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Mercedes Valcárcel a, Salvador Roselló a,* 
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A B S T R A C T   

The effectiveness of e-nose systems as high-throughput tools for volatile profiling in watermelon was investigated 
focusing on discerning subtle changes induced by the use of different rootstocks. Partial Least Square Discrim-
inant Analysis (PLS-DA) models, both GC-MS and e-nose data, demonstrated moderate performance in classifi-
cation due to nuanced differences among groups (the same F1 hybrid was used as scion). However, PLS-DA 
biplots revealed a clear correlation between GC-MS and e-nose data. This methodology enabled the e-nose system 
to identify the effects of specific root-scion combinations compared to non-grafted controls and detect combi-
nations with more variable volatile profiles. Remarkably, the e-nose system identified samples with anomalous 
volatile profiles, mirroring the capabilities of GC-MS data. Additionally, PLS models were developed to provide 
reasonably accurate predictions of key compound contents like geranylacetone, (Z)-6-nonen-1-ol, or (Z)-6- 
nonenal, crucial for watermelon flavor and taste perception. Overall, this study highlights the potential of e-nose 
systems in discerning nuanced variations in watermelon volatile profiles affecting aroma. Incorporating volatile 
profile evaluation capabilities using such systems will significantly optimize quality control processes and plant 
breeding programs.   

1. Introduction 

Watermelon is a highly appreciated fruit. In 2020, 101.9 million t 
were produced worldwide, reaching a consumption of 29.36 g per capita 
and day, which is exceptionally high in Asia, topping 39.07 g per capita 
and day (https://www.fao.org/faostat). Apart from being refreshing, 
watermelon is also appreciated for its appealing flavour. This flavour is 
influenced by the accumulation of soluble solids (taste perception) and 
volatile organic compounds (VOCs) contributing to the aroma. Among 
these compounds, a major emphasis has been placed on the study of 
sugar accumulation conditioning sweetness perception. Organic acids 
have been less studied, though they can tinge sweetness perception or 
even create new flavours (Gao, Zhao, Lu, He, & Liu, 2018). 

Regarding aroma, around 80 VOCs have been described in water-
melon, with C6 and C9 aldehydes and alcohols being the most abundant. 

Other compounds, such as esters, ketones, lactones, furans, and apoc-
arotenoids are also present (Beaulieu & Lea, 2006; Lewinsohn et al., 
2005; Pino, Marbot, & Aguero, 2003; Yajima, Sakakibara, Ide, Yanai, & 
Hayashi, 1985). 

The large number of compounds involved in the taste of water-
melons, especially VOCs, presents a challenge in evaluation sensory 
quality This complexity is particularly pronounced when evaluating 
numerous samples with different profiles, as those used in breeding 
programs and quality control processes such scenarios, assessment by 
sensory panels or by precise analytical methodologies, such as GC-MS 
(Alejandro Fredes et al., 2016; Beaulieu & Lea, 2006; Verzera, Dima, 
Tripodi, & Ziino, 2011) proves impractical as they have not been 
designed for high-throughput evaluation. 

Alternatively, the volatile profile of fruits can be analyzed following 
an indirect approach using electronic nose (e-nose) devices. Electronic 
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noses utilize arrays of electronic sensors, mostly metal oxide sensors 
(MOS), which change their electrical resistance based on the type and 
concentration of the stimulating volatile compounds. After chemometric 
analyses qualitative and semi-quantitative evaluations can be performed 
by comparing response patterns with reference samples previously 
evaluated (Gardner & Bartlett, 1999). Such systems offer several ad-
vantages: greater objectivity, the ability to evaluate a large number of 
samples, higher discrimination sensitivity, and the potential to build 
scalable long-term maps for assessing and comparing volatile profiles of 
numerous samples over extended periods. However, drift issues caused 
by environmental variations in temperature or humidity (Gardner and 
Persaud, 2001) or sensor characteristics (Holmberg & Artursson, 2003) 
also hinder their application. Nonetheless, recent progress in drift 
correction strategies opens possibilities to overcome these limitations 
(Valcárcel et al., 2021). 

Although in crops such as tomatoes, the use of e-nose systems has 
been extensively analyzed (Hernández, Wang, Hu, & Pereira, 2008; 
Sinesio et al., 2000; Valcárcel et al., 2021), in the case of cucurbits, a 
lower effort has been placed, usually analyzing evident differences. For 
example, e-nose systems have been used in melon for differentiating the 
ripening stage (Benady, Simon, Charles, & Miles, 1995), climacteric 
ripening (Chaparro-Torres, Bueso, & Fernández-Trujillo, 2016) or the 
effects of crop management (Wang et al., 2023); in Cucurbita, for the 
differentiation of specific aromatic tinges (Junxing et al., 2022) and 
differentiating species (C.-L. Zhou, Mi, Hu, & Zhu, 2017); and in cu-
cumber for analyzing the effect of transgenic lines (Zawirska-Wojtasiak, 
Gośliński, Szwacka, Gajc-Wolska, & Mildner-Szkudlarz, 2009) and 
postharvest evolution (Feng, Zhang, Bhandari, & Guo, 2018). To our 
knowledge, in watermelon e-nose has only been applied to the differ-
entiation of two cultivars at different ripening stages (Bianchi, Provenzi, 
& Rizzolo, 2020). 

In this context, the objective of this study was to validate the po-
tential use of an electronic nose for rapid phenotypic evaluation of 
volatile profiles in watermelon fruits, which could be very useful in 
scenarios where a high number of samples must be evaluated as different 
genotype selection in breeding programs or quality control tasks. The 
electronic fingerprints of these samples would be used not to classify 
them into groups but to develop similarity maps of volatile profiles, 
allowing for the sample comparison with elite references for selection or 
control purposes. As a hard case study to analyze e-nose phenotyping 
capabilities for selection compared with GC-MS evaluation, both sys-
tems were used to evaluate the modulation of VOCs profile from one 
watermelon commercial hybrid when grafted on a set of commercial and 
experimental rootstocks. This set of scion-rootstocks combinations was 
selected considering the differences in the volatile profile estimated 
using GC-MS that had previously been reported (Fredes et al., 2017). 

