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Biarchetype analysis: simultaneous learning of
observations and features based on extremes
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Abstract—We introduce a novel exploratory technique, termed biarchetype analysis, which extends archetype analysis to
simultaneously identify archetypes of both observations and features. This innovative unsupervised machine learning tool aims to
represent observations and features through instances of pure types, or biarchetypes, which are easily interpretable as they embody
mixtures of observations and features. Furthermore, the observations and features are expressed as mixtures of the biarchetypes,
which makes the structure of the data easier to understand. We propose an algorithm to solve biarchetype analysis. Although
clustering is not the primary aim of this technique, biarchetype analysis is demonstrated to offer significant advantages over
biclustering methods, particularly in terms of interpretability. This is attributed to biarchetypes being extreme instances, in contrast to
the centroids produced by biclustering, which inherently enhances human comprehension. The application of biarchetype analysis
across various machine learning challenges underscores its value, and both the source code and examples are readily accessible in R
and Python at https://github.com/aleixalcacer/JA-BIAA.

Index Terms—Archetype analysis, biclustering, prototype, unsupervised learning.

✦

1 INTRODUCTION

C LUSTER analysis (CLA) is one of the most widely used
tools in exploratory data analysis. The idea of cluster-

ing is to make groups of observations in such a way that
each group contains similar observations that are different
to those of the rest of the groups. If the data consist of well-
separated clusters, appropriate clustering techniques can
obtain, on the one hand, the representative of each cluster
(the mean or centroid of the cluster for the popular k-means
technique), and, on the other hand, the assignations of each
observation to one cluster, or a degree of belonging to each
cluster for fuzzy clustering techniques.

However, CLA is also used as a segmentation tech-
nique in the absence of well-separated (clearly differenti-
ated) clusters in data. Many times, data follow a fan-spread
pattern, i.e. features vary continuously across observations.
The centroids are located in the middle of the data cloud
since data points have to be covered in such a way that
the distance between them and the assigned centroid is
minimized (see [1] about the relationship between CLA and
set partitioning). In those cases, where data can be viewed
as a superposition of various populations, it is of particular
interest to use Archetype Analysis (AA) for segmenting [2].

Instead of segmenting on the centroids, AA segments
on the extremes. AA was defined by [3]. The objective of
AA is to represent the observations by means of a convex
combination of archetypes, which in turn are convex com-
binations of observations. Archetypes or ‘pure types’ lie on
the boundary of the convex hull of the data and are therefore
extreme profiles. Being extreme instances rather than central
instances makes human understanding and interpretation of
data easier [4] since human cognition prefers extreme oppo-
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sites [5]. An illustrative example of this was analyzed in [6],
where CLA and AA were compared and archetypes were
much more informative and understandable than centroids,
because archetypes are further apart from each other than
centroids.

Biclustering is a data mining technique introduced by
[7], although it was popularized by [8], who applied it to
gene expression data analysis. In biclustering (also known
as block clustering, co-clustering, or two-mode clustering),
rows (observations) and columns (features) of a data matrix
are simultaneously clustered. An excellent overview of bi-
clustering and fuzzy biclustering is found in [9]. Biclustering
is widely used in biological and medical applications [10],
especially in gene expression data [11], [12]. However, it is
also applied in many other fields, such as marketing [13],
psychology [14], recommender systems [15], sports [16],
[17], website traffic [18], and many other pattern recognition
applications, such as collaborative filtering, text mining,
multimedia data processing and retrieval, etc. [10], [19].

In recent years, there has been growing interest in AA.
On the one hand, there has been an increasing number of pa-
pers proposing efficient computational methods to calculate
AA [20], [21], [22], [23], with applications in computer vi-
sion. On the other hand, AA has been applied in other very
diverse fields, such as, climatology [24], [25], ergonomics
[26], [27], genetics [28], [29], [30], image processing [31],
[32], [33], [34], machine learning problems [20], [35], [36],
[37], market research [38], multi-document summarization
[39], nanotechnology [40], neuroscience [41], [42], sports
[43], [44], [45] and sustainability [4]. Finally, other papers
have proposed extensions and new methodologies derived
from AA with applications in a broad spectrum of fields:
kernel AA [20], AA with missing data [20], [46], robust
AA [47], [48], interval archetypes [49], archetypoid analy-
sis (ADA) [50], functional AA [51], data-driven prototype
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identification [52], archetypal networks [35], probabilistic
AA [53], AA for nominal [6], [54] and ordinal observations
[55], directional AA [56], AA for shapes [57], deep AA [37],
[58], and outlier detection [59], [60], [61]. Nevertheless, no
previous work has developed archetypal analysis for both
rows and columns simultaneously, which we refer to as
biarchetype analysis (biAA), co-archetype analysis or two-
mode archetype analysis.

[12] reviews biclustering in biological and biomedical
fields. They point out the need to improve the interpretabil-
ity of biclustering results, and they also highlight that
possible overlapping homogeneous submatrices have to be
identified. This clashes with the idea of CLA, whose origin
was to find separate (not overlapping) groups, but it is in
the line with the basis of AA. Moreover, biclustering of
human gene expression data has been used to identify phe-
notype–genotype associations in studies of common or rare
diseases. Note that archetypes themselves are phenotypes
[37]; in fact, archetypes have been used also to explain the
evolutionary development of biological systems [62]. There-
fore, putting all this together, it seems that biAA could be
a reasonable alternative to biclustering in biology, as biAA
could improve the interpretability of results. Nevertheless,
the fields of application of biAA are not just restricted to
biology; they would be the same as for biclustering, i.e.
biAA can be applied to many pattern recognition problems.

Our contributions consist of defining biAA for the first
time, proposing a computational method to calculate it,
whose implementation is available in the R package biaa
https://github.com/aleixalcacer/biaa and the Python pack-
age https://github.com/aleixalcacer/archetypes, showing
how it works and the advantages of using archetypes
(extremes) rather than the centroids of biclustering in an
illustrative example, and finally, applying it to several real
data sets in different fields to demonstrate the usefulness of
biAA in various problems.

The outline of the paper is as follows: previous method-
ologies (CLA, biclustering, fuzzy biclustering, AA) are re-
viewed in a common framework in Sec. 2. In Sec. 3, biAA
is defined and a computational procedure is proposed. An
illustrative example is used to exemplify biAA and compare
it to biclustering. In Sec. 4, our proposal is applied to three
real data sets. Some conclusions and ideas for future work
are provided in Sec. 5.

