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Velvet noise, a sparse pseudo-random signal, finds valuable applications in audio engi-
neering, such as artificial reverberation, decorrelation filtering, and sound synthesis. These
applications rely on convolution operations whose computational requirements depend on the
length, sparsity, and bit resolution of the velvet-noise sequence used as filter coefficients.
Given the inherent sparsity of velvet noise and its occasional restriction to a few distinct val-
ues, significant computational savings can be achieved by designing convolution algorithms
that exploit these unique properties. This paper shows that an algorithm called the transposed
double-vector filter is the most efficient way of convolving velvet noise with an audio signal.
This method optimizes access patterns to take advantage of the processor’s fast caches. The
sequential sparse algorithm is shown to be always faster than the dense one, and the speedup
is linearly dependent on sparsity. The paper also explores the potential for further speedup on
multicore platforms through parallelism and evaluate the impact of data encoding, including
16-bit and 32-bit integers and 32-bit floating-point representations. The results show that using
the fastest implementation of a long velvet-noise filter, it is possible to process more than 40
channels of audio in real time using the quad-core processor of a modern system-on-chip.

0 INTRODUCTION

Velvet noise is a special type of sparse ternary pseudoran-
dom sequence discovered by Karjalainen and Järveläinen
[1]. The basic velvet-noise signal contains only the sam-
ple values −1, 0, and 1. The main use of velvet noise in
audio engineering has been reverberation algorithms based
on feedback [1–4] and feedforward structures [1, 5–8]. An-
other application of velvet noise is the decorrelation of
audio signals [9–12], a process that allows reducing the cor-
relation of signals [13, 14] and, for example, distributing
processed copies of a mono signal to multiple loudspeakers
to produce a diffuse sound field [15, 16]. Velvet noise has
also been used in sound [17–20] and speech synthesis [21,
22].

Many velvet-noise applications require discrete convo-
lution, or filtering a digital audio signal with a finite im-
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pulse response (FIR) filter, which becomes expensive when
multiple filters are applied in parallel, such as in source
spreading, or on the outputs of a large multichannel sys-
tem [13, 23]. The fast convolution method is sometimes
used to reduce the computational load by implementing the
convolution as a multiplication of spectra in the frequency
domain [24, 25]. The efficiency then comes from the use
of the fast Fourier transform but leads to inevitable latency
due to block processing [24, 25]. However, the fact that
the velvet-noise sequence is composed of a large number
of non-zero values implies that the corresponding multipli-
cations and additions can be skipped during filtering. This
has led the authors to look for a new method that aims to
exploit the memory hierarchy of current processors, includ-
ing fast caches, as well as the parallelism provided by their
multicore architectures [26].

The use of multicore processors has made it possible
to meet the demand for computing resources [27] in a va-
riety of different applications, including audio processing
[28]. There are currently low-power, multicore system-on-
chip platforms that allow high levels of audio processing
throughput to be achieved in automotive systems, as shown
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by Beckmann et al. [29]. The present authors’ previous
study used multicore processors to implement a multi-
channel parallel graphic equalizer that is efficient in terms
of both computational performance and power consump-
tion [30].

The NVIDIA Jetson Nano is a commercial off-the-shelf
multicore platform that has become quite popular because
it houses the Tegra X1 chip, which is used in a wide range
of mobile devices such as the Nintendo Switch game con-
sole [31] or in drone systems for object recognition [32].
The Tegra X1 embedded chip is based on a quad-core
ARM Cortex-A57 CPU running at 1.43 GHz with 4 GiB of
LPDDR4 memory and a 128-core NVIDIA Maxwell GPU.
One of its key features is its low power consumption, com-
bined with multiple levels of parallelism, resulting in high
performance per watt.

Until now, the literature related to velvet-noise process-
ing [33, 5] showed their results by using a straightforward
FIR processing based on performing the operations without
considering their values. The present authors’ contribution
is to implement a high-performance sequential and parallel
version of this process. The sequential version uses sev-
eral techniques to improve the performance of the filtering.
First, it exploits the large sparsity of the filter to greatly
reduce the number of computations. Second, it sorts the
computations to reduce the number of memory accesses
and take advantage of the processor’s fast caches.