2. Materials and methods 

2.1. Experimental design and growing conditions 

The commercial watermelon cultivar Oneida F1 (Rijk Zwaan, 
Almería, Spain) was used as scion with four rootstocks combinations. 
The rootstocks used included the accession BGV0005167 Citrullus 
lanatus var. citroides (also known as Citrullus amarus), GC, with high 
nematode resistance (Gisbert et al., 2017); an accession of Cucurbita 
pepo (GPepo), and two interspecific hybrids of Cucurbita maxima x 
Cucurbita moschata (GMM1 and GMM2). GMM1 is an experimental line 
derived from the cross between C. maxima VAV 1860 (Large Warted 
Hubbard, Australia) and C. moschata PI 550689 (Canada Crookneck 
Squash). GMM2 is the commercial rootstock F1 Cobalt (Rijk Zwaan, 
Almería, Spain). The first two accessions were obtained from the 
Germplasm Bank of the Institute for the Conservation and Improvement 
of Valencian Agrodiversity (COMAV, Valencia, Spain). Non-grafted 
(NG) and self-grafted plants of Oneida F1 were used as controls. 

A completely randomized block design was employed. Samples were 

collected in triplicate for each scion-rootstock combination, with each 
replicate consisting of six plants. Grafting was performed using the 
approach grafting method, and one month later, all the plants were 
transplanted to an experimental field at Rijk Zwaan’s facility in Pic-
assent, Valencia, Spain. The planting scheme used was 2.0 m × 1.0 m, 
and irrigation and fertilization were managed according to standard 
cultural practices for the crop in that region. 

2.2. Sampling 

Fruits were sampled from all the plants in each replicate when 
characteristic external signs of maturity were observed. A 5 cm portion 
from the equatorial section of each fruit was obtained. For each plant 
material, samples from fruits of the same replicate were processed 
together to obtain a biological mean for that replicate. Before sample 
homogenization, the pericarp, approximately 2 mm of adjacent flesh, 
and the seeds were removed. Homogenization was performed using a 
blender (Krups KB720, Groupe Seb Iberica, Barcelona, Spain), and the 
samples were kept frozen at − 80 ◦C until analysis. 

2.3. Reagents and volatiles extraction 

The reference standards for each of the studied volatile compounds 
(purity grade 90–99.55%) were obtained from Supelco (Sigma-Aldrich 
and Fluka, Barcelona, Spain). These standard solutions were prepared, 
handled, and stored as described in Fredes et al. (2016). 

For the quantification of volatiles by GC-MS, solvents used for 
desorption and dilution of analytes retained in Supelclean™ ENVI- 
Carb™ 120–400 mesh cartridges (6 mL SPE tubes) were all of GC-grade 
quality. 

A volatile standard mixture (Table 1) was used for drift correction 
and inter-sequence standardization following the strategy proposed by 

Table 1 
Composition (ng mL− 1) of the synthetic standard used for drift correction.  

Volatile Concentration Volatile Concentration 

(Z)-3-Nonen-1-ol 56.08 Propyl butyrate 2.75 
1-Hexanol 49.44 Phenol 2.69 
(E,Z)-2,6-Nonadienal 47.30 (E,E)-2,4- 

Heptadienal 
2.61 

Hexanal 31.38 Eucalyptol 2.08 
(Z)-3-hexen-1-ol 24.94 Butyl acetate 1.95 
Methyl-2-methyl 

butyrate 
24.06 Eugenol 1.71 

Ethy 1-butanoate (37) 19.76 Beta-Ionone 1.71 
Nonanal 17.13 1-Pentanol 1.60 
(Z)-6-nonenal 15.33 2-methylpropyl 

butyrate 
1.48 

1-Octanol 13.97 Amyl acetate 1.45 
Ethyl-2-methyl 

butyrate 
12.64 6-methyl-5-Hepten- 

2-one 
1.37 

(Z)-6-Nonen-1-ol 11.85 Heptanal 1.36 
1-octen-3-ol 9.89 (E,Z)-2,6-Nonadien- 

1-ol 
1.33 

Octyl acetate 5.83 (E,E)-2,4-Decadienal 1.33 
1-Nonanol 5.37 methyl hexanoate 1.32 
(E)-2-Heptenal 5.00 Beta-ciclocytral 1.32 
3-methylbutyl acetate 4.97 Ethyl hexanoate 1.29 
(E)-2-Nonenal 4.89 Butyl isobutyrate 1.16 
Octanal 3.70 Decanal 0.92 
2-methylbutylacetate 3.56 Phenethyl acetate 0.92 
Benzaldehyde 3.46 (E)-2-Octenal 0.75 
Phenylacetaldehyde 3.43 Butyl butyrate 0.74 
1-Decanol 3.23 (E,E)-2,4- 

Nonadienal 
0.67 

Benzyl Alcohol 3.23 (E)-2-hexenal 0.64 
Hexyl acetate 3.04 ethyl heptanoate 0.60 
2-Methyl propyl acetate 2.77 Benzyl acetate 0.29 
Geranylacetone 2.76 (Z)-3-Hexen-1-ol, 

acetate 
0.27  
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Valcárcel et al. (2021). This volatile standard mixture was developed 
based on the average concentrations of a group of samples previously 
analyzed by GC-MS Fredes et al. (2016) and adjusted to the sensitivity 
levels of the electronic nose. 

2.4. GC-MS volatile analysis 

The determination of volatile compounds was performed as 
described by Fredes et al. (2016). In this case, 61 compounds were 
analyzed using purge and trap extraction with 500 mg Carbowax car-
tridges, which were preconditioned with 5 mL of diethyl ether and 5 mL 
of n-hexane. For the extraction, 30 g of sample were placed in a 150 mL 
flask, and the system was sealed with a ground glass stopper equipped 
with a nitrogen gas inlet and an outlet connected to the volatile trap. 
During extraction, the samples were stirred at 300 rpm and heated to a 
temperature of 40 ◦C, with a nitrogen gas flow rate of 1.6 L min− 1. After 
49 min of extraction, the retained compounds were eluted with 5 mL of a 
diethyl ether:hexane mixture (1:1) and 5 mL of diethyl ether. Subse-
quently, the extract was concentrated under a nitrogen gas flow in a 
water bath at 35 ◦C to a volume of 0.5 mL. 