2 BACKGROUND

Matrix factorization is our common framework for describ-
ing the established methods (as used in [63] for clustering)
and our proposal. Let Xn×m be a data matrix with n
observations and m continuous features (they should be
standardized in order to avoid problems if they measure
different dimensions). Let αn×k and γc×m be matrices with
values in [0, 1]. α is the membership matrix of the observa-
tions, while γ is the membership matrix of the features. Z
is the matrix of representative instances that approximates
X. The objective is to minimize: ∥X− αZγ∥2, with different
constraints, where ∥.∥ stands for the Frobenius norm.

2.1 Clustering

For clustering, Z is the matrix of centroids, which is com-
puted by Z = (α′α)−1α′Xγ′(γγ′)−1, where ′ denotes trans-
pose.

k-means clustering: The constraints are:
∑k

g=1 αig = 1
with αig ∈ {0, 1} for i = 1, . . . , n and γ = Im×m is the
identity matrix of order m. The matrix Zk×m = (α′α)−1α′X
has the centroids of each one of k groups that partition the
data set.

Fuzzy clustering: In soft clustering, each observation is
assigned membership to each group. The restrictions are:∑k

g=1 αig = 1 with αig ≥ 0 for i = 1, . . . , n and γ = Im×m.
Again, the matrix Zk×m has the centroids of each one of k
groups.

Biclustering: This is also called double k-means with
hard partitions by [63], where algorithms to solve it are pro-
posed. The constraints are:

∑k
g=1 αig = 1 with αig ∈ {0, 1}

for i = 1, . . . , n and
∑c

h=1 γhj = 1 with γhj ∈ {0, 1} for
j = 1, . . . ,m. Now, the dimension of Z is k × c, since there
are k groups for observations and c groups of variables.

Fuzzy biclustering: This is also called fuzzy double
k-means by [63]. The constraints are now continuous:∑k

g=1 αig = 1 with αig ≥ 0 for i = 1, . . . , n and∑c
h=1 γhj = 1 with γhj ≥ 0 for j = 1, . . . ,m. [9] proposed

several algorithms for solving fuzzy double k-means with
continuous data, called FDkM and FDkMpf (Fuzzy Double
k-Means with polynomial fuzzifiers), whose Matlab imple-
mentations are available in [9].

Besides the previous framework, there are some propos-
als of model-based biclustering. In that case, it is supposed
that data are generated by a mixture distribution, as in
[64], referred to as BMM (Block Mixture Model). Instead
of memberships, it returns the final posterior probabilities
for rows and columns, in addition to the mean and variance
of each co-cluster. This is implemented in the R package
blockcluster [65].

2.2 Archetype analysis

In AA, Zk×m = βk×nXn×m, where
∑n

l=1 βgl = 1 with
βgl ≥ 0 for g = 1, . . . , k, i.e. the archetypes are mixture
of the data. The other restrictions are:

∑k
g=1 αig = 1 with

αig ≥ 0 for i = 1, . . . , n and γ = Im×m. Therefore, the objec-
tive function to minimize subject to the previous constraints
is:

RSS = ∥X− αZ∥2 = ∥X− αβX∥2 =

n∑
i=1

m∑
j=1

(
xij −

k∑
g=1

αigzgj

)2

=

n∑
i=1

m∑
j=1

(
xij −

k∑
g=1

αig

(
n∑

l=1

βglxlj

))2

.

(1)

The α coefficients determine how much each archetype
contributes to the approximation of each observation, i.e.
αig is the weight of the archetype g for the i-th observation.
Archetypes are built as mixtures of observations weighted
by β coefficients.
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If k = 1, the archetype coincides with the mean, but with
k > 1, the archetypes are located on the boundary of the
convex hull of the data [3]. Archetypes are not necessarily
nested, so different ks may reveal distinct structures of the
data. Therefore, as happens in other unsupervised statistical
learning procedures, the selection of the number k of pro-
totypes has to be determined. If we have prior knowledge
of the arrangement of the data, k can be selected based on
this. Otherwise, we can use a simple but effective heuristic
method, the elbow criterion, which has been used elsewhere
[3], [66]. The elbow criterion consists of displaying the RSS
for different k values and choosing the value k as the
position where the elbow is located. This method is also
used in clustering.

[3] proposed an alternating minimizing algorithm to
find the matrices α and β that minimizes RSS. This con-
sists of alternating between estimating the best α for given
archetypes Z, and the optimum archetypes Z for given α.
In each phase, convex least squares problems have to be
solved. They used a penalized version of the non-negative
least squares algorithm [67].

2.3 Illustrative example of fuzzy k-means versus AA

Fig. 1 illustrates the outcomes of applying fuzzy k-means
and AA with k = 2 to variables associated with World Hap-
piness, to demonstrate the concept of archetypes and their
distinction from CLA. Contrary to CLA, AA models distinct
aspects in the data rather than focus on the most central
dynamics. With AA, two archetypal countries are identified
as prototypes. One is associated with Utopia, an imaginary
nation characterized by the world’s happiest populace, and
the other with Dystopia, an imaginary nation marked by the
world’s least happy populace, commonly used in sociology
as a benchmark. Countries are described as mixtures (encap-
sulated in α coefficients) of these idealized nations. This ap-
proach aligns with the human tendency to represent a group
of objects by its extreme elements [5]. However, with fuzzy
k-means, the prototypes are situated in the middle of the
data cloud; they are not the purest, hence their profiles are
not as distinct as those of the archetypes. AA qualitatively
offers a better explanation of the data structure. For instance,
a country with values 0.657 and 0.672 for GDP.per.capita and
Healthy.life.expectancy, respectively, is explained by AA as
43% Utopia and 57% Dystopia. Conversely, with CLA, this
country falls into the blue cluster with a membership degree
of 79% and a centroid distance of 0.08. These results are
paralleled by a country with values 0.268 and 0.242 for
GDP.per.capita and Healthy.life.expectancy, which also has a
centroid distance of 0.08 and a membership degree of 94% in
CLA. Yet, AA explains this country as 13% Utopia and 87%
Dystopia. Therefore, AA better distinguishes the difference
in the profile’s of these two countries.

3 BIARCHETYPE ANALYSIS

3.1 Definition

In biAA, biarchetypes are Zk×c = βk×nXn×mθm×c, where∑n
l=1 βgl = 1 with βgl ≥ 0 for g = 1, . . . , k and∑m
r=1 θrh = 1 with θrh ≥ 0 for h = 1, . . . , c, i.e. the

archetypes are mixture of the data points and variables.

(a) Fuzzy k-means clustering
assignments.

(b) AA assignments by the
maximum α.

Fig. 1. Plot of world happiness example. The crosses represent the
prototypes.

