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A B S T R A C T

In this work, an auto-tuning method for PI controllers applied in a loop under a Symmetric-
Send-On-Delta sampling strategy is proposed. Auto-tuning algorithms usually implement an
identification phase to obtain some information about the system dynamic that is used for
tuning the controller. In our proposal, two frequency response points are estimated through an
iterative procedure. With this information, a simple tuning rule is applied which guarantees
robustness against limit cycle oscillations that can be induced by the SSOD sampler. Both the
robustness measure to limit cycles and the identification procedure are based on the describing
function technique, whose validity in the networked control systems under study requires a
low incidence of losing packets as well as the transmission delays to be known or negligible
compared to the system’s dynamic. Comparatives with other classical tuning rules support the
suitability of the proposed method. The auto-tuning procedure has been validated through a
simulation study reflecting its applicability for the most common dynamics found in industrial
processes.

1. Introduction

In recent years, Event-Based Control (EBC) in its different variants is becoming an alternative to classical control schemes [1],
offering execution patterns other than the periodic call to the control algorithms. This change in the execution aims to reduce
the measurement frequency, saving resources usage, such as communication, actuators, average computation cost and, ultimately,
energy, without degrading the closed-loop performance. Fields of application of EBC principles are networked control systems or
cyber physical systems, where many devices share a communication network. For example in [2], EBC has been applied and has
proved its effectiveness while reducing the power consumption of remote sensors.

The effectiveness of EBC, in terms of performance and expected behavior, is determined, together with the control algorithms,
by the event generation technique. This fact is shown in [3] where a comparative study of control loops considering different event
generation techniques is presented. These event generation techniques are in charge of monitoring the state of the system and,
when a significant change is produced, sending an event to trigger the execution of the control algorithms. Techniques based on
level-crossing are a common choice for its ease of implementation. Send-On-Delta (SOD) strategy, introduced in [4], was one of the
firsts contributions in this aspect. This technique consists on sending events when a change greater than the threshold 𝛿 is observed
from the last value sent, and it has been tested in terms of loop performance and communication reduction [5,6].

In [7], a variation in SOD sampling was presented, called Symmetric-Send-On-Delta (SSOD). The main characteristic of this
sampling strategy is that the quantization levels are fixed, being multiples of the threshold 𝛿, including a hysteresis of the same
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magnitude 𝛿. The effectiveness of the SSOD sampling in networked control systems has been evaluated through its use in several
actual applications in processes control [8,9], as well as in laboratory scale systems [10–13], where, among other applications,
mechatronic systems exhibiting rapid variations were studied, demonstrating the validity of the SSOD sampling even in those cases.
Beyond its applications in distributed control loops, the use of this kind of sampling in non-distributed control systems could be
boosted in the next few years by the recent development of level-crossing analog to digital converters, motivated by the increasing
necessity of low-power consumer electronic devices in the context of the IoT [14]. In this sense, some works have addressed the
electronic implementation of level-crossing converters with hysteresis [15,16], which are a particular case of the SSOD sampling.

Limit cycle oscillations are an undesired behavior that can be induced by the SSOD sampling technique, therefore, in several
works tuning rules have been proposed assuring robustness against their induction [11,17–20]. Most of these works use the
Describing Function (DF) technique [21] as a base for the studies, but there exist other analysis tools available, like Tsypkin’s
method [22], which has also been used to provide a tuning rule not only for PI but also for PID controllers, [18]. Other works use
the SSOD induced oscillations for identification purposes [23–25]. However, to the knowledge of authors, the problem of auto-tune
algorithms in the context of SSOD based control systems has not been successfully addressed in previous works.

Auto-tuning algorithms consist of two phases, firstly, an identification phase is developed to obtain some information about the
dynamic of the system, then, a tuning rule is applied which takes into account the information obtained in the identification phase.
Once the controller is tuned, the control loop is closed for controlling the system. Hitherto, the studies about auto-tuning methods
for SSOD based PI controllers has been scarce, being the contribution in [24] the most remarkable in the field. In that work, a
procedure was presented to identify the process transfer function whose structure must be previously selected. The identification
procedure is based on the oscillatory response induced by the SSOD sampler. Once the transfer function is obtained, it is used to
calculate the PI parameters. The oscillations to identify the transfer function take place after introducing a PI controller tuned by
the Ziegler–Nichols method from a relay feedback experiment developed in the beginning of the procedure.

In this work, an auto-tuning method is proposed for PI controllers applied in SSOD sampled control loops. The procedure does
not require the estimation of parametric models, such as the process transfer function, which has always been needed in the previous
tuning methods reported in the literature. Instead, it is only required to identify two points of the system’s frequency response to
perform the tuning. Those points are obtained from oscillations induced by a relay with hysteresis plus an integrator introduced in the
loop containing the SSOD sampler. With this information, the controller’s parameters are obtained according to an ad-hoc proposed
tuning rule which provides an user-defined robustness degree against limit cycle oscillations through a single parameter. This tuning
rule has been compared with other classical well-known tuning rules, namely, Ziegler–Nichols [26], AMIGO [27], One-Third [28]
and SIMC [29] tuning rules; in terms of robustness and performance. The comparison proves the suitability of the proposed method
to deal with very different kind of dynamic behaviors, which describe most of the actual industrial systems. The resulting tuning
rules are intended to be easy to implement and, therefore, to apply in any industrial device

The paper is organized as follows. In Section 2, the loop configuration considered in this paper with its characteristics is presented.
The proposed tuning rule is detailed in Section 3, where a comparison with other classical tuning rules is included supporting the
tuning rule validity. Section 4 describes the identification phase of the auto-tuning method. Here two options for obtaining the
information needed for the tuning rule are studied: firstly, using the oscillation induced by the SSOD, and secondly, using the
oscillation induced by a relay plus time delay. The results show that the later option presents significant advantages over the former
one in terms of experiment duration and predictable behavior. A simulation study to validate the proposal is presented in Section 5.
Finally, the conclusions about the work are drawn in Section 6.

2. Loop characteristics

The loop configuration considered in this paper is presented in Fig. 1. It consists of a sensor unit with an Event Generator (EG)
that transmits the data through the network whose behavior is modeled with a time delay term, and the controller and actuator unit
which holds the received data with a Zero-Order Hold (ZOH), and computes the control action with the algorithms implemented in
the controller 𝐶(𝑠) whose output is applied to the process to control with unknown transfer function 𝐺𝑝(𝑠). To facilitate the study,
he elements in the loop are re-arranged by combining the EG and ZOH in a single block and considering the network delay as part
f the unknown transfer function giving by Eq. (1).

𝐺(𝑠) = 𝐺𝑝(𝑠) exp (−𝑡𝑑𝑠) (1)

In this work, the event generation is in charge of a Symmetric-Send-On-Delta (SSOD) sampler [7], which constitutes a specific
ase of the Send-On-Delta. The behavior of this event generator, according to its input–output relationship, is described by:

𝑒(𝑡) =

⎧

⎪

⎨

⎪

⎩

(𝑖 + 1)𝛿 if 𝑒(𝑡) ≥ (𝑖 + 1)𝛿 and 𝑒(𝑡−) = 𝑖𝛿, 𝑖 ∈ Z
(𝑖 − 1)𝛿 if 𝑒(𝑡) ≤ (𝑖 − 1)𝛿 and 𝑒(𝑡−) = 𝑖𝛿
𝑖𝛿 if 𝑒(𝑡) ∈ [(𝑖 − 1)𝛿, (𝑖 + 1)𝛿] and 𝑒(𝑡−) = 𝑖𝛿

(2)

here 𝑒(𝑡) is the error signal (input) that generates the sampled error signal 𝑒(𝑡) (output) and 𝛿 the quantification level.
Regarding to its input–output relationship, the SSOD can be considered as a multilevel relay with hysteresis. The robustness

gainst the induction of limit cycle oscillations induced by this kind of non-linear elements can be characterized by means of the
escribing Function technique, as firstly proposed in [30] and after exploited in other works for different studies as commented
2

n the previous section. It is assumed for this work a sampling frequency high enough to correctly capture the system’s dynamics.
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Fig. 1. Standard loop configuration for EBC.

Fig. 2. Representation of −1∕ (𝐴) of the SSOD in the Nyquist plane.

ases where this assumption is not fulfilled fall outside the scope of this work since the stability of these loops must be studied
ifferently as shown in [31].

