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Abstract. This paper introduces an optimization energy framework
based on infrared guidance to improve depth consistency in Time of
Flight image systems. The primary objective is to formulate the problem
as an image energy optimization task, aimed at maximizing the coher-
ence between the depth map and the corresponding infrared image, both
captured simultaneously from the same Time of Flight sensor. The con-
cept of depth consistency relies on the underlying hypothesis concerning
the correlation between depth maps and their corresponding infrared
images. The proposed optimization framework adopts a weighted app-
roach, leveraging an iterative estimator. The image energy is character-
ized by introducing spatial conditional entropy as a correlation measure
and spatial error as image regularization. To address the issue of missing
depth values, a preprocessing step is initially applied, by using a depth
completion method based on infrared guided belief propagation, which
was proposed in a previous work. Subsequently, the proposed frame-
work is employed to regularize and enhance the inpainted depth. The
experimental results demonstrate a range of qualitative improvements in
depth map reconstruction, with a particular emphasis on the sharpness
and continuity of edges.

Keywords: Time of Flight sensor + image fusion - depth enhancement

1 Introduction

Time of Flight (ToF) cameras of 3D sensors are a very competitive 3D sensing
choice because of their low cost and relatively high spatial resolution. These
sensors consist of an infrared light projector and a depth image sensor. It cap-
tures real time depth maps using indirect time of flight technology. However,
these devices are unable to correctly estimate depth data in some cases due to
larger working distances, occlusions, or low reflective areas. These situations usu-
ally lead to get missing depth values regions and unstable boundaries in depth
maps as shown in Fig. 1. With the purpose of obtaining fine depth boundaries of
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Fig. 1. Corresponding active IR and D map of a ToF camera showing some areas with
undesirable/noise effects and missing depth values regions.

objects, by estimating missing depth values and solving the discontinuity prob-
lem, some research works propose taking advantage of auxiliary color images
captured by an additional RGB sensor, that is, the so-called RGB-D systems.
In [2,11,18,19] they propose guided depth enhancement methods based on color
images. Other previous works related to this topic used conventional filters. How-
ever, depth enhancement techniques that only rely on conventional filtering do
not work well when missing depth regions are significant [5].

In order to improve the quality of the estimated depth in ToF cameras,
we propose a novel approach which takes advantage from infrared image (IR)
captured simultaneously with depth maps (D). The problem is formulated as
an energy optimization task with the purpose of maximizing the consistency
between the depth map and the corresponding IR image. This formulation is
based on the hypothesis that there exists a strong correlation between D and IR.
This framework is developed as a weighted estimator based on an iterative con-
ditional modes (ICM) approach. It incorporates conditional entropy information
and a spatial error energy term within the image energy model. Additionally, our
proposed model introduces a directional weight edges function, which considers
all edge directions during the reconstruction and enhancement of object borders.
In order to address missing depth values, a pre-processing step is employed, uti-
lizing a depth completion method from a previous work [1], those steps are
summarized in Fig. 2.

The main contribution of this work is the use of the active IR image of
the same ToF sensor to create a guided depth enhancement, providing more
consistency to the depth map. For the best of our knowledge, there is not recent
work on IR and depth fusion in ToF systems. The main advantage of IR-D
processing rather than RGB-D is to avoid several preprocessing steps, such as
calibration, image registration or depth up-scaling.

The diagram of Fig. 2, illustrates the steps of preprocessing and enhancement.
The first step involves data denoising, which consists of removing flying pixels
and filtering non-confident pixels located around boundaries using morphological



648 A. Achaibou et al.

Data out-put
. Enhancement and
from ToF Preprocessing .
Regularization
camera
continuity

Filling empty
edges

Improved
Depth Map

Edges sharpness
Regularization of
planer region

Fig. 2. Proposed processing stages for improving consistency of depth maps.
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operators and a confidence map. Subsequently, the inpainting process estimates
missing values based on the approach described in [1], aiming to recover missing
edges and fill in large missing regions. The final enhancement step enhances
sharpness and recover edge continuity through the use of directional edge weights
employed in the proposed model. This step also regularizes planar regions by
using mutual information extracted from depth and IR images.