The analysis of volatile compounds was performed using a gas 
chromatograph (Varian CP-3800) coupled to a mass spectrometer (ion 
trap, Saturn 4000, Varian). A 1 μL sample was injected in splitless mode 
(injector temperature 220 ◦C). Separation was achieved using a capillary 
column (Supelco, Bellefonte, PA) of dimensions 30 m × 0.25 mm, 
Supelcowax 10 (0.25 μm internal diameter). Helium was used as the 
carrier gas at a flow rate of 1 mL min-1. The following temperature 
gradient was applied: 40 ◦C for 5 min, a ramp of 4 ◦C min-1 to 160 ◦C, 
and finally a ramp of 30 ◦C min-1 to 250 ◦C, which was held for 1 min, 
resulting in a total analysis time of 39 min. Full-scan spectra (m/z 
50–200 Da) were acquired using electron impact ionization (70 eV) in 
positive mode with an external ionization configuration. The GC-MS 
interface temperature was set at 275 ◦C, the ion trap temperature at 
190 ◦C, and the manifold temperature at 60 ◦C. Compound identification 
was performed by comparing the mass spectra, retention times of peaks, 
and retention indices calculated according to the formula used by Kovats 
(1958) based on a mixture of n-alkanes (C7–C30) under the same 
analysis conditions. External calibration curves in solvent were used for 
the quantification of all studied compounds. 

2.5. E-nose volatile evaluation 

For e-nose phenotyping, a commercial system Fox 4000 (Alpha M.O. 
S., Toulouse, France) was used, which consists of 18 sensors based on 
metal oxide semiconductors (MOS) arranged in three chambers con-
nected in series. The system also includes an automated injection system 
(CombiPAL HS100, CTC Analytics, Zwingen, Switzerland) and computer 
software (AlphaSoft v9) for control and data acquisition. The analysis 
was performed as described by Valcárcel et al. (2021) with minor 
modifications (10 min of vial incubation for 10 min at 45 ◦C with 500 
rpm of agitation). Each sample was analyzed in duplicate, with se-
quences of 16 vials (6 samples per sequence) and four synthetic stan-
dards placed randomly for subsequent drift correction. 

The response of the sensors was measured as the variation in elec-
trical resistance due to the reaction of volatile compounds in the sample 
on the sensor’s active surface. Two types of parameters were obtained 
from the graphical representation of each sensor’s response to volatile 
stimuli: the normalized maximum intensity of each sensor (INmáx) 
calculated as (Ri-Rmax)/Ri (where Ri is the electrical resistance of the 
sensors when detecting clean air and Rmax is the electrical resistance 
during compound detection) and the slope (K) calculated using the 
formula (Lin & Zhang, 2016): K =

tmáx − t0
INmáx 

, (where tmax is the time of 
maximum signal intensity, INmáx, and to is the delay time in signal 
start). This slope is also related to the process of volatile absorption on 
the surface of each sensor (García-González & Aparicio, 2002). 

Drift correction and inter-sequence standardization were performed 
following the procedure described by Valcárcel et al. (2021). 
Inter-sequence standardization was calculated using a standardization 
coefficient obtained from the difference of signals of the same reference 
standard (Table 1) measured in two different sequences. 

2.6. Data analysis 

Graphical MANOVA Biplot representations were carried out to study 
the scion-rootstock effect considering both the volatiles’ contents 
analyzed via GC-MS and the e-nose parameters measured. Bonferroni 
circles were used to represent the confidence intervals (α = 0.05), and 
their projection on each variable enable the identification of significant 
differences between groups. Multibiplot free software was used to 
perform the Biplot analysis (Vicente-Villardon, 2015). 

Discriminant analysis based on partial least squares regression (PLS- 
DA) was chosen due to the orthogonality of the calculated latent 
discriminant variables. This helps to avoid collinearity issues that may 
arise when using other types of analyses, such as linear discriminant 
analysis (LDA), because of the nature of the original variables (groups of 
volatile compounds sharing chemical nature and biosynthetic pathways) 
and the similarity of sensor groups in terms of material composition 
(Hubert & Branden, 2003). 

To develop the models effectively, the raw data were pre-processed 
using autoscaling to prevent scale differences in certain variables from 
biasing the modelling process. The obtained dimensionality reduction 
and classification models were validated using the Venetian blinds cross- 
validation method. The goal was to minimize the root mean squared 
error of cross-validation (RMSECV) and identify the optimal number of 
latent variables, avoiding overfitting issues (Brereton & Lloyd, 2014). 
The criterion followed was to stop including latent variables when the 
reduction in RMSECV was less than 2%, always aiming to use the fewest 
possible number of latent variables. Since the presence of outliers can 
heavily influence these models, they were eliminated if they exceeded 
the confidence thresholds of Hotelling’s T2 statistics and Q residuals 
(Jackson & Mudholkar, 1979). %RMSECV was calculated as the ratio 
between RMSECV and the maximum value of the variable and expressed 
as a percentage. 

The quality of classification will be determined based on the accu-
racy percentage for each class, relying on specificity (the number of 
samples predicted outside the class divided by the number of samples 
that should be outside the class) and sensitivity (the number of samples 
predicted within the class divided by the number of samples in the 
class). Sensitivity and specificity are obtained for each class, both for the 
calibration (self-prediction) results and cross-validation. The percentage 
of correct predictions for each class is determined as a weighted average 
of their specificity and sensitivity values (Wise et al., 2006). 

Predictive regression models for volatile compounds’ content using 
electronic signal parameters have been developed using the partial least 
squares regression (PLS) technique to better relate electronic sensors 
parameters with VOCs quantified. The pre-processing criteria, model 
validation, selection of the number of latent variables, and elimination 
of anomalous data have been similar to those used in PLS-DA analyses. 
To refine the initial models, a hierarchical methodology of variable se-
lection (interval PLS variable selection, iPLS) was employed to reduce 
the number of explaining variables used in the models and improve their 
goodness of fit. This includes both the incremental option (sequential 
inclusion of variables, forward selection) and the detrimental option 
(sequential exclusion of variables, reverse selection). The final models 
for each compound were selected considering the RMSECV value (Wise 
et al., 2006). 

All the described PLS related calculations have been performed using 
the PLS Toolbox version 8.2.1 (Eigenvector Research Inc, Wenatchee, 
WA, USA) within the MATLAB environment (version R2021a, 8.3.0.532, 
MathWorks, Inc., Natick, MA, USA). 

To better visualize the importance of the electronic sensor 
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parameters in each VOC model, an expression heatmap was calculated 
using the loadings for each e-nose sensor obtained in the PLS model 
developed to predict volatile accumulation. Euclidean distance and 
UPGMA were selected for clustering sensor loadings. The software 
heatmapper (http://www.heatmapper.ca) was used for this purpose. 

3. Results and discussion 

3.1. CG-MS volatile profile 

Of the 61 analyzed volatiles, 30 had contents above the quantifica-
tion limit. Major components included alcohols and aldehydes, with a 
lower accumulation of other classes, such as apocarotenoids derived 
from carotenoid degradation (Supplementary Fig. 1). This profile of 
VOC accumulation was similar to that described by other authors in 
watermelon (Beaulieu & Lea, 2006; Lewinsohn et al., 2005; Liu et al., 
2012; Petropoulos et al., 2014). 