The Describing Function (DF) of the SSOD-ZOH sampling and hold strategy, which was firstly obtained in [11], results in the
ollowing expression:

 (𝐴) = 2𝛿
𝐴𝜋

[

1 +

√

1 −
( 𝛿
𝐴
𝑚
)2

+ 2
𝑚−1
∑

𝑘=1

√

1 −
( 𝛿
𝐴
𝑘
)2
]

− 𝑗 2𝑚𝛿
2

𝐴2𝜋
, (3)

here 𝐴 is the amplitude of a sinusoidal input to the SSOD, and 𝑚 = ⌊𝐴∕𝛿⌋ is the maximum number of levels crossed in either
irection. DF theory states that limit cycles can be induced in the temporal response if the open-loop transfer function intersects
he inverse negative of the DF at any frequency, which can be expressed analytically as:

𝐺𝑜𝑙(𝑗𝜔) = − 1
 (𝐴)

, ∀𝜔

here 𝐺𝑜𝑙(𝑗𝜔) = 𝐶(𝑗𝜔)𝐺(𝑗𝜔) is the open-loop transfer function.
The traces of the inverse negative of the DF are presented in Fig. 2 for 𝐴 ∈ [𝛿,∞[. In that figure, some points 𝐶𝑖 are highlighted,

hich represent the points where 𝐴 = 𝑖𝛿, e.g. the point 𝐶1 is obtained calculating −1∕ (𝛿) and 𝐶2 from −1∕ (2𝛿). Each of these
oints are then followed by a trace which are the result of computing the inverse negative of the DF for 𝐴 ∈ [𝑖𝛿, (𝑖 + 1)𝛿[. An
ntersection of the open-loop transfer function with each of these traces can induce a limit cycle oscillation in the temporal response
ith the corresponding amplitude 𝐴 at the open-loop transfer function frequency at which the intersection is produced.

Some studies based on the DF method try to avoid limit cycle oscillations by establishing robustness margins to the point
1 = −𝜋∕4 − 𝑗𝜋∕4, which is the point of minimum amplitude of oscillation 𝐴 = 𝛿. As has been proved in [11], by avoiding the

ntersection with the trace corresponding to the point 𝐶1 also prevent the intersection with the rest of traces of the negative inverse
f the DF, so oscillation will not take place. Therefore, the point 𝐶1 can be considered as critical point for properly tuning the
ontroller.
3
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Fig. 3. Tuning method rationale establishing a phase margin 𝜙𝑐 to the point 𝐶 with a PI controller. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

3. Tuning method

The key point for any auto-tuning procedure is to dispose of a method for calculating the controller parameters using information
easily obtained from a suitable test over the system, like a relay feedback experiment. With this in mind, a very simple tuning method
is proposed in this section that only requires some information related to the critical point 𝐶1.

Let us assume the open loop transfer function 𝐺̂𝑜𝑙(𝑗𝜔) = 𝐺(𝑗𝜔)𝐾𝑖𝑢
𝑗𝜔 resulting from replacing the controller 𝐶(𝑠) by an integrator

ith a properly selected gain 𝐾𝑖𝑢 such that 𝐺̂𝑜𝑙 crosses the point 𝐶1 in some frequency 𝜔𝑖𝑢, which is the frequency of oscillation
nduced by the SSOD if 𝐺̂𝑜𝑙 intercepts −1∕ (𝐴) in 𝐶1.

𝐺(𝑗𝜔𝑖𝑢)
𝐾𝑖𝑢
𝑗𝜔𝑖𝑢

= 𝐺(𝑗𝜔𝑖𝑢)𝐼(𝑗𝜔𝑖𝑢) = 𝐶1 = −𝜋
4
− 𝑗 𝜋

4
(4)

The rationale of the tuning method consists on substituting the integrator with gain, 𝐼(𝑗𝜔), by a PI controller in the open-loop
ransfer function, obtaining the controllers’ parameters that assure a custom phase margin 𝜙𝑐 to the point 𝐶1 at the frequency 𝜔𝑖𝑢
s it is shown in Fig. 3, where 𝐺̂𝑜𝑙(𝑗𝜔) = 𝐺(𝑗𝜔)𝐼(𝑗𝜔) is presented in blue and 𝐺𝑜𝑙(𝑗𝜔) = 𝐺(𝑗𝜔)𝐶(𝑗𝜔) in red.

The design parameter 𝜙𝑐 allows establishing a robustness margin against the induction of limit cycle oscillations while adding
ome extra margin against potential errors on the estimation of the critical point 𝐶1, which can be derived from actual plant problems
ike network latency or packet losses.

emark 1. It is worth noticing that the phase margin to the oscillations 𝜙𝑐 is measured respect to point 𝐶1 = 1.11 −135◦ and it
ust be distinguished from the classical phase margin specification 𝛷, measured respect to 1 180◦. Because |𝐶1| = 1.11 is close to

1, the following relation is fulfilled: 𝜙𝑐 ≈ 𝛷 − 45◦. Therefore, when designing with 𝜙𝑐 ∈ [5◦, 25◦] will approximately produce values
of the classical phase margin 𝛷 ∈ [50◦, 70◦], which are reasonable values for this robustness measurement. The previous relation
between 𝛷 and 𝜙𝑐 has been studied and validated in [30,32].

For a PI controller with transfer function

𝐶(𝑗𝜔) = 𝐾𝑝 +
𝐾𝑖
𝑗𝜔

, (5)

the parameters 𝐾𝑝 and 𝐾𝑖 that assure the described behavior are obtained as follows:

𝐾𝑝 =
𝐾𝑖𝑢
𝜔𝑖𝑢

sin𝜙𝑐

𝐾𝑖 = 𝐾𝑖𝑢 cos𝜙𝑐

(6)

being 𝐾𝑝 and 𝐾𝑖 the proportional and integral gain of the controller and where 𝜙𝑐 is the phase margin to the point 𝐶1. The calculation
behind this tuning rule is detailed in Appendix A.

The main advantage of the tuning rules in Eq. (6) in order to be used in an auto-tuning procedure is that it does not require
the identification of the plant model 𝐺(𝑠), instead, the controller parameters’ can be calculated from data that can be extracted
4
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from simple relay feedback experiments, as will be presented in the next section. In addition, it provides a customizable degree of
robustness against limit cycles provided by the phase margin to the point 𝐶1 characterized by 𝜙𝑐 , allowing the user to obtain more
robust controllers if required.

In order to compare the proposed tuning method with other well known tuning rules, a study has been made focusing on classical
specifications such as gain margin 𝛾, phase margin 𝛷 or settling time 𝑇𝑠 and the phase margin to the point 𝐶1, 𝜙𝑐 . A batch of processes
involving the most common dynamics, presented in Eqs. (7), has been considered to perform the comparison. Note that according
to Eq. (1) 𝐺(𝑠) include both the process transfer function and the network delay, therefore this batch includes cases in which the
network delays are taken into account and others cases where the delay introduced by the network can be neglected respect to the
process dynamic.

𝐺(𝑠) = 𝑒−𝑠

(𝑇 𝑠 + 1)2
,

𝑇 = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1,

1.3, 1.5, 2, 4, 6, 8, 10, 20, 50, 100, 200, 500

𝐺(𝑠) = 1
(𝑠 + 1)(𝑇 𝑠 + 1)2

,

𝑇 = 0.05, 0.1, 0.2, 0.5, 2, 5, 10

𝐺(𝑠) = 1
(𝑠 + 1)𝑛

,

𝑛 = 3, 4, 5, 6, 7, 8

𝐺(𝑠) = 1
(𝑠 + 1)(𝛼𝑠 + 1)(𝛼2𝑠 + 1)(𝛼3𝑠 + 1)

,

𝛼 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

𝐺(𝑠) = 𝑇 𝑒−𝐿1𝑠

(𝑇1𝑠 + 1)(𝑇 𝑠 + 1)
, 𝑇1 + 𝐿1 = 1,

𝑇 = 1, 2, 5, 10 𝐿1 = 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1

𝐺(𝑠) = 1 − 𝛼𝑠
(𝑠 + 1)3

,

𝛼 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1

𝐺(𝑠) = 1
(𝑠 + 1)((𝑠𝑇 )2 + 1.4𝑠𝑇 + 1)

,

𝑇 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

(7)

With the models proposed in the batch, several controllers have been tuned according to the following methods: Ziegler–
ichols [26], AMIGO [27], One-Third [28] and SIMC [29], and also by the proposed method assuming 𝜙𝑐 = 20◦. By choosing

his value for 𝜙𝑐 it is foreseen to obtain values of the classical phase margin 𝛷 close to 65◦, as commented in Remark 1.
The results are presented in Fig. 4. As expected, the proposed method presents values of 𝛷 around 65◦, similar to those values

btained for the SIMC method. With regard to the gain margin, the proposal provides values in the order of magnitude of the other
ethods.

