
Guardians of Aeon

Development of a 2D video game
combining platformer, shooter and RPG

elements in Unity.

Final Degree Work Report

Gerard Roig Cléries

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

June 12, 2024

Supervised by: Emilo Bueso Aparici

http://creativecommons.org/licenses/by-nc-sa/3.0/

To my father, my mother, my sisters and my brother.

Thanks to their support, I have been able to pursue my career.

Acknowledgments

First of all, I would like to thank my mentor, Emilio Sáez Soro, for providing us with an
experienced and pragmatic perspective in game development.

Thanks to my final degree colleague, Miguel Ángel Álvarez Torres, for working just
as hard as I have, propelling the project forward.

I also would like to thank Ada for helping me achieve my best and keeping me
motivated.

And last but not least, thanks to Sergio Barrachina Mir and José Vte. Martí Avilés
for their inspiring LaTeX template for writing the Final Degree Work report, which I
have used as a starting point in writing this report.

i

http://lorca.act.uji.es/curso/latex/

Abstract

This document serves as Gerard Roig Cléries’ Final Degree Work report in Video Game
Design and Development.

This project involves designing, developing, and presenting a 2D video game that
combines the platformer, shooter, and RPG genres using the Unity game development
engine. The goal is to create a fully functional video game that seamlessly integrates
the mechanics and features of these three genres into an engaging gaming experience.

Keywords

Final Degree Work, video game, 2D, Guardians of Aeon.

iii

Contents

Contents v

1 Introduction 1
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 2

2 Planning and resources evaluation 3
2.1 Planning . 3
2.2 Resource Evaluation . 3

3 System Analysis and Design 7
3.1 Game Concept . 7
3.2 Game Design . 8
3.3 Art Design . 10
3.4 Interface Design . 13
3.5 Sound Design . 15

4 Work Development and Results 17
4.1 Work Development . 17
4.2 Scene Manager . 22
4.3 Results . 23

5 Conclusions and Future Work 25
5.1 Conclusions . 25
5.2 Future work . 25

Bibliography 27

A Source code 29

v

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 2

Here is an exposition outlining the initial purpose of our project, shedding light on
the reasons behind our project choice and the original plans for its development. It is
worth mentioning that this is a shared project with another individual.

1.1 Work Motivation
In deciding on our final degree project, Miguel Ángel Álvarez Torres and I wanted some-
thing that not only pushed our skills but also reflected our interests. We settled on
Guardians of Aeon for several reasons.

Firstly, our collaboration worked well because Miguel Ángel’s strengths in story-
telling, art and level design matched my programming abilities and visual effects knowl-
edge in Unity. Secondly, we wanted to prove ourselves that we were able to create a
game we could be proud of.

We have worked together in several game jams in the past and we knew we were
capable of doing well in a project of this magnitude. We wanted to showcast the exper-
tise in Unity acquired throughout our four-year academic journey.

1

2 Introduction

Furthermore, this joint project was mainly fueled by our shared love for diverse gaming
genres, each leaving its mark on our future game. We found inspiration in titles like
"Hollow Knight" [6] for its stunning art style and unique progression mechanics, "Blas-
phemous 2" [10] for its RPG-level design, and many others such as "Brotato" [1] for its
dynamic shooter elements.

1.2 Objectives
1. Unique Art Style: We knew that a cohesive and stunning visual is what separates
the good from the best games, so we decided to create the art and the visual effects from
scratch. Most of the time, I personally focused on creating believable shaders for wind,
glow and other effects, such as particles for plants.
2. Mechanics Progression System Across Levels: In the Forest, players learn
basic mechanics like movement and wall jumping while encountering initial enemies.
Transitioning to the Valley, they continue to face foes and navigate platforms with an
added feature: the dash. Then, in the Chronen Archives the difficulty increases and
finally, the Bridge serves as a test of all acquired skills, mixing platforming and combat
mechanics.
3. Enemy AI: We wanted to create a game with at least seven different enemies with
several behaviours. These include way-point movement and jumping for patrolling, and
attacking, shooting or following player when detected. So a simple state machine was
needed for the enemy behaviour.

1.3 Environment and Initial State
This project was a collaborative effort between Miguel Ángel Álvarez Torres and myself,
where we alternated workdays. Coordination was facilitated by our proximity, as we
live in the same apartment, making it easy to maintain communication. Using tools
like Github for project management, we followed a structured workflow. Additionally,
Discord served as our secondary communication platform if face-to-face was not possible,
allowing for daily meetings. Our work routine was uneven, but we made sure to reach
the expected work hours each week. Furthermore, biweekly sessions with our project
supervisor provided valuable feedback and direction.

During the initial phase, my contributions revolved around the player including tasks
such as implementing basic movement mechanics, wall jumping, a dash ability, camera
fluidity and projectile shooting.

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 3
2.2 Resource Evaluation . 3

This section goes into the technical aspects of the project, outlining the planning
process and detailing the software and resources utilized.

2.1 Planning
In this section, the breakdown of time allocation for the project is based on various
tasks. The Gantt chart (see Figure 2.1) visually represents the timeline for these tasks.
The majority of the time is dedicated to technical development within Unity, involving
tasks such as configuring the Unity environment, implementing movement and combat
mechanics, and integrating elements into Unity. Other essential tasks include documen-
tation, conceptualization and game design.

2.2 Resource Evaluation
Here, I am listing the hardware and software I have been using for the project. Although
not all of it has been absolutely necessary, it has been helpful in keeping things running
smoothly.