The specific effect of grafting was analyzed with a MANOVA biplot in 
order to gain a general view of the complex profile of watermelon vol-
atiles. Grafting per se did not alter the volatile profile, as fruits from non- 
grafted and self-grafted plants exhibited a similar profile (left side of 
Fig. 1). Nonetheless, using different rootstocks affected the volatile 
profile to a greater or lesser degree. In general, the effect of most of these 
rootstocks on the volatile profile was coherent with those previously 
described in Fredes et al. (2017). 

Citroides rootstock (GC) outstood for providing a similar profile to 
the self-grafted control. On the other hand, Cucurbita rootstocks (GMM1, 
GMM2 and Gpepo) tended to increase C9 aldehydes contents but to a 
different degree, being most notable in the experimental line GMM1. At 
the same time, GMM2 offered a profile more similar to the self-grafted 
control (Fig. 1). Petropoulos et al. (2014) also reported this effect 
using Cucurbita rootstocks. 

Cucurbita rootstocks also tended to increase some alcohols, among 

them (Z)-6-nonen-1-ol. An increase of (Z)-6-nonen-1-ol levels had 
already been described by Fredes et al. (2016), but this time it could be 
checked that this effect also applied when watermelons are grown on 
Cucurbita pepo. This compound is especially important as it confers 
pumpkin-like odors (Leffingwell & Associates, 2023). In fact, it is 
considered detrimental to fruit quality and frequently associated with 
overripe watermelons (Saftner, Luo, McEvoy, Abbott, & Vinyard, 2007). 

Tripodi, Condurso, Cincotta, Merlino, and Verzera (2020) also found 
that different hybrid genotypes of C. maxima x C moschata affected the 
volatile profile of mini watermelons differently, and it is possible to 
identify materials with a lower impact. In that case, the use of Lagenaria 
siceraria rootstock had a major impact on the volatile profile with 
increased levels of (Z)-6-nonenal and lower amounts of hexanal, (E,Z)-2, 
6-nonadienal and (E,Z)-2,4-nonadienal. Interestingly, the Cucurbita 
hybrid Shintosa and the Lagenaria rootstock resulted in higher levels of 
pumpkin-like flavors. Nonetheless, it should be considered that Guler, 
Candir, Yetisir, Karaca, and Solmaz (2014) showed that a high variation 
exists in the impact of different rootstocks on the volatile profile. 

3.2. E-nose volatile profile evaluation 

Independently of the specific effect of rootstock on the volatile pro-
file, it was clear that differences in the volatile profile were detected 
among the studied rootstocks. Thus, the sample set represented an ideal 
opportunity to test the ability of an e-nose system to discriminate be-
tween treatments. A MANOVA biplot integrating two types of sensor 
responses showed that, in general, normalized maximum intensity and 
sensor response slope of each sensor had a negative correlation, basi-
cally confirming that samples could be separated attending any of the 
two groups of sensor responses. Most variables contributed to the sep-
aration of non-grafted and self-grafted controls and the use of citron 
rootstock from Cucurbita rootstocks, while the variables related to the 
sensors T40/1, T30/1, and LY2/LG tended to separate the different 

Fig. 1. MANOVA biplot of the accumulation of volatiles in watermelon fruits (Citrullus lanatus F1 Oneida) grown ungrafted (NG), self-grafted (SG) and grafted on: 
experimental rootstock of Cucurbita (C. maxima x C. moschata) F1 hybrid (GMM1), Cucurbita (C. maxima x C. moschata) Cobalt commercial F1 hybrid (GMM2), 
Cucurbita (C. pepo) rootstock (GPepo) and citroides (Citrullus lanatus var. citroides) experimental rootstock (GC). Circles represent Bonferroni confidence intervals. 
The significance of differences among treatments is inferred when the projections of confidence intervals on each vector do not overlap. Variance (%) explained by 
each latent variable indicated in parenthesis in each axis. 
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treatments within each of these two groups (Fig. 2). In essence, the 
MANOVA biplot with e-nose data was coherent with the analysis per-
formed with chromatographic data. Accordingly, little differences were 
found between the sensor profile of the non-grafted and self-grafted 
controls. The use of rootstocks citroides (GC) and GMM2 minimized 

the influence of grafting (groups close to NG group), while GMM1 and 
Gpepo had a major impact on the volatile profile. 

In order to check the performance in sample classification, a 
discriminant classification analysis based on partial least squares- 
discriminant analysis (PLS-DA) was conducted (Table 2). In our case, 

Fig. 2. MANOVA biplot of the sensor responses (INm: normalized maximum intensity; K: slope of sensor response) of the e-nose system analyzing watermelon 
volatile profiles of Citrullus lanatus F1 Oneida grown ungrafted (NG), self-grafted (SG) and grafted on: experimental pattern of Cucurbita (C. maxima x C. moschata) F1 
hybrid (GMM1), Cucurbita (C. maxima x C. moschata) Cobalt commercial F1 hybrid (GMM2), Cucurbita pepo rootstock (GPepo) and citroides (Citrullus lanatus var. 
citroides) experimental rootstock (GC). Circles represent Bonferroni confidence intervals. The significance of differences among treatments is inferred when the 
projections of confidence intervals on each vector do not overlap. Variance (%) explained by each latent variable indicated in parenthesis in each axis. 

Table 2 
Performance of PLS-DA classification models in calibration and cross-validation of samples analyzed by gas chromatography and e-Nose. NG: Non-grafted control 
Citrullus lanatus F1 Oneida, SG: self-grafted control (SG), GMM1 grafted on: experimental pattern of Cucurbita (C. maxima x C. moschata) F1 hybrid, GMM2 Cucurbita 
(C. maxima x C. moschata) commercial F1 hybrid Cobalt (GMM2), Gpepo: C. pepo rootstock, GC: citroides (Citrullus lanatus var. citroides) experimental rootstock.    