Concerning the settling time 𝑇𝑠, the collected data has been normalized with regard to SIMC’s settling time, which presents,
n average, the fastest responses. The proposed method presents settling times in the same range as the classical methods, even
resenting in some cases the fastest responses. As expected, the phase margin to the point 𝐶1 is set to 20◦ degrees for the proposed
ethod, being variable for the classical tuning methods, specially for Ziegler–Nichols’.

Summarizing, the proposed method is suitable for tuning the controller 𝐶(𝑠) for most of the processes in industry under the
ontrol scheme in Fig. 1, providing characteristics similar to the ones provided by classical methods while it guarantees robustness
o limit cycles induced by the SSOD sampler. To be applied, the presented tuning method only needs the information of the integral
ain 𝐾𝑖𝑢 and the oscillation frequency 𝜔𝑖𝑢 which can be obtained from the limit cycle oscillations induced by the non-linearity in
he loop, as will be presented in the next section.

. Identification of the critical oscillation point parameters 𝑲𝒊𝒖 and 𝝎𝒊𝒖

The aim of the identification procedure proposed in this section is to obtain the gain 𝐾𝑖𝑢 of the integrator and the frequency 𝜔𝑖𝑢
t which the open-loop transfer function, defined by the process and the integrator, intersects the point 𝐶1, that is, the values of 𝐾𝑖
nd 𝜔 fulfilling the condition in Eq. (8), which is graphically represented in Fig. 5.

𝐺(𝑗𝜔𝑖𝑢)
𝐾𝑖𝑢
𝑗𝜔𝑖𝑢

= 𝐶1 (8)

Because the point 𝐶1 belong to − 1
 (𝐴) , one could use the oscillations induced by the SSOD non linearity in the closed loop

systems presented in Fig. 1, after substituting the controller 𝐶(𝑠) by an integrator 𝐼(𝑠), in order to obtain 𝐾𝑖𝑢 and 𝜔𝑖𝑢. However,
trying to perform this identification with the SSOD sampler requires to apply a trial and error procedure for selecting values of 𝐾
5
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Fig. 4. Comparative of the robustness and performance of the proposed tuning method with classical tuning rules. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Intersection of the open-loop transfer function 𝐺(𝑗𝜔)𝐼(𝑗𝜔) with the point 𝐶1.

ntil the limit cycle corresponding to 𝐶1 is reached. From the practical point of view this approach presents several drawbacks.
irstly, there exists the possibility of obtaining an unstable behavior, which can happen if for the selected value of 𝐾𝑖 the open-loop
ransfer function intersects the Nyquist’s abscissa axis in a value lower than −1. Secondly, a stable state can be reached, in which
o oscillation is obtained, if the selected value of 𝐾𝑖 does not guarantee intersection between the open-loop transfer function and
he inverse negative of the DF. Additionally, during the blind search of 𝐾𝑖𝑢, if 𝐺(𝑗𝜔)𝐾𝑖∕𝑗𝜔 intercepts several traces of − 1

 (𝐴) , then
the oscillatory response of the system can take place in any of the limits cycles corresponding to the intersections points, each one
6
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Fig. 6. Experimental deployment of the auto-tuning procedure based on the SSOD binary search.

with its own properties of amplitude and frequency. This huge variability in the system responses when using the SSOD sampler
to look for the oscillation in point 𝐶1 could cause long and unfeasible experiments, making this approach theoretically viable, but
hardly applied in actual systems. The following example illustrates this fact.

Example 1. Fig. 6 shows an experiment that presents some situations described above. The approach to obtain the oscillation point
𝐶1 in this experiment consists in a binary search of 𝐾𝑖𝑢. The values of 𝐾𝑖 through the experiment until 𝐾𝑖𝑢 is obtained in phase IV are
shown in the figure. In the initial phase I, an arbitrary integral gain is set, and the process becomes unstable. Therefore, the integral
gain is reduced in phase II, where a stable oscillation is obtained, but since its amplitude is higher than 𝛿, which is the amplitude
of oscillation in the point 𝐶1 needed to estimate 𝐾𝑖𝑢 and 𝜔𝑖𝑢, the experiment continues reducing the integral gain in phase III. In
this phase, the process reaches a stable state, thus, in phase IV the integral gain is increased to produce new oscillations. These last
oscillations with amplitude close to 𝛿 are suitable to obtain 𝐾𝑖𝑢 and 𝜔𝑖𝑢. Then the controller parameters are calculated by Eqs. (6).
Finally, a disturbance is introduced in phase V to test the controller.

The Nyquist diagram in Fig. 7 shows the open loop transfer function in each phase of the experiment. Initially, 𝐺(𝑗𝜔)𝐼(𝑗𝜔),
encircle the point (−1,0), therefore oscillations with increasing amplitude are obtained in phase I, as depicted in Fig. 6. The reduction
of 𝐾𝑖 in phase II produce a new intersection point between 𝐺(𝑗𝜔)𝐼(𝑗𝜔) and − 1

 (𝐴) far from 𝐶1. A further reduction of the integrator
gain in phase III avoid this intersection, and consequently the limit cycle oscillation disappears. Then, 𝐾𝑖 is increased, resulting in
a limit cycle close to 𝐶1 where 𝐾𝑖𝑢 and 𝜔𝑖𝑢 are finally obtained.

In order to overcome the aforementioned issues when using the SSOD sampler to obtain the parameters 𝐾𝑖𝑢 and 𝜔𝑖𝑢, we propose
to estimate the point 𝐶 ′

1 of 𝐺(𝑗𝜔)𝐼(𝑗𝜔) with the same phase that point 𝐶1, that is −3𝜋∕4 [rad], see Fig. 8. Once this point is known,
𝐾𝑖𝑢 can be calculated by Eq. (9). Furthermore, because 𝐶1 = 𝐾𝑖𝑢𝐶 ′

1, the oscillation frequency for the point 𝐶 ′
1 is equal to 𝜔𝑖𝑢.

𝐾𝑖𝑢 =
|𝐶1|

|𝐶 ′
1|

=
𝜋
√

2∕4
|𝐶 ′

1|
(9)

The procedure for identifying point 𝐶 ′
1 is inspired by the algorithm described in [33] where a single relay is combined with a

variable time delay to estimate a point in the frequency response with a given phase. At the beginning of the experiment the delay
is set to zero and the point 𝐶0 in Fig. 8 is estimated from the resulting oscillations. The estimation of 𝐶0 is used to calculate the
time delay needed to identify the point 𝐶 ′

1. The loop composition to develop the identification is depicted in Fig. 9. As can be seen,
a relay with hysteresis is inserted in the loop after the SSOD, followed by a time delay and an integrator. These three elements are
implemented in the auto-tuning algorithm in the controller device. Since 𝐺(𝑠) = 𝐺𝑝(𝑠) exp (−𝑡𝑑𝑠), the effect of communication delay
𝑡𝑑 introduced by the network is taking into account as part the system response to be identified.

Due to the input/output characteristic of the relay with hysteresis, which is shown in Fig. 10, if the hysteresis is ℎ = 𝑛𝛿𝛿, 𝑛𝛿 ∈ Z,
then the non-linearity resulting from the SSOD and relay combination is equivalent to a relay with hysteresis. This means that the
introduction of the relay with ℎ = 𝑛𝛿𝛿 in the loop cancels the effect of the SSOD sampler, and consequently, the induced oscillations
are fully defined by the relay parameters. This allows developing the identification phase of the auto-tuning procedure without
modifying neither removing the SSOD sampler.

Remark 2. Although the condition ℎ = 𝑛𝛿𝛿 is theoretically feasible, its practical implementation could lead to some numerical
problems since ℎ is used in the switching condition of the relay to check if the input signal, which is a quantized signal with levels
7
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Fig. 7. Binary search of the intersection between the open-loop transfer function and the point 𝐶1.

Fig. 8. Relay-based search of the characteristics of the intersection between 𝐺𝑜𝑙(𝑠) and 𝐶1.

Fig. 9. Loop modification for the identification and control phases when using the relay plus delay approach for identifying the point 𝐶 ′
1.
8
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T

𝐴

i

Fig. 10. Input/output characteristic of relay (red) and SSOD (blue). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

𝑛𝛿, 𝑛 ∈ Z, has crossed the value 𝑛𝛿𝛿 in order to change the output signal. It is worth noting, however, that since the relay input is a
quantized signal, it is expected that the relay output changes after a step-like variation in 𝑒 from (𝑛𝛿 −1)𝛿 to 𝑛𝛿𝛿. Therefore, ℎ could
have any value in the interval ](𝑛𝛿 − 1)𝛿, 𝑛𝛿𝛿[. A reasonable value for ℎ is the midpoint of the previous interval: ℎ = 𝑛𝛿𝛿 − 𝛿∕2. This
guarantees the cancellation of the SSOD effect in the loop meanwhile avoiding the numerical fragility due to the condition ℎ = 𝑛𝛿𝛿.

