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Abstract
We extend the generalized functional additive mixed model to include compositional and functional 
compositional (density) covariates carrying relative information of a whole. Relying on the isometric 
isomorphism of the Bayes Hilbert space of probability densities with a sub-space of the L2, we include 
functional compositions as transformed functional covariates with constrained yet interpretable effect 
function. The extended model allows for the estimation of linear, non-linear, and time-varying effects of 
scalar and functional covariates, as well as (correlated) functional random effects, in addition to the 
compositional effects. We use the model to estimate the effect of the age, sex, and smoking (functional) 
composition of the population on regional Covid-19 incidence data for Spain, while accounting for 
climatological and socio-demographic covariate effects and spatial correlation.
Keywords: compositional data analysis, Covid-19, functional compositions, functional data analysis, functional 
regression, function-on-function regression
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1 Introduction
Understanding the infectious disease dynamics of the Covid-19 (Coronavirus disease 2019) pan
demic and its potential associations with different exogenous environmental, socio-economic, and 
health-related variables has become an important challenge of current interdisciplinary research. 
Although massive data are collected, the interplay of the local numbers of daily Covid-19 cases 
with sets of different (potentially time-varying) risk factors still remains an open and challenging 
topic. In particular, this includes the effects of the composition of the local population (age, sex, 
smoking, etc.) on the spread of the disease, which has not been investigated to the best of our 
knowledge. This paper aims to fill this gap by extending the generalized functional additive mixed 
model (GFAMM) of Scheipl et al. (2016), which allows to model the particular spatio-temporal 
correlation structure of such data, to the case where parts of the covariate set are finite or infinite 
compositions, i.e. multivariate or functional covariates carrying relative information of a whole. 
In particular, in addition to the effects of climatological and socio-economic covariates, we aim to 
estimate the effects of the local male-to-female and smoking habits compositions as well as age dis
tributions on the spread of the disease. The proposed formulation allows to model the local 
Covid-19 dynamics conditional on various types of local exogenous variables, including among 
others the population density (a scalar), the average temperature (a function of time), the smoking 
status (a finite composition of smokers, non-, ex-, and occasional smokers), the age composition (a 
functional composition also known as infinite composition or density) and the regional structure 
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(a grouping factor with spatial correlation). To this end, using areal Covid-19 incidence data col
lected in Spain daily until the vaccination onset, the local incidence counts over time for 52 Spanish 
provinces are modelled as generalized functional responses, as a function of various potential sca
lar, functional, compositional, and functional compositional risk factors, within one unified 
framework taking a functional data analysis (Ramsay & Silverman, 1997) perspective. Our con
tributions are thus twofold and include on the applied side a careful investigation of risk factors on 
the spread of Covid-19 in Spain, and on the methodological side an extension of the flexible 
GFAMM model for generalized functional responses to include new compositional and functional 
compositional covariate effects. Our proposed framework not only allows to estimate the effects 
of different types of covariates but also takes into account the expected spatial and temporal de
pendence structure of the disease curves. In particular, the view as spatially correlated functional 
data allows to naturally model the non-stationarity of the temporal correlation that is to be ex
pected in Covid-19 data collected over several waves. This is in contrast to potential alternative 
spatio-temporal models for such data such as auto-regressive Poisson models (Congdon, 2022), 
for which additionally no compositional, functional, or functional compositional effect terms 
are available to the best of our knowledge.

In functional data analysis, the response curves are considered as realizations of some stochastic 
process with continuous support, such as time. While the process itself could theoretically be ob
served for any point at arbitrary resolutions, the curves are only measured on a discrete grid. A 
suitable class of functional data analysis techniques for the present purpose are functional regres
sion models with functional responses and scalar as well as functional covariates, see Morris 
(2015) and Greven and Scheipl (2017a) for an overview. Regressions for non-Gaussian functional 
responses (e.g. counts) include the generalized function-on-scalar model (Goldsmith et al., 2015) 
and also the GFAMM (Scheipl et al., 2016), which provides a flexible regression framework for 
possibly non-Gaussian functional responses on potentially irregular or sparse grids using basis 
function representations of the fixed and/or random effects of scalar and/or functional covariates. 
We note that a complementary approach for (non-generalized) functional regression models ob
served on equidistant grids is presented in Morris and Carroll (2006) and subsequent work in a 
Bayesian framework, see Morris (2017) and Greven and Scheipl (2017b) for a comparison. 
Besides the above regression context, generalized functional data have also been considered in oth
er contexts such as generalized functional principal component analysis (Gertheiss et al., 2017).

Although different (generalized) functional regression specifications exist, only a very small 
body of the literature discusses extensions of functional regression models to the case where the 
responses or parts of the covariate set are finite or infinite compositions. Predominantly, the litera
ture focused on extensions to density-valued (functional compositional) responses while exten
sions to density-valued covariates appeared only rarely (see Petersen et al., 2021 for a recent 
review of different statistical approaches to density-valued quantities). Sierra et al. (2015) treat 
density-valued explanatory variables and Park and Qian (2012) treat both density-valued ex
planatory variables and responses as Hilbertian random variables in the standard L2 space, which 
does not account for the constrained nature of these variables. The additive regression model of 
Han et al. (2020) first maps density-valued responses to the L2 space in a pre-processing step, while 
Happ et al. (2019) point out instabilities of these pre-transformations. The implicit model formu
lation of Petersen and Müller (2019) in a non-linear space does not allow for straightforward in
terpretation of regression coefficients. Different from the above approaches, Arata (2017), Talská 
et al. (2018), and Maier et al. (2021) applied a Bayes Hilbert space formulation (van den Boogaart 
et al., 2014) to include density-valued responses into a functional regression framework where the 
estimation uses the centred log-ratio (clr) transformation to map the response to a sub-space of the 
L2 with integration-to-zero constraint. Although this approach provides a promising framework 
for density-valued response regression, extensions which (additionally) allow for density-valued 
explanatory variables remain extremely limited. A first linear Bayes Hilbert space regression mod
el for scalar responses and density-valued covariates was proposed by Talská et al. (2021) using a 
constrained spline representation (Machalová et al., 2021) and extended further by Scimone et al. 
(2021), allowing for both density-valued responses and covariates. Both models allow for linear 
effects of the functional composition on the scalar/density response. No existing work covers 
the setting of generalized functional response with flexible additive models including linear, non- 
linear and time-varying effects and where parts of the predictor are finite or infinite compositions. 
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We fill this gap within the flexible GFAMM framework by extending the functional additive mixed 
model predictor by (functional) compositional covariate effects. Additive mixed models have pre
viously been extended for scalar responses to include finite compositional covariates in Verbelen 
et al. (2018). In comparison, our model allows for (a) (generalized) functional responses and (b) 
functional (infinite) compositions as covariates.

In particular, in our framework both finite and infinite compositions are included into a general 
structured predictor through suitable basis function representations that account for the con
strained covariate nature and allow for interpretable additive effect estimates for the generalized 
functional responses. All data and R code to reproduce the proposed model are made publicly 
available in a github repository https://github.com/MatkcE/CoDaGFAMM.

We note that the phrase functional composition was also used by Sun et al. (2020) to refer to 
finite compositional covariates which could additionally vary over time. Different from this paper, 
we follow Hron et al. (2016) to indicate a constrained function that is a composition of infinitely 
many parts (i.e. a density).

The remainder of this paper is structured as follows. Section 2 briefly reviews the history of the 
pandemic in Spain and recent findings on potential risk factors for the spread of the disease that 
inform our selection of covariate effects. An introduction to the GFAMM model is presented in 
Section 3. In particular, extensions of the covariate effects to finite and infinite compositions are 
discussed in Section 3.2. More information on the different data sources we used to compile the 
Spanish Covid-19 incidence data for our analysis, and an application of the proposed model ex
tension to these data are given in Section 4. The paper concludes with a discussion in Section 5.

