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Abstract

This document introduces DySAQUASIMs, a tool developed for the Bachelor’s Degree
in Video Game Design and Development at Jaume I University. Implemented as a plugin
for the Unity graphics engine, DySAQUASIMs facilitates the realistic simulation of fluids
by leveraging advanced particle systems. This allows for the creation of interactive and
visually compelling fluid dynamics within virtual environments, catering especially to
dynamic aquatic systems integral to video game simulations.

A key objective of DySAQUASIMs is to simplify the integration of complex fluid
behaviors into graphic applications, enabling even those with minimal knowledge of fluid
dynamics to achieve professional results in game environments. This project explores and
addresses the challenges of replicating intricate fluid behaviors using digital technologies,
particularly in enhancing the realism and interactivity of video game water scenarios.

By integrating Unity’s simulation techniques, DySAQUASIMs achieves high-quality
visual effects without taxing computer resources excessively. This advancement not only
serves educational purposes in game design but also pushes the boundaries of simulat-
ing natural elements within interactive media, setting a new standard in the visual and
interactive quality of video games.
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Introduction

Contents
1.1 Work Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Environment and Initial State . . . . . . . . . . . . . . . . . . . . . . 2

This project delves into the intricate world of fluid dynamics simulation, a cornerstone
in both video game development and physics research. By bridging the gap between
theoretical physics and practical application, this work seeks to enhance the realism
and interactivity of virtual environments. To ensure the system is accessible to all users,
including those with limited knowledge of fluid dynamics, it simplifies usage mechanisms
and optimizes the efficient use of physical computer resources. This dual focus not only
advances the fidelity and interactivity of virtual scenarios but also democratizes the
technology, making advanced simulations more accessible and practical in a wide range
of applications.

1.1 Work Motivation
My fascination with physics has driven my academic pursuits and hobbies, culminating
in this project. While the theoretical aspects of fluid dynamics were engaging and
comprehensible, the real challenge lay in their implementation. Transforming complex
equations and simulation techniques into a working model within a video game engine
environment proved to be a formidable task. This project was born out of a desire to
conquer these practical hurdles and to fulfill a long-standing aspiration.

Another significant motivation is to bring users and developers closer to experiment-
ing with and leveraging these types of simulations in their projects. By demonstrating

1



2 Introduction

how to implement extensions or integration within a graphics engine, this project aims
to provide practical insights and tools. These are designed to make it easier for others
to incorporate sophisticated fluid dynamics simulations into their own work, thereby
expanding the practical applications and impact of this field.

1.2 Objectives

The overarching goal of this project is to bridge the gap between theoretical knowledge
and practical application in the realm of fluid dynamics. By harnessing the power of
modern computational methods, aiming to transform abstract concepts into tangible,
interactive simulations that both educate and enhance user experience in digital envi-
ronments.

The primary objective is to develop a robust graphical tool that provides realistic
simulations of fluid behavior. This tool will be tailored specifically for integration within
the Unity engine, making it accessible not only to students and professionals in the field of
video game design but also to those with limited technical background in fluid dynamics.
The plugin will serve dual purposes: it will be an educational resource, elucidating the
principles of fluid behavior, and a practical application that enhances the realism of
game environments, thereby elevating the overall gaming experience.

Furthermore, this project aims to establish a foundation for ongoing research and
development. It will explore the simulation of complex physical phenomena in virtual
spaces, paving the way for future innovations that could transform how interactive en-
vironments are created and experienced. By making the tool intuitive and simple to
use, it encourages users and developers to incorporate advanced simulations into their
projects, promoting a broader understanding and application of dynamic systems within
the gaming industry.

1.3 Environment and Initial State

Ever since I was gifted a book on astronomy as a child, I have held a profound interest
in the sciences. This fascination has significantly shaped my academic and personal
pursuits, especially my attraction to physics and understanding the mechanics of the
natural world. My particular affection for aquatic scenarios—where water is not only
a visual element but also a key mechanical player—has greatly influenced my academic
path. When tasked with selecting a thesis topic, I brainstormed various ideas, which
led me to explore the complexities of liquid simulation online, a subject known for its
formidable challenges.

My initial exploration into existing technologies and methods used for fluid dynam-
ics simulation in video games and other interactive applications highlighted the inherent
challenges in this field. The complexity of fluid simulations stems primarily from the
need to solve intricate partial differential equations, such as the Navier-Stokes equations,
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which describe fluid behavior. These equations are not only fundamental to understand-
ing fluid motion but are also computationally demanding, requiring significant resources
for accurate and real-time simulations.

Achieving a balance between computational efficiency and the realism of fluid simu-
lations is crucial in video games and interactive environments. The adoption of methods
like SPH (Smoothed Particle Hydrodynamics) has provided a framework for interactive
and visually faithful simulations. However, these methods still demand careful optimiza-
tion of performance to run smoothly on standard gaming hardware without compromis-
ing the interactive quality or visual fidelity of the simulations.

This project aims to address these challenges by developing a water simulation system
that not only meets the visual and physical realism expected in modern video games but
is also optimized for better performance. This involves minimizing the computational
load while ensuring that the simulations can be easily integrated and utilized within a
game engine by developers, regardless of their expertise in fluid dynamics. By enhancing
the accessibility and usability of such sophisticated simulations, the project seeks to
empower more developers to incorporate dynamic aquatic systems into their projects,
enriching the overall gaming experience and broadening the scope of interactive game
design.

My initial project ideas ranged from creating a fishing game, where water would play a
significant role in gameplay, to developing an interactive fluid simulator. After presenting
these ideas and discussing with my mentor, Rafael Fernández Beltrán, I decided to pursue
the latter based on the potential for broader educational and developmental impact. This
choice was further solidified by the foundational insights gained from influential tutorials
on how SPHs work.

Thus began the development of this project with a strong foundation in Unity. The
concept was clear, though the process was daunting. My enthusiasm was boundless,
and despite having limited resources, the depth of the available materials within the
Unity environment allowed for a thorough understanding and addressing of technical
limitations. This solid base paved the way for innovative solutions in simulating complex
fluid dynamics.
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Planning and resources evaluation

Contents
2.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Resource Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

This chapter outlines the most technical aspects of the project, detailing the compre-
hensive time planning and resource allocation required to achieve the project objectives.
Each task is broken down by hours allocated and specific goals.

2.1 Planning
Detailed planning for the project. Below is a breakdown of all tasks and sub-tasks, along
with the estimated time required for each.

• Task 1 (30 hours): Study the theory behind Particle Simulation using CUDA,
Particle-based Viscosity Fluid Simulation, Particle-based Fluid Simulation for In-
teractive Applications, and Smoothed Particle Hydrodynamics Techniques for the
Physics-Based Simulation of Fluids and Solids.

• Task 2 (10 hours): Engage with tutorials to apply theories learned in Task 1
within Unity environment.

• Task 3 (5 hours): Define the objectives of the simulation, identify desired out-
comes, and research efficient shaders that align with the project requirements.

• Task 4 (20 hours): Integrate fundamental mathematical operations essential for
the simulation.

5



6 Planning and resources evaluation

• Task 5 (10 hours): Apply the mathematical models to default-generated Unity
spheres and test their interactions.

• Task 6 (15 hours): Optimize particle systems to reduce computational load and
enhance rendering efficiency for multiple instances in the simulation.

• Task 7 (35 hours): Learn about compute shaders and compute buffers to opti-
mize and better integrate with Unity.

• Task 8 (30 hours): Integrate and distribute kernels for parallel calculations to
avoid race conditions when modifying variables simultaneously.

• Task 9 (20 hours): Develop methods to iterate through large numbers of particles
efficiently, avoiding unnecessary iterations over isolated particles.

• Task 10 (20 hours): Implement and refine a Bitonic Merge Sort algorithm for
the project.

• Task 11 (25 hours): Compile and review the outcomes and processes from Tasks
1 to 10.

• Task 12 (40 hours): Integrate shaders to create a meta-ball effect on particles,
enhancing their visual similarity to liquids. If integration faces technical limita-
tions, document the challenges and propose the development as an extension for
future enhancements.

• Task 13 (10 hours): Make final adjustments to increase user interaction and
preconfigure settings.

• Task 14 (30 hours): Documentation and Presentation

Total hours: 300
This plan outlines the intended sequence of operations; however, due to the project’s

complexity, actual progress varied. The following sections detail the execution and ad-
justments made during each task.

In Figure 2.1, we will present a detailed Gantt chart outlining each task allocation
from the project’s inception, starting with the presentation of the technical proposal,
through to its conclusion with the preparation of documentation and presentation.
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Figure 2.1: Gantt Chart of the Project Timeline
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2.2 Resource Evaluation

This section evaluates the necessary resources, both hardware and software, required for
the development and implementation of the project. It also includes an estimation of
costs for these resources and human labor.

2.2.1 Hardware Resources

The hardware selected ensures optimal performance for software development and simu-
lation tasks. The detailed specifications of the hardware used are outlined in Table 2.1.

Component Specification

Laptop GAMING Laptop with 12th Gen Intel(R) Core(TM) i7-12700H (2.30 GHz),
32.0 GB RAM, 64-bit OS on x64 processor, NVIDIA GeForce RTX 4060 GPU

Table 2.1: Hardware used for development and testing

2.2.2 Software Resources

The software tools are essential for developing, testing, and managing the project. The
primary software resources employed are summarized in Table 2.2.

Software Description

Unity 3D 2022.3.11f1 (Free) Primary development platform used for creating interactive
game simulations.

Visual Studio Code 2024 (Free) IDE with robust support for C#, used primarily for program-
ming within Unity.

GitHub Desktop (Free) Provides version control to manage coding changes and main-
tain a stable development environment.

Wolfram Alpha (Free) Employed for validating complex mathematical formulations
and computations in fluid dynamics.