As commented before, the relay, the time delay and an integrator are implemented in the controller device where the auto-tune
algorithm is executed. It is worth noting from Fig. 9, that the controller input is not the error 𝑒 but the sampled error 𝑒. However,
the equations for estimating frequency response points from relay experiments depend on the amplitude 𝐴 of the oscillation of 𝑒,
see for example [34]. Instead, the available information for the auto-tuning algorithm is the amplitude 𝐴̄ of the sampled error 𝑒.

his could introduce errors in the estimation of point 𝐶 ′
1, which must be reduced as much as possible.

Despite the value of 𝐴, the absolute error in its measurement from 𝑒 is in the range [0, 𝛿]. Consequently, the relative error between
and 𝐴̄,

𝑒𝐴 = 𝐴 − 𝐴̄
𝐴

100% (10)

can be reduced by increasing de oscillation amplitude 𝐴. Assuming that 𝐴̄ = 𝑛𝐴𝛿, being 𝑛𝐴 =
⌊

𝐴0
𝛿

⌋

∈ Z the number of levels 𝛿

ncluded in the oscillation amplitude, the upper bound of 𝑒𝐴 is 𝑒𝐴 = 1∕(1 + 𝑛𝐴)100% (see proof in Appendix B). For 𝑛𝐴 = 1 the
relative error 𝑒𝐴 could be up to 50%, however, as 𝑛𝐴 rises, 𝑒𝐴 can be approximated by 𝑒𝐴 ≈ 1∕𝑛𝑎100%. As an example, for 𝑛𝐴 = 10
the upper bound of the relative error is approximately 10%.

The previous discussion about the error between 𝐴 and 𝐴̄ must be taken into account in the proposed algorithm. In this sense, our
proposal is based on calculating the relay amplitude 𝜇 in order to obtain the oscillation that fulfills the condition 𝑛𝐴 ≥ 𝑛𝐴𝑑

, where
𝑛𝐴𝑑

is the desired value of 𝑛𝐴. It is worth noting that, in general, an excessive oscillation amplitude is not desired in actual plants,
hence, the selection of 𝜇 must be a trade off between a low value of 𝑒𝐴 and a reasonable oscillation amplitude in the plant output.
As commented before, 𝑛𝐴 = 10 implies 𝑒𝐴 ≈ 10%, so 𝑛𝐴 greater than 10 could be a reasonable choice. Because at the beginning of the
experiment there is no information about the process dynamic, the initial value of the relay amplitude, 𝜇0, should be selected low
enough to guarantee admissible oscillation from the process operation point of view. If under this premise the obtained 𝐴̄0 = 𝑛𝐴0

𝛿
does not fulfill the condition 𝑛𝐴0

≥ 𝑛𝐴𝑑
, then the relay amplitude is recalculated by Eq. (11) (see Appendix B for proof) and a new

relay experiment is carried out. Eq. (11) can be applied successively until the condition 𝑛𝐴 ≥ 𝑛𝐴𝑑
is fulfilled, then the point 𝐶0 can

be estimated.

𝜇 = 𝜇0
𝑛𝐴𝑑

𝑛𝐴0
+ 1

(11)

Remark 3. For most of the actual systems the magnitude of 𝐺(𝑗𝜔)𝐼(𝑗𝜔) decreases when the frequency increases, hence, the
magnitude of 𝐶 ′

1 is greater than the magnitude of 𝐶0. Then, taking into account that the amplitude of the oscillation is proportional
to the magnitude of open loop transfer function, the condition 𝑛𝐴 > 𝑛𝐴𝑑

is expected to be fulfilled during the experiments for the
identification of 𝐶 ′

1. Therefore, the relay amplitude does not change during these experiments, keeping the value obtained for the
identification of 𝐶 .
9

0



Journal of the Franklin Institute 361 (2024) 106971J.-A. Romero-Pérez and O. Miguel-Escrig

t
a
r
e
t
o

E
w

The auto-tuning procedure that takes into account all the previous issues is as follows:

1. Initially the delay is set to zero: 𝑡𝑟 = 0. A relay feedback experiment with relay hysteresis ℎ = 𝛿 and amplitude low enough to
keep the oscillation of the system output in a safety region is carried out resulting in oscillations of frequency 𝜔 and amplitude
𝐴̄. Calculate 𝑛𝐴 = 𝐴̄∕𝛿, and check the condition 𝑛𝐴 ≥ 𝑛𝐴𝑑

. If it is not fulfilled, calculate a new relay amplitude by Eq. (11)
and perform a new experiment.

2. Repeat step 1 until the condition 𝑛𝐴 ≥ 𝑛𝐴𝑑
is accomplished. Then, the first identified point (𝐶0 in Fig. 8) is defined by

frequency 𝜔, magnitude 𝑀 = 𝜋𝐴̄
4𝜇

, and phase 𝜙0 = −𝜋 − arg
⎛

⎜

⎜

⎝

4𝜇

𝜋𝐴̄

⎛

⎜

⎜

⎝

√

√

√

√1 −

( ℎ

𝐴̄

)2

− 𝑗
ℎ

𝐴̄

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

. The previous equations are obtained

using the describing function of the relay with hysteresis and have been previously used in [34].
3. Set the delay to 𝑡𝑟 =

(𝜙𝑑 − 𝜙0)
𝜔

, where 𝜙0 has been estimated in the previous step and 𝜙𝑑 is the phase of point 𝐶1,
that is −3𝜋∕4. Run a new relay feedback experiment, which leads to a new oscillatory response of frequency 𝜔, and
amplitude 𝐴̄. The identified point using these data is defined by frequency 𝜔, magnitude 𝑀 = 𝜋𝐴̄

4𝜇
and phase 𝜙𝐺(𝜔) =

𝑡𝑟𝜔 − 𝜋 − arg
⎛

⎜

⎜

⎝

4𝜇

𝜋𝐴̄

⎛

⎜

⎜

⎝

√

√

√

√1 −

( ℎ

𝐴̄

)2

− 𝑗
ℎ

𝐴̄

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

.

4. Repeat step 3 updating the delay 𝑡𝑟 with the new values of 𝜔 and 𝜙 obtained in each iteration until |𝜙𝐺(𝜔) − (−3𝜋∕4)| < 𝜖,
where 𝜖 is an admissible error in the phase estimation of point 𝐶 ′

1. The last value of 𝜔 and 𝑀 obtained in step 3 correspond
to the point 𝐶 ′

1, therefore, 𝜔𝑖𝑢 = 𝜔 and 𝐾𝑖𝑢 can be calculated according to Eq. (9). A detailed explanation of steps 3 and 4 as
well as a convergence study is presented in Appendix C.

5. Finally, the PI parameters are calculated using Eqs. (6) for a given robustness margin 𝜙𝑐 .

To measure 𝜔 and 𝐴̄ in each experiment the system output must reach stable oscillations, that is, an oscillation with constant
amplitude. Due to the quantization effect of the SSOD sampler, this condition can be easily checked by the equation 𝐴̄−1 − 𝐴̄ = 0,
being 𝐴̄−1 the penultimate measure of 𝐴̄.

Remark 4. As a result of the step 1 and Remark 3, the amplitudes of the oscillation obtained in steps 2 and 3 are greater than
𝑛𝐴𝑑

ℎ, with value of 𝑛𝐴𝑑
> 10. For 𝑛𝐴𝑑

= 10 the contribution of the term

arg

⎛

⎜

⎜

⎜

⎝

4𝜇

𝜋𝐴̄

⎛

⎜

⎜

⎜

⎝

√

√

√

√

√1 −

( ℎ

𝐴̄

)2

− 𝑗
ℎ

𝐴̄

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

in the equations to calculate the phase is only about 0.2 rad. Therefore, this term can be neglected in order to simplify the algorithm
without significantly affecting the final result. Hence, in steps 2 the phase 𝜙0 can be approximated by 𝜙0 = −𝜋 and in step 3 the
equations for calculating 𝑡𝑟 and 𝜙𝐺(𝜔) can be reduced to

𝑡𝑟 =
(𝜙𝑑 + 𝜋)

𝜔
(12)

𝜙𝐺(𝜔) = 𝑡𝑟𝜔 − 𝜋 (13)

The final implementation of the auto-tuning method is summarized in Algorithm 1.