2 Covid-19 data for Spain
2.1 A small history of the Covid-19 pandemic in Spain
Within 3 months of the official notification of a small regional outbreak in Wuhan, China, in late 
December 2019, Spain was facing one of the highest infection and, in particular, mortality rates 
among the European countries (Soriano & Barreiro, 2020). Within 4 weeks of the first tourist- 
based case on the Island of La Gomera in January and the first official domestic hospitalization 
on 15 February 2020, Spain witnessed a large but spatially strongly heterogeneous increase in 
numbers of Covid-19 infections with a clear concentration in large metropolitan conurbations 
(Henríquez et al., 2020). These marked regional differences and early local peaks in Madrid 
may in part be explained by the regional mobility from and to the Spanish capital (cf. Mazzoli 
et al., 2020). Using data for Catalonia, Coma Redon et al. (2020) provided some evidence that 
early local Covid-19 cases may have been masked by excess of influenza notifications between 4 
February 2020 and 20 March 2020 as polymerase chain reaction (PCR) tests were restricted to 
hospital-admitted patients only and general practitioners were asked to diagnose Covid-19 infec
tions without PCR confirmation. Due to this uncertainty, early cases and deaths in private and 
nursing homes may have been excluded from the official reports for this period. However, previ
ously undetected symptom-based cases and deaths were subsequently added to the official notifi
cation system such that we can plausibly assume that any remaining bias can be neglected in the 
present study (while a sensitivity analysis will later investigate this point).

In response to the rapid increase in mortality, particularly among the elderly (potentially multi- 
morbid) parts of the population, and the transmission dynamics of the disease, the Spanish 
National Government imposed a series of global regulatory interventions to suppress the spread 
of the virus. A first strict lockdown excluding only essential services (e.g. food, health) and 
some economic subsectors was imposed on 14 March. This measure was tightened in subsequent 
actions by placing strict entry refusal at the Spanish borders on 17 March and prohibiting any non- 
essential activities within the period from 30 March to 12 April 2020. In consequence, these 
restrictions yielded a dramatic reduction in overall regional mobility. Ended on 21 June, this lock
down remains the only global action of the Spanish Government against the Covid-19 pandemic. 
Although facing severe increases in numbers of Covid-19 cases in the second half of 2020 and early 
2021, the public health responsibilities were delegated back to the local governments of the au
tonomous communities by 21 June and only local but no further global restrictions were reim
posed. These (mostly soft) local measures, however, show a strong heterogeneity, and 
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information on the exact timing, nature and extend of the different imposed restrictions was not 
available from official sources for our study.

2.2 Recent findings on risk factors for the spread of Covid-19
Apart from a higher risk of Covid-19 infections caused by the increase in immunosenescence for 
the older ages (Crimmins, 2020), a clear association of higher age with the development of severe 
symptomatic Covid-19 infections, hospitalization and fatality rates is stressed in the literature (see, 
e.g. Tiruneh et al., 2021). Besides certain health conditions and comorbidities (Du et al., 2021), 
Wolff et al. (2021) identified smoking as an important co-factor. In particular, active smokers 
or non-active smokers with a clear smoking history face an increased risk for the development 
of symptomatic Covid-19 (Gülsen et al., 2020; Hopkinson et al., 2021). Apart from these findings, 
e.g. Moosa and Khatatbeh (2021) reported a close relation between densely populated regions and 
contact rates between different (potentially infected) individuals, which positively impact the dis
ease transmission and, in turn, the reproduction rate of the disease. This idea is also supported by 
Paez et al. (2021) who reported a clear positive effect of mass transport systems on the incidence. 
These authors also reported a positive association of the disease with wealthier regions, i.e. regions 
with a higher GDP per capita, with a potential explanation via a connection between wealth and 
the regional level of globalization, i.e. international trade and travel.

The effect of climatological and environmental covariates on the spread of the disease is less con
sistent. In line with results on similar pathogens, which suggest that the virus is more stable and 
transferable in conditions of low temperature and low humidity, Paez et al. (2021) found a nega
tive effect of higher values in temperature and humidity on the incidence of the disease, contrasted 
with a positive impact of sunshine. In a systematic review, Mecenas et al. (2020) found a positive 
effect of cold and dry weather conditions on the seasonal viability and transmissibility of 
Covid-19. Takagi et al. (2020) reported an inverse association of temperature, air pressure, and 
ultraviolet light with the prevalence of the disease, while Hossain et al. (2021) draw mixed con
clusions based on both positive and negative effects of the weather characteristics. Shahzad 
et al. (2020) highlighted a clear positive effect of bad air quality on the transmission of 
Covid-19, whereas temperature serves only as a contributory factor, with higher temperatures re
ducing the spread of the disease. Summarizing the findings of 23 articles in a systematic review, 
McClymont and Hu (2021) found a clear association of temperature and Covid-19 and also a sig
nificant association of humidity and Covid-19 which, however, was derived from mixed results. 
Using a non-linear effect specification, Wu et al. (2020) found a negative association of high tem
perature and also high humidity with the daily number of Covid-19 cases and associated deaths.

3 Model specification
We will model the Spanish case counts over time as generalized functional data, including as co
variates those variables that arise as potentially important from the literature discussed in Section 
2. To account for linear, non-linear and time-varying effects as well as spatial correlation, we will 
use the GFAMM (Scheipl et al., 2016) framework, which we thus summarize in Section 3.1. As 
this model does not yet allow for compositional and density covariates, such as available for 
the sex, age, and smoking compositions in the Spanish regions, we extend the functional additive 
predictor to include corresponding interpretable additive effects in Section 3.2.

3.1 The GFAMM
We adopt a general structured additive regression model for generalized functional responses 
Yi(t) ∼ F (μi(t)), where Yi(t) in our setting is the number of Covid-19 cases in province i = 
1, . . . , 52 at time t ∈ T . In our notation, we follow the usual convention of using capital letters 
for random and small for observed quantities. In general, we assume that Yi(t) point-wise follows 
a (here count) distribution F with conditional expectation E[Yi(t) ∣ xit, t] = μi(t) and is recorded 
over a domain T , here covering the 381 days of observations. Building on Wood et al. (2016), 
Wood (2017), and Scheipl et al. (2016), F can be an exponential family distribution, a 
Tweedie, Negative Binomial, Beta, zero-inflated Poisson, or scaled and shifted t-distribution. 
An overdispersed Poisson model can be estimated using a quasi-likelihood (Wood, 2017). 
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Ordered categorical responses are also possible, in which case μi(t) is not the conditional mean of 
Yi(t) but of a latent variable determining the response category (cf. Wood et al., 2016).

To achieve high flexibility of the model, the mean μi(t) is related to a structured additive predict
or ηi(t) through a known link function g,

g(μi(t)) = ηi(t) =
􏽘R

r=1

fr(xrit, t).

Here, r indexes the R structured additive model terms, with each such fr(xrit, t) being a smooth 
function of the argument t of the outcome—also implying smoothness of the response mean 
μi(t)—and of a subset xrit of the complete covariate set xit.

The above formulation allows for linear, non-linear, and time-varying effects of grouping fac
tors, functional and potentially time-varying scalar covariates, as well as functional random ef
fects, where the form of fr(xrit, t) is determined by the covariates in xrit and the chosen effect 
type. For example, for a functional intercept that varies over t, as the baseline rate of Covid-19 
cases in our application, xrit is the empty set and fr(xrit, t) simplifies to β0(t). For a smooth effect 
of a scalar xir that is constant over t, i.e. xrit ≡ xir, fr(xrit, t) becomes fr(xir) (and fr(xir, t) in the time- 
varying case), whereas linear effects of xir that vary over t (as for the effect of coastal provinces) 
correspond to xirβ(t). Linear time-varying effects of a functional covariate xrit ≡ xir with values 
xir(s), s ∈ S, are included as fr(xir, t) = ∫S xir(s)β(s, t) ds, while a concurrent effect for S = T can 
be included as fr(xir(t), t) or fr(xir(t)) as for the climatological variables in our data. For a grouping 
variable xrit = c with M levels, scalar and functional random effects γc and γc(t) are included as zero 
mean Gaussian variables with a potentially general correlation structure, and as Gaussian proc
esses T × {1, . . . M} → R with general covariance function Cov(γc(t), γc′ (t

′)) that is smooth in 
t, t′. This specification also allows to control for the spatial correlation of the different levels of c = 
i (formalized through the precision matrix of a Markov random field (MRF) with known correl
ation based on the planar neighbourhood structure) in the construction of (potentially spatially 
correlated) smooth residual curves for the individual locations. In the case of multiple random ef
fects, a mutual independence assumption is placed between the individual random terms. In our 
application, we can include spatially correlated smooth functions per province and additional un
correlated smooth curves per community to capture heterogeneity due to local Covid-19 meas
ures. See Scheipl et al. (2016, 2015) for a full detailed list of potential covariate specifications. 
We note that in case ηi(t) includes (functional) random effects fr(xir, t) = γc(t) or fr(xir, t) = γc, 
the modelled conditional expectation also conditions on the vector of random effects (functions) 
γ and is taken to be μi(t) = E[Yi(t) ∣ xit, t, γ].