The final aim of this work is to use the proposed algorithm in some dedi-
cated hardware build-in the ToF system, and the results achieved so far show
that the proposed image fusion-based energy minimization fits better with sen-
sor and hardware resources requirements than using additional RGB sensors. In
addition, using a physical model approach avoids learning-based techniques that
might need to be fitted for each sensor as a pre-processing or system calibration
step. The rest of the paper is organized as follows. First, the problems of depth
maps in ToF cameras are introduced, and what are the key issues to be solved.
In the Sect. 2, we briefly review some related work. Section 3 explains the reason
of using IR as guidance. In Sect. 4 the proposed approach is described in detail.
Section 5 presents an overview about experimental data and preprocessing mate-
rial. Further on, next Sect. 6 shows and discusses the results. Finally, conclusions
and further work are summarized.

2 Related Work

The existing approaches for depth enhancement can be broadly categorized into
two groups based on the input data: guided depth enhancement and self depth
enhancement. On the one hand, the guided depth enhancement category relies
on additional information such as color images or depth captured using differ-
ent sensors like stereo systems. On the other hand, the self depth enhancement
category focuses on single depth enhancement techniques. In this work, our pri-
mary focus is on techniques that fall under guided depth enhancement. These
methods have recently gained significant attention, as evident in several studies
such as Diebel et al. [3], Izadi et al. [8], Ferstl et al. [4], Kwon et al. [10], and
Lu et al. [13]. Those methods leverage additional depth maps or color images
to improve the quality of the final depth map. The most popular solution is to
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incorporate an additional high resolution color sensor together with a depth sen-
sor for depth image enhancement [3,4,13]. Another representative solution is to
utilize multiple depth images from the same scene to reconstruct a higher quality
depth maps [6]. This method, however, rely heavily on accurate multi-camera or
multi-view calibration, and may fail when applied to dynamic environments.

Most methods leverage RGB images to enhance the depth data and assume
that there is a strong correlation between the depth map and the corresponding
color image. Or et al. [14] fused an intensity image and a depth map to perform a
precise shading recovery and albedo estimation for detailed surface reconstruc-
tion. Liu et al. [12] proposed an optimization framework that is weighted by
color guidance and utilizes a robust penalty function for smoothness modeling.
Jiang et al. [9] proposed a method for exploiting correlations in the transformed
and spatial domains using a unified model for recovering geometrical structures.
Yang et al. [17] extracted scale-independent features from depth maps with the
assistance of RGB image and proposed an edge-aware neighbor embedding (NE)
framework for facial depth map super-resolution. In addition, several methods
have also been proposed for fusion strategies of depth information from multiple
frames and other simultaneous sources, in order to produce higher quality depth
maps and they have proved its usefulness as a depth enhancement approaches.
Deep learning has been introduced recently for depth denoising by using graph
networks in [16]. The denoising and enhancement conventional neural network
(DE-CNN) proposed in [20] and deep image-guided method [22] have also been
adopted for depth enhancement.

In summary, the main guided depth enhancement methods are the filtering-
based methods such as (joint bilateral filter), the optimization-based methods
(Markov random field, auto regressive model, total variation, graph Laplacian),
and the learning-based method (dictionary learning, deep learning). Our focus
in this study is related to filtering and optimization-based methods, since one of
the final aims is implementing the algorithm on hardware with an easy configu-
ration.

3 IR Image as Guidance

For our experiments, we employed a ToF camera that operates on continuous
wave pulse technology and based on indirect time of flight system. It is impor-
tant to note that this system provides active IR images based on continuous
amplitude measurements, while the depth based on phase measurements exhibit
discontinuities because of the estimation is based on multiple frequencies agree-
ments (phase unwrapping). It is worth noting that, the amplitude information
(active IR images) can offer greater confidence for each corresponding depth
value, as we can see from the outcome of a ToF camera when analysing the IR
image comparing to the depth map shown in Fig.3. Note how the depth map
shows noise and discontinuous measurements in depth which affect details and
important information in some specific areas of the images, such as borders and
low reflectance regions.
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This can lead to noisy or loss of fine details, whose information could be
necessary for accurate interpretation or analysis of the image. However, note
that IR measurements preserve the overall structures and details of objects in
the scene in a more consistent way, even though pixel values may lose some
precision due to noise effect but it usually keeps details of the objects structure.
An additional filtering can enhance the IR precision which can not be the case
for depth. It is hard to recover the wrong values and lost details in the depth map
by using a classical filtering. and that what make active IR used as guidance.