GMM1 GMM2 GPepo GC SG NG 

Gas chromatography data Sensitivity       
Calibration 1.00 1.00 0.67 1.00 1.00 1.00 
Cross-validation 0.67 0.00 0.33 0.67 0.67 0.33 
Specificity       
Calibration 0.87 0.33 0.87 0.53 0.60 0.87 
Cross-validation 0.87 0.60 0.87 0.60 0.60 0.73 
Accuracy       
Calibration 0.89 0.22 0.56 0.72 0.5 0.89 
Cross-validation 0.83 0.28 0.61 0.78 0.67 0.78 
Precision       
Calibration 0.6 0.13 0.22 0.25 0.2 0.6 
Cross-validation 0.5 0.08 0.25 0.33 0.33 0.4 

E-nose data Sensitivity       
Calibration 1.00 0.67 0.67 1.00 1.00 1.00 
Cross-validation 0.33 0.00 0.67 0.67 0.67 0.33 
Specificity       
Calibration 0.87 0.73 0.73 0.47 0.80 0.73 
Cross-validation 0.80 0.80 0.73 0.47 0.73 0.80 
Accuracy       
Calibration 0.89 0.71 0.5 0.72 0.56 0.78 
Cross-validation 0.72 0.75 0.61 0.83 0.61 0.72 
Precision       
Calibration 0.6 0.33 0 0.33 0.3 0.43 
Cross-validation 0.25 0.4 0.17 0.5 0.33 0.33  
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the 30 original variables (quantified volatiles) were reduced to two 
underlying discriminant variables that explained 55.8% of the vari-
ability in volatile content. 

The system’s performance for classification was moderate, regardless 
of the type of data used. Using gas chromatography data, the sensitivity 
obtained during the calibration of the model was perfect except for 
GMM2 (Table 2). The specificity was also good for all the treatments but 
for GMM2 and GC. Accordingly, good accuracy levels were obtained 
except for these rootstocks. In the case of e-nose data, sensitivity reached 
1.0 except for GMM2 and Gpepo, while specificity was rather good 
except for GC. Accuracy reached reasonable values for GMM1, GMM2, 
GC and NG, being lower in the rest of the conditions. On the other hand, 
the precision of the model was low for most of the scion-rootstock 
combinations. When the model was cross-validated, the performance 
was, in general, similar to the one obtained during the calibration of the 
model, with isolated drops in specific cases. 

One of the factors that justify the moderate performance obtained in 
classification is the high variability observed within each scion- 
rootstock combination for both gas chromatography and e-nose data 
even after PLS-DA (Fig. 3A and 3B, respectively). Regarding chro-
matographic data, non-grafted and self-grafted samples plotted in the 
PLS-DA biplot together and close to GMM2 and GC. GMM1 and Gpepo 
plotted at a certain distance, but one of the samples of GMM1 and GMM2 
potted close to the Gpepo group, while one of the samples of Gpepo 
plotted between the GMM1 and the GC and GMM2 groups. A similar 
clustering was obtained with the e-nose data. The same samples of 
GMM1 and GMM2 plotted close to the group of the Gpepo, while one of 
the samples of Gpepo plotted between the GMM1 and the GMM2 and GC 
group. The same samples of GMM1 and GMM2 that plotted close to the 
Gpepo group with chromatographic data also plotted in the same way 
with the e-nose data. In essence, the PLS-DA plot representation of e- 
nose data proves to be a clear and effective method for identifying subtle 
changes in volatile profiles, similar to chromatographic data. 

This variability cannot be attributed to genotypic effects, as a com-
mercial F1 hybrid cultivar (Oneida) thus assuring genetic uniformity. 
Therefore, it may be attributable to micro-environmental effects or 
differences in each plant’s development stage. In the case of water-
melon, it is rather difficult to establish the best date for harvesting. In the 
case of grafted plants, it is even more challenging, as maturity can be 

delayed by grating (Fallik & Ziv, 2020). This does not seem to be the 
case, as previously published results confirmed that no differences were 
observed in fruit firmness with these rootstocks, a trait usually linked to 
the maturity stage. Nonetheless, finding differences in maturity between 
plants within the same treatments is quite frequent. This effect is evident 
in different works dealing with watermelon. For example, in the prin-
cipal component analysis performed by Kyriacou, Soteriou, Rouphael, 
Siomos, and Gerasopoulos (2016) with fruits from self-grafted plants 
and plants grafted on a Cucurbita hybrid harvested at different dates, a 
high dispersion can be found between samples of the same condition. 

Indeed, this is probably one of the main reasons for the variability of 
the volatile profile within each scion-rootstock combination. This effect 
did not apply equally to all the conditions analyzed, as non-grafted, self- 
grafted, and grafting on GC resulted in a much higher uniformity of the 
volatile profile (Fig. 3A and B). 

Although it has been reported that extraction procedures can intro-
duce variability in the volatile profiles of the same samples (Rambla 
et al., 2015), it does not seem to be the case, as a similar variability is 
observed in data from GC-MS and e-nose, while the extraction procedure 
in the second case is straightforward and reproducible. 

It seems clear that, although grafting exerts an evident influence on 
the volatile profile, the high variability found among plants hinders the 
identification of apparent differences between different scion-rootstock 
combinations. The moderate results obtained in classification methods 
using e-nose data are not a result of a low discriminant power of the 
system, as similar results were obtained with chromatographic data. 
This situation differs from classification attempts made in melon, where 
chromatographic data clearly separated melon genotypes while the e- 
nose system provided lower discrimination power (Chaparro-Torres 
et al., 2016). 

To our knowledge, few groups have applied e-nose to evaluate the 
volatile profile of watermelon. Bianchi et al. (2020) characterized the 
volatile profile of two watermelon cultivars harvested at different 
developmental stages (unripe, ripe and overripe). Both cultivars had a 
completely different volatile profile, with ‘Rugby’ presenting fivefold 
higher amounts of volatiles than ‘Cuoredolce’®. Additionally, ‘Ruby’ 
had a high level of apocarotenoids. With such differences, the e-nose 
system could distinguish both cultivars using PCA analysis, but it was 
unable to differentiate samples of ‘Cuoredolce’® at different 

Fig. 3. PLS-DA plots of the volatile profile obtained with gas chromatography data (A) and e-nose data (B). Scion: Citrullus lanatus F1 Oneida. NG: Non-grafted 
control, SG: self-grafted control (SG), GMM1 grafted on: experimental pattern of Cucurbita (C. maxima x C. moschata) F1 hybrid, GMM2 Cucurbita (C. maxima x 
C. moschata) commercial F1 hybrid Cobalt (GMM2), Gpepo: C. pepo rootstock, GC: citroides (Citrullus lanatus var. citroides) experimental rootstock. 

A. Fredes et al.                                                                                                                                                                                                                                  



LW
T203(2024)116337

7

Table 3 
Coefficients (ai) of the PLS prediction modelsa for volatile contents (ng g− 1) obtained with e-nose sensors response showing a moderate to high performance.  