Having n generalized functional observations yi(t) on a grid of Ti points ti = (ti1, . . . , tiTi )
⊤ avail

able, the model can be fitted through a penalized (quasi-)likelihood approach based on the 
(
􏽐n

i=1 Ti)-vectors y = (y1
⊤, . . . , yn

⊤)⊤ and t = (t1
⊤, . . . , tn

⊤)⊤ of the concatenated response curves 
and their arguments, respectively, where yi = (yi1, . . . , yiTi ) with yil = yi(til), l = 1, . . . , Ti. While 
Ti ≡ 381 =: T and equal ti for all i in the present application, we note that the proposed framework 
also allows for differently spaced arguments tij. On the grid, we can simplify notation and write the 
predictor as ηil =

􏽐R
r=1 fr(xritil , til). Each of the R terms fr(xr, t), containing evaluations fr(xritl , til), 

l = 1, . . . , Ti, i = 1, . . . , n in a vector, can then be represented through a tensor product basis func
tion expansion

fr(xr, t) ≈ (Φxr ⊙ Φtr)ϑr = Φrϑr, 

where A ⊙ B = (A ⊗ 1b
⊤) · (1a

⊤ ⊗ B) denotes the row tensor product of the matrices A (h × a) and 
B (h × b), with 1d the d-vector of ones and · the element-wise multiplication, and Φxr and Φtr con
tain the evaluations of the (Kxr, respectively, Ktr) marginal basis functions for the covariate effects 
and over t, respectively, discussed in Subsection 3.1.1 below. The effect shape is determined by the 
unknown vector of coefficients ϑr. To provide sufficient flexibility of the model, the approximation 
uses a large set of basis functions, which is regularized by an anisotropic quadratic penalty term for 
the coefficients in the (quasi-)log-likelihood

pen(ϑr ∣ λtr, λxr) = ϑr
⊤(λxrPxr ⊗ IKtr + λtrIKxr ⊗ Ptr)ϑr .
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Here, λxr and λtr are positive smoothing parameters, Pxr and Ptr are known and fixed positive 
(semi-)definite marginal penality matrices corresponding to the basis matrices Φxr and Φtr, and 
IKxr and IKtr are identity matrices of dimensions Kxr and Ktr, respectively (see Scheipl et al., 
2016, 2015). For given smoothing parameters, the unknown coefficients can then be estimated 
through a penalized (quasi-)maximum likelihood approach, maximizing

ℓp(ϑ, λ, ν ∣ y) = ℓ(ϑ, ν ∣ y) −
1
2

􏽘R

r=1

pen(ϑr ∣ λtr, λxr) 

where λ = (λt1, λx1 . . . , λtR, λxR), ϑ = (ϑ1
⊤, . . . , ϑR

⊤)⊤, and ℓ(ϑ, ν ∣ y) in most cases is the 
log-likelihood based on y implied by the respective chosen response distribution F for Yi(t) or 
else the quasi-log-likelihood as for the overdispersed Poisson (see Scheipl et al., 2016), optionally 
depending on additional nuisance (e.g. dispersion) parameters ν. Smoothing parameters are esti
mated using a (Laplace approximated) marginal (extended quasi-)likelihood (Nelder & 
Pregibon, 1987), which extends the usual marginal likelihood approach that corresponds to re
stricted maximum likelihood in the case of a Gaussian likelihood, and which is known to work 
well for the choice of smoothing parameters (Wood et al., 2016).

3.1.1 Basis function representations for different covariate effects
The marginal basis matrices and corresponding penalty matrices are suitably chosen depending on 
the specified covariate effects. A full description is given in Scheipl et al. (2016, 2015); we here list 
some common choices also used in the model for the Covid-19 data for illustration and complete
ness, restricting to the case of equal grids for ease of presentation. For covariate effects that are con
stant over t, Φtr = 1nT is a vector of length nT containing ones and Ptr = 0, while smooth 
time-varying effects are achieved when choosing Φtr as a matrix of spline evaluations with Ptr a cor
responding penalty matrix (e.g. based on finite differences of B-spline coefficients). (Functional) 
intercepts β0, β0(t) are obtained through Φxr = 1nT and Pxr = 0. For effects xβ and xβ(t) that are lin
ear in x, Φxr changes to Φxr = x ⊗ 1T where x = (x1, . . . , xn)⊤ and Pxr = 0. In case of a non-linear 
effect specification for x, i.e. f (x) and f (x, t), Φxr corresponds to a suitable marginal spline basis 
matrix over x and Pxr is specified accordingly.

For linear effects of a functional covariate x(s), s ∈ S, a tensor product spline representation for 
β(s, t) is used with marginal spline basis functions Φks

, ks = 1, . . . , Kxr over S and Φkt
, kt = 

1, . . . , Ktr over T . This yields

∫S xi(s)β(s, tl) ds ≈ ∫S xi(s)
􏽘Kxr

ks=1

􏽘Ktr

kt=1

Φks
(s)Φkt

(tl)ϑr,ks,kt
ds.

Then Φtr = [Φkt
(tl)] l=1,...,T

kt=1,...,Ktr

⊗ 1n and Φxr = [ ∫S xi(s)Φks
(s) ds] i=1,...,n

ks=1,...Kxr
⊗ 1T with marginal penalty 

matrices corresponding to the chosen marginal spline bases. In practice, the integral is approxi
mated using numerical integration. A concurrent effect f (x(t)) or f (x(t), t) of a functional covariate 
x(s), s ∈ T , is constructed analogous to f (x, t) above.

Finally, functional random intercepts for groups c = 1, . . . , M, c(i) being the group level of ob
servation i (e.g. the community or province), are associated with a marginal basis 
Φxr = [δc(i)m] i=1,...,n

m=1,...,M
⊗ 1T , with δcm the indicator for c = m . The matrix Pxr then is an M × M preci

sion matrix defining the dependence structure between levels of c.

3.2 Compositional predictor
While the GFAMM provides a rich methodological toolbox, compositional and functional com
positional covariates have not yet been included into this framework, as in our context the age-, 
sex- and smoker-compositions of the provinces. We thus extend the predictor ηi(t) by ηcomp

i (t) to 
include effects of both the compositional and functional compositional covariates into the 
GFAMM framework. We note that this extension is similar in spirit to Verbelen et al. (2018), 
who incorporated the effect of a (non-functional) compositional covariate into the additive 
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predictor of generalized additive models for scalar responses. We first discuss existing methods for 
the case of finite compositions as covariates and scalar responses in Section 3.2.1, before introdu
cing the proposed extensions to functional compositional covariates and/or (generalized) func
tional responses in Section 3.2.2.

3.2.1 Finite compositional covariates and scalar responses
Following principles of compositional data analysis (Aitchison, 1986), we formalize vector-valued 
covariates describing D parts of a whole summing to a constant as compositions of D parts living 
on the simplex

SD = x = (x1, . . . , xD)⊤ : xd > 0, d = 1, . . . , D;
􏽘D

d=1

xd = κ

􏼨 􏼩

.