Table 2.2: Software resources used in the project

2.2.3 Tools and Other Resources

These tools support various non-development aspects of the project, from project man-
agement to content creation. A comprehensive list of these tools is available in Table 2.3.

https://unity.com/
https://code.visualstudio.com/
https://desktop.github.com/
https://www.wolframalpha.com/
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Tool Use

Trello Online project management tool used to track progress, assign
tasks, and manage deadlines effectively.

Unity Asset Store Accessed for obtaining both free and paid assets to enhance
the visual and functional capabilities of the game.

Google Meet Utilized for tutor assistance and team meetings.
Streamlabs Desktop Used for capturing high-quality video recordings of simula-

tions for analysis and presentation purposes.
StackOverflow Resource for code suggestions and community support to solve

programming issues and enhance code quality.
Google Sheets Used for creating the Gantt chart to visually represent the

project timeline and task allocation.

Table 2.3: Tools and other resources used in the project

2.2.4 Estimated Costs

The primary costs associated with the project were categorized into human resources,
hardware, and software. Each of these cost categories is detailed below.

Human Resources

Human resources constituted a significant portion of the project’s costs. The project
involved a junior game developer working for a total of 260 hours. The cost for human
resources was calculated at an average rate of 10.77 EUR per hour, resulting in an
estimated total of 2800 EUR. These figures are summarized in Table 2.4. The average
rate was determined based on the salary information for junior developers in Spain [10].

Hardware Costs

The project required robust hardware to ensure optimal performance for software de-
velopment and simulation tasks. A high-performance gaming laptop was used, with the
following specifications: - 12th Gen Intel(R) Core(TM) i7-12700H (2.30 GHz) - 32.0 GB
RAM - 64-bit OS on x64 processor - NVIDIA GeForce RTX 4060 GPU

The cost of this gaming laptop was estimated at approximately 1500 EUR, as detailed
in Table 2.4.

Software Costs

The project utilized various software tools, all of which were accessed in their free ver-
sions. The main software tools used included Unity 3D, Visual Studio Code, GitHub
Desktop, and Wolfram Alpha. The use of free versions of these tools ensured that there
were no additional software costs incurred for the project.
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Cost Category Details

Hardware Costs 1500 EUR.
Software Costs 0 EUR.
Human Resources 2800 EUR.

Total 4300 EUR.

Table 2.4: Estimated financial costs for the project
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This chapter presents the requirements analysis, design and architecture of the pro-
posed work, as well as, where appropriate, its interface design.

3.1 Theoretical Framework

Fluid simulation is grounded in the principles of Computational Fluid Dynamics (CFD),
a well-explored and established field. The complexity of liquid behavior emerges from the
interaction of various phenomena such as convection, diffusion, turbulence, and surface
tension. Accurate simulation of these behaviors is crucial for a wide range of applications,
from aerodynamics to entertainment technologies.

To begin, we turn to the Navier-Stokes equations, fundamental equations for the
dynamics of moving fluids. These describe the conservation of momentum along with
continuity equations for mass conservation and state equations for energy conservation.
They are the cornerstone of fluid simulation, enabling the fluid model to flow and adapt
its behavior under varying conditions.

The Navier-Stokes equations in the SPH context are represented as follows:

11
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Figure 3.1: Simulation UI

1. Stress Tensor for Incompressible Flow:

T = −pI + µ(∇v + ∇vT ) (3.1)

Where p is the pressure, µ is the dynamic viscosity, and v is the fluid velocity.

2. Incompressible Navier-Stokes Equation:

ρ

(
Dv

Dt

)
= −∇p + µ∇2v + fext (3.2)

With ρ being the fluid density, and fext representing external forces.

These formulations detail how the stress tensor for incompressible fluids is defined
and how it is used within the Navier-Stokes equation to describe fluid motion.

3.1.1 Eulerian and Lagrangian Methods

The Eulerian method uses a regular grid to solve the 3D Navier-Stokes equations,
reproducing the visual properties of dynamic fluids. This technique has been expanded
to include simulations of dynamic gases, liquids, and highly viscous or viscoelastic fluids,
integrating behaviours like elasticity and plasticity, thus enabling realistic simulations of
melting objects and complex fluid properties.
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Figure 3.2: Illustration of an Eulerian grid in fluid simulation.

In contrast, the Lagrangian method, exemplified by Smoothed Particle Hydro-
dynamics (SPH), uses particles to sample space non uniformly. These particles carry
properties such as mass density and velocity, allowing for the evaluation of field quanti-
ties anywhere in space through radial smoothing kernels, offering a distinct approach to
fluid simulation.

Figure 3.3: Smoothed Particle Hydrodynamics (SPH) illustrating particle distribution
in fluid simulation.
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3.1.2 Smoothed Particle Hydrodynamics (SPH)

SPH (Smoothed Particle Hydrodynamics) [6] is an advanced computational technique
employed for simulating the dynamics of continuous media, such as fluids, gases, and
even solid materials, in a wide array of scientific and engineering applications. This
mesh-free, Lagrangian method models the medium by discretizing it into a collection of
particles. Each particle represents a fluid element that carries essential physical proper-
ties, including mass, momentum, and energy.

SPH was originally developed for astrophysical problems but has since been adapted
and expanded for use in various fields due to its flexibility and robustness. Unlike
grid-based methods (Eulerian), SPH handles deformable bodies and interfaces naturally,
making it particularly useful for simulating complex free-surface flows and multi-phase
interactions.

Figure 3.4: Smoothed Particle Hydrodynamics (SPH).

Using the SPH algorithm, these particles interact with one another based on their
proximities and a smoothing kernel function, which accurately approximates the physi-
cal quantities across the fluid domain. This approach facilitates the simulation of com-
plex fluid behaviours and interactions, offering remarkable flexibility and adaptability
to model various physical scenarios without the constraints of a fixed grid structure

Key Components of SPH

Kernel Functions: The core of SPH involves kernel functions, which are used to
approximate field quantities and their spatial derivatives. A commonly used kernel is
the cubic spline kernel, which is compact and efficient. The choice of kernel affects the
accuracy and stability of the simulations.
Density Estimation: The density at a particle’s location is estimated by summing
the contributions from neighboring particles, weighted by the kernel function. This local
density estimation allows for capturing detailed variations within the simulated medium.
Pressure Calculation: SPH computes pressure forces based on the density field. Two
main approaches exist: using a state equation (relating pressure to density) or solving
the Pressure Poisson Equation (PPE) to enforce incompressibility.
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Viscosity and Surface Tension: Additional physical phenomena such as viscosity and
surface tension are modeled using SPH by incorporating terms that account for these
forces. Viscosity is often treated using formulations that ensure smooth transitions and
stable simulations.

SPH Algorithms

Neighbor Search: Efficient neighbor search algorithms are crucial for SPH as they
determine which particles influence each other. Commonly, a uniform grid or spatial
hashing techniques are used to expedite the process of finding neighboring particles
within the kernel support radius.

Applications of SPH

Fluid Simulation: SPH is widely used for fluid simulations in computer graphics, par-
ticularly for visual effects in movies and video games. It captures the dynamics of water,
smoke, fire, and other fluids with high fidelity.
Engineering: In engineering, SPH is employed for simulating phenomena such as ero-
sion, sediment transport, and fluid-structure interactions. Its ability to handle complex
boundaries and interfaces makes it ideal for these applications.
Astrophysics: The method’s origins in astrophysics involve simulating the formation
and evolution of stars, galaxies, and other celestial phenomena. SPH’s particle-based
approach is well-suited for the vast, dynamic systems found in space.

Advantages and Challenges

Advantages:

1. SPH naturally handles large deformations and complex boundary interactions.

2. The method is flexible and can be adapted to various types of continua, including
fluids, gases, and solids.

3. SPH is highly parallelizable, making it suitable for modern GPU-based computa-
tions.

Challenges:

1. The accuracy of SPH depends heavily on the choice of kernel and the resolution of
particles.

2. Boundary handling can be complex and requires special techniques to ensure phys-
ical accuracy.

3. Computational cost can be high for large-scale simulations due to the need for
neighbor searches and kernel evaluations.
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3.2 Requirement Analysis
In this section, the functional and non-functional requirements of the developed work
will be explored. However, before delving into the content, it is worth noting that
the significance of the project lies in the development of a system that implements
the Smoothed Particle Hydrodynamics (SPH) method to simulate fluid dynamics in an
interactive and efficient manner.

Requirement analysis involves identifying and documenting the necessary functional
requirements for the system. This process ensures that the system’s functionality aligns
with user needs and project goals. The requirements are analyzed to determine how
they will be implemented and how they will interact with other system components.

• R1: Pause Simulation

• R2: Frame Navigation

• R3: Reset Simulation

• R4: Modify Simulation Speed

• R5: Modify Iterations per frame

• R6: Modify Gravity

• R7: Modify Collision Damping

• R8: Modify Smoothing Radius

• R9: Modify Target Density

• R10: Modify Pressure

• R11: Modify Pressure Multiplier

• R12: Modify Viscosity

• R13: Modify Particle Quantity

• R14: Modify Spawn Size

• R15: Modify Spawn Random

3.2.1 Functional Requirements

A functional requirement defines a system function that will be developed. It describes
the set of inputs, the behavior, and the outputs of that function [11]. Functional re-
quirements might include calculations, technical details, data manipulations, and other
specific functionalities that define what the system is supposed to achieve.
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In general, the functional requirements refer to what the system should do and can
be expressed in the form “the system will do <requirement>”. The plan to implement
these will be detailed in the system design section (see Section 3.3).

The functional requirements in this project are:

R1: Pause Simulation

Input: Pressing the spacebar

Output: Simulation is paused or resumed

When the user presses the spacebar, the simulation will toggle between paused
and running states. This allows users to pause the simulation to analyze specific
moments in detail.