One of the major limitations to achieving high perfor-
mance is the slowness of memory access compared to the
speed of computation. Properly organizing data access to
hide memory latency is critical to increasing the perfor-
mance of algorithms. A key factor is to reuse data once it
has been loaded from memory and load it from the fastest
cache memories in the architecture. This is realized using
well-known techniques such as reordering and unrolling
loops or block processing of data [34; 35, Chap. 6]. A prac-
tical example of the use of such techniques is the imple-
mentation of the product of matrices in a numerical algebra
library called BLAS [36]. In this paper, these techniques are
applied to improve the performance of the audio filtering
algorithm.

This paper tests firstly the different proposed implemen-
tations on different sample resolutions, including 16-bit and
32-bit integers, and a 32-bit floating-point encoding. Fi-
nally, OpenMP [37] is used to implement a parallel version
of the algorithm that can exploit the multicore architec-
ture of the CPU to process a multi-channel audio source.
The authors evaluate how the number of cores running in
parallel affects the computational performance of a multi-
channel velvet-noise–based application of varying lengths.
The Tegra X1 chip embedded in the NVIDIA Jetson Nano
platform is used.

This paper is structured as follows. SEC. 1 describes the
velvet-noise signal and its use in FIR filtering of audio sig-
nals. SEC. 2 discusses different sparse FIR filter implemen-
tation techniques. SEC. 3 explores the performance of the
different implementations in terms of the maximum num-
ber of channels that can be convolved in real time. Finally,
SEC. 4 closes the paper with concluding remarks.

1 FIR FILTERING WITH VELVET NOISE

Velvet noise is a sparse sequence in which a single posi-
tive or a negative impulse appears on a fixed time interval
[1]. The impulse locations can be determined as follows:

k(m) = round[mTd + r1(m)(Td − 1)], (1)

where m = 0, 1, 2, ... is the impulse index, Td is the range of
samples where only a single impulse is allowed, and r1(m)
is a random number drawn from a uniform distribution (0,1)
[38]. In the original velvet noise, the sign of each impulse
is also chosen using random numbers, so that only two
non-zero signal values are possible: +1 or −1 [1, 38]. The
signs can be easily produced by rounding and scaling the
random numbers. The rest of the samples in the velvet-noise
sequence are zero, and this is why the sequence is called
sparse.

In practice, velvet noise sounds like smooth, featureless
white noise, when the impulse density is 2,000 impulses per
second or larger [38]. When the sample rate is 44.1 kHz,
this corresponds to an impulse for every Td = 22 samples,
which means that only 4.5% of the samples are non-zero.
This original velvet noise has a flat power spectrum [39]
and sounds smoother than Gaussian random noise [1, 38].
It has been learned that in special cases, much denser velvet
noise can sound fine, for example, when the velvet noise
is low-pass filtered [33, 5, 40]. These features, together
with its sparsity, suggest that velvet noise can be used to
efficiently filter signals with noise.

In practice, the samples of the velvet-noise signal are of-
ten assigned as the coefficients of an FIR filter. The filtering
is realized by convolving the input audio signal x(n) with
the FIR filter coefficients s(n) to obtain the output signal
y(n):

y(n) = s(n) ∗ x(n) =
L−1∑

j=0

s( j)x(n − j), (2)

where the asterisk (*) denotes the discrete convolution and
L is the number of FIR filter coefficients, also called the
filter length.

The computational savings in velvet-noise convolution
come from the observation that many of the coefficients in
s(n) are zero, and as the non-zero values appear at prede-
termined locations, it is possible to skip the multiplications
and additions associated with the zeros. This is why a direct
implementation of Eq. (2), which also realizes the multi-
plications of signal samples by zero coefficients, may be
highly wasteful. The economic version of the velvet-noise
convolution, which skips the zeros, can be written as

y(n) = x(n) ∗ s(n) =
M−1∑

m=0

s[k(m)]x[n − k(m)], (3)

where vector k stores the indices of the non-zero values in s,
and so, the index m runs through the M non-zero impulses
contained in s[k(m)]. Thus, only the multiplications and
additions involving the non-zero coefficients are executed.
Since a small portion, for example, 5%, of the values of s(n)
are non-zero, i.e., M < < L, the implementation using Eq.
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(3) can be more efficient than the direct implementation of
Eq. (2).