Instances of such variables in our data at hand are the regional sex and smoking status composi
tions with D = 2 and D = 4, respectively. The simplex is provided with a finite 
(D − 1)-dimensional Euclidean vector space structure isometric to the RD−1 (cf. e.g. 
Pawlowsky-Glahn & Egozcue, 2001), when equipped with the perturbation x ⊕ u = 
cls(x1u1, . . . xDuD) and the powering α ⊙ x = cls(xα

1, . . . , xα
D) operations, where x, u ∈ SD, α ∈ 

R and cls(x) = (κx1/
􏽐D

j=1 xj, . . . , κxD/
􏽐D

j=1 xj)⊤ is the closure operator, as well as the inner prod

uct 〈x, u〉A = (2D)−1􏽐
d

􏽐
j log (xd/xj) log (ud/uj). Noting this correspondence, a central idea in 

compositional data analysis is to map compositions isometrically to RD−1, perform well- 
established statistical analysis methods there, and then potentially back-transform the result 
onto SD using inverse operations.

Common transformations include first the centred log-ratio transformation

clr(x) = log
x1

m(x)
, . . . , log

xD

m(x)

􏼔 􏼕

, 

where m(x) is the geometric mean of x. The clr projects the composition onto the clr-plane HD, a 
(D − 1)-dimensional sub-space of RD whose components add to zero. By contrast, the isometric 
log-ratio (ilr) transformation (Egozcue et al., 2003) returns (D − 1) coordinates with respect to 
an orthonormal system on the clr-plane HD, which is equivalent to the logit-function used in lo
gistic regression for D = 2. For D > 2, infinitely many orthonormal basis systems exist. As we use 
the ilr only internally for estimation, the choice does not affect the interpretation and we use pivot 
coordinates (Fišerová & Hron, 2011) yielding D = 1 and D = 3 ilr coordinates for the sex and 
smoking composition in our application, respectively.

Making use of these isometric isomorphisms, linear effects of compositional covariates can be 
modelled as 〈x, b〉A = 〈clr(x), clr(b)〉 = 〈ilr(x), ilr(b)〉 (e.g. Verbelen et al., 2018). With b = ilr−1(β) 
the inverse of the coefficients in RD−1, the compositional effect is

〈b, x〉A =
􏽘D−1

j=1

βjilrj(x). (1) 

Recalling Barceló-Vidal et al. (2011), b represents the simplicial gradient of the predictor with re
spect to the composition x, and can be interpreted as the direction of perturbation of compositions 
in SD which yields the largest effect on the outcome (cf. Verbelen et al., 2018). That is, for x ⊕ b∗

with b∗ = b/‖b‖A, the increase is

〈b, x ⊕ b∗〉A = 〈b, x〉A + ‖b‖A. (2) 

Further, to quantify the effect of a change in the composition on the predictor, say an increase of 
the non-smoking share in the local smoking compositions, Verbelen et al. (2018) suggested to 
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perturb the composition into the direction of each part. For example, a change in the relative ratio 
of the first compositional component of x by some α ≠ 1, while keeping the relative ratios for all 
other components constant, leads to a perturbation x ⊗ cls′ of x by cls′ = cls(α, 1, . . . , 1)⊤ and a 
resulting change on the predictor by 〈b, cls′〉A = log (α)clr1(b), where clr1 is the first component of 
the clr transformation. In particular, for a log-link relation of the expected outcome and the pre
dictor, as used in our application, the effect of a relative ratio change in the first component on the 
response scale simplifies to a change by the factor αclr1(b).

3.2.2 Extensions to functional compositional covariates and functional responses
The above formulation of equation (1) allows us to extend the GFAMM to include compositional 
covariates such as the sex and smoking composition in our application by including the (D − 1) 
ilr-transformed coordinates as scalar covariates with linear effects, such that Φxr = ilr(X) ⊗ 1T 

and Pxr = 0 for X = (xid)i,d and a row-wise application of the ilr-transform. Combination with suit
able Φtr and Ptr as discussed above newly allows such effects also for (generalized) functional re
sponses, with time-constant 〈b, x〉A or time-varying effect 〈b(t), x〉A, respectively.

Treating density functions as infinite (functional) compositions, we extend the previous results 
to such covariates. A typical example of a functional composition is the age density in our appli
cation, which due to integration-to-one and strict positivity constraints cannot be treated within 
the classic functional data setting. As there is no extension of the ilr transformation used by 
Verbelen et al. (2018) to functional compositions, we take a different approach in the functional 
case. The idea is to use an isometric isomorphism between the space of functional compositions 
and a sub-space of the L2 space of functions via a functional clr transformation, and to then treat 
the transformed functional composition as a functional covariate within the GFAMM framework 
using a suitably adapted basis function specification.

A suitable space in this context is the Bayes Hilbert space of densities

B2(T ) = f : T → (0, + ∞), ∫T f (t) dt = 1, ∫T log (f (t)
􏼂 􏼃2 dt < ∞

􏽮 􏽯

(Egozcue et al., 2006; van den Boogaart et al., 2014). It generalizes the Aitchison geometry from 
compositional data and provides a suitable geometric framework for the analysis of density func
tions. We here focus on some basic properties that are relevant in our setting and refer to van den 
Boogaart et al. (2014) for a more formal definition and further mathematical details. Analogous to 
SD, B2(T ) has a vector space structure with perturbation and powering operations. For 
f , h ∈ B2(T ), t ∈ T and α ∈ R, the perturbation ( ⊕ ) and powering ( ⊙ ) operations are defined 
by (f ⊕ h)(t) = f (t)h(t)/ ∫T f (t)h(t) dt and (α ⊙ f )(t) = f (t)α/ ∫T f (t)α dt, respectively. Additionally, 
the inner product 〈·, ·〉B2 on B2(T ) generalizes the Aitchison inner product,

〈f , h〉B2 =
1

2|T |
∫T ∫T log

f (t)
f (s)

log
h(t)
h(s)

ds dt, 

where f , h ∈ B2(T ) and | · | is the Lebesgue measure of the argument. In particular, noting that 
〈f , h〉B2 = 〈clr(f ), clr(h)〉L2 , where clr(f )(t) = log (f (t)) − |T |−1 ∫T log (f (s)) ds, the B2(T ) can be 
shown to be a separable Hilbert space and to be isometrically isomorph to the sub-space L2

0(T ) 
of functions in L2(T ) integrating to zero with the usual L2 metric (van den Boogaart et al., 
2014). While this allows a transformation of densities to the L2(T ), the additional 
integration-to-zero constraint of L2

0(T ) needs to be accounted for and, in general, prohibits a direct 
application of standard functional data analysis techniques to the transformed densities.

For the GFAMM, functional compositions xi(s), s ∈ S, such as age in our case are included into 
the regression with a linear effect in terms of the scalar product in B2, using the equivalence

〈xi, b(., t)〉B2 = 〈clr(xi), clr(b(., t))〉L2 = ∫S ui(s)β(s, t) ds, 
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with ui = clr(xi) and β(., t) = clr(b(., t)) for each t. Note that β is a surface with β(., t) ∈ L2
0(T ) ful

filling an integration-to-zero constraint for each t. Thus, we can estimate the effect similarly to a 
linear function-on-function regression term, with the modification of this additional constraint. 
We achieve this through the specification of a tensor product basis, which places an 
integration-to-zero constraint on the marginal basis for β over s (but not on the marginal basis 
over t) to get terms with integration-to-zero-for-each-t constraints (see Wood, 2017, Chapter 5.6).

This model formulation results in interpretable linear effects of the functional composition. In a 
post estimation step, the functional composition surface b(s, t) with b(., t) ∈ B2(T ) for all t can be 
computed through the inverse clr transformation, b(., t) = clr−1(β(., t)) for each t. Similar to finite 
compositions, b(., t) can then be interpreted for each t as the preferential direction in which to per
turb the functional composition to yield the largest increase in the outcome, from 〈xi, b(., t)〉B2 to 
〈xi, b(., t)〉B2 + ‖b(., t)‖B2 . Alternatively, to suitably extend the second interpretation of compos
itional covariate effects to our functional setting, we derive in Section 2.3 of the online 
supplementary material an interpretation based on the effect of a change in the relative ratio of 
the functional composition on some subinterval A ⊆ S relative to AC = S\A. This corresponds 
to perturbing xi to xi ⊕ cls′ with cls′ = (α1A + 1AC )/(α|A| + |AC|) and 1A the indicator function 
on A, which we show changes the additive predictor at time t by ( + log (α)βA(t)) with 
βA(t) = ∫A β(s, t) ds, and changes the mean response at time t under a log-link by a factor αβA(t).