Remark 5. Because the time delay introduced by the network is considered as part of the unknown system model, its variation
during the experiments could introduce errors in the estimation of 𝐶 ′

1 whose magnitude depends on the relative value of these
variations respect to the rest of model parameters. In this sense, it should be noted that in many industrial control applications the
plant dynamic is characterized by time lags and delays large enough to neglect the delay introduced by the network. In these cases,
the proposed algorithm can be applied. On the other hand, if 𝑡𝑑 is on the same order of magnitude as the plant dynamics, then
various scenarios are possible. (1) If the variations in the network delay are not significant respect to 𝑡𝑑 , the modeling error due
o these variations could be neglected, and consequently the algorithm can be applied. (2) If the variations in the network delay
re significant respect to 𝑡𝑑 , but these variations do not take place during the experiments, that is, 𝑡𝑑 is almost constant during the
elay tests, then the algorithm can be applied since the robustness margin 𝜙𝑐 prevents the induction of limit cycles due to modeling
rrors. (3) The worst situation is when the variations in the network delay occur during the experiments and are significant respect
o the model parameters. In this case, the values of 𝑡𝑟 are strongly influenced by the variations in 𝑡𝑑 , and therefore, the convergence
f relay experiments cannot be guaranteed.

xample 2. In order to show the benefits of using the relay plus delay approach to identify the point 𝐶 ′
1, let us consider the process

ith transfer function

𝐺(𝑠) = 0.55
10

(𝑠 + 1)5
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Algorithm 1 Auto-tuning algorithm summary
𝜇 ← 𝜇0
Perform Relay feedback experiment;
while 𝑛𝐴 < 𝑛𝐴𝑑

do
Update 𝜇; ⊳ Equation (11)
Perform Relay feedback experiment;

end while
𝑡𝑟 ← 0
𝜙𝐺 ← −𝜋
𝜔 ← oscillation frequency from the last experiment
repeat

Update 𝑡𝑟; ⊳ Equation (12)
Perform Relay feedback experiment
𝜔 ← oscillation frequency from the last experiment
𝜙𝐺 ← estimated phase ⊳ Equation (13)

until |
|

𝜙𝐺 − 𝜙𝑑
|

|

< 𝜖
𝜔𝑖𝑢 ← 𝜔
Calculate 𝐾𝑖𝑢; ⊳ Equation (9)
Calculate 𝐾𝑝 and 𝑇𝑖; ⊳ Equation (6)

whose identification using the SSOD non-linearity was presented in Example 1. The value of 𝛿 for SSOD sampler is 0.1. For the
identification, a relay with initial amplitude and hysteresis of 0.1 has been considered.

The behavior of the main signals and parameters during the identification and control phases is presented in Fig. 11. The first
experiment phase begins at 𝑡 = 0. The vertical lines in the oscillatory stages indicate the end of experiments to identify the points 𝐶0
and 𝐶 ′

1. By comparing Figs. 11 and 6 it can be seen that the total duration of the experiment is significantly reduced. Furthermore,
the usage of relay plus time delay guarantees stable oscillations, whose amplitude can be kept under control, avoiding the unstable
oscillation as observed in phase I of Fig. 6. Hence, the system repose during the experiments with relay plus time delay is, in general,
more predictable than the behavior obtained when using the SSOD to identify the point 𝐶 ′

1.
As it can be seen, during the first phase of the experiment, which lasts 113 s, the time delay is zero and the relay amplitude is

recalculated twice to fulfill the condition 𝑛𝐴 ≥ 𝑛𝐴𝑑
with 𝑛𝐴𝑑

= 20. The values of 𝑛𝐴 at the end of each stable oscillation is presented
in the bottom figure. In order to reduce the experiment duration, the first phase of the experiment ends once 𝑛𝐴 is close enough to
𝑛𝐴𝑑

, in this case when 𝑛𝐴 = 18, and the point 𝐶0 is calculated using the value of 𝐴̄. During the second phase of the experiment, the
ime delay is modified to identify the point 𝐶 ′

1. As expected, according to Remark 3, during this phase 𝑛𝐴 is greater than the values
btained in the first phase without varying the relay amplitude. Once the point 𝐶 ′

1 is identified at the end of the second phase, at
06 s, the controller parameters are calculated considering a margin 𝜙𝑐 = 20◦ and the PI algorithm is activated. In order to evaluate
he performance of the controller, a disturbance of magnitude 10 is introduced at 𝑡 = 300 s whose effect in the system output is fully
ompensated by the controller 30 s later.

As it can be seen, there are not limit cycle oscillation in the control loop once the PI is activated, since the controller obtained
y the auto-tuning method avoids the intersection between 𝐺𝑜𝑙(𝑗𝜔) = 𝐶(𝑗𝜔)𝐺(𝑗𝜔) and −1∕ (𝐴) due to the phase margin 𝜙𝑐 . This
s shown in Fig. 12, where the polar plot of 𝐺𝑜𝑙(𝑗𝜔) and the negative inverse of the describing function of SSOD are depicted. The
stimation of point 𝐶 ′

1 is also presented in the figure. The error in the estimation of 𝐶 ′
1 is mainly due to the use of the describing

unction technique, which neglects the effect of higher order harmonics in the loop response.

emark 6. The error in the estimation of 𝐶 ′
1 observed in Example 2 does not reduce the robustness to limit cycles of the controller,

onversely, the robustness is increased because |𝐶 ′
1| > |𝐶 ′

1|, and consequently, the value of 𝐾𝑖𝑢 obtained from Eq. (9) decreases.
herefore, the controller parameters 𝐾𝑝 and 𝐾𝑖 from Eq. (6) are also reduced. Hence, the effect of the error in the estimation of 𝐶 ′

1
s similar to detune the controller obtained with the actual 𝐶 ′

1 point, increasing the robustness at the expenses of a slightly slower
losed loop response. This fact has been also detected in processes with very different dynamic behavior, as it will be presented in
he next section.

. Simulation study

In this section some examples illustrate the performance of the auto-tuning algorithm for SSOD-PI controllers based on relay
lus delay feedback experiments. In order to validate the proposal, a batch of transfer function models including the most common
ynamics encountered in industrial processes, presented in Eqs. (14), has been considered. The auto-tuning algorithm has been
pplied in all these cases with the following parameters: 𝑛𝐴𝑑

= 20, 𝜙𝑐 = 20◦. A SSOD sampler with 𝛿 = 0.1 and a relay with initial
11

mplitude and hysteresis of 0.1 has been assumed.
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Fig. 11. Time response of the main signals and parameters during the experiment and control phase in Example 2.

𝐺1(𝑠) =
𝑒−5𝑠

(𝑠 + 1)3

𝐺2(𝑠) =
1

(𝑠 + 1)(0.5𝑠 + 1)(0.25𝑠 + 1)(0.125𝑠 + 1)

𝐺3(𝑠) =
1

(𝑠 + 1)7

𝐺4(𝑠) =
1 − 2𝑠
(𝑠 + 1)3

(14)

The behavior of the main auto-tuning algorithm parameters is presented in Figs. 13 to 16, where the vertical black lines represent
the final of each experimental phase. As it can be seen, during the first phase the time delay 𝑡𝑟 is zero and the amplitude of the
relay (𝜇) is adjusted until the condition 𝑛𝐴 = 𝑛𝐴𝑑

is fulfilled. During the second phase of the experiment the relay amplitude does
not change since 𝑛𝐴 > 𝑛𝐴𝑑

and consequently, the oscillation amplitude can measured from 𝑒 without introducing a significant error.
On the other hand, during this phase 𝑡𝑟 is recalculated to identify the point 𝐶 ′

1. At the end of this phase the PI parameters 𝐾𝑝 and
𝐾𝑖 are calculated and the controller algorithm is activated.

The performance of the resulting controllers can be observed in Fig. 16, where the responses to a step disturbance applied at
𝑡 = 300 s is shown. In all cases the effect of this perturbation is rejected and the error between the reference and the measured
variable is canceled in a reasonable time. Regarding to the existence of limit cycles, oscillations are not detected in the closed loop
responses of the obtained PI. This fact is corroborated by the polar plots in Fig. 17, which depict the frequency response of the
12



Journal of the Franklin Institute 361 (2024) 106971J.-A. Romero-Pérez and O. Miguel-Escrig
Fig. 12. Polar plot of the transfer functions of Example 2. Magenta circle: estimation of point 𝐶 ′
1: 𝐶

′
1.