There are k archetypes for rows and c for columns. The other
restrictions are:

∑k
g=1 αig = 1 with αig ≥ 0 for i = 1, . . . , n

and
∑c

h=1 γhj = 1 with γhj ≥ 0 for j = 1, . . . ,m. Therefore,
the objective function to minimize subject to the previous
constraints is:

RSS = ∥X− αZγ∥2 = ∥X− αβXθγ∥2 =

n∑
i=1

m∑
j=1

(
xij −

k∑
g=1

c∑
h=1

αigzghγhj

)2

=

n∑
i=1

m∑
j=1

(
xij −

k∑
g=1

c∑
h=1

αig

(
n∑

l=1

m∑
r=1

βglxlrθrh

)
γhj

)2

.

(2)

As before, the α coefficients determine how much each
archetype contributes to the approximation of each obser-
vation, i.e. αig is the weight of the archetype g for the i-
th observation. Analogously, the γ coefficients determine
how much each archetype contributes to the approximation
of each variable, i.e. γhj is the weight of the archetype h
for the j-th variable. Biarchetypes are built as mixtures of
observations and variables weighted by β and θ coefficients,
respectively.

3.2 Relationship with clustering

Although the main objective of biarchetype analysis is to
identify extreme values that define the dataset, it is worth
noting that biAA can also be applied to clustering tasks,
despite this not being its primary focus.

Fig. 2 displays a scheme showing the relationship
between biAA and other unsupervised methods, where∑k

g=1 αig = 1 with αig ≥ 0 for i = 1, . . . , n. biAA is to
fuzzy biclustering as AA is to fuzzy clustering; and biAA is
to AA as fuzzy biclustering is to fuzzy clustering. In simple
words, in clustering methods, Z = (α′α)−1α′Xγ′(γγ′)−1

are centroids, but in archetypal methods, Z = βXθ are
archetypes (extremes) (θ = Im×m for AA); only observations
are considered in AA and fuzzy clustering; therefore, γ =
Im×m, unlike biAA and fuzzy biclustering, where observa-
tions and variables are considered simultaneously.
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Fig. 2. Diagram of the relationship between biAA and other unsuper-
vised methods.

3.2.1 Location of biarchetypes
In this section, we state some results that help in under-
standing the behavior of the row and column vectors of the
biarchetype matrix Zk×c.

Let Xn×m be a data matrix with n observations and m
continuous features. We denote by xd

i , i = 1, . . . , n the row
vectors of the matrix Xn×m (in this case observations) and
by xf

i , i = 1, . . . ,m the column vectors of the matrix Xn×m

(in this case features). This notation will be the same for all
the matrices used.

The problem is to find a matrix Zk×c with 1 ≤ k ≤ n,
1 ≤ c ≤ m, which is expressed as Zk×c = βk×nXn×mθm×c

and the matrices αn×k, Zk×c and γc×m minimize

RSS = ∥Xn×m − αn×kZk×cγc×m∥2 .

Now we distinguish several cases depending on the
values of k and c.

Case I: k = 1 and c = 1. In this case, αn×1 = (1, . . . , 1)′

and γ1×m = (1, . . . , 1); then, the real value Z1×1 that
minimizes RSS is the mean of all entries in matrix Xn×m,
that is,

Z1×1 =
1

nm

n∑
i=1

m∑
j=1

xij .

Case II: k = n and c = m. In this case we consider
αn×n = In×n and γm×m = Im×m. Then, by choosing
Zn×m = Xn×m we obtain RSS = 0.

Case III: 1 ≤ k < n and c = m. We consider γm×m =
Im×m and θm×m = Im×m, then, the problem now consists
of minimizing

RSS = ∥Xn×m − αn×kZk×m∥2 ,

which is a typical problem in AA and the location of the
archetypes is explained in [3] and reviewed in Sec. 2.2.

Case IV: k = n and 1 ≤ c < m. This is the case of finding
only the archetypes of features, i.e. we consider α = In×n

and β = In×n. As the Frobenius norm of a matrix is the
same as the Frobenius norm of its transpose, ∥X− Zγ∥2 =
∥X′ − γ′Z′∥2, features can adopt the role of observations
when X is transposed. Then, the same reasoning as in the
preceding case entails a problem of AA.

Case V: k = 1 and 1 < c < m. In this case α = In×n and
the problem of minimizing

RSS = ∥Xn×m − (1, . . . , 1)′ (Z1×cγc×m)∥2 ,

is satisfied if the mean value 1
n

∑n
i=1 x

d
i = (x̄d

1, . . . , x̄
d
m) =

(Z1×cγc×m) where x̄d
j = 1

n

∑n
i=1 xij . Note that each real

number x̄d
i belongs to the convex hull of the components of

the vector Z1×c.

Case VI: c = 1 and 1 < k < n. In this case RSS is
minimized if 1

m

∑m
i=1 x

f
i = (x̄f

1 , . . . , x̄
f
n) =

(
Z′

k×1α
′
n×k

)
where x̄f

i = 1
m

∑m
j=1 xij . Note that each real number x̄f

i

belongs to the convex hull of the components of the vector
Zk×1.

Case VII: 1 < k < n and 1 < c < m.
Let us call Vn×c = Xn×mθm×c; then, each vf

j (j =

1, . . . , c) belongs to the convex hull Cf
X of the data xf

i

(i = 1, . . . ,m). Moreover, since Zk×c = βk×nVn×c, each
vector zdj (j = 1, . . . , k) belongs to the convex hull Cd

V of
the vectors vd

i (i = 1, . . . , n).

Proposition 1. Having fixed the matrix θm×c, there is a
matrix of biarchetypes Zk×c such that each row vector
zdj (j = 1, . . . , k) belongs to the boundary of the convex
hull Cd

V .

Now, let us call Yk×m = βk×nXn×m; then, each yd
j

(j = 1, . . . , k) belongs to the convex hull Cd
X of the data

xd
i (i = 1, . . . , n). Moreover, since Zk×c = Yk×mθm×c, each

vector zfj (j = 1, . . . , c) belongs to the convex hull Cf
Y of

the vectors yf
i (i = 1, . . . ,m).

Proposition 2. Having fixed the matrix βk×n, there is a ma-
trix of biarchetypes Zk×c such that each column vector
zfj (j = 1, . . . , c) belongs to the boundary of the convex
hull Cf

Y .

Proof of Propositions 1 and 2 is detailed in Appendix A.

Example 1. This toy example illustrates the location of the
biarchetypes for different values of k and c, for the

following matrix


1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

.

For k = 1 and c = 1, z = 13 (mean of all entries of
the matrix according to Case I). For k = 1 and c =2, z
=
(
11 15

)
; here (x̄d

1, . . . , x̄
d
5) = (11, 12, 13, 14, 15) and

each real number x̄d
i belongs to the convex hull of the

components of z according to Case V. For k = 2 and c =

1, z =
(
3
23

)
and, according to Case VI, each real number

x̄f
i belongs to the convex hull of the components of the

vector z. For k = 2 and c = 2, z =
(
1 5
21 25

)
. For this last

case, RSS = 0, and, according to Case VII, the vectors zdj
and zfj , j = 1, 2 are located at the boundary of convex
sets.