4 Application to the Spanish Covid-19 data
4.1 Data

4.1.1 Data sources and variables
The data were compiled from different sources, most commonly information provided by the re
gional governments. It originates from a collaborative data project by the geovoluntarios commu
nity (https://www.geovoluntarios.org), Centro de Datos Covid-19 and ESRI Spain and provides 
information on the daily numbers of Covid-19 cases for 52 Spanish provinces, each of which sub
sumes numerous local administrative units. It covers the period from 5 January 2020 to 19 January 
2021 until just before vaccinations became more widespread. Covid-19 cases are defined as prob
able infections without test information or confirmed infections based on positive test results de
rived from (a) PCR, antibody, and antigen detection or Elisa techniques and (b) reported by other 
laboratories—showing a clear majority of results derived from positive PCR tests. In contrast, no
tifications based on antibody tests (with less precise timing information on the time of infection) 
contributed only at rather small and also spatially varying rate. Restricted to the first Spanish 
Covid-19 wave only, the highest regional proportion of antibody based test results relative to 
all cases reported appeared for the provinces of Cuenca (5.06%) and Albacete (2.34%). We 
thus use the complete incidence counts based on all tests. To account for a potential delay between 
the date of the test and the notification date caused by the individual testing procedures, the dates 
were shifted back by the provider using a 3 days lag. Different from data used in this study, official 
periodical data releases on the Covid-19 pandemic through the Spanish National Government 
cover only information at a coarser level of spatial aggregation, i.e. 18 so-called autonomous com
munities, to which the 52 Spanish provinces belong. Note that 2.05 % (resp. 0.02 %) of the 
Spanish population received the first (resp. second) vaccination before 19th January 2021. Due 
to this relatively small proportion of partly vaccinated inhabitants, any potential confounding ef
fects of the vaccination action on the incidence data is assumed to be negligible.

To investigate (potentially time-varying) effects on the spread of the pandemic over space and 
time, we linked these data to climatological, socio-economic and demographic information, re
corded for the provinces and time period under study (see Table 1 in the online supplementary 
material for a detailed description of the variables). Daily climatological information including 
the average daily temperature (in ◦C), humidity (in %), maximal wind speed (in km/hr), sun hours 
(in hr) and precipitation (in mm) were collected for each province from the State Meteorology 
Agency and the Ministry of Agriculture, Fisheries, and Food. The original weather data exhibited 
some missing values (days) across all 52 provinces and days under study, in particular 0.5% for 
average temperature, 0.77% for maximal wind speed, 2.07% for sun hours, 5.34% for precipita
tion, and 0.5% for humidity—most likely caused by transmission or technical problems. Any of 
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these missing values were imputed by linear interpolation using the imputeTS package (Moritz & 
Bartz-Beielstein, 2017) in R. As information on the daily solar exposure was not provided at all for 
Malaga, missing values for sun hours for Malaga were replaced by average values computed from 
the neighbouring provinces, i.e. Cadiz and Granada. For the precipitation variable, the reported 
values show a large number of zeros in the daily amount of precipitation at the province level (ran
ging from 36 days at minimum to 215 days at maximum) as well as skewness with extreme peaks 
of 150 mm. For this reason, we summarized the original information into a binary variable indi
cating the absence or presence of rain per province on a daily basis. In addition to this rain indi
cator, we computed the log transformation of the non-zero precipitations. Next, all weather 
information was shifted using a 5-day lag to account for the time lag between infection and symp
tom onset, as we want to investigate weather effects on the infection probability and assume symp
tom onset to be strongly correlated with the timing of the performed Covid-19 test. While the 
5-day lag is supported by the findings of Linton et al. (2020) who reported an average incubation 
period (defined as the time from the infection to symptom onset) by around 5 days, we tested for 
the effect of different lag specifications in a sensitivity analysis.

Regional socio-demographic information on the number of inhabitants, the gross domestic 
product (GDP) per capita, the proportion of males, and age pyramids (0–100 years) were collected 
from public data provided by the national statistics institute. This source was also used to compute 
the smoking composition of the population (categorized in daily, occasional, ex-, and non- 
smokers) at the provided coarser level of the autonomous communities, which we then assigned 
to all provinces within this community.

4.1.2 Generated variables
In addition to the above data, we generated different variables to control for the regional and geo
graphical characteristics of the individual spatial units. First, to account for a potential impact of 
public mass transportation systems on the transmission and spread of the virus, we generated a 
binary variable indicating whether or not a province offers access to a metro or subway system. 
In addition, we generated a second binary variable indicating whether or not a province offers dir
ect access to the Mediterranean Sea or the Atlantic Ocean. Besides a higher population density in 
the coastal regions compared to the inland provinces (except for the metropolitan regions), the 
coastline is commonly strongly affected by high numbers of incoming tourists during the summer 
and public vacation periods, which might serve as an acceleration factor for the risk of infection. 
Finally, to account for (a) potential temporal variation in the regional notification systems and (b) 
the effect of the global lockdown measures, we generated 6 weekday dummy variables treating 
Sundays as reference and three lockdown dummies. Each of these indicates one of the three suc
cessive global lockdown periods with different measures imposed during the first wave in 2020, 
i.e. (a) 11–24 May, (b) 25 May–7 June, and (c) 8–21 June.

4.2 Data description
The response curves show strong regional heterogeneity, with the highest numbers of cases in the 
provinces of Madrid and Barcelona. The highest peak (y = 6, 750) appeared for Madrid on 18 
September 2020, contrasted with only y = 77 on that date recorded for the province of Lleida. 
To better understand the similarities among the spatial disease patterns, we calculated the regional 
incidence rates per 100,000 inhabitants, and its average version, computed as the mean rate per 
region over all 381 days (see Figure 1). The incidence curves (left panel) reflect a clear positive de
viation for Madrid (green) and also Lleida (blue) from the mean curve (red) for the period from 
June to October 2020—with a temporal delay in the second wave for Madrid compared to 
Lleida. The corresponding regional averages (see right panel) indicate a clear spatial pattern, 
with Palencia and Cuenca showing the highest average incidence rates with 20.5 and 19.66 cases 
per 100,000 inhabitants, respectively. These high average values are contrasted with relatively 
small reported rates for Lugo (6.77). The clustering of small and high average rates suggests a posi
tive spatial autocorrelation structure in the data, which is supported by highly significant results 
for Moran’s I (Moran, 1950) index (restricted to continental provinces). See Figures 1 and 2 in 
the online supplementary material for the spatial distribution over all Spanish provinces and com
munities including the Spanish islands and African enclaves.
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Figure 2 illustrates the patterns of the scalar, functional and (functional) compositional covari
ates. Both the averaged spatial patterns over time of mean temperature and solar exposure (left 
column of this plot) show a general increase from the northern to the southern parts of Spain. 
The temporal means for humidity and precipitation reflect some spatial heterogeneity with higher 
values computed for the northern areas contrasted with lower values for both variables at the 
Mediterranean coastline. Different from the other four weather variables, the maximum wind 
speed exhibits little spatial correlation, with the highest values reported for Gipuzkoa in the north. 
Over time (central column), both average temperature and sun hours show high values during the 
summer contrasted with low values in the winter. At the same time, humidity, precipitation and 
maximum wind speed reflect less clear temporal patterns. Although some variation and higher 
peaks are shown for humidity and wind speed in winter, spring and autumn compared to the sum
mer period, the mean precipitation levels remain constantly at low values over time.