3

4 Planning and resources evaluation

Task n
am

e
S

tart d
ate

Fin
ish

 d
ate

S
tatu

s
A

p
p

roxim
ate

H
ou

rs
Em

p
loyed

December

January

February

March

April

May

June

Fin
al D

eg
ree P

roject D
ocu

m
en

tation
2

0
.0

1
.2

0
2

4
In

 p
rog

ress
5

0
h

 ab
ou

t
Technical Proposal

20.01.2024
23.01.2024

C
lose

2h about
G

D
D

26.02.2024
28.02.2024

C
lose

6h about
B
iw

eekly Reports
26.01.2024

31.05.2024
In progress

12h about
Pow

erpoint
15.05.2024

03.06.2024
In progress

5h about
Project M

em
ory

01.05.2024
15.05.2024

C
lose

25h about
C

on
cep

tu
alization

 an
d

 D
esig

n
1

6
.1

2
.2

0
2

4
In

 p
rog

ress
2

5
h

 ab
ou

t
B
ackground Research and C

oncept
02.02.2024

05.03.2024
C
lose

5h about
G

am
e m

echanics and system
s

16.12.2023
21.03.2024

C
lose

10h about
Level and scenario D

esign
26.02.2024

19.03.2024
C
lose

10h about
Tech

n
ical D

evelop
m

en
t

1
9

.0
1

.2
0

2
4

In
 p

rog
ress

1
1

5
h

 ab
ou

t
C
onfiguration of U

nity Environm
ent

19.01.2024
27.01.2024

C
lose

5h about
Im

plem
entation of M

ovem
ent M

echanics
19.01.2024

12.02.2024
C
lose

20h about
Im

plem
entation of C

om
bat M

echanics
12.02.2024

21.03.2024
C
lose

25h about
Inventory System

26.02.2024
15.05.2024

C
lose

15h about
M

ission and D
ialogue System

s
01.05.2024

15.05.2024
C
lose

10h about
A
I for Enem

ies and N
PC

s
02.03.2024

29.04.2024
C
lose

25h about
Level and S

cenario Im
plem

entation
13.03.2024

01.05.2024
C
lose

15h about
A

rt D
evelop

m
en

t
2

6
.1

2
.2

0
2

3
In

 p
rog

ress
7

0
h

 ab
ou

t
Environm

ent B
ackground Final D

esign
28.01.2024

15.05.2024
C
lose

30h about
C
reation of A

ssets and A
nim

ations
01.02.2024

21.03.2024
C
lose

10h about
D

esign H
U

D
 and M

enus
29.04.2024

15.05.2024
C
lose

15h about
D

esign V
isual Effects and Particles

26.02.2024
01.05.2024

C
lose

15h about
In

teg
ration

 an
d

 O
p

tim
ization

0
4

.0
2

.2
0

2
4

In
 p

rog
ress

4
0

h
 ab

ou
t

Integration of elem
ents in U

nity
30.01.2024

15.05.2024
C
lose

10h about
B
ug Testing and Fixing

13.02.2024
15.05.2024

C
lose

15h about

A
dding D

etails and A
dditional C

ontent
29.04.2024

15.05.2024
C
lose

15h about

Total h
ou

rs:
3

0
0

h
 ab

ou
t

Figure 2.1: My Gantt chart (made with Excel)

2.2. Resource Evaluation 5

• Hardware: I have used my Asus Rog Strix 15 laptop for everything, which is
composed of:

– CPU: Intel Core i7-10750H
– GPU: Nvidia RTX 2070 Mobile
– RAM: 16 GB

• Software: All the software I have used is completely free.

– Unity [16]: I used Unity as the main platform for developing our game. It
provided all the necessary tools for creating and testing the project.

– Rider (JetBrains IDE) [13]: For coding and scripting tasks, I relied on Rider,
which is an IDE (Integrated Development Environment) developed by Jet-
Brains. I chose it for its powerful features for writing code in Unity.

– GitHub [9]: My colleague and I used GitHub for version control and collab-
oration. It allowed us to track changes and coordinate our work effectively.

– Overleaf [12]: It is a great tool to edit LaTeX Templates and add lots of
functionality to a formal document without downloading any program.

– Google Docs [11]: We used it to draft less formal documents because it is
flexible and offers real-time collaboration features.

– Krita [7]: When it came to creating and refining visual assets like sprites
and background images, I relied on Krita.

– Stable Diffusion [15]: Stable Diffusion served as an image AI tool that I
utilized for a specific task in our project, the creation of plant assets. After
experimenting with various AI models and refining the selection, I ended up
with a set of optimal sprite sheets for integration into Unity’s sprite editor.
This process involved tasks in Krita such as color correction, removing back-
ground elements, and organizing the assets for seamless integration into our
game environment.

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Game Concept . 7
3.2 Game Design . 8
3.3 Art Design . 10
3.4 Interface Design . 13
3.5 Sound Design . 15

In this section, the various aspects of the game in which I have been involved are
discussed, including its concept, game design, art design and interface design. The
reasoning behind each decision and its impact on the game is also explained.

3.1 Game Concept
Guardians of Aeon follows the journey of the first space traveler from a planet called
Caelum to Aeon, another planet in the same solar system. Aeon holds the ruins of an
ancient civilization called the Chronen, who vanished 5,000 years ago.

The Chronen were humanoids with special abilities. They lived for a very long time
and had a deep connection to nature and time itself. They could even control time
to their advantage, which allowed them to build amazing things like floating cities and
advanced technology. But there was a catch.

The more the Chronen messed with time, the worse things got for the entire universe.

7

8 System Analysis and Design

It became clear that their powers were causing a big problem. To prevent a cosmic
disaster, the Chronen had to give up their abilities. However, this caused their cities to
crumble, their planet suffered, and most Chronen died.