An additional observation is that, when the original velvet
noise is used, the non-zero coefficients can only have values
−1 and 1, which do not require a multiplication but rather an
addition or subtraction. Thus, in a further simplification of
Eq. (3), each impulse is directly associated with an addition
or subtraction based on its sign [33, 5]:

y(n) =
∑

j

x[n − k+( j)] −
∑

m

x[n − k−(m)], (4)

where k+ and k− are arrays containing the indices of the
positive and negative impulse location within the velvet-
noise sequence, respectively. In practice then, Eq. (4) first
adds the input signal values coinciding with the positive
impulses, then adds the input signal values coinciding with
the negative impulses, and finally subtracts the two sums.
This implementation of the velvet-noise convolution is pos-
sible in practice, when the filter is time-invariant, i.e., the
coefficient values are not changed during run time.

In various audio applications, velvet noise is used in a
modified form so that it can contain floating-point values,
not just values ±1. This is necessary, for example, in the
decorrelation application in which an exponentially decay-
ing impulse response is preferred [9, 10]. For this reason,
this study also considers the FIR filtering with a sparse se-
quence of arbitrary coefficient values. In this case, Eq. (3)
must be used to perform the convolution.

2 SPARSE DESIGN FOR VELVET-NOISE
FILTERING

The sparse design is based on reducing the number of
computations and also on sorting them out so that the num-
ber of memory accesses can be reduced. This allows the
fast cache memory of the architecture can be used [26].

2.1 Practical Example
The best way to understand the authors’ high-

performance sequential implementation of the velvet-noise
processing is to use a small example. Straightforwardly fol-
lowing Eq. (3) and giving example values to the indices in s
of M = 4 non-zero impulses, k(m) = {1, 3, 6, 7}, X can be
defined as a vector of size N that contains the input audio
samples to be filtered with the velvet-noise sequence, Y as
a vector that contains the filtered output samples, S as a
vector of size L that holds the filter coefficient values of
the velvet-processing (zero and non-zero values), and xi, yj,
and sk as the elements i, j, and k from vectors X, Y, and
S, respectively. Note that the first sample index in vectors
X and Y is one. Therefore, vectors X and Y start with the
samples x1 and y1, respectively. Fig. 1(a) shows the block
diagram of the example sparse FIR filter in direct form.

The FIR processing can be split into three main process-
ing steps. Step 1 corresponds to the computation of the
first output L samples and, in this example, involves the
following operations:

Fig. 1. Sparse FIR filter structure with non-zero coefficients s1,
s3, s6, and s7 in (a) direct form and (b) transpose form. Notice the
reverse order of the coefficients and delays in (b).

Color/gray tones at the equations are made to discrim-
inate each one of the contributions of each non-zero co-
efficient value to the output sample. Note that the size L
corresponds in the example L = 7 since seven is the last
index in vector S. Step 2 corresponds to the computation
of the rest of the samples except the last L samples and
involves the following operations:

Finally, Step 3 corresponds to the computation of the
last six samples that go from the output sample yN+2 to the
sample yN+7, as indicated here:

Considering the operations carried out in the described
three steps, the authors can extract that Step 2 holds the
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main part of the total processing, which increases also with
the size N, and shows a regular structure. In this sense,
the authors focus their efforts on carrying out an efficient
implementation of the operations shown in Step 2. To this
end, they need to reduce not only the number of operations
but also the number of memory accesses and try to exploit
the fast cache memory of the architecture. Each memory
access can be orders of magnitude more expensive than
each addition or multiplication performed by the algorithm
[26]. The memory accesses must be sorted out so that each
element loaded is reused as much as possible before storing
the result. Besides, whenever possible, the authors must try
to access consecutive elements of the different vectors so
that they are stored in neighboring memory locations and,
thus, they are loaded in the fast cache memory.

2.2 Algorithm Implementations
This section proposes five versions of the algorithm us-

ing different strategies to access the elements of the vectors
and perform the computations.1 Next, the authors show the
pseudo-code of the different versions used to compute the
group of N − L + 1 filtered audio samples that correspond
to the operations executed in Step 2. In all cases, compu-
tations are performed only using the M non-zero elements
of the velvet-noise filter applied to the corresponding input
samples.