E-nose sensor (Z)-6- 
Nonen-1- 
ol 

Geranylacetone (Z)-6- 
Nonenal 

1- 
Hexanol 

Heptanal (Z)-3- 
Nonen-1-ol 

Ethyl 
butanoate 

(Z)-3- 
hexen-1-ol 

1- 
Nonanol 

Hexanal 6-methyl-5- 
Hepten-2- 
one 

(E,E)-2,4- 
Heptadienal 

Decanal (E,Z)-2,6- 
Nonadienal 

Bo 632.9 − 18.2 − 3069.6 − 227.4 − 75.1 − 13854.0 − 493.5 710.5 − 1654.7 − 1297.4 − 1583.8 − 90.8 36.6 − 2515.6 
INm1(LY2/LG) 275.3 − 3701.9 2644.5 − 293.1 − 46.2 − 12341.7 − 459.5   − 299.5 − 602.8   3692.3 
INm2(LY2/G)   170.8  4.2        − 0.4  
INm3(LY2/AA) − 34.0  141.0            
INm4(LY2/GH)     2.7   − 68.1     0.2  
INm5(LY2/gCTl) − 63.5      − 5.9     − 2.3 0.9  
INm6(LY2/gCT) − 258.1    8.9  − 158.2   180.1   − 0.9 8071.7 
INm7(T30/1) − 21.7              
INm8(P10/1) − 36.6            − 8.8  
INm9(P10/2)       − 151.1        
INm10(P40/1) − 36.6              
INm11(T70/2) 38.6           21.3   
INm12(PA/2) − 27.0            − 5.2  
INm13(P30/1) − 199.5              
INm14(P40/2) − 34.5  1550.7          − 9.5  
INm15(P30/2) − 196.8  1701.3    − 232.3   − 151.0   − 20.2  
INm16(T40/2) 55.1  2139.3     289.8     − 15.9  
INm17(T40/1) − 2718.9 8011.0        3535.0 5444.6 98.7   
INm18(TA/2)  − 6589.4   142.5 23988.5 1125.9 − 1268.7   − 1742.0    
K1(LY2/LG)  141759.0   2764.2 − 39656.2 14091.7        
K2(LY2/G)           − 1250.9   11577.4 
K3(LY2/AA) − 36.2 − 696.0 1324.4       154.4 − 1305.2    
K4(LY2/GH)   2383.3        1963.0 34.5   
K5(LY2/gCTl) − 180.8  − 1036.4  − 48.7     232.1 1097.0  − 42.2  
K6(LY2/gCT) − 2205.7 10300.1 9922.7  123.2  − 1827.9     310.7 − 7.1  
K7(T30/1)   − 6947.7       − 1973.9   − 288.5  
K8(P10/1) − 3080.4  − 7633.6     − 699.1  − 75.0   − 260.7  
K9(P10/2)  − 14813.3 − 15146.7      14761.6 − 2539.0 − 8919.4 − 493.8   
K10(P40/1) − 4381.4      − 1670.7 − 2125.1  124.5 − 567.1 209.1  − 7892.9 
K11(T70/2) 2323.7    − 231.2   1879.5  − 1089.9   139.0  
K12(PA/2)  − 12780.2 9229.8  − 68.3   1444.8       
K13(P30/1) 4010.6      − 2469.8 − 1320.3 7745.2   − 206.2   
K14(P40/2) 4204.5 38221.1 18198.3  150.4   4315.6      68299.8 
K15(P30/2)   − 4885.9 2817.4  37590.1     2284.4 256.7 − 279.3  
K16(T40/2) 4094.7  7185.5    − 2419.8      690.2 79394.7 
K17(T40/1) 24678.1      16338.7   − 4310.9   − 106.6 − 135214.0 
K18(TA/2) 13607.3 13667.7  6774.2  89618.5 1157.8  19029.0   790.0 900.9 70159.3 

R2 Cal b 0.980 0.974 0.953 0.926 0.899 0.886 0.881 0.875 0.875 0.872 0.856 0.855 0.844 0.796 
R2 CV c 0.937 0.827 0.769 0.864 0.721 0.787 0.625 0.735 0.852 0.786 0.724 0.412 0.665 0.646 
RMSECV d 16.79 24.49 28.17 9.62 0.37 264.00 8.94 7.01 40.40 14.32 11.28 0.80 0.74 79.80 
%RMSECVe 13% 17% 16% 11% 10% 14% 16% 15% 14% 12% 20% 22% 14% 21%  

a Prediction equations: Ycompound = B0 + a1INmáx1 + a2INmáx2 + … + a18INmáx18 + b1K1 + b2K2 + … +b18K18, Where INmaxi is the maximum relative intensity, Ki is the slope for each sensor, a1-a18 coefficients of the 
equation showing the best fit. 

b R2_Cal: regression coefficients of calibration models. 
c R2_CV: regression coefficients of cross-validation models. 
d RMSECV: Root Mean Squared Standard Error for Cross-Validation (ng g− 1). 
e %RMSECV: RMSECV scaled to the maximum value of the compound being considered (%). 
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Table 4 
Coefficients (ai) of the PLS prediction modelsa for volatile contents (ng g− 1) obtained with e-nose sensors response showing a moderate to low performance.  