Surprisingly, the Chronen were not completely gone. They gave up their physical forms
and became guardians who could still watch over Aeon. Now their goal is to ensure that
nobody ever messes with time again and repeats their mistakes.

3.1.1 Genres

Guardians of Aeon is a game that blends elements from three distinct video game genres:
platformers, RPGs (role-playing games), and shooters.

• Platformer elements: The game utilizes two-dimensional environments, requiring
players to navigate them by jumping between platforms and overcoming obstacles

• RPG elements: Players interact with an NPC (non-playable character) for infor-
mation and they are encouraged to uncover hidden knowledge by exploring the
world.

• Shooter elements: Players engage in battles against enemies using various weapons
and abilities to overcome them, adding a layer of challenge to the game.

3.2 Game Design

3.2.1 Mechanics and Game Feel

Being the main programmer, the majority of the mechanics have been implemented and
tweaked. Gradually the main focus shifted into smoothing the gameplay experience and
giving an organic feel, so I decided to develop all character movement script with physics.
This translates into applying forces to do any kind of movement instead of changing its
position directly, which could be made in a 2D game but it did not feel right.

• Character Movement: To implement an only physics-based approach, a force is ap-
plied with a certain acceleration when a movement input is pressed. It is important
to limit the maximum speed so that it cannot snowball.

• Character Jump: A vertical force is applied with a bigger acceleration when two
conditions are met, the character is on the floor1 and the jump input is pressed.

1In Unity, I chose to do a box ray-cast to know if the player is in contact with its adjacent walls.

3.2. Game Design 9

• Character Wall Jump: An opposite force to the wall and a vertical force are applied
when two conditions are met, the character is on the wall and the jump input is
pressed. Then, the input from the player is disabled for a few frames to give time
to detach from the wall.

• Dash: A force in the direction of the movement is applied when the dash input is
pressed. There is a small cool-down with this mechanic.

The other non-movement related mechanics are:

• Shoot: There are several weapons (see table 3.2.3) which the player can shoot
with. Instead of reloading the weapons there is an over-heat system implemented.
When the weapon is fully heated, it needs to cool down for a couple of seconds.

• Heal: There is a health system for the player and the enemies. When the player
takes damage it can take a potion to heal himself and fill the health-bar. A Brackeys
tutorial [4] was followed.

• Inventory: It is used to keep track of the weapons (see table 3.2.3) and potions the
player has. It is used to change weapons or use health potions.

• Interact: This input can be used near the NPC to interact with him.

3.2.2 Level Design

The adventure begins in a forest. Players learn the core mechanics: movement, jump-
ing, interacting, climbing walls and shooting. Here, they will face their first enemies and
encounter the a friendly NPC, a guide who offers assistance and gives context.

Progressing through a valley, players have to prove their combat skills against ene-
mies while also navigating platforming sections. This area marks the introduction of the
dash ability, adding a new dimension to movement.

The journey leads to the Chronen Archives, an ancient library contained in a moun-
tain. Here, the guardians of the Chronen civilization are protecting their knowledge.
The players must again test their skills as they navigate new platforms, all while avoid-
ing projectiles and shooting enemies.

Finally, the game ends in a dangerous bridge where all the learned experience is applied
with increased difficulty.

10 System Analysis and Design

3.2.3 Weapons

Weapon Type Damage (per bullet) Fire Rate Overheating Range
Sting Gun 10 300 Low Short

Elemental Gun 30 150 Medium Medium
Firelight Shotgun 60 35 High Short
Drowner Machine Gun 28 600 Very High Medium

Stronghold Rifle 70 90 Medium Long
Frigid Bow 100 60 Low Medium

3.2.4 Enemies

Every enemy has a unique AI which causes them to behave differently. Some of them
have a basic state machines with two states, patrol and attack.

• Minion: Patrols between two way-points. When the player is close enough, follows
the player and attacks him.

• Jumper: Similar to the minion, it has a patrol state and an attack state. However,
it moves by jumping, so it can avoid obstacles.

• Octopus: It is a flying creature that follows the player using the A* algorithm. I
followed a Brackeys tutorial [2], and after downloading a free resource, I applied
this path-finding script to all levels.

• Scorpion: A static creature that shoots venom projectiles with gravity to the player.
The initial angle of the projectile is calculated using physics.

• Jellyfish: A peaceful creature that only hurts the player when touched. It also
follows a fixed path.

• Radar: An enemy radar that disintegrates the player when scanned.

• Ghost: An enemy that goes through walls and deals damage to the player when
touched.

3.3 Art Design
In our project, the 2D art design of the game was primarily accomplished using Krita, a
powerful digital painting software. We also used Krita for our environment backgrounds.

On the one hand, the tile palettes were designed and then imported to Unity through
sprite-sheets. I created two tile-map grids for two different sizes, one for the general
sized tiles and a smaller one for the platform creation. Then, manually adjusted each

3.3. Art Design 11

tile collider to synchronize it to its visual.

On the other hand, all the animations were carefully programmed and revised to show
what the player and the enemies are doing all the time.

I have also created a total number of 176 different plants using Stable Diffusion AI.
First, I experimented with several image generation AI models to determine which pro-
duced the best results. Then, approximately 50 images were generated to find the most
suitable ones. I selected the top 10 images and edited them using Krita:

Figure 3.1: Optimal sprite sheets edited in Krita

12 System Analysis and Design

This is the edition in Krita step-by-step:

• Corrected the color of the plants and removed any malformed ones.

• The majority of the time was spent deleting and retouching all the plants.

• Used the selection tool to remove the background.

• Organized them for use in Unity’s sprite editor.