The preprocessing in the pipeline of the camera usually involves filters and
contrast stretching that help to improve the overall quality and clarity of the
IR image, including the reflectance of low-reflective areas. Looking at the active
IR image before and after the preprocessing integrated in the camera pipeline
shows that IR images have some interesting properties, such as a better signal-
to-noise ratio than depth maps, better defined object boundaries, and they are
less sensitive to noise than the corresponding depth maps estimates see Fig. 3.
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Fig. 3. Discontinues Depth map and its corresponding Continues active IR image cap-
tured by a ToF camera before and after filtering in the camera pipeline.

4 Proposed Model

The image energy model is based on a weighted optimization approach to com-
bine the ToF depth maps D and the corresponding active IR images of ToF
system. Note that in this case, D and IR images are captured from the same
sensor simultaneously, and the active IR is used as a guidance to enhance and
improve the consistency of the initial depth.
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4.1 Image Energy Function

The proposed energy function is based on two main assumptions: firstly, a strong
correlation is assumed between the guiding active IR image and the depth map
D; secondly, it assumes a spatial similarity among neighboring depth values,
except at depth discontinuities represented by object edge weights. Hence, the
image energy () combines two terms, the spatial error energy Qs to eliminate
local variations in depth, produced by common sensor noise; and the spatial
entropy energy term (Qy to enhance depth discontinuities and suppress other
non-local noise by maximizing the correlation between the final depth map and
the guiding IR image. The resulting enhanced depth map D* is computed by
minimizing the image energy () expressed as:

Q=cQs+(1-0c)Qn. (1)

where c is the regularizing parameter used to control the effect of each energy
term.

4.2 Spatial Error Energy Term

Spatial error energy term Qg is introduced to reduce spatial image noise, such
as sensor noise. This regularization enforce similarity between neighboring pixels
depths. It is expressed as the errors € for each of the 4-neighbours directions as
follows,

XY
Qi= > ([WEw(x— 1Ly, (x—1,9)] + [WEy(x + Lyl (x + 1,y)] +

z,y=1

(WEy(z,y — 1)es, (x,y — 1)] + [WEy(z,y + Deay(z,y +1)] ). (2)

For each depth D(z,y) at the position (z,y) we define the spatial regularization
error € for the 4-neighbour pixels (z/,y’) € N(z,y) as:

Emy(xl,y/) = D(xvy) - D(x/7yl)' (3)

However, enforcing spatial similarity may over-smooth the depth discontinuities
at object borders. Therefore, directional edge weights W E,,(2',y") are used to
avoid edge blending. The directional weight edge functions are defined in Eq. (4)

where (xlvy,) € N(x7y) = {(‘T - 1,2/), (IE + 1,2/), (‘T?y - 1)7 (xay + 1)}

WE, (2, y') = —explk - EL,(2',y") - ED(2',y)]. (4)

Those weights are based on the depth map gradient module ED(z’,y), and
directional IR image gradient modules El,,(z’,y’). To obtain these gradient
modules, IR and depth maps are first smoothed by a Gaussian filter G(0,0)
of zero mean and variance o2. Then the ED gradient is extracted by directly
applying a gradient on depth map D and the directional EI gradients extracted
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from the active IR image for every 4-neighbour pixels (z/,y') € N(z,y) at a
given pixel location (z,y), that is,

EDyy(2',y') = |GD(z,y) — GD(a',y/)|. (5)

Elyy(2,y') = |GI(z,y) — GI(z',y)]. (6)

where GD(z/,y') = G(0,0) * D(2',y') is the depth map D smoothed with a
Gaussian filter G(u, o) the same for GI(2',y") = G(0,0) *« A(2',y'), being A the
active IR image values. The resulting directional IR gradients EI can include
many edges where there are no depth changes. This may lead to unwanted char-
acterization of depth discontinuities in some areas. Hence, to remove edges not
corresponding to depth discontinuities, only the IR gradients EI corresponding
to depth gradients E'D denote depth object edge discontinuities, thus leading to
the directional weight edges functions W E,,, defined in Eq. (4), With k denoting
as a scaling factor.