In the basic version, shown in Listing 1, the computation
of each filtered output sample is completed before starting
the next one. To avoid the multiplication on each iteration
of the internal loop, a conditional if sentence is used to
add the input sample whenever the filter coefficient is +1
and to subtract the input sample whenever the coefficient is
−1. This algorithm is called the Conditional Filter (COF).

Listing 1. COF.

for each element y[i] of Y
for each element k[m] of k

if ( k[m] == 1)
y[i] = y[i] + x[i − k[m]]

else / ( k[m] == −1 )
y[i] = y[i] − x[i − k[m]]

In some cases, evaluating the if clause included in the
COF version may be more expensive than performing the
product of the filter coefficient with the sample value. To
test this, the authors propose another version of the algo-
rithm shown in Listing 2, which they call the sparse multi-
plier filter (SMF) and corresponds to Eq. (3).

Listing 2. SMF.

for each element y[i] of Y
for each element k[m] of k

y[i] = y[i] + s[k[m]] * x[i − k[m]]

Both the multiplications and the conditional sentence can
be avoided when the indices of the positive and negative

1https://github.com/josembadia/velvet_audio.

filter coefficients are stored in two different vectors, k+ and
k−, as suggested in Eq. (4). Listing 3 shows this double-
vector filter (DVF) version of the algorithm.

Listing 3. DVF.

for each element y[i] of Y
for each element k+[m] of k+

y[i] = y[i] + x[i − k+[m]]
for each element k−[m] of k−

y[i] = y[i] − x[i − k−[m]]

In the first three versions of the algorithm, consecutive
elements of vector Y are always accessed so that in most
cases they are stored in the fast cache memory. Moreover,
as the same element is updated in successive iterations of
the innermost loop, the computations can be performed in
a register, and the result is stored in the memory location of
y[i] at the end of each iteration of the outermost loop. On
the contrary, the authors are accessing non-consecutive ele-
ments of vectors X and S on each iteration of the innermost
loops, which does not employ the cache memory.

To reduce the memory access cost, the order of the two
loops of the code can be reversed. This corresponds to
the transpose FIR filter structure [41], which is shown for
the example FIR filter of SEC. 2.1 in Fig. 1(b). In this
structure, the current input sample x(n) is multiplied by all
filter coefficients and added to the appropriate locations of
the output buffer Y. The idea of transposing a digital filter
structure, which is used in Fig. 1(b), is sometimes called
flow graph reversal and has been known for decades in
signal processing [42, pp. 204–205].

Listing 4 shows the transpose form of the algorithm,
where the same strategy as in version 3 is used to avoid the
products. In this case, each filter coefficient is added (or
subtracted) to all the filtered samples before using the next
filter coefficient. If referring to the operations associated
with Step 2 of the method shown in SEC. 2, the authors
add (or subtract) first the samples shown in black color,
then the samples shown in red color, and finally the sam-
ples shown in blue color. As can be seen, the authors are
always accessing consecutive elements of both the X and Y
vectors, which greatly reduces the memory access cost, as
intended. Structurally, this corresponds to the transposed, or
backward, version of the DVF algorithm, and it is therefore
called the transposed double-vector filter (DVF Transpose),
see Listing 4.

Listing 4. DVF Transpose.

for each element k+[m] of k+
for each element y[i] of Y

y[i] = y[i] + x[i − k+[m]]
for each element k−[m] of k−

for each element y[i] of Y
y[i] = y[i] − x[i − k−[m]]

The authors can try to reduce the memory access cost
even more by avoiding accessing the elements of the vectors
X and Y twice, first to apply the positive and then the
negative signs. To remove these accesses, the authors again
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Table 1. Computational cost and memory access cost of the five velvet-noise FIR filtering algorithms. Note that the authors
discriminate between consecutive (con) and non-consecutive (non-con) accesses, i.e., whether vector elements appear in neighboring

memory locations when they are loaded or stored. The last two algorithms try to avoid non-consecutive memory accesses.

Memory accesses to the main vectors

Algorithm version Computational cost Y X S k

1. COF LM L con LM non-con 0 LM non-con

2. SMF 2LM L con LM non-con LM non-con LM non-con

3. DVF LM L con LM non-con 0 LM non-con

4. DVF Transpose LM LM con LM con 0 L con

5. SMF Transpose 2LM LM con LM con M non-con M con

have to pay the price of multiplications by −1 and 1, as
shown in Listing 5. For each iteration of the outermost
loop, the same filter coefficient s[k[m]] is always used in all
iterations of the innermost loop. This means that is enough
to load this element from memory once per iteration of
the outermost loop, further reducing the memory access
cost. This algorithm version is the transpose of the SMF
algorithms (Listing 2), and the authors therefore call it the
transposed sparse multiplier filter (SMF Transpose).