• Crafted plant assets from AI-generated images, refining and curating a selection
of 10 optimal sprite sheets in Krita for integration into Unity’s sprite editor (see
Figure 3.1). Each has between 10 and 20 plants.

In order to create a material and assign a shader to each plant, I had to implement
a custom Editor script for Unity to allow the division of all plants into individual sprites.

Once I had 176 plants I classified them into colors and shapes. The main reason was to
use different plants for different level themes:

• Forest: green

• Valley: orange and yellow

• Library: red, purple and pink

• Bridge: blue

3.3.1 Shaders and particles

Custom shaders were crafted in order to simulate natural phenomena and enhance visual
aesthetics, including wind simulation for plant movements and glow effects. These last
ones were used in multiple particle effects and in character and enemies’ eyes.

• Wind Shader: A significant focus was placed on developing a dynamic wind shader
to simulate realistic plant movements. By using the Shader Graph editor, I cus-
tomized parameters such as wind intensity, direction and speed to evoke lifelike
movements. This idea was taken from a Sasquatch B Studios tutorial [14].

• Glow Shader: Parallel to the wind shader, I dedicated efforts to implementing a
glow shader designed to enhance specific visual elements, such as petals and eyes.
Extensive research into glow shader methodologies guided my approach. This
shader was carefully calibrated to impart luminosity to selected elements, making
them stand out. For the eyes, a sprite-sheet mask was needed, this last concept
was developed by following a Brackeys tutorial [3].

3.4. Interface Design 13

3.4 Interface Design

3.4.1 Visual System

First of all, to improve the overall organic feel of the character camera some adjustments
were made by:

• Implementing Camera Smoothness: Unity built-in algorithms were used to ensure
smooth camera movements, reducing jarring transitions.

• Adjusting Camera Parameters: Fine-tuned various camera settings such as field of
view, depth, and distance from the player character.

• Limiting Camera Movement: To prevent the camera from straying beyond the
game world boundaries, implementation of constraints or boundaries, restricting
its movement to predefined areas.

Visually, the interface design is also formed by the Game User Interface (UI) in-game
and the menus. The UI is composed of the character’s health bar and a smaller bar for
the weapon over-heat status. Each bar is edited with their own script. The player has
access to these scripts and can modify their values.

Figure 3.2: Game Pause Menu

14 System Analysis and Design

On the contrary, the Inventory menu is a round wheel where the player is able to
choose a weapon and heal.

There is also a main menu where the player can choose between the four levels, go
to the settings or leave the game. Finally, there is a pause menu (see Figure 3.2), where
the player is able to pause mid game, go back to the menu or leave the game.

3.4.2 Control System

In this version the game is only for PC, so all the inputs are keyboard and mouse related.
These are the keybindings for each mechanic:

• Character Movement: A/left arrow is used to go left. D/right arrow is used to go
right.

• Character Jump and Wall Jump: Space-bar.

• Dash: Left Shift.

• Shoot: Mouse Left Click/Left Control

• Inventory Access: Press Q and choose by moving the mouse from the wheel menu.

• Interact: E Key.

3.5. Sound Design 15

3.5 Sound Design

3.5.1 Audio Manager

I developed an Audio Manager, which handles all sound-related functionalities in the
game. This includes managing sound effects, music, and ambience sounds.

I searched for copyright-free sounds on Freesound [8]. I found suitable sound files that
match our game’s requirements and can be freely used without legal issues.

3.5.2 Sound effects

I added 3D spatial sound effects for enemies that change based on the player’s position
relative to the enemies, providing audio cues that help players sense the direction and
distance of threats.

I also added other sound effects for enemies, such as attacks, and sounds for button
clicks, navigation, and other UI elements.

3.5.3 Music and Ambience

All the music was downloaded from the compositor Scott Buckley [5]. His music is
licensed under the Creative Commons Attribution 4.0 law.

C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Work Development . 17
4.2 Scene Manager . 22
4.3 Results . 23

All the work has been explained in general terms, so in this chapter the main focus of
my work development will be discussed. It will go a little more into detail about specific
topics and then the final results will be showed.

Most graphs and scripts have been written by me, so I have designed the organization
with no coordination inconveniences. My main source of information has been Brackeys
and Unity Documentation.

4.1 Work Development

4.1.1 Main Character

I will start explaining the most important components and scripts the main character
has and for what reason:

• Character Movement Script:

– Singleton Instantiation: The script includes a Singleton pattern implementa-
tion to ensure there is only one instance of this class, which provides a global
point of access to the instance.

17

18 Work Development and Results

– The Update method is used to handle player input and update the charac-
ter’s state, while the FixedUpdate method is responsible for executing the
character’s movement logic within the physics system.

– Collision Detection: Methods such as isGrounded, isWallLeft, and isWall-
Right are implemented to detect collisions with the ground and walls, allowing
the character to respond appropriately to environmental obstacles.

– Gizmos Visualization: The OnDrawGizmos method is utilized to visualize the
ray-casts used for collision detection in the Editor (see Figure 4.1).

– A dash mechanic is implemented, allowing the character to perform a quick
dash in the specified direction with a cool-down period between dashes.

Figure 4.1: White Boxes are the ray-casts representation

• Character Shoot Script:

– The CharShoot script serves as the central controller for the character’s shoot-
ing mechanics in the game. Its primary function is to manage the firing of
bullets based on player input while also overseeing the mechanisms associated
with overheating, which impacts the character’s ability to shoot rapidly.

– Functionalities to regulate the rate of fire, ensuring that the character cannot
shoot continuously without pause. It uses a co-routine to handle the cool-
down period between successive shots.