Example 2. In this example, we will generate the data from
a multivariate random distribution.
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The covariance matrix for both rows and columns is:

Σ =



1 0.8 . . . 0.8 0.8 0 0 . . . 0 0
0.8 1 . . . 0.8 0.8 0 0 . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0.8 0.8 . . . 1 0.8 0 0 · · · 0 0
0.8 0.8 . . . 0.8 1 0 0 · · · 0 0
0 0 . . . 0 0 1 0.8 · · · 0.8 0.8
0 0 . . . 0 0 0.8 1 · · · 0.8 0.8

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . 0 0 0.8 0.8 · · · 1 0.8
0 0 . . . 0 0 0.8 0.8 · · · 0.8 1


And the mean also for both rows and columns is:

µ = (0 · · · 0)

(a) Simulated data as a
heatmap.

(b) Simulated data in the
biarchetype space.

Fig. 3. Representations of data and the biarchetypal space for example
2, i.e. representation of the coefficients α and γ.

The data generated can be seen in Fig. 3a. In Fig. 3b,
the data are represented using the coefficients α and
γ of biAA with k = 2 and c = 2. These coefficients
are mapped to the x and y axes of the figure and the
z axis represents the value of each observation. The
biarchetypes are represented in black and, as seen, they
are at the extremes of the data.

3.2.2 Selecting the number of biarchetypes

As in the case of AA, if there is no information available a
priori, we can use the elbow criterion, but in this case, we
look for the elbow of a surface instead of a curve. In biAA,
we run biAA for different values of k and c and display their
RSS values in a 3D plot. We select the point (k,c) where the
surface “flattens”, i.e. (k, c) is the point at which the RSS of
the following points (k + 1, c), (k, c+ 1), and (k + 1, c+ 1)
stops decreasing drastically with respect to the RSS of the
point (k, c).

3.3 Algorithm

The following iterative method is proposed to solve biAA. It
is based on alternating minimization as in the AA algorithm
by [3].

1) Data preparation: To randomly initialize the matri-
ces α, γ, β and θ, fulfilling the constraints in Sect.
3.1.

2) Repeat until RSS is sufficiently small or the number
of maximum iterations is reached:

a) Find the best α (fixed γ): solve n convex least
squares problems using X′ = (Zγ)′α′.

b) Find the best γ (fixed α): solve m convex
least squares problems using X = (αZ)γ.

c) Recalculate the biarchetypes, where + stands
for the Moore-Penrose pseudoinverse: Z =
α+Xγ+.

d) Find the best β (fixed θ): solve k convex least
squares problems using Z′ = (Xθ)′β′.

e) Find the best θ (fixed β): solve c convex least
squares problems using Z = (βX)θ.

f) Recalculate the biarchetypes: Z = βXθ.
g) Calculate the new RSS.

Note that the convex least squares problems can be
solved as proposed by [3], i.e. using a penalized least
squares problem [67]. The idea is, given a least squares
problem An×kXk×m = Bn×m, to add a row with constant
elements C to A and B, in order to obtain a new problem
A(n+1)×kXk×m = B(n+1)×m, in such a way that RSS would
be:

RSS =

n+1∑
i=1

m∑
j=1

(
bij −

k∑
h=1

aihxhj

)2

=

m∑
j=1

 n∑
i=1

(
bij −

k∑
h=1

aihxhj

)2

+

(
bn+1,j −

k∑
h=1

an+1,hxhj

)2
 =

m∑
j=1

 n∑
i=1

(
bij −

k∑
h=1

aihxhj

)2

+

m∑
j=1

(
C −

k∑
h=1

Cxhj

)2
 =

m∑
j=1

 n∑
i=1

(
bij −

k∑
h=1

aihxhj

)2

+

m∑
j=1

C2

(
1−

k∑
h=1

xhj

)2
.
(3)

Therefore, if value C is high, the term

C2
(
1−

∑k
h=1 xhj

)2
forces the convexity of the elements

of X in eq. 3.
As regards computational complexity, the biAA algo-

rithm can be considered as complex as computing the AA
algorithm twice. Like AA, the speed of biAA depends
on the efficiency of the convex least squares method. The
computational complexity for the AA algorithm was ana-
lyzed by [66], based on this analysis, the computation time
increases linearly as the number of observations increases,
while it remains approximately constant as the number
of archetypes increases. In practical terms, the biAA algo-
rithm is a computer-intensive algorithm and its convergence
speed depends on the data structure, so if convergence is not
attained in a few steps for specific numbers k and c, those
numbers probably do not explain the data well.

3.4 Illustrative example and comparison with bicluster-
ing

The following example illustrates the use of biAA and
its advantages in comparison with biclustering, especially
when working with non-clustered data. We consider the
data of 45 students from Universitat Jaume I, who reported
the number of hours per week spent working on a subject at
home over 17 weeks. The complete description of the data
can be found in [68]. Missing data are imputed by mice [69].
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Fig. 4. RSS for k from 2 to 6 and c from 2 to 5.

TABLE 1
The γ coefficients for biAA, BMM, and FDkMpf of the illustrative

example.

1 0 0 1 0 0 1 0 0
0.71 0.12 0.17 1 0 0 1 0 0
0.57 0.42 0.01 1 0 0 0.85 0.08 0.08

0 0.80 0.20 0 0.01 0.99 0 0.5 0.5
0.13 0.76 0.11 0 1 0 0 0.5 0.5
0.14 0.86 0 0 1 0 0.29 0.35 0.35

0 0.80 0.20 0 1 0 0 0.5 0.5
0.01 0.99 0 0 0 1 0.2 0.4 0.4

0 0.90 0.11 0 1 0 0 0.5 0.5
0 0.89 0.11 0 1 0 0 0.5 0.5
0 0.42 0.58 0 1 0 0 0.5 0.5

0.05 0.45 0.5 0 0.96 0.04 0 0.5 0.5
0 0.62 0.38 0 1 0 0 0.5 0.5

0.05 0 0.95 0 0 1 0 0.5 0.5
0 0.04 0.96 0 0 1 0 0.5 0.5
0 0.10 0.91 0 0 1 0 0.5 0.5

0.13 0 0.87 0 0 1 0 0.5 0.5

The data range from 0 to 10, with mean 4.94 and standard
deviation 2.46. We apply biAA with k = 4 and c = 3, since
the elbow is found at those values (see Fig. 4).