For the compositional covariates depicted in the right column of this plot we found a clear dom
inance of non-smokers over daily and ex-smokers in all 52 provinces, with occasional smokers 
(occ) constituting the smallest part of the regional populations. For the sex composition, a small 
dominance of females over males exists in all provinces. The normalized age curves computed 
from the age pyramids show a clear mode, with the largest population mass around 50 years. A 
second smaller mode and large variation can be seen for younger ages of around 10 years, while 
the densities decrease roughly monotonically and consistently across provinces for ages older than 
55 years. Finally, the spatial patterns for the socio-demographic time-constant variables, shown in 
the bottom two right panels of Figure 2 reflect a clear spatial variation of the individual GDP (in 
10,000 Euro), with lower values in the south contrasted with higher values in the northern prov
inces of Spain and especially Madrid. The population density shows a strong heterogeneity with 
the highest values for the metropolitan provinces of Madrid and Barcelona, but also the provinces 
of Bizkaia and Gipuzkoa.

4.3 Model specification for Spanish Covid-19 incidence curves
We include in our model for the Spanish Covid-19 incidence all variables with a possible effect 
(and an interaction for temperature and humidity, as low temperature and low humidity may 
interact to increase transferability Paez et al., 2021) according to the literature discussed in 
Section 2.2. We generally aimed for model parsimony given the limited amount of available 
data, but to include non-linear or time-varying model terms where there was some prior indication 
that time-constant linear terms might not be sufficient. As variables are selected based on expert 
opinion, we do not undertake any automated model selection, but do investigate several modelling 

Figure 1. Distribution of daily Covid-19 cases per 100,000 inhabitants over time and space: (left) mean (red) and 
regional incidence for all provinces (grey), as well as for Madrid (green) and Lleida (blue) over 381 days, and (right) 
average incidence over 381 days at province level, restricted to continental Spain.
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choices in sensitivity analyses discussed below. Based on expert opinion, the aim of model parsi
mony and the inspection of the roughly time-constant effect patterns, we considered the three lock
down indicators xldl,i, l = 1, 2, 3, the rain indicator xrain,i, the weekday indicators 
xdayd,i

, d = 1, . . . , 6, the GDP xgdp,i 
and the transport system indicator xtra,i to have time- 

constant effects. In contrast, recalling the hypothesized impact of overcrowded areas on the dis
ease transmission, in particular during the initial stages of the pandemic, and the strong variation 
in the size of the population over the different seasons for the coastal regions, we modelled the ef
fect of the population density xdens,i 

and the coastline indicator xsea,i through linear time-varying 

Figure 2. Distributional characteristics of the climatological, compositional, and socio-demographic covariates: 
temporally averaged spatial variation (left column), daily variation over time (central column, mean in red) of regional 
weather characteristics at province level, and regional variation of compositional and scalar covariates (right column).
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effects. For the 5-day lagged weather variables temperature (xtemp,i), sun hours (xsun,i), humidity 
(xhum,i

) and wind speed (xwind,i) and the log-transformed non-zero precipitation (xlprec,i
), we also 

considered smooth, time-varying effect specifications, but as estimated effect surfaces of all 
covariates were roughly constant over time and monotone in the specific covariates, all weather 
covariates were specified to have time-constant smooth effects to reduce the complexity of the 
model. For precipitation, we used the effect form xrain,i(t − 5)(βrain + f5(xlprec,i

)(t − 5)), where 

xrain,i is an indicator for positive precipitation amounts, (t − 5) indicates a 5-day lag and 
xrain,i(t − 5)f5(xlprec,i

)(t − 5) is defined to be zero if xrain,i(t − 5) = 0, i.e. if there is no rain, 

with f5(xlprec,i
)(t − 5) centred around the constant βrain. This specification allows for a smooth 

continuous effect of the (log-)precipitation amount if positive, but a discontinuous difference be
tween no rain at all and a small positive amount of precipitation. In addition to these terms, we 
also considered a smooth interaction of xtemp,i and xhum,i 

to control for the interaction between 

these two terms reported in the literature. To account for the observed spatial correlation among 
the provinces, a spatially correlated functional random effect γi(t) was included, using an MRF 
specification for the marginal basis Φxr. The structure for this MRF was derived from a Gabriel 
graph (Matula & Sokal, 1980) to control for the strong economic and social interrelations of con
tinental Spain and the Spanish islands and African enclaves. In addition, we included independent 
smooth functional random intercepts γ0,comi

(t) for the 18 community spatial units to control for 
potential spatially nested effects and unobserved heterogeneity of the local Covid-19 measures on 
community level. For the compositional covariates, we included the effect of the smoker status 
composition xsmoke,i

= (xdaily,i
, xocc,i, xex,i, xnon,i)⊤ as a time-constant linear function-on- 

composition term (internally using the ilr transformation). The sex composition xsex,i = (xmale,i
, 

x fem,i
)⊤ effect was modelled with a time-varying linear function-on-composition term to account 

for the strong heterogeneity in proportions of males and females within the public health and the nurs
ing sectors—with a clear majority of female workers—which yielded high numbers of infected females 
already at the beginning of the pandemic. Finally, for the age densities xage,i we considered a linear 
function-on-functional composition term (internally specified through a tensor product interaction 
smooth of the clr transformed age curves and time).

Combining these terms and writing κi = {xit, t, γi(t), γ0,comi
(t); t ∈ T }, where the vector xit con

tains all covariates at time t, and W = {temp, sun, hum, wind}, the expected number of Covid-19 
cases E[Yi(t) ∣ κi] for province i is specified through the following regression equation

log {E Yi(t) ∣ κi
( 􏼁

} = log (Ni) + β0(t) + xrain,i(t − 5)βrain + xgdp,i
βgdp + xtra,iβtra

+ xsea,iβsea(t) + xdens,i
βdens(t) +

􏽘6

d=1

xdayd,i
βdayd

+
􏽘3

l=1

xldl,iβldl

+
􏽘

k∈W

fk(xk,i(t − 5)) + xrain,i(t − 5)f5(xlprec,i
(t − 5))

+ f6(xhum,i
(t − 5), xtemp,i(t − 5)) + γi(t) + γ0,comi

(t)

+ 〈xsmoke,i
, bsmoke〉A + 〈xsex,i, bsex(t)〉A + 〈xage,i, bage(., t)〉B2 , 

using a log-link, where log (Ni) is an offset for the population size Ni in province i. To account for 
potential overdispersion of the response, we here assume a quasi-Poisson model for the Covid-19 
incidences such that the variance is related to the mean through the overdispersion parameter ξ, i.e. 
Var[Yi(t) ∣ xit, t] = μi(t)ξ. We note that alternative suitable distributions include the negative bino
mial where the variance is a quadratic instead of a linear function of the mean as under the present 
quasi-Poisson specification, and the Conway–Maxwell–Poisson (COM), a flexible two parameter 
extension of the Poisson distribution which also allows for under-dispersion (Sellers & Premeaux, 
2021; Shmueli et al., 2005). Although not considered here, we note that the proposed model also 
allows for COM distributions by extending the approach of Chatla and Shmueli (2018) to the pre
sent context.
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We also fit a negative binomial model as a sensitivity analysis, with results given in the online 
supplementary material. Comparing the fit of both models (see Figures 7 and 8 in the online 
supplementary material), both models performed similarly. Where there are differences between 
fits, the quasi-Poisson tends to fit better for larger sites such as Barcelona or Granada, while the 
fit can be better for the negative binomial model for smaller regions such as Ceuta or Teruel. 
From a theoretical perspective, the negative binomial imposes a concave relation of the estimation 
weights to the means such that larger weights are assigned to smaller means while the weights are 
proportional to the means under the quasi-Poisson. In this respect, the quasi-Poisson appears to be 
more natural to estimate the global disease dynamics over all sites which we suspect to be domi
nated by the larger sites (Ver Hoef & Boveng, 2007).

All computations were performed in R version 4.1.1 (R Core Team, 2021), using in particular 
the compositions (van den Boogaart et al., 2021) and refund (Goldsmith et al., 2020) pack
ages. The model was implemented using the pffr() function from the refund package. Basis 
sizes before application of possible constraints are as follows. The marginal basis functions of 
the smooth effects in the t direction were specified through penalized B-splines (Eilers & Marx, 
1996) using Ktr = 30 knots (yielding around 1 knot per 13 days), and Ktr = 28 knots for the global 
functional intercept. Covariate effect marginal bases were chosen smaller due to the smoothness of 
effects: Kxr = 10 for the smooth effects of temperature and humidity, Kxr = 9 for sun hours and 
Kxr = 7 for wind speed. Tensor product interactions were specified with 5 × 5 knots, which applied 
to the smooth interaction of temperature and humidity as well as to the function-on-function effect 
for clr(age). Using an Intel(R) Core(TM) i-7 processor with 1.5 GHz and 16 GB RAM, the com
putation of the proposed model requires about 30 minutes with an effective 568.711 model de
grees of freedom and a sample size of n × T = 52 × 381 = 19,812.