Table 3.1: Functional requirement «R1: Pause Simulation»

R2: Frame Navigation

Input: Pressing left or right arrow keys

Output: Simulation moves backward or forward by one frame

Pressing the left arrow key will rewind the simulation by one frame, and pressing
the right arrow key will advance it by one frame. This enables precise control
over the simulation for detailed analysis.

Table 3.2: Functional requirement «R2: Frame Navigation»

R3: Reset Simulation

Input: Pressing the ’R’ key

Output: Simulation restarts

When the user presses the ’R’ key, the simulation will reset to its initial state,
allowing the user to start the simulation from the beginning under the same
conditions or new ones adjusted via the UI.

Table 3.3: Functional requirement «R3: Reset Simulation»



18 System Analysis and Design

R4: Modify Simulation Speed

Input: User adjusts the simulation speed via a UI slider

Output: Simulation speed is adjusted accordingly, and simulation
restarts.

Adjusting the simulation speed slider allows the user to control how fast the
simulation runs, making it possible to slow down for detailed observation or
speed up for quicker results.

Table 3.4: Functional requirement «R4: Modify Simulation Speed»

R5: Modify Iterations per frame

Input: User adjusts number of iterations via a UI slider, and simula-
tion restarts.

Output: Iterations setting is updated in the simulation

By adjusting the iterations slider, the user can increase or decrease the number
of iterations applied to particles, affecting how they interact within the simula-
tion environment.

Table 3.5: Functional requirement «R5: Modify Iterations per frame»

R6: Modify Gravity

Input: User adjusts gravity via a UI slider

Output: Gravity setting is updated in the simulation

By adjusting the gravity slider, the user can increase or decrease the gravita-
tional force applied to particles, affecting how they interact within the simula-
tion environment.

Table 3.6: Functional requirement «R6: Modify Gravity»
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R7: Modify Collision Damping

Input: User adjusts gravity via a UI slider

Output: Collision Damping setting is updated in the simulation

By adjusting the collision damping slider, the user can increase or decrease the
loss of force applied to particles when a collision is made with the walls or items
of the simulation.

Table 3.7: Functional requirement «R7: Modify Collision Damping»

R8: Modify Smoothing Radius

Input: User adjusts smoothing radius via a UI slider

Output: Smoothing radius setting is updated in the simulation, and
simulation restarts.

By adjusting the smoothing radius slider, the user can increase or decrease the
interaction sphere applied to particles, affecting how they interact within the
simulation environment.

Table 3.8: Functional requirement «R8: Modify Smoothing Radius»

R9: Modify Target Density

Input: User adjusts density via a UI slider

Output: Target density setting is updated in the simulation, and sim-
ulation restarts.

By adjusting the target density slider, the user can increase or decrease the
desired density applied to particles, affecting how they interact within the sim-
ulation environment.

Table 3.9: Functional requirement «R9: Modify Target Density»
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R10: Modify Pressure

Input: User adjusts pressure via a UI slider

Output: Pressure setting is updated in the simulation, and simulation
restarts.

By adjusting the pressure slider, the user can increase or decrease the desired
pressure applied to the simulation environment, forces help maintain fluid vol-
ume and handle interactions between fluid particles. It ensures that particles
repel each other to mimic the incomprehensibility of liquids.

Table 3.10: Functional requirement «R10: Modify Pressure»

R11: Modify Pressure Multiplier

Input: User adjusts pressure multiplier via a UI slider

Output: Pressure multiplier setting is updated in the simulation, and
simulation restarts.

By adjusting the pressure multiplier slider, the user can increase or decrease
the desired pressure multiplier applied to the simulation environment, such as
its comprehensibility and the speed at which pressure equilibrates across the
fluid. It allows to control how aggressively the simulation responds to density
changes, thereby affecting the overall dynamics and visual appearance of the
fluid.

Table 3.11: Functional requirement «R11: Modify Pressure Multiplier»

R12: Modify Viscosity

Input: User adjusts viscosity via a UI slider

Output: Viscosity setting is updated in the simulation, and simulation
restarts.

Changing the viscosity slider modifies the fluid’s resistance to gradual deforma-
tion by shear or tensile stress, directly impacting the fluid flow behavior in the
simulation.

Table 3.12: Functional requirement «R12: Modify Viscosity»
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R13: Modify Particle Quantity

Input: User adjusts particle quantity via a UI slider

Output: Particle count is updated in the simulation, and simulation
restarts.

Adjusting the particle quantity slider increases or decreases the number of par-
ticles in the simulation, allowing for denser or sparser fluid representations.

Table 3.13: Functional requirement «R13: Modify Particle Quantity»

R14: Modify Spawn Size

Input: User adjusts spawn size via a UI slider

Output: Spawner size is updated in the simulation, and simulation
restarts.

Adjusting the spawner size slider increases or decreases the size of the box that
spawns particles in the simulation.

Table 3.14: Functional requirement «R14: Modify Spawn Size»

R15: Modify Spawn Random

Input: User adjusts random spawn via a UI slider

Output: Spawner randomness is updated in the simulation, and simu-
lation restarts.

Adjusting the spawner randomness slider increases or decreases the randomness
value of the box that spawns particles in the simulation, making it easier to
control how the particles spawn if in an oriented 3x3x3 array or randomly.

Table 3.15: Functional requirement «R15: Modify Spawn Random»

3.2.2 Non-functional Requirements

Non-functional requirements define the system attributes such as security, reliability,
performance, maintainability, scalability, and usability. These requirements ensure that
the system meets certain standards and operates efficiently under various conditions.

The non-functional requirements for this project are as follows:

• R1: Performance.

– The simulation should update in real-time with a refresh rate of at least 30 40
frames per second (fps) under standard conditions.
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– The system should handle up to 91125 particles without a significant drop in
performance (no more than 10% reduction in fps).

• R2: Usability.

– The user interface should be intuitive and easy to navigate, allowing users to
control the simulation without extensive training.

– Controls for adjusting simulation parameters should be clearly labeled and
easily accessible within the UI.

• R3: Reliability.

– The system should have an up-time of 99.9%, ensuring high availability and
minimal downtime.

– Any changes in simulation parameters should be applied consistently without
causing the system to crash or produce errors.

• R4: Scalability.

– The system should be scalable to handle increased numbers of particles and
more complex simulations as required by future updates or user needs.

3.3 System Design

This section must present the (logical or operational) design of the system to be carried
out.

In the following pages are defined the cases of use taken from the functional require-
ments, a case use diagram, a class diagram, and a activities diagram. The plugin is
really simple, the inputs are clear what they do in the simulation UI, but the output is
not known.

3.4 Functional Requirements and Use Cases

The functional requirements and use cases in this project are based on simulation control
operations performed by the user through the user interface.
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Requirement: R1: Pause Simulation

Actor: User

Description: The user can pause the simulation by pressing the
spacebar.

Preconditions: The simulation must be running.

Steps (Normal Se-
quence): 1. The user presses the spacebar.

2. The simulation pauses.

Alternative Sequence: None.

Table 3.16: Use case of R1: Pause Simulation

Requirement: R2: Frame Navigation

Actor: User

Description: The user can move forwards or backwards one frame
at a time using the keyboard arrows.

Preconditions: The simulation must be in a paused state.

Steps (Normal Se-
quence): 1. The user presses the left arrow key to move one

frame back.

2. The user presses the right arrow key to move
one frame forward.

Alternative Sequence: None.

Table 3.17: Use case of R2: Frame Navigation
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Requirement: R3: Reset Simulation

Actor: User

Description: The user can reset the simulation to its initial state
by pressing the ’R’ key.

Preconditions: The simulation can be in any state (running, paused,
etc.).

Steps (Normal Se-
quence): 1. The user presses the ’R’ key.

2. The simulation restarts to initial conditions.

Alternative Sequence: None.

Table 3.18: Use case of R3: Reset Simulation

Requirement: R4: Modify Simulation Speed

Actor: User

Description: The user can adjust the simulation speed through a
UI slider.

Preconditions: The simulation must be initialized.

Steps (Normal Se-
quence): 1. The user accesses the speed setting through the

UI.

2. The user adjusts the speed slider.

3. The simulation speed changes according to the
slider position.

Alternative Sequence: None.

Table 3.19: Use case of R4: Modify Simulation Speed
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Requirement: R5: Modify Iterations per Frame

Actor: User

Description: The user can adjust the number of iterations per
frame through a UI slider.

Preconditions: The simulation must be initialized.

Steps (Normal Se-
quence): 1. The user accesses the iterations setting through

the UI.

2. The user adjusts the iterations slider.

3. The simulation updates the iterations per frame
according to the slider position.

Alternative Sequence: None.

Table 3.20: Use case of R5: Modify Iterations per Frame

Requirement: R6: Modify Gravity

Actor: User

Description: The user can adjust gravity settings through a UI
slider.

Preconditions: The simulation must be initialized.

Steps (Normal Se-
quence): 1. The user accesses the gravity setting through

the UI.

2. The user adjusts the gravity slider.

3. The gravity effect in the simulation changes ac-
cording to the slider position.

Alternative Sequence: None.

Table 3.21: Use case of R6: Modify Gravity
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Requirement: R7: Modify Collision Damping

Actor: User

Description: The user can adjust collision damping through a UI
slider.

Preconditions: The simulation must be initialized.

Steps (Normal Se-
quence): 1. The user accesses the collision damping setting

through the UI.

2. The user adjusts the damping slider.

3. The collision damping effect in the simulation
changes according to the slider position.

Alternative Sequence: None.

Table 3.22: Use case of R7: Modify Collision Damping

Requirement: R8: Modify Smoothing Radius

Actor: User

Description: The user can adjust the smoothing radius through a
UI slider.