– Additionally, the CharShoot script introduces an overheating system, which
imposes restrictions on shooting when the character’s weapon becomes exces-
sively heated. This feature adds a strategic element to gameplay, requiring
players to manage their shooting frequency effectively to avoid overheating.

4.1. Work Development 19

• Bullet Behavior Script:

– On the other hand, the BulletBehavior script defines key attributes of the
bullets, including their appearance, speed, and lifetime, which significantly
impact the dynamics of the game’s combat system.

– Upon instantiation, the BulletBehavior script determines the visual charac-
teristics of each bullet, such as its sprite and material, based on predefined
parameters. This allows for visual variety and distinction among different
types of bullets.

– Moreover, the script assigns different behaviors to various types of bullets. For
example, bullets may travel at different speeds or be subject to gravitational
forces, influencing their trajectory and interactions with game elements.

– Upon collision, appropriate actions are triggered, such as applying damage to
enemy entities or initiating sound effects.

The Bullet Behavior Script was programmed in a way it could be re-used for every bullet
type. When the weapon is swapped in the inventory, another bullet is chosen.

Once the health system and the overheat system was fully functional, I created a script
to visually handle an HP bar and another one to handle the overheat bar, both part of
the UI.

I also added a Laser Behavior Script in case we needed it. At its core, the script uses a
LineRenderer component to render the laser beam, providing a visual representation of
a projectile’s path. The LineRenderer is configured to start at the position of the bullet
spawn point.

This script performs a ray-cast along the direction of the laser beam to detect any
obstacles or targets in its path. If the raycast intersects with an object, the destination
point of the laser beam is adjusted to terminate at the point of intersection, ensuring
that the laser beam is visually obstructed by solid objects in the environment.

4.1.2 Enemies

The enemies AI, as I mentioned before, have a unique script that contains all its behav-
ior. However, all the enemies have a common Enemy script to deal damage to the player
or receive damage.

20 Work Development and Results

The most different AIs are definitely from the octopus and the scorpion:

• Octopus: I wanted to create an enemy that followed the player and damaged him.
The first version was simple, the octopus simply went in a straight line through
walls. Then I realized that I needed some sort of algorithm to avoid obstacles,
this is the moment I remembered the A* algorithm (see Figure 4.2). However, I
knew that for only one enemy, my own A* implementation was not worth the huge
investment of time. So instead, I followed a Brackeys A* tutorial [2].

• Scorpion: This enemy was supposed to shoot projectiles with gravity in a static
way. Nevertheless, I challenged myself to shoot the character and update the
launch angle each time the character moved. To achieve this I ended up using the
physics equations of the parabolic movement1.

Figure 4.2: Octopus A* Algorithm

1

y = y0 + v0y t − 1
2gt2 (4.1)

4.1. Work Development 21

4.1.3 Shading and Particles

Once all the plants were added to a scene it felt lifeless. The organic feel I was looking
for did not match my expectations with a collection of static plants. That is when I
stumbled across shaders and particles.

In order to add life to the game I wanted to create a wind shader effect to the plants
and also add a jiggle effect when the player touched them. To achieve this I researched
how to develop my own Wind Shader Graph in Unity (see Figure 4.5) and I found a
comprehensible tutorial [14] explaining it in detail.

However, the game still needed something to pop even more, which is why I imple-
mented a glow shader. This glow shader was applied to multiple types of particles and
some bullets that I also developed. Then I played with its color settings to ambient each
level in a different set of colors (see Figure 4.3).

Figure 4.3: Particle effect with pink glow shader

By recycling the glow shader I decided to give glow in some other places, like the main
character and the enemy eyes (see Figure 4.4). This was done by applying a mask, which
I had to manually craft, in Krita. After creating all the emission masks I added them
to their respective Sprite Editor and added the glow material.

22 Work Development and Results

Figure 4.4: Eyes with yellow and blue glow.
Particle effects with yellow glow and venom projectile with green glow.

4.2 Scene Manager

4.2.1 Implementing Inventory

First, I developed an inventory system that allows players to easily access their weapons
throughout the game at any time, allowing them to switch their weapons as needed.
This system also keeps track of whether the dash ability has been obtained or not. The
inventory is maintained after death.

4.2.2 Level Transition and Checkpoints

Next, I implemented the mechanics for level transitions. In other words, creating the
logic that determines how players progress from one level to the next, using triggers
such as reaching a certain point or interacting with an NPC. Incorporating checkpoints
is necessary for saving player progress after death.

4.2.3 Resetting Enemies and Pause Logic

Finally, I included a mechanism to reset enemies, involving a system that respawns or
resets enemies’ states under certain conditions, such as when a player re-enters an area
or dies. Additionally, I fixed some bugs in the enemy pathfinding system (specifically
the A* algorithm) to ensure enemies reset their destination and any pre-existing path.

Implementing a pause functionality was also convenient to allow players to halt the
game and resume where they left off, adding control over their play sessions.

4.3. Results 23

4.3 Results
The project successfully achieved its core objectives outlined in the Introduction. A
unique and cohesive art style was established through Krita and custom shaders. The
2D art assets, environments, and even the plant life contribute to a distinct aesthetic.

Moreover, there is a progression system effectively implemented. Players begin by grasp-
ing fundamental movement mechanics like jumping and wall-climbing. As they progress,
the dash ability adds a new dimension to movement. Finally, the last levels challenge
players by requiring mastery of all learned skills.

The enemy AI also offers a satisfactory level of variety and challenge. Enemies show di-
verse behaviors, ranging from basic patrolling and attacking to more complex pathfinding
utilized by the octopus or the projectile-shooting behavior of the scorpion.

