes it possible to 
analyze the performance of emulating an iterative application when using SAM 
alone, of emulating a malleable iterative application when using both SAM and 
MaM, or of incorporating malleability into a real application when using MaM 
alone.

The behavior of the different emulations is defined in a configuration file that 
stores parameters related to SAM and MaM. For the former, the number of 
application stages, along with the type and duration of each stage, should be 
determined using tracing tools. We have used ExtraE and ParavEr in this work, 
although other tools could be used. The parameters of the configuration file 
associated with MaM simulate the RMS requirements, setting when reconfiguration 
occurs, the number of target processes and the theoretical parallel performance of 
the emulated application.

Two studies have been conducted to analyze the ability of Proteo to emulate 
both non-malleable and malleable applications. In these studies, parallel CG was 
the application to be emulated, and different HPC systems and sparse matrices were 
used.

In the first study, SAM is used to emulate the non-malleable parallel CG on 
three systems for audikw_1 and Queen_4147 sparse matrices. The main conclusion 
is that Proteo is able to emulate the behavior of applications on different systems, 
demonstrating its versatility. The percentile differences for emulating balanced 
workloads are less than 20%, while these differences are around 50% for unbalanced 
workloads. This makes sense as Proteo currently only considers balanced workloads.

The second study compares the performance of MaM when used in combination 
with SAM to emulate the execution of a malleable real application, in this case, 
parallel CG, which also uses MaM for reconfiguration. The study initially analyzed 
all combinations of process management, and data redistribution alternatives 
were analyzed. It concluded that the use of collective MPI functions on inter-
communicators to redistribute data degrades performance. The study then goes on to 
examine the reconfiguration and execution times for the malleable parallel CG and 
its emulation and shows that the differences between the two implementations are 
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less than 15%, except in one case. It also suggests that Merge method is commonly 
the best method for process management, as there is no oversubscription.

Thus, this work demonstrates that Proteo can reliably emulate malleable appli-
cations. These emulations also allow the evaluation of system behavior when 
malleability is applied, assessing job performance and system productivity prior 
to its deployment on a production system. Additionally, the use of MaM facili-
tates the development of malleable versions of real applications.

Future work will focus on completing both modules of Proteo, enabling 
more accurate emulation of real applications and more efficient execution of 
reconfigurations. In this way, Proteo can be used to emulate synthetic workloads 
composed of a mix of malleable and non-malleable applications, allowing the 
performance of HPC systems to be evaluated when deploying different workloads.

To improve the emulation of real-world applications using SAM, additional 
mechanisms will be explored, focusing on I/O operations and a broader range 
of MPI communication patterns. Also, new parameters will be defined in 
configuration files to specify the unbalanced behavior of workloads, which are 
more common in real HPC systems than balanced workloads. In addition, SAM 
will be fully tuned to improve the emulation of non-iterative applications, which 
are typically found in real workloads. Essentially, the emulation of an application 
will be broken down into phases, each of which consists of several stages that 
can be repeated one or more times. The evaluation of these improvements in 
SAM will be tested by modeling a number of more demanding applications, both 
iterative and non-iterative applications.

In MaM, the focus will primarily be on enhancing existing reconfiguration 
strategies and defining new ones, with particular emphasis into minimize 
communication costs during data redistribution. Thus, an alternative 
implementation of Merge will be analyzed in which source processes that will 
become targets hold as much of their original data as possible. Additionally, 
a new redistribution method based on MPI RMA will be implemented so that 
source processes do not need to collaborate explicitly during data redistribution. 
Furthermore, a novel approach will be explored for parallel spawning, which has 
the potential to decrease time spent on spawning as well as provide benefits for 
additional reconfigurations during execution.

Another area of future work is the use of Proteo within DMR  [58]. This 
combination will allow Proteo to avoid the need to emulate the amount of resources 
used, as DMR is capable of exchanging information with Slurm and modifying 
the resources used by a job with different policies. In addition, this collaboration 
will facilitate the utilization of diverse reconfiguration techniques implemented in 
Proteo, thereby extending the capabilities of DMR.
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