The γ coefficients for biAA, BMM, and FDkMpf are
shown in Table 1 (we sort them in order to make the
comments easier). FDkM was also applied, but the solution
is not valid since the same prototypes are obtained for all
the groups.

(From now on, we will use archetype or archetypal
instead of biarchetype or biarchetypal to simplify the lan-
guage).

The feature similar to the first archetypal variable corre-
sponds to the first week. The second and third weeks are
also similar, but with a temporal gradation (0.71 and 0.57).
Week 8, an intermediate week of the semester, is similar to
the second archetypal variable. Other intermediate weeks
(4, 5, 6, 7, 9, and 10) are also similar. Week 15, a week at
the end of the semester, is similar to the third archetypal
variable, as well as weeks 14, 16, and 17. Weeks 11, 12,
and 13 are explained as mixtures (nearly 50% -50%) of the
second and third archetypal variables. Note that the third
week was also explained as a mixture close to 50% -50%
of the first and second archetypal variables. In summary,
the archetypal variables correspond to the profile of the

beginning, middle and end of the semester, respectively. The
weeks in the transitions between these temporal points are
reflected as mixtures.

As regards the prototypical variables for biclustering
methodologies, the first three weeks have probabilities of
1 (or nearly 1 for FDkMpf) for the first prototypical variable
of BMM. Unlike biAA where gradation was found, the
probabilities (memberships) are nearly crisp classifications
for BMM, not only for the first prototypical variable, but for
the rest as well. The intermediate weeks 5, 6, 7, 9, 10, 11, 12,
and 13 have probabilities of 1 for the second prototypical
variable, while the final weeks (14, 15, 16, and 17), and the
intermediate weeks 4 and 8 have probabilities of nearly 1 or
1 for the third prototypical variable.

Note the difference with biAA. On the one hand, in BMM
there is a lack of gradation over time in the memberships
(no mixture is found, but the memberships are extremely
high, nearly all ones), as if changes between adjoining
weeks were radical (as breaking jumps) rather than smooth.
Therefore, the information provided by biAA is richer. On
the other hand, there are two intermediate weeks (4 and 8)
belonging to the third prototypical variable corresponding
to the end of semester weeks, which is not very coherent.
Therefore, the information provided by biAA is more rea-
sonable. Finally, the second and third prototypical variables
are identical for FDkMpf, with 50%-50% or close degrees of
membership for weeks 4 to 17. Therefore, the information
returned by FDkMpf is poorer than that of BMM and biAA.

Table 2 displays the representative points Z, archetypes
or centroids for biAA and biclustering, respectively (we
sort them in order to make the comments easier). The first
archetype describes a student who works very few hours
per week throughout the semester. The second archetype
represents a student who studies very few hours throughout
the semester, except at the end of the semester, when they
work for 9 hours per week. The third archetype describes a
student who works very few hours at the beginning of the
semester (1h per week), many hours during the semester
(10h per week), and intermediate hours (4h per week) at
the end of the semester. The fourth archetype represents
a student who studies many hours throughout the whole
semester.

For BMM, the prototypes are not as pure as the
archetypes. For example, there is no great difference be-
tween centroids 2 and 3: centroid 3 studies only one or
one and a half hours more than centroid 2 per week. The
centroids are not as intuitively interpretable as archetypes.
Centroid 1 corresponds to a student who studies 2 or 3 hours
throughout the semester; centroid 2 studies 2h per week
at the beginning and 4 or 5h per week for the rest of the
semester; centroid 3 works 4 hours at the beginning and 6
hours per week for the rest of the semester; while centroid
4 studies 5h per week at the beginning of the semester and
7 or 8 hours throughout the rest of the semester. It seems
that centroids are limited to following a gradation accord-
ing to the total number of hours studied throughout the
semester rather than by differences in behavior throughout
the semester. For FDkMpf, the comments are similar, but
in addition there is no difference between the intermediate
and final weeks. For example, the profiles of students 32
and 33, who are similar to archetype 2 (with αs of 0.84 and
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TABLE 2
The archetypes and centroids for biAA, BMM, and FDkMpf of the toy

example.

1.54 2.36 0.36 1.67 2.07 3.49 2.03 3.28 3.28
1 2 9 2.32 4.15 5.02 2.74 4.89 4.89
1 10 4 3.79 5.70 6.05 3.42 5.97 5.97
8 6.32 9.36 5.01 7.69 6.60 5.55 6.97 6.97

0.88, respectively), would not be reflected by the centroids
of BMM or FDkMpf. They belong to cluster 2 of BMM, with
probabilities of 0.97 and 1, respectively. But this does not
say anything about how far (or in which direction) from
centroid 2 those students are. This happens because the goal
of clustering is to assign the data to groups, not to explain
the structure of the data more qualitatively.

3.5 Ablation study
Another important aspect to consider is the ablation study.
In this analysis, we study the implications of calculat-
ing archetypes separately (solely by rows and solely by
columns) and then combining them, as opposed to com-
puting the archetypes simultaneously.

In particular, the biarchetypes in biAA are reconstructed
from the βs and θs obtained by applying X ≃ αβXθγ to the
dataset (archbiaa = βXθ), whereas those in the ensemble
are derived from applying AA across the rows of X, (i.e.
X ≃ αrβrX) and also applying it across the columns
(i.e. X ≃ Xβcαc). In the latter case, the biarchetypes
are obtained by combining the βs from both methods
(archensemble = βrXβc).

To conduct this study, we initiated an experimental pro-
cedure. We generated a synthetic dataset 50 times whose
shape is 100× 100 and with 3× 3 biarchetypes. The values
for these datasets were constrained to fall within the range
of 0 to 1, ensuring a standardized scale for comparison.

Specifically, each dataset is constructed to conform a
mixture of biarchetypes, where the Z matrix encapsulates
the biarchetype values. Moreover, the entries of matrix α’s
rows and matrix γ’s columns are determined by sampling
from the U(0, ϕ) distribution, with ϕ being a parameter
within the interval [0, 1]. After that, the procedure assigns
a 1 to the entry that denotes the group to which the ob-
servation belongs, thereby ensuring that this maximum co-
efficient signifies the group assignment. Subsequently, this
vector is normalized to achieve a unit norm, thus ensuring
its convexity.

The parameter ϕ significantly influences the membership
characteristics within the archetypal model. At a setting of
ϕ = 0, each observation is completely represented by one
archetype, exhibiting pure membership. As ϕ approaches 1,
the model shifts towards a mixed-membership framework,
allowing observations to have more evenly distributed
memberships across the different archetypes. In this in-
stance, the parameter ϕ has been determined to be 0.05.