Listing 5. SMF Transpose.

for each element k[m] of k
for each element y[i] of Y

y[i] = y[i] + s[k[m]] * x[i − k[m]]

Versions 1, 3, and 4 have been designed assuming that the
filter coefficients only have values −1, 0, and 1. However,
versions 2 and 5 can also be used in the general case, where
the filter coefficients can have any real value.

Table 1 summarizes the computational cost in terms of
additions and multiplications of the different versions of
the algorithm. It also includes the number of accesses of
the different algorithm versions to the main vectors used,
differentiating between accesses to consecutive and non-
consecutive elements, which has a large effect on the mem-
ory access cost. Taking into account only the theoretical
costs shown in Table 1, the fastest algorithm would be
the DVF Transpose, because it has a low computational
cost and it always accesses consecutive elements of every
main vector. On the other hand, Table 1 suggests that the
first three algorithms, COF, SMF, and DVF, may lead to a
slow implementation, because they require a large number
of non-consecutive memory accesses. In the next section,
the authors experimentally compare the different algorithm
versions and analyze the influence of memory access costs
on the execution time.

3 EXPERIMENTAL EVALUATION

This section presents studies on the execution time of the
different algorithm implementations for a short and long

FIR filter. The maximum number of channels that can be
convolved in real time is also determined for each algorithm
version.

3.1 Experimental Environment
All the experiments were performed in an NVIDIA Jet-

son Nano Development Kit containing a low-power Tegra
X1 (TX1) System on Chip (SoC) [43]. This SoC is manu-
factured in 20-nm planar technology and contains a quad-
core ARM Cortex-A57 CPU implementing the ARMv8-A
64-bit architecture. Each core has a 48-KiB L1 instruction
cache, 32-KiB L1 data cache, and 2-MiB L2 unified cache
shared by all cores. The SoC also includes an NVIDIA
Maxwell GPU with 128 CUDA cores. It includes a 256-
KiB L2 cache, 64-KiB shared memory, and 64-K (32-bit)
registers. Both the CPU and GPU share 4 GiB of external
DDR4 memory.

The code was implemented in C language and paral-
lelized using OpenMP. The authors chose the OpenMP
framework to perform the tests because of its widespread
recognition and portability in parallel programming en-
vironments. OpenMP is a parallel programming interface
originally designed for shared memory multiprocessors. It
operates on a fork-join execution model, where tasks are
divided among multiple threads at different points in the
code and later joined together. Programming with OpenMP
involves using a set of functions and inserting directives
at specific points in the code. It inherently supports data
parallelism, allowing different threads to run on separate
processor cores, working on the same tasks but with differ-
ent data. In addition, OpenMP facilitates task parallelism,
allowing each thread to perform different tasks.

3.2 Results: Single-Channel Filtering
Evaluations were performed with two filters: a short filter

with a size of L = 1,320 taps and a large filter with a size
of L = 88,000 taps. These tests also considered real-time
processing, which means that the input audio samples were
processed block by block using three different block sizes.
Fig. 2 shows an example of the block versions of the direct
and transposed forms of the FIR forms of the filter shown
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Fig. 2. Block versions of the sparse FIR filter with blocksize of 4
and non-zero coefficients s1, s3, s6, and s7 in the (a) the direct form
(SMF) and (b) the transpose form (SMF Transpose), cf. Fig. 1.

in Fig. 1. Input samples are processed from top to bottom,
while blocks of outputs are processed from left to right.

Fig. 2 uses the same example described in SEC. 2.1, so
the filter length is L = 7 with M = 4 non-zero coefficients,
namely s1, s3, s6, and s7. In this case, blocksize = 4. In
the direct-form implementation shown in Fig. 2(a), all the
operations to produce each output yi are completed before
starting the operations corresponding to the next one, yi+1.
On the contrary, in the transposed-form implementation
of Fig. 2(b), each non-zero coefficient is applied to each
output of the block before the next coefficient is applied.
Therefore, the outputs are necessarily generated by blocks.
Specifically, the computational performance of these al-
gorithms is tested using block sizes of 1,024; 2,048; and

Fig. 3. Execution time per block of the different versions of the
sparse FIR filtering algorithm using 32-bit integers. The filter
length is L = 88,000 coefficients, out of which M = 4,000 are
non-zero.