Preconditions: The simulation must be initialized.

Steps (Normal Se-
quence): 1. The user accesses the smoothing radius setting

through the UI.

2. The user adjusts the smoothing radius slider.

3. The simulation updates the smoothing effect
according to the slider position.

Alternative Sequence: None.

Table 3.23: Use case of R8: Modify Smoothing Radius
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Figure 3.5: Use Case Diagram

Figure 3.6: Class Diagram
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Figure 3.7: Activities Diagram
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3.5 System Architecture
In this section, we shall delineate the minimum and recommended requisites for the
projected system. While parallelism techniques have been implemented to augment the
simulation’s capabilities, it becomes imperative to possess a GPU with adequate pro-
cessing capacity. Additionally, ensuring the flawless execution of the simulation involves
meeting specific hardware and software requirements. The architecture of the system
is designed to leverage modern computational resources effectively, particularly in the
context of fluid simulations using the Smoothed Particle Hydrodynamics (SPH) method.
The use of parallel processing and GPU acceleration is central to achieving the desired
performance and accuracy.

3.5.1 Minimum System Requirements

The simulation requires the following minimum system specifications to run:

• Operating System: Windows 10 (64-bit)

• Processor: Intel Core i5-7500 or AMD Ryzen 3 1300X

• RAM: 8 GB

• Graphics Card: NVIDIA GeForce GTX 1050 Ti or AMD Radeon RX 560 with
4 GB VRAM

• Graphics API: DirectX 11

• Storage: SSD of 256 GB or HDD of 1 TB (SSD recommended for less load time)

• Internet Connection: Required for updates and online features

• Additional Requirements: Hardware vendor officially supported drivers. For
development: IL2CPP scripting backend requires Visual Studio 2015 with C++
Tools component or later and Windows 10+ SDK.

3.5.2 Recommended System Requirements

For better performance, particularly in scenarios requiring intensive computation, such
as the intense use of particle systems and parallel processes, the following system speci-
fications are recommended:

• Operating System: Windows 10 or higher (64-bit)

• Processor: High-performance CPU with advanced multi-threading capabilities,
such as Intel Core i7-9700K or AMD Ryzen 5 3600

• RAM: At least 16 GB to handle large simulations efficiently
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• Graphics Card: High-end GPU with a significant number of CUDA cores or
equivalent, such as NVIDIA GeForce RTX 2070 or AMD Radeon RX 5700 XT
with 8 GB VRAM, supporting DirectX 12

• Storage: Solid State Drive (SSD) for faster data access and improved performance

• Internet Connection: High-speed internet connection for seamless updates and
online functionalities

• Additional Requirements: Latest drivers and system updates for optimal per-
formance and stability.

Why Cores are important?
The number of particles affects the number of threads required for the simulation. Each
thread handles computations for a subset of particles, and the number of threads per
group is fixed. Consequently, the number of thread groups (⌈numParticles/NumThreads⌉)
determines whether all CPU/GPU cores can be fully utilized or if they will need to time-
slice the workload.

• Fully Utilized: numCores ≥ threadGroupCount

• Time-Sliced: numCores < threadGroupCount

This relationship helps optimize performance by balancing the particle count with
the available core resources. Fully utilizing the cores ensures maximum efficiency, while
time-slicing can lead to reduced performance due to increased context switching and
overhead.

These specifications ensure that the simulation can run efficiently with optimal ren-
dering speeds and computational accuracy. Leveraging modern hardware capabilities,
especially with CPUs and GPUs designed for parallel processing, is crucial to achieving
high performance.

3.6 Interface Design

Since this project is a Unity Plugin, the user interface (UI) displayed in the program is
designed for better interaction with users interested in utilizing the plugin. The final
product of the interface design should not necessarily include a UI for the end player,
as it is up to the programmer or user developing the game to configure the desired
water simulation settings. In any case, a programmer is fully capable of making the UI
accessible or hidden for the players, depending on the intended use.

The programmer who wants to implement the plugin will just need to download it,
assign the scripts correctly that come with the package (or create their own scripts since
the system is scalable), and configure the desired properties and settings in the Unity
Inspector.



3.6. Interface Design 31

The UI for the simulation control is designed to be intuitive and user-friendly, allow-
ing users to easily interact with and manipulate the simulation parameters. The design
includes various sliders and buttons for controlling different aspects of the simulation,
which are described in detail below.

3.6.1 Control Panel

The control panel allows users to adjust various simulation parameters using sliders [7].
Each slider is labeled with its corresponding function for ease of use. These controls are
illustrated in Figure 3.8.

3.6.2 Simulation View

The simulation view displays the particles in real-time based on the parameters set in
the control panel. Some changes in the control panel reset the simulation to enhance
performance. It provides a visual representation of how changes to the controls affect
the simulation. The view is designed to be responsive, updating dynamically as the user
adjusts the settings.

Figure 3.8: Mock-up of the Control Panel and Simulation View

By providing an intuitive and adjustable interface, this plugin ensures that users
can customize the simulation to meet their specific needs. Whether for development
or testing purposes, the UI facilitates easy manipulation of simulation parameters to
achieve the desired outcomes.
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This chapter provides a comprehensive overview of the project’s progression from its
inception to its completion, encompassing deviations from the initial planning, errors
encountered, and resultant outcomes.

4.1 Work Development
In this section, work carried out will be presented and the decisions made as the project
progressed. This includes the research and design of the simulation, the mathematical
operations involved, and the implementation as a Unity plugin.

4.2 Research and Simulation Design
To initiate the development of this project, extensive research was conducted, focusing on
tutorials and documentation relevant to simulating interactions between objects to mimic
liquid behavior. Leveraging existing materials and content, meticulous investigation
led to the identification of several studies that yielded satisfactory results, forming the
foundation upon which this project is built.

33



34 Work Development and Results

The primary aim is to simulate a collection of particles within a three-dimensional
rectangular environment, where these particles collectively emulate a fluid with specified
properties. Each particle is endowed with distinct physical attributes, including position,
velocity, and mass, to accurately replicate fluid dynamics.

During the research, Smoothed Particle Hydrodynamics (SPH) was identified as
the best implementation method for the desired outcome [8]. SPH is a computational
method used for simulating fluid flows, where the fluid is represented by particles [2].
Each particle is influenced by forces such as pressure, viscosity [2], and surface tension,
derived from the Navier-Stokes equations [6]. This method assigns an influence radius to
each particle, within which it exerts or is subjected to forces from neighboring particles,
aiding in calculating the density and pressure at a point by considering the contributions
of nearby particles [6].

One significant advantage of using SPH over traditional grid-based methods is its
capacity to handle complex, dynamic interfaces and free surfaces naturally [9]. Unlike
grid-based methods, SPH does not require a fixed grid, simplifying the simulation of
complex boundary interactions and fluid interfaces [4]. However, a notable challenge with
SPH involves calibrating the interaction forces among particles. This process necessitates
the fine-tuning of smoothing kernels used for density and pressure calculations to ensure
realistic fluid behavior [6].

4.2.1 Fluid Density

To begin with SPH, the general idea is to determine the densities of each of the particles
in the simulation environment. This is achieved by considering a sphere of influence
around each particle [11]. The influence radius defines the extent to which each par-
ticle affects its neighbors. The interaction force within this radius is stronger when
the neighboring particles are closer to the central particle and diminishes towards the
periphery [11].

The density ρi at a particle i is calculated by summing the contributions of all
neighboring particles within the influence radius. This is mathematically expressed using
a smoothing kernel function W , which weights the contributions based on the distance
between particles. The general formula for computing the density is:

ρi =
∑

j

mjW (rij , h)

where:

• ρi is the density at particle i,

• mj is the mass of neighboring particle j,

• W (rij , h) is the smoothing kernel function,

• rij is the distance between particles i and j,
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Figure 4.1: Illustration of particles within a sphere of influence for density calculation
in SPH.

• h is the smoothing length, which defines the radius of influence.

The smoothing kernel W is a function that ensures particles closer to the center have
a higher influence on the density calculation, while those at the edge of the influence
radius have a reduced effect. Various forms of smoothing kernels can be used, such as the
poly6 kernel, spiky kernel, and viscosity kernel, each having specific properties suitable
for different aspects of the simulation [2, 6, 8].

Poly6 Kernel

The poly6 kernel [8] is commonly used for density estimation due to its smooth, even
distribution of influence and its ability to avoid numerical instabilities. The poly6 kernel,
as implemented in the code, is defined as:

Wpoly6(r, h) =
{ 315

64πh9 (h2 − r2)3 if 0 ≤ r ≤ h,

0 if r > h,

where r is the distance between particles and h is the smoothing length. This kernel
ensures a smoothly varying density field.

Spiky Kernel

For pressure calculations, the spiky kernel is often used because it provides a strong
repulsion force when particles come very close to each other, preventing clustering. The
spiky kernel, as implemented in the code, is defined as:
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Wspiky(r, h) =
{ 15

πh6 (h − r)3 if 0 ≤ r ≤ h,

0 if r > h,

The spiky kernel has a sharp peak near r = 0, which ensures strong repulsive forces
to maintain particle separation [2].

Density Calculation Process

The process of calculating the density at each particle i involves iterating over all neigh-
boring particles j within the influence radius h and summing their contributions using
the chosen kernel function. This iterative process ensures that the density field is accu-
rately represented, reflecting the local particle distribution [6].

• Step 1: Initialize Density - Set the initial density ρi to zero for each particle.

• Step 2: Sum Contributions - For each neighboring particle j within the in-
fluence radius, add the weighted mass contribution mjW (rij , h) to the density
ρi:

W (r, h) = 15
2πh5 (h − r)2 if 0 ≤ r ≤ h.