The histograms, as depicted in Figure 5, reveals a no-
table distinction in the distribution of values obtained using
our methodology compared to the separate calculation of
archetypes. Specifically, the values derived from the biAA
approach manages to recover the true archetypes, which
does not happen with the ensemble archetype approach.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

True archetypes

0.0 0.2 0.4 0.6 0.8 1.0

Ensemble archetypes

0.0 0.2 0.4 0.6 0.8 1.0

BiAA archetypes

Fig. 5. Distribution of the archetype values.

4 RESULTS AND DISCUSSION

Like biclustering, biAA can be applied to a wide range of
fields. In this section, we will apply it to biology, document
analysis and community detection.

The code and data sets for reproducing the results in-
cluding those in Sec. 3.4 are available at https://github.
com/aleixalcacer/JA-BIAA.

4.1 Gene expression data
To show how biAA can be applied, we examine data from
gene expression of cutaneous melanoma used in [70], [71],
[72]. Instead of meticulously re-analyzing this data set, we
use it to highlight the salient features of biAA.

The aim of this study was to test the idea that molec-
ular profiles generated by cDNA microarrays could be
used to differentiate between several subtypes of cutaneous
melanoma, a kind of skin cancer. mRNA was collected
from the 31 cutaneous melanoma samples, and Cy5-labeled
cDNA was created. All samples were examined with the
same reference probe, identified as Cy3. For each sample,
Cy5 and Cy3-labeled cDNA were combined and hybridized
to a different melanoma microarray. Red and green lasers
were used to scan the hybridization array, and the resulting
image was then analyzed.

The same pre-processing was carried out as in [70], [71].
Only 3613 cDNAs of the 8150 observations were classified as
well measured. Cy5/Cy3 expression ratios were computed
for the accurately measured genes. Ratios that were more
than or equal to 50 and less than or equal to 0.02 were
reduced to 50 and 0.02, respectively. A logarithmic scale was
applied to the derived ratios (base 2). The log ratios were
adjusted so that the median log-ratio for each experiment
was equal to zero by subtracting the median log-ratio within
an experiment from all log-ratios for that experiment. Since
a single reference probe was utilized in all experiments,
there was no standardization between trials.

Using one minus the Pearson correlation coefficient of
log-ratios as a measure of dissimilarity between two experi-
ments, [70] applied the average linkage hierarchical cluster-
ing on the 31 cutaneous melanoma samples and obtained
two clusters of 12 and 19 samples.

Regarding [71], they used double k-means to analyze
the same data set. In this case, the columns were centered
and scaled to unit variance, finding that the separation
between two columns is proportional to one minus the
Pearson correlation coefficient. In particular, their analysis
indicates that samples 4 and 7 are members of the ‘19-
samples’ group obtained by [70], i.e. the main cluster group.
The membership of these two samples in [71] differs from
that obtained by [70].
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Fig. 6. Representation of the most similar observations to each
archetype. The color represents the expression ratio of each gene for
each sample.

(a) Representation of the observa-
tions (α matrix) in their archetypal
space. Each corner represents an
archetype.

A 0

A 1

(b) Representation of the vari-
ables (γ matrix) in their archety-
pal space. Each corner repre-
sents an archetype. Samples 1,
8, 4 and 7 are colored in red.

Fig. 7. Representations of the archetypal space for Gene expression
data.

In our case, we applied biarchetype analysis to the
same data set as [71], extracting three archetypes for the
genes (rows) and two archetypes for the melanoma samples
(columns).

As can be seen in Fig. 6, regarding the melanoma
samples, if we cluster the data using the location of the
maximum archetypal coefficient γ (i.e. the archetype that
is most similar to the sample), we obtain two clusters of 8
and 23 samples. Regarding the archetypes of the genes, the
first two discriminate the two groups quite well, while the
third archetype (or group of genes) is not expressed for any
melanoma group.

If we compare our results to those obtained by [70], four
samples are classified in different clusters. Samples 1, 4,
7 and 8 belong to the main cluster group with biAA (see
Fig. 7), unlike results provided by [70]. If we compare our
results to those obtained by [71], two samples are classified
in different clusters, samples 1 and 8. Classification group
of samples 4 and 7 is shared with biAA and results by [71].
According to the γ coefficients of biAA, samples 4 and 7

are a nearly equal mixture between both archetypes, with
the values of the coefficient being 0.4 and 0.6 corresponding
to the first and second archetype for sample 4, and 0.45
and 0.55 corresponding to the first and second archetype
for sample 7. Therefore, samples 4 and 7 could be in the
border between both groups, which could explain the dif-
ference in classification by different methods. However, the
γ coefficients for sample 8 and 1 are 0.75 (0.25) and 1 (0)
for the second (first) archetype, respectively. In other words,
sample 1 (and to lesser extent sample 8) should definitely be
in the main group according with biAA.

4.2 Text documents
Another common use for biclustering is for clustering doc-
uments and words. In this case, we have applied biAA
to a subset of the 20 Newsgroups collection, set up by
[73]. Specifically, we have analyzed three topics: rec.autos,
rec.sport.hockey and talk.politics.guns.

Additionally, although our algorithm is designed to
identify extreme prototypes rather than clusters, due to
the absence of comparable benchmarks, we have conducted
comparisons with the following popular biclustering algo-
rithms, which are also considered as the baseline elsewhere
[74]: Louvain Clustering [75], Spectral Co-clustering [76]
and Spectral Biclustering [77]. For the three methods we
have left all the default values and, in those that allow it,
we have determined the number of clusters to search.

Specific, for each document, the number of times each
word is repeated in the document has been stored in a count
matrix, where each row represents a document, each column
a word, and the values indicate how many times each word
is repeated in each document.

In addition, a Tfidf transformer [73] was used to convert
a count matrix into a normalized tf or tf-idf representation.
Tf stands for term frequency, and tf-idf stands for term
frequency multiplied by inverse document frequency. This
is a standard term weighting method used in information
retrieval, and it is also effective for classifying documents.

We have applied biarchetype analysis to this normalized
matrix, obtaining three archetypal profiles for documents
and three archetypal profiles for words.

A 0

A 1A 2

Fig. 8. Representation of the documents in their archetypal space (α
values). The color represents the category of the document.

In Fig. 8, it is clear that the three archetypes discriminate
the three groups of documents perfectly.

Regarding the words, in Fig. 9 the words are represented
as a graph. The weight of each edge represents the similarity
of the words in terms of the archetypes (the gamma coeffi-
cients). The graph weights (i.e. the gamma coefficients) split
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Fig. 9. Representation of the most similar words to each archetype
(filtered using a threshold over the coefficient matrix). The weight of each
edge is the cosine similarity between the two words in their archetypal
space. This plot was created using the networkx Python package.

the words into three groups, where the words within each
group are related to one of the selected topics.
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Fig. 10. First 2 components of PCA along with the prototypes of the
dataset discovered by multiple clustering methods. The colored areas
represent the convex hulls of the prototypes for each method.

community detection
TABLE 3

RSS for text documents and community detection example.