4.3 Conditional Entropy Energy Term

The rationale behind this energy term is based on the correlation between depth
map D and active IR image A. This correlation can be represented by the mutual
information between both images MI(A, D), defined as,

MI(A,D) = -3 pla,d)log ]%- (7)
a,d

where p(a, d) is the joint probability of IR image A and depth values D, p(a) and
p(d) are the priors for the active IR image and depth map values respectively,
and a and d denoting the possible IR and depth values. Therefore, maximizing
MI(A, D) would lead to a maximization of the correlation between both images,
which can lead to improve the consistency of depth map D with respect to active
IR image A. Further on, M1 can be defined in terms of conditional entropy as,

MI(A,D) = H(D)— H(D/A). (8)

Note that, the conditional entropy H(D/A) can be interpreted as how much
information remains on D that cannot be explained giving the corresponding
active IR values A. Since the derivative of M is quite complex, and assuming
that H (D) is approximately constant, minimizing H(D/A) would be equivalent
to maximizing M I(A, D). Thus, the conditional entropy H(D/A) is defined as
follows,

H(D/A) =~ p(a,d)logp (d/a). (9)
a,d
Therefore, the corresponding energy term (g is defined as:

Qu=H(D/A). (10)
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where p(d/a) is the conditional probability of depth given the active IR val-
ues. Note that in this formulation D must be discretized. In practice, the joint
probability p(a,d) is estimated by computing the normalized joint histogram
between the initial depth D and the corresponding active IR image A. The con-
ditional in Eq.9 is computed from the joint probability using the chain rule as
p(d/a) = p(a,d)/p(a), and prior p(a) = ), p(a,d) as the marginal of the joint
probability p(a,d).

4.4 Image Energy Minimization

The image energy minimization process is based on an Iterative Conditional
Modes (ICM) strategy, that is, instead of minimizing @ energy (1) for the entire
image, pixel energy Q(i) will be minimized independently for each pixel i = (z,y)
in an iterative way, that is,

Qi) = c¢- Qs(i) + (1 —¢)- Qu(i) (11)

and
D))" = argmin (cQs(i) + (1 — ¢)Qu (1)) . (12)

Thus, pixel spatial error term (g(i) and pixel conditional entropy Qg (i) are
defined as follows,

Qs(i) = [WEyy(z — Ly) €5 (x = Ly + [WEey(z + 1,y) - €, (x + 1,y)]
+ WEzy(2,y = 1) € (2, y = D]+ [WEzy (2,9 = 1) - e, (z,y = D] (13)

Qu (i) = =W Ewy(i) - p(ai, i) - logp (di/a). (14)

The joint probability p(a,d) can be estimated from the normalized joint his-
togram between the initial depth map D and the corresponding active IR image
A. Where p(a;, d;) stands for the joint probability for depth value d; = D(i) and
active IR value a; at pixel i = (z,y). Edge weights W E,, (i) are also introduced
in pixel conditional entropy Qg (i) to preserve edge pixels regularization. Finally,
to minimize the pixel energy Q(i) at each iteration, a gradient descent method
is used, with adaptive learning rate A,

D(i) = D(i) = MOQUi) /(9D (). (15)

5 Data and Preprocessing

In this work image data were acquired from a ToF ADI sensor ADTF3175 mod-
ule based on continuous wave illumination to test the proposed approach, with
no depth ground truth available. IR-depth option was used in that sensor to
collect the depth aligned with its corresponding active IR image. Both images
are geometrically and time aligned, as they are captured by the same sensor with
1024 x 1024 pixels resolution. Figure4 illustrates some representative examples
where the second column of the first row is the depth map, and the first column
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of the first row shows the corresponding active IR image. The scenarios were
chosen to include both narrow and large missing depth regions as a result from
occlusion, dark or low reflective surfaces, or any other factors producing missing
depth values.

The initial preprocessing is oriented to estimating missing depth values.
Thus, a belief propagation depth completion method was used [1]. Note that
this method takes the active IR image as a guidance, particularly for missing
edges recovery. The key point of this inpainting approach is that it takes into
account the direction of how inpainting is performed around boundaries, where
the filling converges from the missing region value boundaries to the objects bor-
ders from both depth discontinuity sides, when the missing depth values region
contains an object border.

In order to compute the joint probability p(a, d), depth and IR values are dis-
cretized. In a further step, the joint histogram of the depth map D and the active
IR image A is computed and then normalized to obtain the joint probability and
the corresponding conditional p(d/a) using the chain rule.

For the image energy optimization process, the initialization is set to the
quantized depth map provided by the ToF sensor and its quantized active IR
image. In the gradient descent, the adaptive learning rate is defined as A\; =
A(t—1) — Ac, being A. a constant, and the iterative process is stopped when
the change in the M1 between the active IR and the discretized version of the
estimated depth image is below a given small value.