• Step 3: Normalize Density - Normalize the density value if necessary, depend-
ing on the specific formulation and requirements of the simulation.

By accurately calculating the density of each particle, we lay the groundwork for
other computations such as pressure forces, viscosity forces, and surface tension [9].

4.3 Fluid Pressure
Now that we have defined the interactions between particles to determine their densities,
we need to ensure that particles strive to reach a defined target density. To achieve this,
we implement pressures within the system, which will provide velocity and movement
to our particles.

The pressure force on a particle is calculated using the following approach [6]. A
straightforward way to introduce mobility to the particles is by calculating the pressure
based on the current density of the particle, the target density, and a pressure multiplier.
This approach is a simplified method and is not entirely accurate for liquids, as it more
closely simulates the behavior of gases. However, its simplicity makes it useful for our
purposes.

float PressureFromDensity(float density)

{

return (density - targetDensity) * pressureMultiplier;

}
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In the SPH method, pressure forces are derived from the density of particles. Each
particle exerts a pressure based on its density relative to the target density. The pressure
force on a particle is calculated using the following approach:

1. Density Calculation: As described previously, each particle’s density is computed
based on the contributions of neighboring particles using the smoothing kernel
functions.

2. Pressure Calculation: The pressure of a particle is computed from its density. If
the density is higher than the target density, the particle exerts an outward force
to reduce the density, and vice versa. This pressure force is applied to neighboring
particles to maintain an even distribution of particles and prevent clustering.

3. Pressure Force Formula:

fpressure = −
∑

j

mj

(
pi

ρ2
i

+ pj

ρ2
j

)
∇W (rij , h)

where:

• fpressure is the pressure force.

• mj is the mass of neighboring particle j.

• pi and pj are the pressures of particles i and j, respectively.

• ρi and ρj are the densities of particles i and j, respectively.

• ∇W (rij , h) is the gradient of the smoothing kernel function with respect to
the distance between particles i and j.

4. Implementation of Pressure Forces: The pressure force on each particle is cal-
culated by summing the contributions from all neighboring particles within the
influence radius. The calculated pressure forces are then used to update the veloc-
ities and positions of the particles, ensuring realistic fluid movement.

4.4 The implementation on Unity

The implementation phase translates the theoretical framework and research outcomes
into a functional Unity plugin that simulates fluid dynamics using Smoothed Particle
Hydrodynamics (SPH). This section delves into the specifics of how the SPH method
was integrated into Unity, detailing the technical steps and coding practices employed
to achieve the desired fluid simulation.
The following subsections will discuss the key components of the implementation process,
including the setup of the simulation environment, the integration of SPH algorithms,
and the optimization techniques used to ensure efficient and realistic fluid behavior.



38 Work Development and Results

4.4.1 Simulation3D

The Simulation3D class is the core component responsible for managing and executing a
fluid simulation using Smoothed Particle Hydrodynamics (SPH) in Unity. It integrates
various parts of the system, including particle spawning, rendering, and the simulation
logic itself, executed through compute shaders. Below is a detailed explanation of its
components and functionality.

References The following references are used within the Simulation3D class:

• computeShader: The compute shader that performs the simulation calculations.

• spawner: The Spawner object responsible for generating the initial particle posi-
tions and velocities.

• display: The Display object responsible for rendering the particles.

• floorDisplay: A transform representing the floor in the simulation.

Compute Buffers The compute buffers store particle data, including positions, ve-
locities, densities, and spatial indexing information:

• positionBuffer, velocityBuffer, densityBuffer, predictedPositionsBuffer, spatialIndexes,
spatialOffsets

Kernel Indices These integers represent the indices of different kernels within the
compute shader, each responsible for a specific step in the simulation process:

• externalForcesKernel (0)

• spatialHashKernel (1)

• densityKernel (2)

• pressureKernel (3)

• viscosityKernel (4)

• updatePositionsKernel (5)

Initialization Methods

• InitializeComputeBuffers(): Sets up the fixed time step, retrieves spawn data,
initializes buffers, configures the compute shader, initializes GPU sorting [4], and
initializes the display.

• InitializeBuffers(int particleQuantity): Initializes the compute buffers with
the required size based on the number of particles.
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• ConfigureComputeShader(): Configures the compute shader with the initial-
ized buffers and sets the number of particles.

• SetBuffersInShader(): Sets the various buffers in the compute shader.

• InitializeGPUSort(): Initializes the GPUSort instance and sets its buffers.

Update and Simulation Methods

• Update(): Manages the simulation with a variable time step, handles the pause
state, adjusts the floor and simulation space display scale, and processes input.

• SimulationStep(): Dispatches each kernel in the compute shader to perform the
simulation steps, including external forces, spatial hashing, density calculation,
pressure forces, viscosity, and position updates.

Data Management Methods

• SetInitialBufferData(Spawner.SpawnData spawnData): Sets the initial data
in the compute buffers based on the spawn data.

• SetShaderParameters(float deltaTime): Sets various parameters in the com-
pute shader for each frame, including time step, gravity, collision damping, smooth-
ing radius, target density, pressure multipliers, viscosity strength, and simulation
bounds.

The Simulation3D class is the central component for managing and executing a 3D fluid
simulation in Unity. It initializes the simulation, manages the execution of simulation
steps, and handles the rendering of particles. The class uses compute shaders to perform
physics calculations efficiently on the GPU, ensuring real-time performance even with a
large number of particles. The integration with the Spawner and Display classes allows
for flexible initialization and dynamic visualization of the simulation.

GPU Sort and BitonicMergeSort

The GPUSort class and the BitonicMergeSortEnhanced shader are designed to perform
efficient data sorting on the GPU using the bitonic merge sort algorithm. This ap-
proach leverages the parallel processing capabilities of modern GPUs to handle large
datasets efficiently. The main enhancements in BitonicMergeSort include better index
management and optimized thread utilization.

GPUSort Class The GPUSort class orchestrates the sorting process using the bitonic
merge sort algorithm. It initializes the necessary compute shaders, sets up the buffers,
and manages the sorting operation.
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SetBuffers Method The SetBuffers method initializes the buffers used by the com-
pute shader:

• indexBuffer: Holds the data to be sorted.

• offsetBuffer: Used for spatial hashing after sorting.

Sort Method The Sort method performs the sorting using the bitonic merge sort
algorithm:

• Calculates the number of stages and steps required.

• Sets the necessary parameters.

• Dispatches the compute shader for each sorting step.

SortAndCalculateOffsets Method The SortAndCalculateOffsets method combines
sorting and offset calculation for spatial hashing:

• First calls the Sort method.

• Then dispatches the compute shader to run the CalculateOffsets kernel.

BitonicMergeSortEnhanced Shader The BitonicMergeSortEnhanced shader per-
forms the sorting operations on the GPU. It consists of two kernels:

• Sort: Handles the sorting process.

• CalculateOffsets: Calculates offsets for spatial hashing.

Detailed Explanation of Bitonic Merge Sort

• Overview: Bitonic merge sort is a parallel sorting algorithm well-suited for GPU
implementation. It sorts data by creating bitonic sequences, which are sequences
that are monotonically increasing and then monotonically decreasing, or vice versa.

• Stages and Steps:

– Stages: The number of stages is determined by the nearest power of 2 greater
than or equal to the number of elements (numEntries). This is calculated using
the base-2 logarithm.

– Steps: Each stage involves a series of steps where elements are compared and
swapped to create bitonic sequences.

• Sorting Process: In each step, the kernel computes the indices of elements to
be compared and possibly swapped. The group width and height determine the
range of elements to be compared in each step. Elements are swapped if they are
out of order, progressively sorting the entire dataset.
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• Thread Utilization: The numthreads(128, 1, 1) directive specifies that each
thread group contains 128 threads. This high level of parallelism ensures that the
sorting operation is performed efficiently on the GPU.

• Handling Non-Power-of-Two Sizes: The implementation can handle arrays
whose sizes are not powers of 2 by using the NextPowerOfTwo function. This ensures
that the sorting algorithm operates correctly regardless of the input size.

Example: Sorting Process Consider the following example to illustrate the sorting
process:

• Initial Data: A dataset with indices [0, 1, 2, 3, 4].

• Hash Calculation: For a given point, the cell coordinate is calculated and hashed.

• Bitonic Merge Sort: The data is sorted through stages and steps, where elements
are compared and swapped if necessary.

• Index Management: The startIndices array indicates the starting index of
each hash key in the sorted list, enabling efficient lookup of points in the same
grid.

The GPUSort class and BitonicMergeSortEnhanced shader implement an efficient GPU-
based sorting algorithm using bitonic merge sort. This approach leverages the parallel
processing capabilities of modern GPUs to handle large datasets quickly. Key features
include enhanced index management, optimized thread utilization, and the ability to
handle non-power-of-two array sizes. The combination of the Sort and CalculateOffsets

kernels enables both efficient sorting and spatial hashing, making this implementation
highly suitable for performance-critical applications [1].

4.4.2 DySAQUASIMs

The DySAQUASIMs.compute shader script is designed to simulate fluid dynamics in
a 3D environment using Smoothed Particle Hydrodynamics (SPH). It includes several
compute kernels that handle various stages of the simulation, from applying external
forces to updating particle positions.

Constants and Buffers

• Constants: These define the number of threads, gravity, delta time, particle mass,
smoothing radius, target density, pressure multipliers, viscosity strength, bounds
size, and other simulation parameters.

• Buffers: These define read-write buffers for particle positions, predicted positions,
velocities, densities, spatial indices, and spatial offsets.
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numthreads Directive In DirectCompute (part of the DirectX API) and HLSL
(High-Level Shading Language), numthreads is a key directive used to define the size of
the thread groups for compute shaders. Compute shaders are used for general-purpose
computing tasks, such as physics simulations, image processing, and in this case, fluid
dynamics simulations.