We now discuss the results of the proposed model for the Spanish Covid-19 data. We note that 
our analysis is based on the complete time frame provided by the geovoluntarios project, spanning 
from 5 January 2020 to 19 January 2021. While Covid-19 cases initially appeared in official sur
veillance reports at the end of February, the provided data were continuously updated post-hoc by 
previously undetected cases and also falsely assigned respiratory infections by the geovoluntarios 
project and is thus the best data available. To account for the remaining inherent uncertainty in the 
true disease onset and early disease numbers in Spain, we additionally run as a sensitivity analysis 
two separate models starting on 1 February 2020 and 1 March 2020. A detailed description of the 
corresponding results for both reduced time frames is provided in the online supplementary 
material of this paper. Almost all effects remain similar to the ones on the full data, with the not
able exception of the lockdown effects, which can change sign and significance when using data 
from different time frames. This indicates that results for the lockdown effects should be inter
preted with care, as lockdown effects are difficult to disentangle from overall smooth time trends, 
especially when little data before the lockdown is available and when effects are likely more com
plex than is possible to capture with a constant effect during lockdown time periods. Under the 
above specification, the model explains 96% of the deviance. The estimated dispersion parameter 
under the quasi-Poisson specification is 15.1. Table 1 shows the estimated covariate effects which 
are treated as time constant, where the reported p-values are based on a Wald test for the null hy
pothesis that each parametric term is zero (Wood, 2017). All effects except for the indicators for 
the second and third global lockdown periods and the second ilr component are significant at a 
significance level of α = 0.05. We found a negative effect of the first global lockdown period 
(Lockdown 1), indicating a reduction by around 12% of the daily numbers of Covid-19 cases 
by the imposed measures (compared to the trend under no lockdown), which however has to be 
interpreted with care as discussed above.

The weekday effects show a clear positive impact on the numbers of Covid-19 notifications, 
which is similar for Monday through Friday and smaller for Saturday, compared to Sunday. 
This heterogeneity over the weekdays may be due to daily variation in the availability at local au
thority levels and of tests. In line with the findings of Paez et al. (2021), the coefficient for transport 
suggests an increase in Covid-19 cases by around 56% if higher order transit systems are available. 
The expected incidence decreases with increasing GDP by around 31% per 10,000 EUR, ceteris 
paribus. Lastly, the rain indicator (representing days with non-zero levels of precipitation using 
a 5-day lag) shows a positive effect, leading to around 5% more Covid-19 cases after rainy days.
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Figure 3 shows the functional intercept and the linear functional (time-varying) effects of the 
scalar covariates. The functional intercept (left) has its highest peak during the second Covid-19 
wave, with maximum numbers of Covid-19 infections in mid-September.

The effect for the population density at province level (centre) reflects a clear positive impact on 
the expected number of infection notifications, with the strongest impact during the early stages of 
the first wave up to mid-March 2020. This finding is consistent with the association of densely 
crowded areas with the spread of the disease stated in the literature. The effect of coast (right) sug
gests smaller incidences for coastal compared to non-coastal provinces, in particular starting from 
mid-April 2020 onwards and reaching a minimum at around mid-July. We hypothesize that this 
negative effect might be explained by an increased public risk awareness and protective travelling 
behaviour caused by the aftermaths of the recent Covid-19 and lockdown experiences. Indeed, fa
cing the massive impact of the disease on the Spanish population and health system during the first 
wave, overcrowded regions including the coast and metropolitan conurbations suffered a larger 
exodus of the population, and rural areas and the countryside became a favourite travelling des
tination. In addition, imposed national travelling restrictions and strict quarantine regulations for 
incoming and/or homecoming travellers yielded a strong reduction in numbers of international 
tourists and travellers. In a recent paper, Sun et al. (2021) reported a reduction of global scheduled 
flights for Spain by over 90% for April to June 2020 compared to those month in 2019, which de
creased to 65.7% for July 2020. The observed negative effect of coast on the number of Covid-19 
cases slowly vanishes towards the fall and winter of 2020, which could potentially be due to less 
protective individual travelling behaviour.

4.4 Concurrent functional effects of weather on Covid-19 cases
The estimated non-linear time-constant concurrent effects of the lagged weather covariates and 
the interaction surface for the lagged mean temperature and lagged humidity are depicted in 
Figure 4.

For the lagged mean temperature (upper left), we found a negative effect of higher temperatures 
on the expected number of cases, which is consistent with Wu et al. (2020) and Paez et al. (2021). 
The non-linear effect for the lagged sun hours (upper central) only shows small positive and nega
tive departures from zero, with confidence bands indicating high uncertainty especially for large 

Table 1. Estimated time-constant linear effects in the functional generalized additive model for the Spanish Covid-19 
incidence and corresponding Wald test results

β exp(β) Standard error Test statistic p-Value

Intercept 3.44 31.12 1.30 2.65 0.008

Lockdown 1 −0.13 0.88 0.04 −2.96 0.003

Lockdown 2 −0.02 0.98 0.14 −0.16 0.875

Lockdown 3 0.04 1.05 0.13 0.35 0.724

ilr(smoke 1) −5.13 0.01 1.73 −2.98 0.002

ilr(smoke 2) −1.09 0.34 1.23 −0.89 0.374

ilr(smoke 3) −5.79 0.00 1.96 −2.95 0.003

Monday 0.34 1.41 0.01 33.81 0.000

Tuesday 0.41 1.51 0.01 41.00 0.000

Wednesday 0.37 1.45 0.01 36.11 0.000

Thursday 0.33 1.39 0.01 32.00 0.000

Friday 0.38 1.47 0.01 38.09 0.000

Saturday 0.14 1.15 0.01 13.09 0.000

Transport 0.45 1.56 0.01 29.53 0.000

GDP −0.37 0.69 0.02 −15.29 0.000

Rain 0.05 1.05 0.01 4.47 0.000
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values above 12 hr. The non-linear effect for maximum wind speed (upper right) shows a small 
monotone increase in excepted daily notifications until around 15 km/h, with a decrease and in
crease for higher wind speeds becoming increasingly uncertain due to small numbers. The average 
humidity and the log-transformed non-zero precipitation values (lower left and central panels) 
show a roughly linearly increasing effect on the expected incidence. Finally, the interaction surface 
of the lagged average temperature and the lagged humidity (lower right panel) suggests a positive 
effect for low temperatures and low levels of humidity on the spread of the disease dynamics, con
trasted with a negative impact of high temperatures and low humidity levels. The interaction in
dicates that smooth main effects of temperature and humidity should be interpreted with care, as 

Figure 3. Functional intercept and covariate effects: Smooth effects on expected number of daily Covid-19 cases. 
Functional intercept (left) and linear functional (time-varying) effects of the scalar covariates population density 
(central), and coastline (right). Effects are given on the predictor level (on the log-mean) and point-wise 95% 
confidence bands are shaded in grey.

Figure 4. Non-linear time-constant concurrent effects of different weather characteristics on the log-mean number 
of daily Covid-19 cases considering a 5-day lag. Upper panels: effects for lagged mean temperature, average sun 
hours, and maximum wind speed on the log-mean number of daily cases. Lower panels: effects for the average 
lagged humidity, log-transformed non-zero levels of the precipitation variable, and interaction effect surface for 
lagged mean temperature and lagged humidity (including main effect functions of temperature and humidity).
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they average over parts of the interaction surface that depend on the data range. This might po
tentially explain the mixed results on the effects of climate variables on the spread of the disease 
observed in different climatological regions, and is also seen in our sensitivity analysis below.