24 Work Development and Results

Figure 4.5: Wind Shader Graph

C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusions . 25
5.2 Future work . 25

5.1 Conclusions

At the start of the project, my team mate and I had plenty of time to develop our
tasks. These last days, on the other hand, we have had to organize ourselves diligently
to balance the labor practices with the game development.

This project has been a significant learning opportunity, helping us improve our skills
in programming, art design, and level design. Through communication and task dele-
gation, we learned valuable lessons in project management, which are essential in game
development. The resulting game reflects our collaborative efforts.

While we successfully achieved our initial goals, we also learned the importance of man-
aging time and iteratively refining game difficulty.

5.2 Future work

There is plenty of room for growth in this project. One way to go is expanding the game’s
world with new levels and obstacles, opening up the chance to introduce different types

25

26 Conclusions and Future Work

of enemies and maybe even a big boss battle. We could also dive deeper into enemy AI,
making them smarter and more challenging to deal with.

Another path to explore is bringing the game to mobile platforms, which could help
it reach a wider audience. But the skills I picked up while creating the game’s art style,
such as shader development, will definitely come in handy for future projects.

Bibliography

[1] Blobfish. Brotato. https://store.steampowered.com/app/1942280/Brotato. Ac-
cessed: 2023-12-16.

[2] Brackeys. A* implementation from a resource. https://youtu.be/jvtFUfJ6CP8.
Accessed: 2024-04-03.

[3] Brackeys. Glow shader. https://youtu.be/WiDVoj5VQ4c. Accessed: 2024-03-21.

[4] Brackeys. Health bar tutorial. https://youtu.be/BLfNP4Sc_iA. Accessed: 2024-02-
24.

[5] Scott Buckley. Free music. https://www.scottbuckley.com.au/tag/free-music/.
Accessed: 2024-05-10.

[6] Team Cherry. Hollow knight. https://www.hollowknight.com. Accessed: 2023-12-
16.

[7] Krita Foundation. Krita. https://krita.org/. Accessed: 2024-12-16.

[8] Freesound. Free sfx. https://freesound.org/. Accessed: 2024-05-04.

[9] Inc. GitHub. Github. https://github.com/. Accessed: 2024-01-29.

[10] The Game Kitchen. Blasphemous 2. https://www.blasphemous2game.com. Accessed:
2023-12-16.

[11] Google LLC. Google docs. https://www.google.com/docs/about/. Accessed: 2023-
12-16.

[12] Overleaf. https://www.overleaf.com/. Accessed: 2024-05-01.

[13] JetBrains s.r.o. Jetbrains rider. https://www.jetbrains.com/lp/dotnet-unity/.
Accessed: 2024-01-19.

[14] Sasquatch B Studios. Wind shader. https://youtu.be/Ctbqax1XRiE. Accessed:
2024-03-15.

[15] CompVis Team. Stable diffusion. https://github.com/CompVis/stable-diffusion.
Accessed: 2024-03-09.

27

https://store.steampowered.com/app/1942280/Brotato
https://youtu.be/jvtFUfJ6CP8
https://youtu.be/WiDVoj5VQ4c
https://youtu.be/BLfNP4Sc_iA
https://www.scottbuckley.com.au/tag/free-music/
https://www.hollowknight.com
https://krita.org/
https://freesound.org/
https://github.com/
https://www.blasphemous2game.com
https://www.google.com/docs/about/
https://www.overleaf.com/
https://www.jetbrains.com/lp/dotnet-unity/
https://youtu.be/Ctbqax1XRiE
https://github.com/CompVis/stable-diffusion

28 Bibliography

[16] Unity Technologies. Unity. https://unity.com/. Accessed: 2024-01-19.

https://unity.com/

A
p

p
e

n
d

ix A
Source code

Character Movement

1
2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5
6 public class CharMovement : MonoBehaviour

7 {

8 //Singleton instantiation

9 private static CharMovement instance;

10 public static CharMovement Instance

11 {

12 get

13 {

14 if (instance == null) instance = GameObject.FindObjectOfType<CharMovement>();

15 return instance;

16 }

17 }

18
19 private Rigidbody2D rb;

20 private Vector2 input;

21 private Animator animator;

22
23 [SerializeField] private float moveMaxSpeed;

24 [SerializeField] private float acceleration;

25
26 [SerializeField] private float jumpForce;

27 [SerializeField] private bool isJumping;

28 [SerializeField] private Vector2 jumpCastSize;

29 [SerializeField] private float jumpCastDistance;

29

30 Source code

30 [SerializeField] private Vector2 wallCastSize;

31 [SerializeField] private float wallCastDistance;

32 [SerializeField] private LayerMask groundLayer;

33 [SerializeField] private Collider2D dashCollider;

34 [SerializeField] private Collider2D playerCollider;

35
36 private float jumpTimer = 0f;

37 private float jumpTimerLimit = 0.2f;

38 private bool isWallJumping = false;

39
40 [SerializeField] private float dashSpeed;

41 [SerializeField] private float dashCooldown;

42 private float dashTimer = 0f;

43 private float dashTimerLimit = 0.1f;

44 private bool isDashing = false;

45 private Vector2 dashDirection;

46 private float dashCounter = float.PositiveInfinity;

47
48 public bool isPlayerRight = true;

49
50 private void Start()

51 {

52 rb = GetComponent<Rigidbody2D>();

53 }

54
55 private void Update()

56 {

57 input.x = Input.GetAxisRaw("Horizontal");

58 input.y = Input.GetAxisRaw("Vertical");

59
60 //Jump

61 if (jumpTimer < jumpTimerLimit)

62 jumpTimer += Time.deltaTime;

63 else

64 {

65 isWallJumping = false;