Fig. 13. Relay amplitude (𝜇) during the auto-tuning procedure for systems with transfer functions in Eq. (14).

open loop transfer function for systems 𝐺1 to 𝐺4. As it can be seen, in all cases 𝐺𝑜𝑙 does not intercept the negative inverse of the
describing function. Furthermore, the tuning parameter 𝜙𝑐 guarantees enough robustness margins to avoid such interceptions even
if reasonable modeling errors or variation in the systems parameters take place. Finally, from this Figure it is worth noting that
in all cases |𝐶 ′

1| > |𝐶 ′
1|. Therefore, the error in the estimation of 𝐶 ′

1 does not degrade the robustness to limit cycles, as it has been
pointed out in Remark 6.

6. Conclusion

In this paper, an auto-tuning methodology for tuning PI controllers for a SSOD control loop is presented. The identification
approach is based on the information extracted from limit cycles induced by a relay. In the first step, the system is placed in a safe
13
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Fig. 14. Oscillation amplitude expressed as number of crossed levels (𝑛𝐴) during the auto-tuning procedure for systems with transfer functions in Eq. (14).

Fig. 15. Time delay (𝑡𝑟) during the auto-tuning procedure for systems with transfer functions in Eq. (14).

operation region, where the oscillations are controlled. Then, a delay is introduced to obtain the characteristics of a given oscillation,
which are used by the tuning method.

With regard to the tuning method, its objective is to establish an user-defined phase margin to the critical point 𝐶1. This is
achieved using the information obtained from the identification phase, not needing to obtain a parametric model for tuning the
controller. This tuning rule has been compared with other classical tuning rules showing its applicability for SSOD based control
loops. Some examples are included showcasing the deployment of the auto-tuning method to processes representing some of the
most common dynamics in industry. The simulations show the effectiveness of the proposed procedure.
14
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Fig. 16. Sampled error (𝑒) during the auto-tuning procedure and control phase for systems with transfer functions in Eq. (14).

Fig. 17. Polar plot of the transfer functions of systems 𝐺1 to 𝐺4. Blue line: 𝐺𝑖. Red line: 𝐺𝑜𝑙 . Magenta circles: estimation of point 𝐶 ′
1: 𝐶 ′

1. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
15
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It should be remarked that the proposed auto-tune algorithm can be used in general control applications under the following
ssumptions: (1) The sampling frequency is sufficiently high to capture the system’s dynamics (Describing Function theory is
pplicable) which implies the effects of losing occasional packets being not critical. (2) The plant dynamic is characterized by
ime lags and delays large enough to neglect the delay introduced by the communication network, or the communication delay
ust be known if its value is on the same order of magnitude as the plant dynamics. (3) The plant dynamics do not include a pure

ntegrator or unstable poles, those cases fall outside the current study and constitute a possible future work.
This paper has focused on PI controllers, whose use is predominant in many industrial applications due to their simplicity,

eliability and ease of tuning. As an example of the prevalence of the PI respect to other kind of controllers, in [35] is reported that
ore than 95% of control loops in the power industry in China use PI controllers. This widespread application of the PI algorithm

einforce the relevance of the results presented in this paper. Besides, the extension of the proposed algorithm to the PID case must be
ddressed in future researches, since the inclusion of the derivative term can definitively improve the response in some applications.
ne of the main issues to obtain a similar auto-tuning method for SSOD based PID is the lack of validity of the describing function
pproach this case, as has been demonstrated in [18].

Finally, it is worth mentioning that the tuning and auto-tuning of SSOD based discrete controllers, that is controllers with periodic
xecution, not the continuous case as considered in this paper, is an open issue that must be addressed in future works. In this sense,
he existence of limit cycles in this kind of control systems has been studied in [31], however, the design of controllers has not been
ackled yet.
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ppendix A. Tuning rule parameters calculation

Consider that the integral gain 𝐾𝑖𝑢 and the frequency 𝜔𝑖𝑢 that fulfill:

𝐺(𝑗𝜔𝑖𝑢)
𝐾𝑖𝑢
𝑗𝜔𝑖𝑢

= −𝜋
4
− 𝑗 𝜋

4
= 𝜋

4

√

2 −135◦ (15)

are known.
Replacing the integrator by a PI controller and assuming that the same frequency point is to be moved 𝜙𝑐 degrees counter-

lockwise, that is establishing a phase margin of 𝜙𝑐 degrees to the point 𝐶1:

𝐺(𝑗𝜔𝑖𝑢)
(

𝐾𝑝 +
𝐾𝑖
𝑗𝜔𝑖𝑢

)

= 𝜋
4

√

2 −135◦ + 𝜙𝑐 (16)

Isolating 𝐺(𝑗𝜔𝑖𝑢) from Eq. (15) and replacing it in Eq. (16):
𝑗𝜔𝑖𝑢
𝐾𝑖𝑢

𝜋
4

√

2 −135◦
(

𝐾𝑝 +
𝐾𝑖
𝑗𝜔𝑖𝑢

)

= 𝜋
4

√

2 −135◦ + 𝜙𝑐

equating:

𝐾𝑝𝑗𝜔𝑖𝑢 +𝐾𝑖 = 𝐾𝑖𝑢 𝜙𝑐 = 𝐾𝑖𝑢(cos𝜙𝑐 + 𝑗 sin𝜙𝑐 )

solving 𝐾𝑝 and 𝐾𝑖 by equalizing to the imaginary and real part respectively:

𝐾𝑝 =
𝐾𝑖𝑢
𝜔𝑖𝑢

sin𝜙𝑐

𝐾𝑖 = 𝐾𝑖𝑢 cos𝜙𝑐

ppendix B. Relay amplitude calculation

Assume that the experiment using a relay with amplitude 𝜇0 produce oscillation of amplitude 𝐴0, whose value after the SSOD
sampler is 𝐴0 = 𝑛𝐴0

𝛿, 𝑛𝐴0
=
⌊

𝐴0
𝛿

⌋

. Then, the oscillation amplitude can be expressed as 𝐴0 = 𝑛𝐴0
𝛿+ 𝜖0𝛿, 𝜖0 ∈ ]0, 1[. The relative error

between 𝐴0 and 𝐴0 is:

𝑒𝐴0
=

𝐴0 − 𝐴0
𝐴0

100% =
𝜖0

𝑛𝐴0
+ 𝜖0

100% (17)

and for a given value of 𝑛𝐴0
, the maximum value of 𝑒𝐴0

is obtained for 𝜖0 = 1:

𝑒𝐴0
= 1 100% (18)
16

𝑛𝐴0
+ 1
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𝜖
i
e

i
B

Taking into account 𝐴0 and 𝜇0, the magnitude of the negative inverse of the relay describing function can be expressed as,

𝑀0 =
𝜋𝐴0
4𝜇0

=
𝜋(𝑛𝐴0

𝛿 + 𝜖0𝛿)
4𝜇0

(19)

Furthermore, for any pair (𝜇,𝐴) of relay amplitude and its corresponding oscillation amplitude, where 𝐴 = 𝑛𝐴𝛿 + 𝜖𝛿, 𝑛𝐴 =
⌊

𝐴
𝛿

⌋

, 𝜖 ∈
]0, 1[, 𝑀0 can be also written as,

𝑀0 =
𝜋𝐴
4𝜇

=
𝜋(𝑛𝐴𝛿 + 𝜖𝛿)

4𝜇
(20)

Solving the previous equation for 𝜇:

𝜇 =
𝜋(𝑛𝐴𝛿 + 𝜖𝛿)

4𝑀0
(21)

Substituting Eq. (19) in (21) result in,

𝜇 = 𝜇0
𝑛𝐴 + 𝜖
𝑛𝐴0

+ 𝜖0
(22)

The previous equation can be used to calculate the relay parameter 𝜇 required to obtain oscillations of a desired amplitude
𝐴̄𝑑 = 𝑛𝐴𝑑

𝛿 from the value of 𝑛𝐴0
obtained in previous oscillations using a relay with amplitude 𝜇0. Even though the actual value of

0 and 𝜖 are unknown, they are in interval ]0, 1[. Therefore, in order to keep the amplitude of the oscillation as low as possible, it
s assumed those values of 𝜖0 and 𝜖 for which the lowest value of 𝜇 is obtained, namely 𝜖0 = 1 and 𝜖 = 0, resulting in the following
quation for calculating 𝜇:

𝜇 = 𝜇0
𝑛𝐴𝑑

𝑛𝐴0
+ 1

(23)