4,096 audio samples, for a sample rate of fs = 44.1 kHz.
This means, for example, that the application runs in real
time as long as the processing time of a 1,024-sample block
is less than 23.22 ms (blocksi ze/ fs).

First, the authors evaluate the efficiency of the five ver-
sions of the algorithm described in SEC. 2. The different
versions are run using the large filter (L = 88,000 coeffi-
cients) and M = 4,000 non-zero elements (Td = 22) dis-
tributed with values { + 1, −1}, i.e., the filter has a sparsity
of 4.5%. All computations were performed using 32-bit in-
tegers, and the authors obtained the execution times with
the three block sizes.

Fig. 3 shows the execution time per block in millisec-
onds for the different versions of the code while processing
one audio channel. The results show that the last two ver-
sions of the algorithm are much faster than the first three.
Version 4 of the algorithm is almost nine times faster than
version 3. This means that the main reduction in execution
time is due to the swapping of the two main loops of the
algorithm. Changing the order in which the elements of the
different vectors are accessed allows accessing elements in
neighboring memory locations, thus making better use of
the fast cache of the processor. This reduction in memory
access time implies a large reduction in the execution time
of the algorithm. Other modifications to the code have a
much smaller effect on the execution times of the differ-
ent versions of the algorithm. For example, version 2 is
slightly faster than version 1, which means that performing
the product by the filter coefficient at each iteration is faster
than evaluating a conditional sentence to avoid it.

In fact, versions 2 and 3 and versions 4 and 5 have similar
execution times, so their relative behavior may change in
different experimental environments. For example, version
5 may be faster than version 4 if a different processor with
different memory or different processing speeds is used.
Also, their behavior may change depending on the compiler
or compilation options. To further examine this, the same
speed test was repeated in another multicore processor, the

388 J. Audio Eng. Soc., Vol. 72, No. 6, 2024 Jun.



PAPERS EFFICIENT VELVET-NOISE CONVOLUTION

Table 2. Execution times of the sparse and dense algorithms
per block for the long FIR filter with different data types and

block sizes. Only the fastest sparse algorithm v4 (DVF
Transpose) is considered here.

Execution time (ms)

Block size Algorithm int16 int32 float

1,024 Sparse (v4) 1.38 2.23 2.64
Dense 27.2 53.28 46.94

2,048 Sparse (v4) 2.15 4.56 4.88
Dense 53.46 107.93 97.71

4,096 Sparse (v4) 4.93 9.64 10.58
Dense 108.39 224.769 217.88

Table 3. Comparison of the time per block of the sparse DVF
Transpose (v4) and the dense algorithms to apply the short

filter with three different data types and a block size of 1,024
samples.

Execution time (ms)

Algorithm int16 int32 float

Sparse (v4) 0.02 0.04 0.04
Dense 0.36 0.71 0.63

Intel Core i7-10700. The order of the execution times of the
algorithm versions was the same as in Fig. 3, but, whereas
version 4 was around 11 times faster than version 1 in the
ARM processor, it was more than 106 times faster in the
Intel processor. This is due to the larger cache memories
of the Intel architecture. This result confirms the advantage
gained by swapping loops and making better use of this
type of fast memory.

In the rest of the experiments, the fastest version of the al-
gorithm, which is version 4, is always used. To demonstrate
the benefits of exploiting filter sparsity, a “dense” variant
of the method has been implemented, using a filter that in-
cludes both zero and non-zero elements. The dense filter is
compared with the fastest sparse variant (v4) described in
SEC. 2, which only stores and applies the non-zero elements
to the samples in two vectors. The dense variant uses stan-
dard dot vector products to multiply blocks of samples by
the vector containing the filter coefficients, including both
zero and non-zero values.