66 }

67
68 if (Input.GetButtonDown("Jump") && jumpTimer >= jumpTimerLimit)

69 {

70 jumpTimer = 0f;

71 if (isGrounded())

72 {

73 Jump(0);

74 }

75 else if (isWallLeft())

76 {

77 Jump(1);

78 }

79 else if (isWallRight())

80 {

81 Jump(-1);

82 }

83 }

Source code 31

84
85 //Dash

86 if (dashTimer < dashTimerLimit)

87 dashTimer += Time.deltaTime;

88 else

89 {

90 playerCollider.enabled = true;

91 dashCollider.enabled = false;

92 isDashing = false;

93 }

94
95 if (dashCounter < dashCooldown)

96 dashCounter += Time.deltaTime;

97
98 if (Input.GetKeyDown(KeyCode.LeftShift) && dashCounter >= dashCooldown)

99 {

100 dashCounter = 0f;

101 Dash();

102 }

103
104 //Check if going right

105 if (rb.velocity.x > 0.1f)

106 {

107 isPlayerRight = true;

108 }

109 else if (rb.velocity.x < -0.1f)

110 {

111 isPlayerRight = false;

112 }

113 }

114
115 private void FixedUpdate()

116 {

117 Move();

118 }

119
120 private void Move()

121 {

122 float speed = input.x * moveMaxSpeed;

123
124 //Apply Force to Character

125 float movement = (speed - rb.velocity.x) * acceleration;

126
127 if (!isWallJumping && !isDashing)

128 {

129 rb.AddForce(movement * Vector2.right, ForceMode2D.Force);

130 }

131 else if (isDashing)

132 {

133 rb.velocity = new Vector2(dashDirection.x * dashSpeed, dashDirection.y * dashSpeed * 0.5f);

134 }

135 }

136
137

32 Source code

138 private void Jump(int wall)

139 {

140 float force = jumpForce;

141 if (rb.velocity.y < 0)

142 force -= rb.velocity.y;

143
144 if (wall == 0)

145 {

146 rb.AddForce(Vector2.up * force, ForceMode2D.Impulse);

147 }

148 else

149 {

150 isWallJumping = true;

151 rb.AddForce(Vector2.up * force * 0.75f, ForceMode2D.Impulse);

152 rb.AddForce(Vector2.right * jumpForce * wall * 0.75f, ForceMode2D.Impulse);

153 }

154 }

155
156 private bool isGrounded()

157 {

158 if (Physics2D.BoxCast(transform.position, jumpCastSize, 0, -transform.up, jumpCastDistance, groundLayer))

159 {

160 return true;

161 }

162 return false;

163 }

164
165 private bool isWallLeft()

166 {

167 RaycastHit2D hitInfo = Physics2D.BoxCast(transform.position, wallCastSize, 0, -transform.right, wallCastDistance, groundLayer);

168 if (hitInfo.collider != null)

169 {

170 if (hitInfo.collider.gameObject.GetComponent<PlatformEffector2D>() != null)

171 {

172 return false;

173 }

174 return true;

175 }

176 return false;

177 }

178
179 private bool isWallRight()

180 {

181 RaycastHit2D hitInfo = Physics2D.BoxCast(transform.position, wallCastSize, 0, transform.right, wallCastDistance, groundLayer);

182 if (hitInfo.collider != null)

183 {

184 if (hitInfo.collider.gameObject.GetComponent<PlatformEffector2D>() != null)

185 {

186 return false;

187 }

188 return true;

189 }

190 return false;

191 }

Source code 33

192
193 private void OnDrawGizmos() //Visualize RayCasts

194 {

195 Gizmos.DrawWireCube(transform.position-transform.up * jumpCastDistance, jumpCastSize);

196 Gizmos.DrawWireCube(transform.position-transform.right * wallCastDistance, wallCastSize);

197 Gizmos.DrawWireCube(transform.position+transform.right * wallCastDistance, wallCastSize);

198 }

199
200 private void Dash()

201 {

202 dashTimer = 0;

203 isDashing = true;

204 playerCollider.enabled = false;

205 dashCollider.enabled = true;

206 Vector2 dir = new Vector2(input.x, input.y).normalized;

207 if (dir.sqrMagnitude>0)

208 {

209 dashDirection = dir;

210 }

211 else

212 {

213 if (isPlayerRight)

214 dashDirection = new Vector2(1,0);

215 else dashDirection = new Vector2(-1, 0);

216 }

217 }

218 }

Character Shoot

1
2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5
6 public class CharShoot : MonoBehaviour

7 {

8 [SerializeField] float fireRate = 300f;

9 [SerializeField] private GameObject bullet;

10 [SerializeField] private Transform bulletSpawn;

11
12 private GameObject bulletInst;

13 private bool allowShoot = true;

14 private float overheatTimer = 0;

15 private bool overheat = false;

16 private int maxOverheat = 4;

17
18 private void Start()

19 {

20 OverheatBar.Instance.SetMaxValue(4);

21 OverheatBar.Instance.SetValue(0);

22 }

34 Source code

23
24 private void Update()

25 {

26 if (Input.GetButtonDown("Fire1") && allowShoot && !overheat)

27 {

28 StartCoroutine(Shoot());

29 }

30
31 Overheat();

32 }

33
34 private IEnumerator Shoot()

35 {

36 allowShoot = false;

37 overheatTimer++;

38
39 if (CharMovement.Instance.isPlayerRight)

40 {

41 bulletInst = Instantiate(bullet, bulletSpawn.position, Quaternion.Euler(0, 0, 0));

42 }

43 else

44 {

45 bulletInst = Instantiate(bullet, bulletSpawn.position, Quaternion.Euler(0, 0, 180));