Appendix C. Convergence of the procedure to identify the point 𝑪′
𝟏

The goal of the procedure described on the steps 3 and 4 of the auto-tune algorithm proposed in Section 4 is to identify the point
n the frequency response of 𝐺(𝑗𝜔)𝐼(𝑗𝜔) with phase 𝜙𝑑 = −3𝜋∕4, that is 𝜙𝐺(𝜔𝑑 ) = −3𝜋∕4, where 𝜙𝐺(𝜔) is the phase of 𝐺(𝑗𝜔)𝐼(𝑗𝜔).
ecause 𝜙𝐺(𝜔) is an unknown function, an iterative procedure is used to obtain points of 𝜙𝐺(𝜔) by introducing a time delay 𝑡𝑟 whose

value changes during the procedure. In each 𝑘 iteration the value of 𝑡𝑟(𝑘) is calculated as follows:

𝑡𝑟(𝑘) =
𝜙𝑑 + 𝜋
𝜔(𝑘 − 1)

(24)

The previous equation provides an approximate value of 𝑡𝑟 to introduce the phase lag needed to induce oscillation in the point
𝜙𝐺(𝜔𝑑 ) = 𝜙𝑑 . This results from considering that the oscillation frequency obtained in the previous iteration, 𝜔(𝑛 − 1), is an
approximate value of 𝑤𝑑 . The time delay 𝑡𝑟(𝑘) is introduced to the system and a new relay feedback experiment is carried out,
whose oscillatory response provides the value of 𝜔(𝑘) and 𝜙𝐺(𝜔(𝑘)) = 𝜔(𝑘)𝑡𝑟(𝑘) that are solution of the following equation:

𝜙𝐺(𝜔(𝑘)) + 𝜋 − 𝑡𝑟(𝑘)𝜔(𝑘) = 0 (25)

Once 𝑤(𝑘) is measured from the system response, it is used to calculate a new value of 𝑡𝑟 to start the next iteration. The iterations
continue until the desired point 𝜙𝐺(𝜔𝑑 ) = 𝜙𝑑 is identified. Both Eqs. (24) and (25) are written according to Remark 4.

To analyze the convergence of this algorithm, the dynamic of the estimation error will be studied. To facilitate this study, the
unknown function 𝜙𝐺(𝜔) is linearized around 𝜔(𝑘 − 1) according to the following expression:

𝜙𝐺(𝜔(𝑘)) = 𝜙𝐺(𝜔(𝑘 − 1)) +
𝑑𝜙𝐺(𝜔)
𝑑𝜔

|

|

|

|𝜔(𝑘−1)
(𝜔(𝑘) − 𝜔(𝑘 − 1)) (26)

Eq. (24) is rewritten as follows:

𝜙𝑑 + 𝜋 − 𝑡𝑟(𝑘)𝜔(𝑘 − 1) = 0 (27)

Substituting Eq. (26) in (25) and subtracting it from (27):

𝜙𝑑 − 𝜙𝐺(𝜔(𝑘 − 1)) =
𝑑𝜙𝐺(𝜔)
𝑑𝜔

|

|

|

|𝜔(𝑘−1)
(𝜔(𝑘) − 𝜔(𝑘 − 1)) − 𝑡𝑟(𝑘)(𝜔(𝑘) − 𝜔(𝑘 − 1)) = 0 (28)

Now, substituting Eq. (24) in (28) and defining 𝑒𝜙(𝑘 − 1) = 𝜙𝑑 − 𝜙𝐺(𝜔(𝑘 − 1)) and 𝛥𝜔(𝑘) = 𝜔(𝑘) − 𝜔(𝑘 − 1):

𝑒𝜙(𝑘 − 1) = −
[

𝜙𝑑 + 𝜋
𝜔(𝑘 − 1)

−
𝑑𝜙𝐺(𝜔)
𝑑𝜔

|

|

|

|𝜔(𝑘−1)

]

𝛥𝜔(𝑘) (29)

The previous equation can be rewritten as:
17

𝛥𝜔(𝑘) = −𝐾𝜙𝑒𝜙(𝑘 − 1) (30)
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c
a

R

where

𝐾𝜙 = 1
[

𝜙𝑑+𝜋
𝜔(𝑘−1) −

𝑑𝜙𝐺 (𝜔)
𝑑𝜔

|

|

|𝜔(𝑘−1)

] (31)

Subtracting 𝜙𝑑 in both sides of Eq. (26) and substituting the expression of 𝛥𝜔(𝑘) given by Eq. (30):

𝜙𝐺(𝜔(𝑘)) − 𝜙𝑑 = 𝜙𝐺(𝜔(𝑘 − 1)) − 𝜙𝑑 +
𝑑𝜙𝐺(𝜔)
𝑑𝜔

|

|

|

|𝜔(𝑘−1)
(−𝐾𝜙𝑒𝜙(𝑘 − 1)) (32)

𝑒𝜙(𝑘) = 𝑒𝜙(𝑘 − 1) −
𝑑𝜙𝐺(𝜔)
𝑑𝜔

|

|

|

|𝜔(𝑘−1)
(−𝐾𝜙𝑒𝜙(𝑘 − 1)) (33)

𝑒𝜙(𝑘) = 𝑒𝜙(𝑘 − 1)
[

1 +
𝑑𝜙𝐺(𝜔)
𝑑𝜔

|

|

|

|𝜔(𝑘−1)
𝐾𝜙

]

(34)

From the previous equation, the condition for the asymptotic convergence of the algorithm to 𝑒𝜙 = 0 is:

0 <
[

1 +
𝑑𝜙𝐺(𝜔)
𝑑𝜔

|

|

|

|𝜔(𝑘−1)
𝐾𝜙

]

< 1 (35)

That is,

− 1 <
𝑑𝜙𝐺(𝜔)
𝑑𝜔

|

|

|

|𝜔(𝑘−1)
𝐾𝜙 < 0 (36)

Substituting Eq. (31) in the inequality (36):

− 1 <
𝑑𝜙𝐺(𝜔)
𝑑𝜔

|

|

|

|𝜔(𝑘−1)

1
[

𝜙𝑑+𝜋
𝜔(𝑘−1) −

𝑑𝜙𝐺 (𝜔)
𝑑𝜔

|

|

|𝜔(𝑘−1)

] < 0 (37)

For most of the actual systems the phase response increase with the decrement of 𝜔 in the range starting from the phase crossover
frequency, so 𝑑𝜙𝐺 (𝜔)

𝑑𝜔
|

|

|𝜔(𝑘−1)
< 0. Furthermore, since |𝜙𝑑 | < 𝜋, then 𝜙𝑑 + 𝜋 > 0 and 𝜙𝑑+𝜋

𝜔(𝑘−1) > 0. Therefore, the denominator of the
entral term in the expression (37) is positive and consequently can be operated without reversing the inequality. Taking this into
ccount, the condition

𝑑𝜙𝐺(𝜔)
𝑑𝜔

|

|

|

|𝜔(𝑘−1)

1
[

𝜙𝑑+𝜋
𝜔(𝑘−1) −

𝑑𝜙𝐺 (𝜔)
𝑑𝜔

|

|

|𝜔(𝑘−1)

] < 0 (38)

can be reduced to
𝑑𝜙𝐺(𝜔)
𝑑𝜔

|

|

|

|𝜔(𝑘−1)
< 0 (39)

and condition

−1 <
𝑑𝜙𝐺(𝜔)
𝑑𝜔

|

|

|

|𝜔(𝑘−1)

1
[

𝜙𝑑+𝜋
𝜔(𝑘−1) −

𝑑𝜙𝐺 (𝜔)
𝑑𝜔

|

|

|𝜔(𝑘−1)

] (40)

can be reduced to

𝜙𝑑 + 𝜋 > 0 (41)

As aforementioned, both conditions (39) and (41) are fulfilled. Hence, the procedure to identify the point 𝐶 ′
1 convergence

asymptotically to 𝑒𝜙 = 0.

eferences

[1] Jan Lunze, Event-based control: Introduction and survey, in: M. Miskowicz (Ed.), Event-Based Control and Signal Processing, CRC Press, Boca Raton, 2015,
pp. 3–20.

[2] Laura-Marie Feeney, Martin Nilsson, Investigating the energy consumption of a wireless network interface in an ad hoc networking environment,
in: Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Society (Cat. No. 01CH37213), Vol. 3, 2001, pp. 1548–1557.

[3] J. Sánchez, M. Guarnes, S. Dormido, A. Visioli, Comparative study of event-based control strategies: An experimental approach on a simple tank, in: 2009
European Control Conference, ECC, 2009, pp. 1973–1978.