• numthreads(X, Y, Z ): This directive specifies the number of threads per thread
group in the X, Y, and Z dimensions.

• NumThreads: Constant defining the number of threads in the X dimension.

• 1, 1: These specify that there is only one thread in the Y and Z dimensions.

Purpose of numthreads The numthreads directive defines how work is divided among
the GPU’s cores. Each thread within a thread group executes the same compute shader
code but operates on different data. This parallel execution allows for significant per-
formance gains, especially for tasks that can be subdivided into smaller, independent
operations.

How numthreads Works in This Script In DySAQUASIMs.compute, the numthreads
directive is used in several kernels. Let’s expand on how it operates and its specific pur-
pose in this context [8].

Purpose in Compute Shaders

• Parallel Processing: The primary purpose of numthreads is to enable parallel
processing. Each thread in a thread group processes a separate particle, allowing
the simulation to handle many particles concurrently.

• Efficient Resource Utilization: By defining a large number of threads (64 in
this case), the GPU can efficiently utilize its cores, reducing idle time and improving
overall computation speed.

• Scalability: numthreads makes the simulation scalable. Whether the number of
particles is large or small, the workload is distributed across multiple threads,
ensuring efficient computation.

Detailed Breakdown

• Kernel Execution: When a compute shader is dispatched, it is divided into
thread groups, each containing a number of threads as specified by numthreads.

• Thread Group Example: For numthreads(64, 1, 1), each thread group con-
tains 64 threads along the X dimension. If the total number of particles (numPar-
ticles) is 1024, the GPU will create 16 thread groups (1024 / 64 = 16).
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• Thread Dispatch: The SV_DispatchThreadID system value provides a unique ID
for each thread within the dispatch. This ID is used to determine which portion
of the data each thread will process.

Compute Kernels The DySAQUASIMs.compute script consists of multiple compute
kernels, each responsible for a specific aspect of the simulation process [5]:

1. ExternalForces:

• Applies external forces such as gravity and object interactions to the velocities
of particles.

• Predicts the next positions of particles based on their velocities.

2. UpdateSpatialHash:

• Updates the spatial hash for each particle to facilitate efficient neighbor
searches.

• Converts particle positions to cell coordinates, hashes these coordinates, and
generates keys.

3. CalculateDensities:

• Calculates the density and near density for each particle based on its neighbors
within the smoothing radius.

• Uses the spatial hash to quickly find neighboring particles.

4. CalculatePressureForce:

• Calculates the pressure forces acting on each particle based on the density
and near density.

• Uses the spatial hash to find neighbors and compute pressure forces, updating
particle velocities accordingly.

5. CalculateViscosity:

• Calculates the viscosity forces between particles to simulate fluid viscosity.
• Uses the spatial hash to find neighbors and compute viscosity forces, updating

particle velocities.

6. UpdatePositions:

• Updates particle positions based on their velocities.
• Resolves collisions with the bounding box to ensure particles stay within

bounds.
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The DySAQUASIMs.compute script offers a comprehensive solution for simulating fluid
dynamics in a 3D environment. By employing SPH techniques, it efficiently calculates
forces, densities, and updates particle positions. The script is organized into multiple
compute kernels, each handling a specific aspect of the simulation process. This mod-
ular approach ensures the simulation is both efficient and scalable. The specific use
of numthreads(64, 1, 1) ensures that each thread group processes 64 particles concur-
rently, making full use of the GPU’s capabilities.

Fluid Mathematics

This subsection elaborates on the mathematical functions implemented for fluid simula-
tion in 3D space within Unity, specifically focusing on the computation of various kernel
functions and their derivatives.
The following functions are defined to support the DySAQUASIMs.compute code.

• SmoothingKernelPoly6: Calculates the Poly6 kernel value, which is used for smooth-
ing particle interactions over a defined radius. This function returns a value based
on the distance between particles (dst) and the smoothing radius (radius).

• SpikyKernelPow3: Computes the Spiky kernel to the power of 3, emphasizing the
effect of closer particles. This is used primarily in pressure force calculations.

• SpikyKernelPow2: Similar to SpikyKernelPow3 but to the power of 2, providing a
different scale of influence.

• DerivativeSpikyPow3: Calculates the derivative of the Spiky kernel to the power
of 3. Used for determining the rate of change in the kernel, which is necessary for
force calculations in SPH simulations.

• DerivativeSpikyPow2: Computes the derivative of the Spiky kernel to the power
of 2, used similarly in force calculations.

• DensityDerivative: Returns the derivative value for the density calculation using
the derivative of the Spiky kernel to the power of 2.

• NearDensityDerivative: Provides the derivative value for the near density calcula-
tion using the derivative of the Spiky kernel to the power of 3.

These functions are directly related to the computations discussed in Section 4.2.1, where
we detailed the process of calculating particle densities and pressures using SPH.

3D Spatial Hash

The SpatialHash3d.hlsl script is used to efficiently manage and query the positions of
particles within a 3D grid. The main goal is to group particles into grid cells and enable
fast retrieval of particles that reside within the same or neighboring cells. This technique
significantly speeds up the process of finding nearby particles that might influence each
other.
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Hashing and Key Generation For each particle:

1. Convert its position to a cell coordinate using GetCell3D.

2. Hash the cell coordinate using HashCell3D to obtain a unique hash value.

3. Generate a cell key using KeyFromHash to map the hash value to an index in the
lookup table.

Consider there are 5 particles in the scene with indices [0, 1, 2, 3, 4]. For particle 0, the
cell coordinate is (2, 1, 5) based on its position and the smoothing radius. To obtain
the cell hash, multiply each coordinate by a prime number and sum them: 2 ∗ 1301 + 1 ∗
5449 + 5 ∗ 14983 = 82966. The cell key is 82966%5 = 2.

Building the Lookup Table The process involves:

1. Computing the hash values for all particles and storing them.

2. Sorting these hash values to group particles in the same grid cell together.

3. Generating an array (startIndices) that indicates the starting index of each hash
key in the sorted list. This array enables quick access to all particles within a
specific cell.

For the entire scene:

• spatialLookup array: [2, 2, 8, 1, 3]

• Sorted pointsHashKey: [1, 2, 2, 3, 8]

• startIndices array: [0, 1, 1, 3, 4]

The startIndices array helps to look up all points in the same grid. For example,
startIndices[0] = 2 means all points with hash key 0 start from lookup array index 1,
so points [1, 2] are in the same grid with hash key 2.

Querying Nearby Particles To find nearby particles for a given sample point:

1. Determine the sample point’s cell coordinate and hash key.

2. Use the offsets3D array to iterate through the 27 neighboring cells.

3. For each neighboring cell, compute its hash key and use the startIndices array to
find all particles within that cell.

4. Check if each particle within these cells lies within the smoothing radius of the
sample point. If it does, update the properties of these particles accordingly.

This structured approach ensures efficient organization and retrieval of particle data,
optimizing the performance of the fluid simulation.
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4.4.3 Display

The Display class in Unity is responsible for rendering particles as spheres in a 3D space
using a GPU-based approach. The class interacts with the Simulation3D class to retrieve
particle data and utilizes a custom shader for rendering.

Overview of Display Class The Display class handles several key tasks to manage
the rendering process in real-time:

• Initialization: Sets up materials, generates the sphere mesh, and prepares the
necessary buffers for drawing.

• Material Properties: Updates material properties dynamically to reflect changes
in particle states.

• Gradient Textures: Manages gradient textures to enhance the visual represen-
tation of particles given a speed.

• Efficient Rendering: Ensures efficient rendering through instanced indirect draw-
ing, leveraging the GPU for high performance.

Sphere Mesh Generator

The SphereGenerator class is responsible for creating a sphere mesh based on a given
resolution. This mesh is used to represent particles visually as spheres in the 3D space.

Functionality of SphereGenerator Class The SphereGenerator class performs the
following tasks:

• Vertex Generation: Generates vertices for the sphere mesh based on the speci-
fied resolution.

• Triangle Creation: Creates triangles from the generated vertices to form the
surface of the sphere.

• Mesh Construction: Constructs the complete 3D sphere mesh, ready to be used
for rendering particles.

Usage in Display Class The sphere mesh generated by the SphereGenerator class is
utilized by the Display class to render particles as spheres. This involves:

• Mesh Integration: Integrating the generated sphere mesh into the rendering
pipeline of the Display class.

• Buffer Setup: Setting up vertex and index buffers for efficient rendering on the
GPU.

• Real-time Rendering: Using instanced indirect drawing to render a large num-
ber of particles dynamically, ensuring high performance.



4.5. Troubles and Solutions 47

Summary The Display class [3], in conjunction with the SphereGenerator class, pro-
vides a robust solution for rendering particles as spheres in a 3D space. By leverag-
ing GPU-based techniques and efficient mesh generation, this approach ensures high-
performance visualization of fluid simulations. The use of instanced indirect drawing
further enhances rendering efficiency, allowing for real-time updates and dynamic visual
representation of particle data.

4.4.4 Spawner

The Spawner class generates a grid of particles with specified initial positions and ve-
locities. It includes functionality for adding random jitter to particle positions and
visualizing the spawn bounds in the Unity editor. This class is essential for initializing
the particle system in a controlled, customizable manner.

4.5 Troubles and Solutions

4.5.1 Excessive Triangles in Default Unity Spheres

Problem: The default Unity sphere mesh contains a high number of triangles, which
can be computationally expensive and negatively impact the performance of the simu-
lation, especially when rendering a large number of particles.

Solution: Replace the default Unity sphere mesh with a custom sphere mesh generated
at a desired resolution using the SphereGenerator class. This approach allows for control
over the number of vertices and triangles, optimizing performance.