46 }

47
48 yield return new WaitForSeconds(1/(fireRate/60f));

49 allowShoot = true;

50 }

51
52 private void Overheat()

53 {

54 if (!overheat)

55 {

56 OverheatBar.Instance.SetValue(overheatTimer);

57 if (overheatTimer >= 0)

58 {

59 //Heat reduces over time while shooting

60 overheatTimer -= Time.deltaTime * (2 + 0.4f * overheatTimer) * (fireRate / 450f);

61
62 //Disable shoot when overheat

63 if (overheatTimer >= maxOverheat) overheat = true;

64 }

65 }

66 else

67 {

68 OverheatBar.Instance.SetValueRed(overheatTimer);

69 overheatTimer -= Time.deltaTime * 2;

70 //Enable shoot when heat is reduced

71 if (overheatTimer <= 0) overheat = false;

72 }

73 }

74 }

Source code 35

Bullet Behavior

1
2 using UnityEngine;

3
4 public class BulletBehavior : MonoBehaviour

5 {

6 [SerializeField] private Sprite[] sprites;

7 [SerializeField] private Material[] materials;

8 [SerializeField] private float normalBulletSpeed = 25f;

9 [SerializeField] private float physicsBulletSpeed = 30f;

10 [SerializeField] private float lifeTime = 3f;

11 [SerializeField] private LayerMask destroyLayers;

12
13 private Rigidbody2D rb;

14 private SpriteRenderer sr;

15
16 public enum BulletType

17 {

18 Normal,

19 Physics

20 }

21 public BulletType bulletType;

22
23 public enum BulletElement

24 {

25 Fire,

26 Water,

27 Ice,

28 Metal,

29 Corrosion

30 }

31 public BulletElement bulletElement;

32
33 private void Start()

34 {

35 rb = GetComponent<Rigidbody2D>();

36 sr = GetComponent<SpriteRenderer>();

37
38 SetSprite();

39 SetLifeTime();

40 SetSpeed();

41 }

42
43 private void FixedUpdate()

44 {

45 if (bulletType == BulletType.Physics)

46 {

47 transform.right = rb.velocity;

48 }

49 }

50
51 private void OnTriggerEnter2D(Collider2D collision)

52 {

36 Source code

53 //Is collision in the layers

54 if ((destroyLayers.value & (1 << collision.gameObject.layer))>0)

55 {

56 //Damage Enemy

57 if (collision.gameObject.layer == 8)

58 {

59 collision.gameObject.GetComponent<Enemy>().Damage(1f);

60 }

61
62 //Destroy bullet

63 Destroy(gameObject);

64 }

65 }

66
67 private void SetSprite()

68 {

69 switch (bulletElement)

70 {

71 case BulletElement.Fire:

72 sr.sprite = sprites[0];

73 sr.material = materials[0];

74 break;

75 case BulletElement.Water:

76 sr.sprite = sprites[1];

77 sr.material = materials[1];

78 break;

79 case BulletElement.Ice:

80 sr.sprite = sprites[2];

81 sr.material = materials[2];

82 break;

83 case BulletElement.Metal:

84 sr.sprite = sprites[3];

85 sr.material = materials[3];

86 break;

87 case BulletElement.Corrosion:

88 sr.sprite = sprites[4];

89 sr.material = materials[4];

90 break;

91 default:

92 sr.sprite = sprites[0];

93 sr.material = materials[0];

94 break;

95 }

96 }

97
98 private void SetLifeTime()

99 {

100 Destroy(gameObject, lifeTime);

101 }

102
103 private void SetSpeed()

104 {

105 if (bulletType == BulletType.Normal)

106 {

Source code 37

107 rb.velocity = transform.right * normalBulletSpeed;

108 rb.gravityScale = 0f;

109 }

110 else if (bulletType == BulletType.Physics)

111 {

112 rb.velocity = transform.right * physicsBulletSpeed;

113 rb.gravityScale = 4f;

114 }

115
116 }

117 }

Laser Behavior

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4
5 public class LaserBehavior : MonoBehaviour

6 {

7 [SerializeField] private LineRenderer lineRenderer;

8 [SerializeField] private Transform bulletSpawn;

9 [SerializeField] private LayerMask Player;

10 private float laserLength = 23f;

11
12 void Update()

13 {

14 lineRenderer.SetPosition(0, bulletSpawn.position);

15 lineRenderer.SetPosition(1, bulletSpawn.position);

16
17 if (Input.GetButton("Fire1"))

18 {

19 SetDestination();

20 }

21 }

22
23 void SetDestination()

24 {

25 Vector2 destination = bulletSpawn.position;

26 if (CharMovement.Instance.isPlayerRight)

27 {

28 destination = (Vector2)transform.position + new Vector2(laserLength, 0);

29 }

30 else

31 {

32 destination = (Vector2)transform.position + new Vector2(-laserLength, 0);

33 }

34
35 RaycastHit2D hitInfo = Physics2D.Raycast((Vector2)transform.position, transform.right, laserLength, ~Player);

36 if (hitInfo)

37 {

38 if (hitInfo.collider != null)

38 Source code

39 {

40 if (hitInfo.collider.gameObject.layer == 6)

41 {

42 destination = hitInfo.point;

43 }

44 else if (hitInfo.collider.gameObject.layer == 8)

45 {

46 destination = hitInfo.point;

47 }

48 }

49 }

50
51 lineRenderer.SetPosition(1, destination);

52 }

53 }

	Contents
	Introduction
	Work Motivation
	Objectives
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Game Concept
	Game Design
	Art Design
	Interface Design
	Sound Design

	Work Development and Results
	Work Development
	Scene Manager
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Source code