E-nose sensor (E,Z)-2,6- 
Nonadien- 
1-ol 

(E)-2- 
Octenal 

Beta- 
ciclocytral 

Beta- 
Ionone 

Nonanal 1- 
Octanol 

2- 
phenylethanol 

Octanal Benzyl 
Alcohol 

1- 
Pentanol 

(E,E)-2,4- 
Decadienal 

(E)-2- 
Nonenal 

(E)-2- 
Heptenal 

(E,E)-2,4- 
Nonadienal 

Benzaldehyde Ethyl-2- 
methyl 
butyrate 

Bo 2055.4 − 105.6 − 6.6 283.5 3110.8 − 170.6 9.0 80.9 69.6 − 229.8 28.7 − 168.3 1.3 8.6 20.2 580.1 
INm1(LY2/LG)  − 72.6 − 14.6 − 509.5  − 59.1   − 123.9 − 141.5 − 64.1   − 32.0 − 38.0 − 677.4 
INm2(LY2/G)   0.3        1.4   0.3   
INm3(LY2/AA)   0.3        1.1   0.3   
INm4(LY2/GH)   0.3 148.7       1.1   0.4   
INm5(LY2/gCTl)    200.0 220.0        3.5 0.5   
INm6(LY2/gCT)   1.2          11.5 1.4   
INm7(T30/1)           1.8      
INm8(P10/1)   0.2 − 0.3       1.0   2.4   
INm9(P10/2)   − 1.2     − 69.2   − 8.6   3.4   
INm10(P40/1)   0.5        2.8   4.6   
INm11(T70/2)   0.0 − 0.8       0.0   1.0   
INm12(PA/2)   0.1 − 0.3       0.7   1.5   
INm13(P30/1)  − 11.3 0.1        0.9   2.6   
INm14(P40/2)  − 12.6 − 0.5 − 264.3       − 1.5   0.7   
INm15(P30/2)  − 13.2 − 0.3 − 201.7       0.1   0.8  − 169.6 
INm16(T40/2) 334.3  − 1.7 − 827.3       − 6.3      
INm17(T40/1)  297.1 23.9   271.4 − 1.2   536.9   13.7    
INm18(TA/2) − 3032.7    − 2630.4            
K1(LY2/LG) − 17997.3      − 560.4          
K2(LY2/G)           5.4   0.4   
K3(LY2/AA)           3.0      
K4(LY2/GH)  30.7 3.0 154.6       11.4   9.4   
K5(LY2/gCTl) − 961.8  2.0 879.6       0.2  18.3 2.8   
K6(LY2/gCT)        119.0     57.4    
K7(T30/1)     − 4237.0  − 55.0 − 164.6         
K8(P10/1)              22.3   
K9(P10/2)                 
K10(P40/1) − 3850.1 − 40.8         77.4 − 29051.0     
K11(T70/2) 5523.8 − 50.0         0.0   − 9.3   
K12(PA/2)           40.7 6682.6     
K13(P30/1)   11.3 382.3  318.1  − 154.5         
K14(P40/2)   8.0 488.9       − 20.8 − 22196.6  − 59.1   
K15(P30/2) − 6924.0    − 4529.2   − 175.3   − 9.5     − 183.5 
K16(T40/2) 11207.1 − 105.1         19.2   − 50.8   
K17(T40/1)     − 21858.2            
K18(TA/2)  112.0 32.6 114.9  784.3     103.7 79416.6    119.1 

R2 Cal b 0.725 0.702 0.642 0.527 0.510 0.496 0.448 0.444 0.402 0.382 0.375 0.360 0.294 0.271 0.254 0.225 
R2 CV c 0.422 0.466 0.330 0.335 0.379 0.370 0.247 0.349 0.246 0.161 0.111 0.119 0.065 0.019 0.141 0.010 
RMSECV d 10.18 1.79 0.32 1.18 84.23 4.16 0.44 3.81 2.98 5.20 2.05 170.56 2.19 1.25 1.21 3.24 
%RMSECV e 28% 25% 27% 29% 30% 21% 32% 41% 18% 16% 48% 30% 37% 42% 35% 43%  

a Prediction equations: Ycompound = B0 + a1INmáx1 + a2INmáx2 + … + a18INmáx18 + b1K1 + b2K2 + … +b18K18, Where INmaxi is the maximum relative intensity, Ki is the slope for each sensor, a1-a18 coefficients of the 
equation showing the best fit. 

b R2_Cal: regression coefficients of calibration models. 
c R2_CV: regression coefficients of cross-validation models. 
d RMSECV: Root Mean Squared Standard Error for Cross-Validation (ng g− 1). 
e %RMSECV: RMSECV scaled to the maximum value of the compound being considered (%). 
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developmental stages. In the case of ‘Rugby’, though, it could differen-
tiate unripe simples from ripe and over-ripe, but the last two plotted 
close together. 

The evident correlation between PLS-DA plots obtained with chro-
matographic and e-nose data opens a high value of e-nose as high- 
throughput volatile profile evaluation systems. An example of complex 
task which can be faced with this system is the germplasm evaluation. 
Indeed, one of the challenges in germplasm evaluation is to get an idea 
of the volatile profile with a minimum investment, operational cost and 
time requirements. For example, one of the obvious applications would 
be the development of breeding programs. In such programs, evaluating 
a high number of genotypes in a short time and at reasonable costs is 
necessary. In these cases, sensory analysis with panelists is only feasible 
for selecting a limited number of finalist lines. GC-MS opens the possi-
bility of overcoming the limitations of sensory evaluation in terms of 

cost and time. However, these analytic procedures are not affordable in 
terms of cost and time, with a high number of samples. As an affordable 
alternative, using e-nose systems with simple and rapid extraction pro-
cedures opens new possibilities for aroma evaluation. 

It must be remembered that the lack of evaluation of volatiles in 
breeding programs has resulted in dramatic quality losses in different 
crops. Tomato is one of the most evident case. It has been proved that the 
lack of evaluation of the aroma profile in tomato breeding programs and 
the excessive focus placed on yield led to the loss of alleles related to the 
accumulation of volatiles, which not only offered positive odour notes 
but also potentiated the perception of sweetness (Tieman et al., 2017). 
Consequently, the necessity to evaluate the volatile profile and the 
presence of critical alleles in the development of breeding programs in 
order to develop new flavourful varieties has been stressed (Kaur, 
Abugu, & Tieman, 2023). This problem might be extrapolated to 

Fig. 4. Heatmap of loadings values of PLS models for the prediction of the accumulation of alcohols (V.1), aldehydes (V.2), esters (V.3) and apocarotenoids (V.4) 
using e-nose sensors datasensor (INm: normalized maximum intensity; K: slope of sensor response). Higher absolute values denote a higher weight of the specific 
sensor in the prediction model. V.1-1: (Z)-6-Nonen-1-ol: V.1-2: 1-Hexanol: V.1-3: (Z)-3-Nonen-1-ol: V.1-4: (Z)-3-hexen-1-ol: V.1-5: 1-Nonanol: V.1-6: (E,Z)-2,6- 
Nonadien-1-ol: V.1-7: 1-Octanol: V.1-8: 2-phenylethanol: V.1-9: Benzyl Alcohol: V.1-10: 1-Pentanol: V.4–1: Geranylacetone: V.4–2: 6-methyl-5-Hepten-2-one: V.4–3: 
Beta-ciclocytral: V.4-4: Beta-Ionone: V.2–1: (Z)-6-Nonenal: V.2-2: Heptanal: V.2-3: Hexanal: V.2-4: (E,E)-2,4-Heptadienal: V.2-5: Decanal: V.2-6: (E,Z)-2,6-Non-
adienal: V.2-7: (E)-2-Octenal: V.2-8: Nonanal: V.2-9: Octanal: V.2-10: (E,E)-2,4-Decadienal: V.2-11: (E)-2-Nonenal: V.2-12: (E)-2-Heptenal: V.2-13: (E,E)-2,4-Non-
adienal: V.2-14: Benzaldehyde: V.3–1: Ethyl butanoate: V.3–2: Ethyl-2-methyl butyrate. Sensors: 1: LY2/LG; 2: LY2/G; 3: LY2/AA; 4: LY2/GH; 5: 2/gCTl; 6: Y2/gCT; 
7: T30/1; 8: P10/1; 9: P10/2; 10: P40/1; 11: T70/2; 12: PA/2; 13: P30/1; 14: P40/2; 15: P30/2; 16: T40/2; 17: T40/1; 18: TA/2. 
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Cucurbits. For example, in the case of melon, the evaluation of intro-
gression lines proved that the lightest alteration of the genetic back-
ground entails a dramatic effect on the accumulation of key volatiles 
(Perpiñá et al., 2021). 