Method RSS (text) RSS (community) Fuzzy
biAA 1605.58 1064.4 True
Louvain 1620.85 1268.24 True
Biclustering 1664.42 1452.03 False
Co-clustering 1666.97 1663.77 False

Upon examining the results of biAA, Figure 10 displays
the prototypes identified by each method. To facilitate their
representation, Principal Component Analysis (PCA) was
applied to the data for both rows and columns (the trans-
posed matrix), and the first two components were plotted.
It is observable that when analyzing the matrix by rows,
which in this example correspond to documents, both biAA
and Spectral Clustering methods yield quite extreme proto-
types. However, when the dataset is analyzed from the per-
spective of words, only biAA identifies extreme prototypes.
Specifically, it identifies the words car, team and gun which
correspond to highly archetypal words for groups rec.autos,
rec.sport.hockey and talk.politics.guns respectively.
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Fig. 11. Top-5 most similar words to each prototype for different algo-
rithms.

Finally, building on the previous observations, Figure 11
includes the five most similar words to each prototype for
methods that allow for mixed membership, i.e. biAA and
the Louvain method. It is evident that the biAA identifies
words that are more archetypical compared to those iden-
tified by the Louvain method. Specifically, the first three
prototypes discovered by biAA can be clearly associated
with the three groups of documents present in the dataset.

Table 3 compiles RSS for all the methods. biAA provides
the lowest RSS.

4.3 Community detection

Finally, we have also applied biAA to detect communities
within the company Enron. For that, we have studied the
data set described in [78], which contains a collection of
emails between the company’s employees.

We have created an adjacency matrix between employ-
ees, containing 1 if one employee has emailed another or 0
if the first one has never sent an email to the second one.
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John Griffith
Jeffrey T. Hodge
Peter F. Keavey

Mike Maggi
Steven Merris
Vladi Pimenov
Cooper Richey

Kevin Ruscitti
Theresa Staab
Mike Swerzbin

Kim S. Ward
Jason Wolfe
Bert Meyers
Geir Solberg
Mike Grigsby

Jonathan McKay
Barry Tycholiz

Doug Gilbert-Smith
Kevin M. Presto

Jeff Skilling
Andy Zipper

S
en

de
rs

Fig. 12. The adjacency matrix ordered according to the archetypes
obtained with biAA.

After applying biAA with k = 6 and c = 6 to this
adjacency matrix, we obtained the results in Fig. 12. In the
‘senders’ part, the group Z3 could be omitted (represents
employees who haven’t sent emails to a specific group). The
same occurs with the group Z6 in the ‘recipients’ part of the
adjacency matrix.
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ETS
(Director)

ENA Gas West
(VP Trading)

ENA West Power Real Time
(Specialist)

ENA Legal
(Mng Director & Gen Cnsl)

ETS
(Director)

ENA Legal
(Specialist Legal)

Enron
(VP & Chief of Staff)

Energy Operations
(Mgr Trading)

ENA Legal
(Specialist Legal)

ENA Gas West
(Associate)

ENA West Power
(Specialist)

Regulatory and Government Affairs
(VP of Regulatory Affairs)

Enron
(President & CEO)

ENA West Power Real Time
(Employee)

ETS
(Director)

Fig. 13. Representation of employees from the point of view of who
they send emails to. The weight of each node is computed as in Fig.
9. The size of each employee is proportional to how similar it is to its
closest archetype and the color of each one is determined by the closest
archetype.

If we analyze the employees from the point of view of
who they send emails to, we obtain the results shown in Fig.
13, in which we have removed Z3-like employees as they
do not exchange emails with a specific group. As can be
seen, the dark blue cluster represents the Legal department,
the green one, the ETS department; the olive green one,
the Gas/Energy department; the pink one, the West Power
departments; and the blue one, Enron’s top management.
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1
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Biclustering
Co-clustering
BiAA

(a) PCA and prototypes ob-
tained in the senders part.

2 1 0 1 2 3

1

0

1

2

3

4

Prototypes
Louvain
Biclustering
Co-clustering
BiAA

(b) PCA and prototypes ob-
tained in the recipients part.

Fig. 14. First 2 components of PCA along with the prototypes of the
dataset discovered by multiple clustering methods. The colored areas
represent the convex hulls generated by the prototypes of each method.

Here, in Figure 14 the same procedure as in the previous
problem has been applied. It is clear that in both cases,
for both the senders and the recipients of the emails, the
convex hull of the prototypes identified by biAA covers the
largest area. This could serve as a measure of how extreme
(or distant from each other) the prototypes are. Therefore,
based on this metric, it is evident that biAA reveals the most
extreme prototypes.

As before, biAA also provides the lowest RSS for this
example.

5 CONCLUSION

In this work, we have proposed a new unsupervised ma-
chine learning technique: biarchetype analysis. We have

compared the results of biAA and biclustering in an illustra-
tive example, showing not only the greater interpretability
provided by biAA, but also the greater coherence of the
results. We have also seen its usefulness in several problems
in different fields, where more distinct aspects are extracted
with biAA than using several biclustering methods.

biAA has been defined for continuous data. In future
work, it could be extended to other kinds of data, such
as functional data, to which AA was also extended [51].
Note that biclustering analysis of time series is used in
many fields such as neuroscience [79] and engineering [80];
therefore, biAA could also be used for the same problems.
Biarchetypoid analysis could also be introduced in the same
way that archetypoid analysis was defined [50], where
biarchetypes are not determined by mixtures of observa-
tions and features, but by concrete elements of the data set.
Just as archetype analysis is sensitive to outliers, biAA is too.
Robust biAA could be defined in the same way as robust AA
was [48]. Likewise, biAA for missing data could be defined
as it was for AA [46], and it could be used in recommender
systems to find profiles of users and products, for instance.
Another line of future work would be to apply biAA to
different fields where biclustering analysis is applied, and
to study more computational methods to calculate biAA,
especially for big data. Furthermore, biAA could also be
easily extended to high dimensions in a similar way to the
decomposition proposed in [81]. Finally, non-linear biAA
could be proposed by using deep learning, based on the
works on deep AA by [58] and [37].

APPENDIX A
PROOF OF PROPOSITIONS 1 AND 2
See Supplementary material.

ACKNOWLEDGMENTS

The authors would like to thank Francesca Martella for
providing them with gene expression data.