4.5 Compositional effect of smoking behaviour, sex and age on Covid-19 cases
The effects of the compositional covariates on the expected number of daily notifications are 
shown in Figure 5. To interpret the time-constant effect of the individual smoking habits, we ob
tained the simplicial gradient via inverse ilr transformation of the corresponding coefficients on 
ilr-level, see Table 1, indicating that the largest increase in the expected incidence is obtained by 
increasing the proportion of smokers [see online supplementary material, simplicial gradient 
roughly (1, 0, 0, 0)].

Applying the clr transformation to the simplicial gradient (see Section 3.2.1) allows to evaluate 
the effect of a multiplicative change in the relative ratio of one component while holding all other 
ratios constant. Depicted as sum-to-zero constrained effect estimates for the clr-transformed com
position with corresponding 95% confidence intervals, we found a clear positive effect of a larger 
fraction of daily smokers on the disease incidence, contrasted with a negative effect of a larger frac
tion of occasional and in particular non-smokers (see left panel) which is in line with the results of 
Hopkinson et al. (2021) and Gülsen et al. (2020). A relative ratio increase by 10% for daily smok
ers yields a multiplicative increase in the expected daily Covid-19 incidence by the factor 
1.15.747 = 1.729, i.e. by 73%. An analogous 10% relative ratio increase for non-smokers 
(1.1−5.009) yields a 38% decrease in the expected incidence.

The estimated effect of the sex log-ratio (central panel) suggests a negative effect of an increase 
in the male-to-female ratio on the mean Covid-19 counts, particularly early in the pandemic. A 
possible explanation could be the described heterogeneity among the sexes in terms of employ
ment in high-contact jobs such as in the retail and medical fields.

The right panel shows the effects of the clr-transformed age compositions on the disease dynam
ics, with estimated effect surface constrained to fulfil an integration-to-zero constraint, 
β(., t) ∈ L2

0(S), for each time point t. The effect surface shows clear variation over time and 
over the different ages. The strongest positive effects on the number of Covid-19 cases appear 
for the younger and also for the very old parts of the population, with a clear mode for around 
25 year olds. To interpret the effect of the age distribution on the incidence, we applied the inverse 
clr transformation to the estimated surface β(., t) ∈ L2

0(S) for each t, to obtain for each time point 
the direction b(., t) ∈ B2(S) of change in the age composition leading to the largest increase in the 
mean incidence analogously to equation (2). Inspecting the time trend of b(., t) depicted in Figure 5 
of the online supplementary material, all age curves show a clear mode for the younger ages and a 
second, but smaller, mode for around 80 year olds, with small variations in the exact density shape 
over time. This suggests that provinces with high proportions of young people (and to a lesser ex
tend old people) are more strongly affected by Covid-19 cases (see Sections 2.2 and 2.3 of the 
online supplementary material for a more detailed discussion of the results including computa
tions of changes in the mean response for different changes in the age distribution).

Figure 5. Effects of the compositional covariates smoking status (left, clr-transformed), sex (middle, 
ilr-transformed), and age (right, clr-transformed) on the log-mean number of Covid-19 cases.
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4.6 Spatio-temporal effects
A discussion of the results for both the spatially correlated functional random intercepts per prov
ince and the spatially uncorrelated community-specific functional random intercepts is given in 
online supplementary material. Both effects exhibit some variation in sign and effect size over 
the 52 provinces and 19 communities, respectively (see Figure 4 in the online supplementary 
material).

4.7 Model diagnostics, sensitivity analyses and evaluation in simulations
Comparing the fitted and the observed incidence curves (Figure 7 in the online supplementary 
material) shows only small deviations of the fitted from the observed daily values over the study 
period. The scaled Pearson residuals and the autocorrelation (Figure 9 in the online 
supplementary material) suggest overall good model fit, with some amount of heterogeneity in 
variation and autocorrelation of the residuals, in particular some structure corresponding to the 
three Covid-19 waves, remaining.

We also performed a range of sensitivity analyses to assess the effects of considering different 
lags (4-, 6-, 7-, and 8-day) for the weather covariates, a different spatial neighbourhood specifica
tion, a negative binomial response distribution, or a different time window leaving out early more 
uncertain incidences. Overall, results were largely similar and general conclusions did not change 
with the exception of the lockdown effects discussed above (see online supplementary material for 
a detailed discussion). Note that while the interaction surface for temperature and humidity was 
stable under different model specifications and datasets, the main effects did change when consid
ering continental Spain only or data beginning 1 March 2020 only, due to differences in the vari
able distribution over which the main effects average the interaction surface.

Finally, we conducted a simulation study to evaluate estimation performance (see Section 4 in 
the online supplementary material). We simulated 500 datasets mimicking our Covid-19 data, 
based on the estimated negative binomial model, to focus on the new model terms compared to 
(extensive simulations in) Scheipl et al. (2016) and on how well model terms can be estimated 
for our given model complexity and data size. All effects were recovered well, with no or little 
bias. Variability was usually small, while somewhat larger for complex interaction terms, and 
well captured by the confidence intervals/bands estimated on the Covid-19 data. This confirms 
that our proposed model extension can identify the effect of compositional and functional com
positional covariates in addition to different spatial, functional and scalar model terms.

5 Conclusion
This paper has extended the GFAMM to the case when some of the covariates in the predictor are 
finite or infinite (functional) compositions summing or integrating to a whole. We use an equiva
lence between the scalar product in the Bayes Hilbert space and a constrained linear (functional) 
term for the clr-transformed compositional covariate to embed the new model terms into the ex
isting model framework. For the transformed functional composition, the linear effect was mod
elled with a tensor product basis with a bivariate spline for the effect function, placing centring 
constraints on the marginal basis for the covariate effect to account for the integration-to-zero 
constraint. We also discuss interpretation of the next effect. Although not considered here due 
to the increased model complexity given the sample size, the proposed model in principle also al
lows to include non-linear effects of the transformed (functional) covariates.

The proposed model was applied to spatially correlated daily Covid-19 count data for Spain to 
quantify potential impacts of population compositional, socio-economic, weather, and regional 
covariates on the disease dynamics. The information at hand was retrieved from various source, 
including the state meteorology agency, the ministry of agriculture, fisheries, and food, the 
National Statistics Institute and the a collaborative data collection project by different geodata 
providers. The sampled data were collected from 5 January 2020 to 19 January 2021, just before 
a large-scale nationwide immunization programme was imposed in February 2021, which mini
mizes unknown effects on our results of the regionally varying and heterogeneous vaccination re
gimes. We note that, although the analysis was restricted to a pre-vaccination setting, daily 
information on the proportions of non-/partly/fully vaccinated people per region if available could 
be included into the proposed regression framework in the form of an additional compositional 
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covariate. The available data have some limitations. First, the reported numbers on a given day 
likely represent a mixture of counts over neighbouring (unobserved) true dates of symptom onset, 
given that the reconstruction of symptom onset dates by a 3-day lag from the positive test results is 
only an approximation. There is even more uncertainty regarding the true infection date, even if 
the average incubation period is 5 days. We may thus underestimate the weather effects, if the 
lagged weather variables only approximately measure weather on the date of infection. 
However, we did not detect large variations of the estimated results in our sensitivity analysis con
sidering alternative lag specifications. Second, the data do not provide separate infection counts 
for subgroups of the population according to sex, age and smoking habits. While we incorporate 
the effects of these variables on overall infections via compositional covariates measuring the com
position of the population, we have to acknowledge the typical risks of ecological inference here. 
For instance, for the increasing effect of a larger share of smokers in the population on the 
Covid-19 incidence, we cannot distinguish whether this is due to a higher infection risk for smok
ers or due to a higher risk of Covid-19 positive smokers to infect others. Third, while the compiled 
data for 52 provinces and 381 days have better temporal and spatial resolution than other publicly 
available datasets, the data size still limits the complexity of the model in terms of the number of 
non-linear and/or time-varying effects. Taking these limitations into account, our model highlights 
a clear effect of the population composition according to sex, age and smoking habits, of weather 
variables (rain, temperature, wind speed and humidity), of GDP, population density, coast and 
public transit on the number of Covid-19 notifications, as well as spatial and temporal 
heterogeneity.
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