4.5.2 Non-Functional Particle Interactions

Problem: Interactions between particles, such as pressure and viscosity [2] forces, were
not functioning correctly, leading to unrealistic simulation behavior.

Solution: Ensure that the compute shader kernels responsible for calculating particle
interactions are correctly implemented and that the buffers are properly set. Verify the
sequence of kernel dispatches to make sure each step in the simulation is executed in the
correct order.

4.5.3 Performance Issues with Increased Particle Count

Problem: Increasing the number of particles to enhance the simulation may lead to
performance issues due to the higher computational load, particularly when using default
Unity spheres.
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Solution: Optimize the simulation by using lower-resolution meshes for individual
particles and leveraging the GPU for parallel processing. Ensure efficient memory man-
agement by using structured buffers and minimizing unnecessary data transfers.

4.5.4 ComputeBuffer and ComputeShader Management

Problem: Issues with ComputeBuffer and ComputeShader usage can lead to runtime
errors, incorrect data processing, and simulation instability.

Solution: Verify that ComputeBuffer objects are correctly initialized and released,
and ensure that data is correctly transferred between the CPU and GPU. Confirm that
the compute shader code correctly handles buffer operations.

4.5.5 Challenges with Unity Metaballs

Problem: Implementing metaballs in the simulation significantly reduced performance,
making it challenging to achieve real-time interactivity and visualization, particularly
with a high particle count.

Solution: The complexity and computational expense of generating and rendering
metaballs are substantially higher than those of simple sphere rendering. Metaballs
require evaluating a scalar field for each particle and extracting an isosurface, typically
using algorithms like marching cubes, which are computationally intensive.

Given the real-time performance constraints of our fluid simulation, we opted to use
simpler spheres for particle visualization. This approach ensures that the simulation
remains interactive and performant, even with a large number of particles. Metaballs,
while visually superior for certain applications, were deemed impractical for our specific
performance requirements. By focusing on optimizing sphere rendering, we achieve
a balance between visual fidelity and real-time performance, which is crucial for the
intended use case of our simulation.
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Figure 4.2: A try with metaballs in Simulation.

4.6 Results

In this section, the results of the project are detailed, aligning with the initial objectives.
The focus is on the milestones achieved without delving excessively into technical details.
Additionally, the potential applications and uses of the developed work, as well as any
releases made or planned, are discussed.

After numerous iterations involving code refinements, computeBuffers, compute-
Shaders, and SPH (Smoothed Particle Hydrodynamics) interactions in the simulation,
the system simulations reached a highly satisfactory level. The primary objective of
achieving realistic fluid behavior was accomplished by adjusting various parameters,
leading to successful outcomes in multiple aspects of the simulation.

The simulation effectively replicated the behavior of different types of fluids through
parameter adjustments. The interactions between particles, walls, and various scenarios
were accurately modeled, resulting in realistic simulations of forces, pressures, and den-
sities. These realistic interactions are a significant success of the project, showcasing the
robustness of the SPH method in simulating fluid dynamics.

Although the visual outcome of scenarios filled with spheres may not appear ideal,
the importance lies in the accurate interactions among these spheres [9]. Achieving
realistic forces and behaviors was a major accomplishment, demonstrating the system’s
capability to simulate real-world dynamics effectively. Below are some images showcasing
the various results obtained:
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Figure 4.3: First looks of the simulation.

Figure 4.4: Another version of the simulation.
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Figure 4.5: Collisions with objects

Figure 4.6: Almost final result.

The primary goal of this project was to develop a user-friendly interface for Unity,
enabling users to interact with and simulate fluid dynamics and particle behavior using
the SPH method. This application allows users to set up scenarios, adjust physical prop-
erties, and visualize the simulation results in real-time. By making complex fluid simu-
lations accessible without requiring in-depth knowledge of the underlying mathematical
models, the application broadens its utility in education, research, and entertainment.
Future releases will include software repositories and web pages to facilitate broader
access and usability.

In conclusion, the project successfully achieved its objectives, resulting in a robust
simulation system capable of realistic fluid dynamics. The development of a user-friendly
interface for Unity further enhances the application’s accessibility and potential uses.
Future improvements and releases will continue to build on this foundation, expanding
the application’s reach and utility.
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In this chapter, the conclusions of the work, as well as its future extensions are shown.

5.1 Conclusions

This project has been incredibly challenging, but from the beginning, I was determined
to complete it and maximize its potential. Studying so many aspects for a project that
has reached its current state fills me with enthusiasm and motivation to continue working
in this field and advancing in my career as a video game designer and developer. This
work demonstrates the effort one can achieve after countless hours of dedication, which
may not seem apparent at first glance, but once you look behind the scenes, you see the
true extent of the work involved.

It has been a tough journey with many challenges along the way, including significant
changes in my social and professional life. I have learned an immense amount about Unity
and the behavior of fluids in real life, a subject I have always been eager to explore. This
has been one of the best experiences I have had in designing a project of this magnitude
and caliber.
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5.2 Future work
Regarding the future of this project, I do not plan to continue its development. I
am satisfied with its current state, although there could be improvements in particle
appearance or scenario visuals. However, the workload has been so intense that I feel
a need to move on to new horizons. This project might not be included in my future
endeavors, as my current goal is to develop a video game and advance my professional
career.
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ix A
Source Code

This chapter presents key parts of the source code developed for the fluid simulation
project using Smoothed Particle Hydrodynamics (SPH) in Unity. Only critical code
snippets are included and discussed to highlight important aspects of the implementa-
tion. The full source code is provided in the appendix for reference.

Here is the link to my final degree project: DySAQUASIMs on GitHub.

A.1 Simulation3D Class

The Simulation3D class is the core component responsible for managing and executing
the fluid simulation using SPH in Unity.

A.1.1 Initialization and Buffer Setup

The initialization of compute buffers is crucial for setting up the simulation:

1 void InitializeComputeBuffers() {

2 SetFixedTimeStep();

3 RetrieveSpawnData();

4 InitializeBuffers(spawnData.points.Length);

5 SetInitialBufferData(spawnData);

6 ConfigureComputeShader();

7 InitializeGPUSort();

8 display.Init(this);

9 }

10
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11 void InitializeBuffers(int particleQuantity) {

12 positionBuffer =

13 ComputeHelper.CreateStructuredBuffer<float3>(particleQuantity);

14 predictedPositionsBuffer =

15 ComputeHelper.CreateStructuredBuffer<float3>(particleQuantity);

16 velocityBuffer =

17 ComputeHelper.CreateStructuredBuffer<float3>(particleQuantity);

18 densityBuffer =

19 ComputeHelper.CreateStructuredBuffer<float2>(particleQuantity);

20 spatialIndexes =

21 ComputeHelper.CreateStructuredBuffer<uint3>(particleQuantity);

22 spatialOffsets =

23 ComputeHelper.CreateStructuredBuffer<uint>(particleQuantity);

24 }

These methods set up the fixed time step, retrieve initial particle data, and initialize
the necessary buffers.

A.1.2 Compute Shader Configuration

Configuring the compute shader involves setting the buffers and shader parameters:

1 private void ConfigureComputeShader() {

2 SetBuffersInShader();

3 computeShader.SetInt("numParticles", positionBuffer.count);

4 }

5

6 private void SetBuffersInShader() {

7 ComputeHelper.SetBuffer(computeShader, positionBuffer,

8 "Positions", externalForcesKernel, updatePositionsKernel);

9 ComputeHelper.SetBuffer(computeShader, predictedPositionsBuffer,

10 "PredictedPositions", externalForcesKernel, spatialHashKernel,

11 densityKernel, pressureKernel,

12 viscosityKernel, updatePositionsKernel);

13 ComputeHelper.SetBuffer(computeShader, spatialIndexes,

14 "SpatialIndices", spatialHashKernel, densityKernel, pressureKernel,

15 viscosityKernel);

16 ComputeHelper.SetBuffer(computeShader, spatialOffsets,

17 "SpatialOffsets", spatialHashKernel, densityKernel, pressureKernel,

18 viscosityKernel);

19 ComputeHelper.SetBuffer(computeShader, densityBuffer,

20 "Densities", densityKernel,

21 pressureKernel, viscosityKernel);

22 ComputeHelper.SetBuffer(computeShader, velocityBuffer,
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23 "Velocities", externalForcesKernel, pressureKernel,

24 viscosityKernel,

25 updatePositionsKernel);

26 }

These methods ensure the compute shader is correctly configured with all necessary
buffers and parameters.

A.1.3 Simulation Execution

The main simulation steps are executed in the SimulationStep method:

1 void SimulationStep() {

2 ComputeHelper.Dispatch(computeShader, positionBuffer.count,

3 kernelIndex: externalForcesKernel);

4 ComputeHelper.Dispatch(computeShader, positionBuffer.count,

5 kernelIndex: spatialHashKernel);

6 gpuSort.SortAndCalculateOffsets();

7 ComputeHelper.Dispatch(computeShader, positionBuffer.count,

8 kernelIndex: densityKernel);

9 ComputeHelper.Dispatch(computeShader, positionBuffer.count,

10 kernelIndex: pressureKernel);

11 ComputeHelper.Dispatch(computeShader, positionBuffer.count,

12 kernelIndex: viscosityKernel);

13 ComputeHelper.Dispatch(computeShader, positionBuffer.count,

14 kernelIndex: updatePositionsKernel);

15 }

This method dispatches each kernel in the compute shader to perform the necessary
simulation steps.