Two-dimensional PLS-DA representation as a measure of similarity 
of the electronic fingerprints of the volatile profile has already been 
proposed to evaluate tomato germplasm (Valcárcel et al., 2021). In the 
case of watermelon, it seems to provide an efficient evaluation system, 
as the evaluation of e-nose data enables the detection of similarities and 
differences of sample groups. In our case, it clearly evaluated the 
possible effects of grafting and scion-rootstock interaction in similar 
materials. Despite using a single hybrid F1 commercial cultivar as scion, 
the system was capable to detect subtle differences, offering the same 
conclusions obtained with GC-MS. The system’s efficiency surpassed our 
expectations, as the PLS-DA representation of e-nose data successfully 
identified anomalous sample profiles within the same scion-rootstock 
combination as detected with GC-MS data. In fact, it was even capable 
of detecting which scion-rootstock combinations presented higher 
within-group variability (e.g. GMM1 vs SG). 

3.3. E-nose prediction models for specific volatile accumulation 

The consistent results obtained with GC-MS and e-nose data opened 
the possibility of predicting specific compound accumulation using e- 
nose fingerprints. For that purpose, partial least squares regressions 
(PLS) followed by hierarchical variable selections (i-PLS) were used to 
develop models for the indirect prediction of compound accumulation. 

The prediction models obtained for (Z)-6-nonen-1-ol, geranyl 
acetone, (Z)-6-nonenal, 1-hexanol, and heptanal were particularly good 
(Table 3), with regression coefficients for linear calibration models 
above 0.89. Even though a low number of samples were used, the cross- 
validated models also showed a good fit, with linear regression co-
efficients above 0.72 and low cross-validated errors (RMSECV). In 
general, RMSEC values for these models ranged between 10% and 17% 
of the maximum content of the compound being considered. That would 
imply that e-nose would be a reliable system for the indirect preliminary 
evaluation of compounds, such as (Z)-6-nonen-1-ol, with a major impact 
on watermelon aroma perception. Even more, expanding the model with 
more samples would probably lead to better model performance. Un-
doubtedly, broadening the scope of evaluation to include a greater di-
versity of scions, rootstocks, environments, and cultivation methods will 
significantly bolster the development of more robust and comprehensive 
models, thereby augmenting their overall generalizability. 

Other compounds such as (Z)-3-nonen-1-ol, ethyl butanoate, (Z)-3- 
hexen-1-ol, 1-nonanol, hexanal, 6-methyl-5-hepten-2-one, (E,E)-2,4- 
heptadienal, decanal, and (E,Z)-2,6-nonadienal showed R2 values 
ranging between 0.70 and 0.88 in calibration and 0.41 to 0.85 in cross- 
validation (Table 4). These models, although less precise than the pre-
vious ones, could be used as exploratory semi-quantitative models for 
these compounds. In the remaining cases, the calibration R2 values were 
below 0.75, and the cross-validation R2 values were below 0.47 
(Table 4). The lower fit of these prediction models may be due to the fact 
that the electronic sensors used are less sensitive to some compounds 
(Song et al., 2010). Therefore, using them for prediction purposes would 
not be prudent because the prediction errors would be too high. In fact, 
%RMSECV values ranged from 21% to 42%. 

In general, the use of slope (k values) for the development of pre-
diction models was more informative than the normalized maximum 
intensity (INm), as the loadings obtained in the development of the 
model presented high absolute values (Fig. 4). In fact, most INm sensor 
loadings cluster together except for LY2/LG, TA/2, Y2/gCT and T40/1. 
Interestingly, as previously stated, the sensors T40/1, and LY2/LG ten-
ded to separate the different treatments within each of these two groups 
in the MANOVA biplot (Fig. 2). 

E-nose systems had been previously used for fast indirect evaluation 
of the accumulation of specific volatiles. It would be the case of specific 

alkaloids such as nicotine in tobacco (Lin & Zhang, 2016), ethanol in 
beers (Voss, Mendes Júnior, Farinelli, & Stevan, 2019) or linalool in 
Osmanthus fragrans (C. Zhou et al., 2022). In our case, the direct eval-
uation of the volatile profile of watermelon would not only offer insights 
into proximity to ideal volatile profiles, but it would also be reasonably 
efficient in the selection for increased levels of apocarotenoids, such as 
geranylacetone, exerting positive aroma and taste influences, or the 
negative selection for detrimental compounds such as (Z)-6-nonen-1-ol, 
offering negative pumpkin tinges (Kyriacou, Leskovar, Colla, & Rou-
phael, 2018), or Z-6-nonenal and E,Z-2,6-nonadienal, associated with 
greenish notes (Beaulieu & Lea, 2006). 

4. Conclusion 

The evaluation of the volatile profile using e-nose systems avoids 
complex volatile extraction procedures and reduces time analysis and 
operational costs compared to GC-MS alternatives. At the same time, 
PLS-DA analysis of e-nose data efficiently identifies subtle volatile pro-
file changes as those induced by the different rootstock combinations 
with the same scion. It not only differentiates treatments in comparison 
with the ungrafted control, but it also addresses the level of variability 
within group and detects specific sample profiles obtained within the 
same rootstock-scion combination. Furthermore, PLS models have been 
developed for the indirect quantification of major volatiles with a known 
impact on the aroma of watermelon, with reasonable efficiency. Indirect 
analysis with e-nose systems will never be as efficient as a sensory panel 
evaluation of GC-MS quantification, but it can be operated as a high- 
throughput system, enabling the evaluation of the volatile profile in 
large scale sample management tasks as needed in breeding programs 
for new cultivars and rootstocks, in the assessment of the effects of 
different crop management procedures and in commercial watermelon 
quality control chains. 
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