This research was partially supported by the Spanish
Ministry of Universities (FPU grant FPU20/01825), Spanish
Ministry of Science and Innovation (PID2022-141699NB-
I00, PID2020-118763GA-I00 and PID2020-115930GA-I00)
and UJI-B2020-22 and TRANSUJI/2023/6 from Universitat
Jaume I, Spain.

REFERENCES

[1] C. Wu, E. Kamar, and E. Horvitz, “Clustering for set partitioning
with a case study in ridesharing,” in IEEE 19th International Con-
ference on Intelligent Transportation Systems (ITSC), 2016, pp. 1384–
1388.

[2] S. M. Keller, M. Samarin, M. Wieser, and V. Roth, “Deep archetypal
analysis,” in Pattern Recognition, G. A. Fink, S. Frintrop, and
X. Jiang, Eds. Cham: Springer International Publishing, 2019,
pp. 171–185.

[3] A. Cutler and L. Breiman, “Archetypal Analysis,” Technometrics,
vol. 36, no. 4, pp. 338–347, 1994.

[4] C. Thurau, K. Kersting, M. Wahabzada, and C. Bauckhage, “De-
scriptive matrix factorization for sustainability: Adopting the prin-
ciple of opposites,” Data Mining and Knowledge Discovery, vol. 24,
no. 2, pp. 325–354, 2012.

[5] T. Davis and B. Love, “Memory for category information is ide-
alized through contrast with competing options,” Psychological
Science, vol. 21, no. 2, pp. 234–242, 2010.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3400730

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

[6] I. Cabero and I. Epifanio, “Finding archetypal patterns for binary
questionnaires,” SORT, vol. 44, no. 1, pp. 39–66, 2020.

[7] J. A. Hartigan, “Direct clustering of a data matrix,” Journal of the
American Statistical Association, vol. 67, no. 337, pp. 123–129, 1972.

[8] Y. Cheng and G. M. Church, “Biclustering of expression data,”
in Proceedings of the Eighth International Conference on Intelligent
Systems for Molecular Biology, vol. 8, no. 2000, 2000, pp. 93–103.

[9] M. B. Ferraro, P. Giordani, and M. Vichi, “A class of two-mode
clustering algorithms in a fuzzy setting,” Econometrics and Statis-
tics, vol. 18, pp. 63–78, 2021.

[10] H. Zhao, A. Wee-Chung Liew, D. Z Wang, and H. Yan, “Bicluster-
ing analysis for pattern discovery: current techniques, compara-
tive studies and applications,” Current Bioinformatics, vol. 7, no. 1,
pp. 43–55, 2012.

[11] G. Kerr, H. J. Ruskin, M. Crane, and P. Doolan, “Techniques
for clustering gene expression data,” Computers in Biology and
Medicine, vol. 38, no. 3, pp. 283–293, 2008.

[12] J. Xie, A. Ma, A. Fennell, Q. Ma, and J. Zhao, “It is time to apply
biclustering: a comprehensive review of biclustering applications
in biological and biomedical data,” Briefings in Bioinformatics,
vol. 20, no. 4, pp. 1450–1465, 2019.

[13] S. Dolnicar, S. Kaiser, K. Lazarevski, and F. Leisch, “Biclustering:
Overcoming data dimensionality problems in market segmenta-
tion,” Journal of Travel Research, vol. 51, no. 1, pp. 41–49, 2012.

[14] I. Van Mechelen, H.-H. Bock, and P. De Boeck, “Two-mode cluster-
ing methods: a structured overview,” Statistical Methods in Medical
Research, vol. 13, no. 5, pp. 363–394, 2004.

[15] R. Forsati, H. M. Doustdar, M. Shamsfard, A. Keikha, and M. R.
Meybodi, “A fuzzy co-clustering approach for hybrid recom-
mender systems,” International Journal of Hybrid Intelligent Systems,
vol. 10, no. 2, pp. 71–81, 2013.

[16] S. Kaiser, “Biclustering: methods, software and application,” Ph.D.
dissertation, Ludwig-Maximilians-Universität München, 2011.

[17] Z. Shkedy, R. Sengupta, and N. J. Perualila, “Identification of
local patterns in the NBA performance indicators,” in Applied
Biclustering Methods for Big and High-Dimensional Data Using R.
Chapman and Hall/CRC, 2016, pp. 323–344.

[18] V. A. Koutsonikola and A. Vakali, “A fuzzy bi-clustering approach
to correlate web users and pages.” IJ Knowledge and Web Intelli-
gence, vol. 1, no. 1/2, pp. 3–23, 2009.

[19] R. Henriques, C. Antunes, and S. C. Madeira, “A structured view
on pattern mining-based biclustering,” Pattern Recognition, vol. 48,
no. 12, pp. 3941–3958, 2015.

[20] M. Mørup and L. K. Hansen, “Archetypal analysis for machine
learning and data mining,” Neurocomputing, vol. 80, pp. 54–63,
2012.

[21] Y. Chen, J. Mairal, and Z. Harchaoui, “Fast and Robust Archetypal
Analysis for Representation Learning,” in CVPR 2014 - IEEE
Conference on Computer Vision & Pattern Recognition, 2014, pp. 1478–
1485.

[22] C. Bauckhage, K. Kersting, F. Hoppe, and C. Thurau, “Archetypal
analysis as an autoencoder,” in Workshop New Challenges in Neural
Computation, 2015, pp. 8–15.

[23] S. Mair, A. Boubekki, and U. Brefeld, “Frame-based data factor-
izations,” in International Conference on Machine Learning, 2017, pp.
2305–2313.

[24] S. Steinschneider and U. Lall, “Daily precipitation and tropical
moisture exports across the Eastern United States: An application
of archetypal analysis to identify spatiotemporal structure,” Jour-
nal of Climate, vol. 28, no. 21, pp. 8585–8602, 2015.

[25] Z. Su, Z. Hao, F. Yuan, X. Chen, and Q. Cao, “Spatiotemporal
variability of extreme summer precipitation over the Yangtze river
basin and the associations with climate patterns,” Water, vol. 9,
no. 11, 2017.
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on landmarks and extension to handle missing data,” Advances in
Data Analysis and Classification, vol. 12, no. 3, pp. 705–735, 2018.

[58] D. van Dijk, D. B. Burkhardt, M. Amodio, A. Tong, G. Wolf,
and S. Krishnaswamy, “Finding archetypal spaces using neural
networks,” in 2019 IEEE International Conference on Big Data. IEEE,
2019, pp. 2634–2643.

[59] L. Millán-Roures, I. Epifanio, and V. Martı́nez, “Detection of
anomalies in water networks by functional data analysis,” Math-
ematical Problems in Engineering, vol. 2018, no. Article ID 5129735,
p. 13, 2018.
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