Table 2 shows the execution time of both variants of
the method with different block sizes and element data
types. In particular, the sparse variant of the method proves
to be about 20 times faster than its dense counterpart in
all scenarios. The choice of data type also has an impact
on performance. In particular, the use of 16-bit integers
results in a two-fold increase in speed compared to 32-
bit integers, while the use of floats (32-bit single-precision
floating-point elements) only marginally outperforms the
32-bit integer option. In addition, using longer filters allows
better exploitation of filter sparsity. Table 3 shows that by
using a significantly shorter filter with the same percentage
of non-zero elements, the sparse variant of the method is

Fig. 4. Effect of the sparsity on the execution time of the sparse
and dense FIR filtering algorithms (block size = 1,024 samples).

between 15 and 18 times faster than its dense counterpart
depending on the data type.

To demonstrate the optimal utilization of filter sparsity
by their sparse method, the authors conducted a comparison
of its execution time with the dense variant using filters of
varying sparsity levels. Six different FIR filters of length L
= 88,000 were generated, which have a different sparsity
between 5% and 100% and, thus, a different number of
non-zero elements. The non-zero coefficients were gener-
ated randomly. Fig. 4 visually depicts the linear increase
in execution time for the sparse version as the sparsity of
the filter is decreased. Notably, the execution time becomes
equivalent to that of the dense version when the filter con-
tains 100% non-zero elements.

3.3 Results: Multi-Channel Filtering
To test the multicore resources of this processor, the

proposed sparse convolution is applied to multiple au-
dio channels, which serves as a prime example of em-
barrassingly parallel code. Each channel can undergo the
same convolution process in parallel, allowing for efficient
workload distribution and achieving nearly optimal par-
allel performance. When an equal number of channels is
distributed among cores, a balanced workload is attained.
Fig. 5 demonstrates the linear increase in execution time
as the number of channels increases. However, by increas-
ing the number of cores utilized for parallel convolutions,
a significant improvement in the real-time processing of
channels can be achieved. While the sequential version of
the code can process ten channels in real time (see the top-
most line in Fig. 5), employing the parallel version with
four available cores (the lowest line in Fig. 5) allows for the
real-time processing of up to 40 channels.

Finally, Fig. 6 provides valuable insights into the ad-
vantages of leveraging filter sparsity and parallelizing the
processing of multiple audio channels. The results clearly
demonstrate that even when running the dense variant of the
code in parallel with four cores, it falls short of processing
even one channel in real time. Although the parallel version
gives a speed improvement over its sequential counterpart,
the execution time is still twice the real-time threshold,
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Fig. 5. Execution time of the parallel version of the sparse algo-
rithm with the large FIR filter using a block size of 1,024 samples.
The horizontal line shows the real-time threshold of 23.2 ms for
the sample rate of 44.1 kHz.

Fig. 6. Comparison of the execution time of the sequential and
parallel algorithms with the large velvet-noise FIR filter using a
block size of 1,024 samples.

even when processing between one and four channels. In
contrast, the sequential sparse implementation enables real-
time filtering of up to ten channels. Moreover, when em-
ploying the parallel sparse version, the number of channels
that can be processed scales nearly linearly with the number
of cores employed.

4 CONCLUSION

This paper introduces a novel sparse convolution method,
called the DVF Transpose, designed to significantly en-
hance the computational efficiency of audio applications
relying on velvet noise. These explorations have delved
into various strategies, with a primary focus on optimiz-
ing the sequence in which elements within different vectors
are accessed. Experiments with a multicore system-on-chip
reported in this paper revealed a breakthrough: accessing
elements located in close memory proximity results in an
almost nine-fold acceleration of the FIR filtering process.
Specifically, the DVF Transpose version of the algorithm
is 8.77 times faster than the DVF-only version because of

inverting the order of the two main loops and accessing
consecutive elements in memory.

The results also show that the sequential sparse version
is always faster than a conventional dense FIR filter. The
speedup is linearly proportional to the sparsity of the filter.
Furthermore, this paper examined the capabilities of the
multicore processor, demonstrating that it can seamlessly
handle more than 40 velvet-noise–based FIR filters in a
real-time application.

Additionally, this study looked into the impact of data
encoding and resolution on processing. The authors found
that both floating-point elements (32-bit single-precision
floating-point values) and 32-bit integers exhibit compa-
rable processing speeds, providing the flexibility to em-
ploy real numbers as coefficients in such applications. This
versatility enhances the adaptability of velvet-noise–based
audio systems.
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