[4] Marek Miskowicz, Send-on-delta concept: An event-based data reporting strategy, Sensors 6 (1) (2006) 49–63.
[5] Sebastián Dormido, José Sánchez, Ernesto Kofman, Muestreo, control y comunicación basados en eventos, Rev. Iberoam. Autom. Inform. Ind. RIAI 5 (1)

(2008) 5–26.
[6] Joerns Ploennigs, Volodymyr Vasyutynskyy, Klaus Kabitzsch, Comparative study of energy-efficient sampling approaches for wireless control networks,

IEEE Trans. Ind. Inform. 6 (3) (2010) 416–424.
[7] Manuel Beschi, Sebastián Dormido, José Sánchez, Antonio Visioli, Characterization of symmetric send-on-delta PI controllers, J. Process Control 22 (10)

(2012) 1930–1945.
[8] Manuel Beschi, Sebastián Dormido, José Sánchez Moreno, Antonio Visioli, Luis José Yebra, Event-based PI plus feedforward control strategies for a

distributed solar collector field, IEEE Trans. Control Syst. Technol. 22 (2014) 1615–1622.
18

http://refhub.elsevier.com/S0016-0032(24)00392-2/sb1
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb1
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb1
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb2
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb2
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb2
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb2
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb2
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb3
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb3
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb3
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb4
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb5
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb5
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb5
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb6
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb6
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb6
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb7
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb7
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb7
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb8
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb8
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb8


Journal of the Franklin Institute 361 (2024) 106971J.-A. Romero-Pérez and O. Miguel-Escrig
[9] Andrzej Pawlowski, Manuel Beschi, José L. Guzmán, Antonio Visioli, Manuel Berenguel, Sebastián Dormido, Application of SSOD-PI and PI-SSOD event-based
controllers to greenhouse climatic control, ISA Trans. 65 (2016) 525–536.

[10] Julio-Ariel Romero-Pérez, Roberto Sanchis-Llopis, Elena Arrebola, Experimental study of event based PID controllers with different sampling strategies.
Application to brushless DC motor networked control system, in: 2015 XXV International Conference on Information, Communication and Automation
Technologies, ICAT, 2015, pp. 1–6.

[11] Julio-Ariel Romero-Pérez, Roberto Sanchis-Llopis, A new method for tuning PI controllers with symmetric send-on-delta sampling strategy, ISA Trans. 64
(2016) 161–173.

[12] Oscar Miguel-Escrig, Julio-Ariel Romero-Pérez, Implementation and experimental evaluation of ssod sampling strategy for ebc, in: 2021 26th IEEE
International Conference on Emerging Technologies and Factory Automation, ETFA, 2021, pp. 1–8.

[13] Oscar Miguel-Escrig Roberto Sanchis, Julio-Ariel Romero-Pérez, Experimental tuning of pi controllers with symmetric send-on-delta sampling from the step
response, Internat. J. Control (2023) 1–10.

[14] Le Ye, Zhixuan Wang, Ying Liu, Peiyu Chen, Heyi Li, Hao Zhang, Meng Wu, Wei He, Linxiao Shen, Yihan Zhang, Zhichao Tan, Yangyuan Wang, Ru
Huang, The challenges and emerging technologies for low-power artificial intelligence iot systems, IEEE Trans. Circuits Syst. I. Regul. Pap. 68 (12) (2021)
4821–4834, Cited by: 25.

[15] Yan Aiyun, Li Jingjiao, Jin Shuowei, Li Zhenni, A level crossing adc with variable symtem hysteresis, in: 2019 Chinese Control and Decision Conference,
CCDC, 2019, pp. 1038–1042.

[16] Shuo-Wei Jin, Jing-Jiao Li, Zhen-Ni Li, A hysteresis comparator for level-crossing adc, in: 2017 29th Chinese Control and Decision Conference, CCDC,
2017, pp. 7753–7757.

[17] Manuel Beschi, Sebastián Dormido, José Sánchez, Antonio Visioli, Tuning of symmetric send-on-delta proportional-integral controllers, IET Control Theory
Appl. 8 (11) (2014) 248–259.

[18] Oscar Miguel-Escrig, Julio-Ariel Romero-Pérez, Roberto Sanchis-Llopis, Tuning PID controllers with symmetric send-on-delta sampling strategy, J. Franklin
Inst. 357 (2) (2020) 832–862.

[19] Oscar Miguel-Escrig, Julio-Ariel Romero-Pérez, Tuning procedure for event-based PI controllers under regular quantization with hysteresis, J. Franklin Inst.
(2021).

[20] José Sánchez, María Guinaldo, Sebastián Dormido, Antonio Visioli, Validity of continuous tuning rules in event-based PI controllers using symmetric
send-on-delta sampling: An experimental approach, Comput. Chem. Eng. (2020) 106878.

[21] Nikolai Mitrofanovich Krylov, Nikolai Nikolaevich Bogoliubov, Introduction to Non-Linear Mechanics, Princeton University Press, 1949.
[22] Yakov Z. Tsypkin, Relay Control Systems, Cambridge University Press, 1984.
[23] José Sánchez, María Guinaldo, Antonio Visioli, Sebastián Dormido, Enhanced event-based identification procedure for process control, Ind. Eng. Chem.

Res. 57 (21) (2018) 7218–7231.
[24] José Sánchez, María Guinaldo, Antonio Visioli, Sebastián Dormido, Identification and tuning methods for PI control systems based on symmetric

send-on-delta sampling, Int. J. Control Autom. Syst. 17 (11) (2019) 2784–2795.
[25] José Sánchez, María Guinaldo, Antonio Visioli, Sebastián Dormido, Identification of process transfer function parameters in event-based PI control loops,

ISA Trans. 75 (2018) 157–171.
[26] John G. Ziegler, Nathaniel B. Nichols, Optimum settings for automatic controllers, Trans. ASME 64 (11) (1942).
[27] Karl J. Åström, Tore Hägglund, Revisiting the Ziegler–Nichols step response method for PID control, J. Process Control 14 (6) (2004) 635–650.
[28] Tore Hägglund, The one-third rule for PI controller tuning, Comput. Chem. Eng. 127 (2019) 25–30.
[29] Sigurd Skogestad, Simple analytic rules for model reduction and PID controller tuning, J. Process Control 13 (4) (2003) 291–309.
[30] Julio-Ariel Romero-Pérez, Roberto Sanchis-Llopis, Ignacio Peñarrocha-Alós, A simple rule for tuning event-based PID controllers with symmetric

send-on-delta sampling strategy, in: Proceedings of the 2014 IEEE Emerging Technology and Factory Automation, ETFA, 2014, pp. 1–8.
[31] Oscar Miguel-Escrig, Julio-Ariel Romero-Pérez, Event-based discrete PI controllers robustness analysis through sampled describing function technique,

Internat. J. Control (2021) 1–15.
[32] Julio-Ariel Romero-Pérez, Roberto Sanchis-Llopis, Analysis of a simple rule for tuning SSOD based PIDs, in: 2016 Second International Conference on

Event-Based Control, Communication, and Signal Processing, EBCCSP, IEEE, 2016, pp. 1–8.
[33] Michael A. Johnson, Hohammad H. Moradi (Eds.), Chapter automatic PID controller tunning-the nonparametric approach, in: PID Control. New Identification

and Design Methods, Springer, 2005, pp. 147–182.
[34] Julio Ariel Romero, Roberto Sanchis, Pedro Balaguer, Pi and pid auto-tuning procedure based on simplified single parameter optimization, J. Process

Control 21 (6) (2011) 840–851.
[35] Li Sun, Donghai Li, Kwang Y. Lee, Optimal disturbance rejection for PI controller with constraints on relative delay margin, ISA Trans. 63 (2016) 103–111.
19

http://refhub.elsevier.com/S0016-0032(24)00392-2/sb9
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb9
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb9
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb10
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb10
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb10
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb10
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb10
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb11
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb11
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb11
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb12
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb12
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb12
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb13
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb13
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb13
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb14
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb14
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb14
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb14
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb14
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb15
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb15
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb15
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb16
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb16
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb16
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb17
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb17
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb17
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb18
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb18
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb18
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb19
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb19
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb19
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb20
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb20
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb20
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb21
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb22
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb23
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb23
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb23
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb24
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb24
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb24
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb25
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb25
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb25
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb26
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb27
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb28
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb29
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb30
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb30
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb30
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb31
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb31
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb31
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb32
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb32
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb32
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb33
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb33
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb33
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb34
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb34
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb34
http://refhub.elsevier.com/S0016-0032(24)00392-2/sb35

	Auto-tuning method for PI controllers under Symmetric-Send-on-Delta sampling strategy
	Introduction
	Loop characteristics
	Tuning method
	Identification of the critical oscillation point parameters Kiu and ωiu
	Simulation study
	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Tuning rule parameters calculation
	Appendix B. Relay amplitude calculation
	Appendix C. Convergence of the procedure to identify the point C'1
	References