A.2 Compute Shaders
The compute shaders handle the core calculations for the SPH simulation. Key functions
and kernels include:

A.2.1 Kernel: External Forces

This kernel applies external forces such as gravity and predicts the next positions of
particles:

1 [numthreads(64,1,1)]

2 void ExternalForces (uint3 id : SV_DispatchThreadID) {

3 if (id.x >= numParticles) return;

4
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5 // Apply gravity

6 Velocities[id.x] += float3(0, gravity, 0) * deltaTime;

7

8 // Predict next positions

9 PredictedPositions[id.x] = Positions[id.x] + Velocities[id.x] * deltaTime;

10 }

A.2.2 Kernel: Update Spatial Hash

This kernel updates the spatial hash for each particle to facilitate efficient neighbor
searches:

1 [numthreads(64,1,1)]

2 void UpdateSpatialHash (uint3 id : SV_DispatchThreadID) {

3 if (id.x >= numParticles) return;

4

5 // Reset offsets and update index buffer

6 SpatialOffsets[id.x] = numParticles;

7 uint index = id.x;

8 int3 cell = GetCell3D(PredictedPositions[index], smoothingRadius);

9 uint hash = HashCell3D(cell);

10 uint key = KeyFromHash(hash, numParticles);

11 SpatialIndices[id.x] = uint3(index, hash, key);

12 }

A.2.3 Kernel: Calculate Densities

This kernel calculates the density and near density for each particle based on its neigh-
bors:

1 [numthreads(64,1,1)]

2 void CalculateDensities (uint3 id : SV_DispatchThreadID) {

3 if (id.x >= numParticles) return;

4

5 float3 pos = PredictedPositions[id.x];

6 int3 originCell = GetCell3D(pos, smoothingRadius);

7 float sqrRadius = smoothingRadius * smoothingRadius;

8 float density = 0;

9 float nearDensity = 0;

10

11 // Neighbor search and density calculation

12 for (int i = 0; i < 27; i++) {

13 uint hash = HashCell3D(originCell + offsets3D[i]);
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14 uint key = KeyFromHash(hash, numParticles);

15 uint currIndex = SpatialOffsets[key];

16

17 while (currIndex < numParticles) {

18 uint3 indexData = SpatialIndices[currIndex];

19 currIndex++;

20 if (indexData[2] != key) break;

21 if (indexData[1] != hash) continue;

22

23 uint neighbourIndex = indexData[0];

24 float3 neighbourPos = PredictedPositions[neighbourIndex];

25 float3 offsetToNeighbour = neighbourPos - pos;

26 float sqrDstToNeighbour = dot(offsetToNeighbour, offsetToNeighbour);

27 if (sqrDstToNeighbour > sqrRadius) continue;

28

29 float dst = sqrt(sqrDstToNeighbour);

30 density += DensityKernel(dst, smoothingRadius);

31 nearDensity += NearDensityKernel(dst, smoothingRadius);

32 }

33 }

34

35 Densities[id.x] = float2(density, nearDensity);

36 }

A.2.4 Kernel: Calculate Pressure Forces

This kernel calculates the pressure forces acting on each particle:

1 [numthreads(64,1,1)]

2 void CalculatePressureForce (uint3 id : SV_DispatchThreadID) {

3 if (id.x >= numParticles) return;

4

5 // Calculate pressure and pressure force

6 float density = Densities[id.x][0];

7 float densityNear = Densities[id.x][1];

8 float pressure = PressureFromDensity(density);

9 float nearPressure = NearPressureFromDensity(densityNear);

10 float3 pressureForce = 0;

11

12 float3 pos = PredictedPositions[id.x];

13 int3 originCell = GetCell3D(pos, smoothingRadius);

14 float sqrRadius = smoothingRadius * smoothingRadius;

15
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16 // Neighbor search and pressure force calculation

17 for (int i = 0; i < 27; i++) {

18 uint hash = HashCell3D(originCell + offsets3D[i]);

19 uint key = KeyFromHash(hash, numParticles);

20 uint currIndex = SpatialOffsets[key];

21

22 while (currIndex < numParticles) {

23 uint3 indexData = SpatialIndices[currIndex];

24 currIndex++;

25 if (indexData[2] != key) break;

26 if (indexData[1] != hash) continue;

27

28 uint neighbourIndex = indexData[0];

29 if (neighbourIndex == id.x) continue;

30

31 float3 neighbourPos = PredictedPositions[neighbourIndex];

32 float3 offsetToNeighbour = neighbourPos - pos;

33 float sqrDstToNeighbour = dot(offsetToNeighbour, offsetToNeighbour);

34 if (sqrDstToNeighbour > sqrRadius) continue;

35

36 float densityNeighbour = Densities[neighbourIndex][0];

37 float nearDensityNeighbour = Densities[neighbourIndex][1];

38 float neighbourPressure = PressureFromDensity(densityNeighbour);

39 float neighbourPressureNear =

40 NearPressureFromDensity(nearDensityNeighbour);

41

42 float sharedPressure=(pressure + neighbourPressure) / 2;

43 float sharedNearPressure=(nearPressure + neighbourPressureNear) / 2;

44

45 float dst = sqrt(sqrDstToNeighbour);

46 float3 dir = dst > 0 ? offsetToNeighbour / dst : float3(0, 1, 0);

47

48 pressureForce += dir * DensityDerivative(dst,

49 smoothingRadius) * sharedPressure / densityNeighbour;

50 pressureForce += dir * NearDensityDerivative(dst,

51 smoothingRadius) * sharedNearPressure / nearDensityNeighbour;

52 }

53 }

54

55 float3 acceleration = pressureForce / density;

56 Velocities[id.x] += acceleration * deltaTime;

57 }
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A.2.5 Kernel: Calculate Viscosity

This kernel calculates the viscosity forces between particles:

1 [numthreads(64,1,1)]

2 void CalculateViscosity (uint3 id : SV_DispatchThreadID) {

3 if (id.x >= numParticles) return;

4

5 float3 pos = PredictedPositions[id.x];

6 int3 originCell = GetCell3D(pos, smoothingRadius);

7 float sqrRadius = smoothingRadius * smoothingRadius;

8

9 float3 viscosityForce = 0;

10 float3 velocity = Velocities[id.x];

11

12 // Neighbor search and viscosity calculation

13 for (int i = 0; i < 27; i++) {

14 uint hash = HashCell3D(originCell + offsets3D[i]);

15 uint key = KeyFromHash(hash, numParticles);

16 uint currIndex = SpatialOffsets[key];

17

18 while (currIndex < numParticles) {

19 uint3 indexData = SpatialIndices[currIndex];

20 currIndex++;

21 if (indexData[2] != key) break;

22 if (indexData[1] != hash) continue;

23

24 uint neighbourIndex = indexData[0];

25 if (neighbourIndex == id.x) continue;

26

27 float3 neighbourPos = PredictedPositions[neighbourIndex];

28 float3 offsetToNeighbour = neighbourPos - pos;

29 float sqrDstToNeighbour = dot(offsetToNeighbour,

30 offsetToNeighbour);

31 if (sqrDstToNeighbour > sqrRadius) continue;

32

33 float dst = sqrt(sqrDstToNeighbour);

34 float3 neighbourVelocity = Velocities[neighbourIndex];

35 viscosityForce += (neighbourVelocity - velocity) *
36

37 SmoothingKernelPoly6(dst, smoothingRadius);

38 }

39 }

40 Velocities[id.x] += viscosityForce * viscosityStrength * deltaTime;
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41 }

A.2.6 Kernel: Update Positions

This kernel updates the positions of particles and resolves collisions:

1 [numthreads(64, 1, 1)]

2 void UpdatePositions(uint3 id : SV_DispatchThreadID) {

3 if (id.x >= numParticles) return;

4

5 Positions[id.x] += Velocities[id.x] * deltaTime;

6 ResolveCollisions(id.x);

7 }

A.3 Key Helper Functions

A.3.1 Density and Pressure Kernels

These functions define the SPH kernel functions and their derivatives:

1 float SmoothingKernelPoly6(float dst, float radius) {

2 if (dst < radius) {

3 float scale = 315 / (64 * PI * pow(abs(radius), 9));

4 float v = radius * radius - dst * dst;

5 return v * v * v * scale;

6 }

7 return 0;

8 }

9

10 float SpikyKernelPow3(float dst, float radius) {

11 if (dst < radius) {

12 float scale = 15 / (PI * pow(radius, 6));

13 float v = radius - dst;

14 return v * v * v * scale;

15 }

16 return 0;

17 }

18

19 float SpikyKernelPow2(float dst, float radius) {

20 if (dst < radius) {

21 float scale = 15 / (2 * PI * pow(radius, 5));

22 float v = radius - dst;

23 return v * v * scale;
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24 }

25 return 0;

26 }

27

28 float DerivativeSpikyPow3(float dst, float radius) {

29 if (dst <= radius) {

30 float scale = 45 / (pow(radius, 6) * PI);

31 float v = radius - dst;

32 return -v * v * scale;

33 }

34 return 0;

35 }

36

37 float DerivativeSpikyPow2(float dst, float radius) {

38 if (dst <= radius) {

39 float scale = 15 / (pow(radius, 5) * PI);

40 float v = radius - dst;

41 return -v * scale;

42 }

43 return 0;

44 }

A.3.2 Spatial Hashing Functions

These functions handle the conversion of positions to grid cells and hashing:

1 int3 GetCell3D(float3 position, float radius) {

2 return (int3)floor(position / radius);

3 }

4

5 uint HashCell3D(int3 cell) {

6 cell = (uint3)cell;

7 return (cell.x * hashK1) + (cell.y * hashK2) + (cell.z * hashK3);

8 }

9

10 uint KeyFromHash(uint hash, uint tableSize) {

11 return hash % tableSize;

12 }
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A.4 Summary
This chapter has presented key parts of the source code for the fluid simulation project.
The Simulation3D class and associated compute shaders form the backbone of the simu-
lation, leveraging the GPU for efficient and real-time particle physics calculations. The
full source code is available in the appendix for further reference and study.
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