6 Experiments and Results

The qualitative results of the experiments based on the ADTF3175 data-set
are presented in Figs.4, 5, 6 and 7. These figures provide detailed insights into
edges recovering and depth enhancement. Notably, the proposed method sig-
nificantly improves the consistency of depth maps regarding to infrared image,
since missing values around some edges are one of the major problems of ToF
cameras the belief propagation depth method (BLFP) used for inpainting as
preprocessing. in Fig. 4 the third column of the first row illustrates the result
of depth inpainting, while the fourth column showcases the depth enhancement
results after integrating the BLFP with the proposed image energy optimiza-
tion framework. This combination effectively reconstructs missing pixels and
enhances depth map, particularly around edges that were initially missing and
noisy. This is clearly demonstrated in the second row, first column of Fig. 4.

It is worth noting that even after the depth inpainting process, the depth still
exhibits discontinuous edges and some non-homogeneous transitions between
objects and the background. For these reasons, the fusion module proposed in
this work aims to further refine the inpainted depth. This refinement is illustrated
in the analysis of the results presented in Figs. 5, 6 and 7.

Figure 5 shows how the edge profile and continuity were recovered based on
optimization framework. Figure 6 illustrate some details of edge continuity when
concerning nonlinear borders, the left edge map is extracted from initial depth
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IR image Initial depth Map of invalid pixel Inpainting Enhancement

Fig. 4. Depth inpainting and final depth enhancement, large missing depth areas recon-
struction, missing edges reconstruction.

and the right one extracted from the enhanced depth after applying the pro-
posed method. The left one shows some discontinuities and double boundaries
around the hand, that means the hand in the initial depth was surrounded by
a missing area, the right map show the hand border after processing. This sig-
nificant improvement is attributed to the utilization of the directional weight
edge function, which was employed for spatial error regularization in the defined
image energy function (4.2). The directional weight edge function plays a crucial
role in guiding the optimization process to refine objects boundaries. This edge
function provides directional information that helps to preserve edges more accu-
rately during the enhancement process, ensuring smoother and more coherent
depth transitions between objects and the background.

Figure 7 represents the edge intensity (EI) [21] of a nonlinear shape, where
EI of the inpainted depth is shown in the second column and the EI of the
enhanced depth in the third column. The zoomed part from the object boundary
is shown in the second row. From these results, it is evident that the inpainted
depth still exhibits some artifacts around the object’s boundaries. However, the
depth enhancement process based on our proposed framework plays a crucial
role in regularizing the areas near the edges. This regularization is achieved
through the similarity term, which effectively refines non homogeneous depth
edges respecting to infrared information.

Figures 8 and 9 shows the depth enhancement comparison results of the pro-
posed approach with respect to other reference guided enhancement methods
(joint bilateral filter [15], guided filter [7], and guided anisotropic diffusion [11]).
From this figures and from the zoomed patches we can notice that the pro-
posed enhancement model produces regularization on the smooth object surface
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Fig. 5. Edge reconstruction based on belief propagation inpainting method and edges
continuity recovering based on the proposed image energy optimization model.
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Fig. 6. Edge continuity recovering based on the proposed image energy optimization
model.

regions. This is because of the conditional entropy minimization, which also reg-
ularizes around edges and improve the sharpness of depth borders due to the
directional edge weights introduced in the image energy model.

The most important outcome of the proposed model is the improvement of
edges continuity, by maximizing the correlation (mutual information) between
the resulting depth and the active IR image. This process tends to change depth
values in such a way that they correlate as much as possible with the active IR
image values and local spatial distribution.
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methods.

7 Conclusions

The proposed method is a novel guided approach for dense depth enhancement
of ToF imagery, by introducing an image energy model that combines the ToF
depth map and its corresponding active IR image as a guidance. The experiments
show how the proposed approach effectively improves consistency of the final
resulting depth map with respect to the active IR image, which is a proof of the
increased correlation and matching between both images.

The guided inpainting method (guided belief propagation for depth comple-
tion [1]) based on IR image guide was used as preprocessing step to reconstruct
missing depth values regions. Experimental results show that combining the
belief propagation depth inpainting as a preprocessing and the proposed image
energy model recovers edges and their continuity satisfactorily. The directional
edge weights employed in the model provide the enhancement of depth discon-
tinuities at object edges, also outperforming other existing conventional guided
filtering methods. As a further work, this method will be extended to an other
framework based on multi-sensors fusion, which could also increase the depth
accuracy and lead to increase the resolution.
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