
Citation: Plumed, R.; Contero, M.;

Naya, F.; Company, P. A New

Approach to Detect Hand-Drawn

Dashed Lines in Engineering Sketches.

Appl. Sci. 2024, 14, 4023. https://

doi.org/10.3390/app14104023

Academic Editor: Jürgen Reichardt

Received: 4 March 2024

Revised: 2 May 2024

Accepted: 6 May 2024

Published: 9 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A New Approach to Detect Hand-Drawn Dashed Lines in
Engineering Sketches
Raquel Plumed 1 , Manuel Contero 2,* , Ferran Naya 2 and Pedro Company 3

1 Department of Mechanical Engineering and Construction, Universitat Jaume I, 12071 Castellón, Spain;
plumed@uji.es

2 Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano,
Universitat Politècnica de València, 46022 València, Spain; fernasan@upv.es

3 Institute of New Imaging Technologies, Universitat Jaume I, 12071 Castellón, Spain; pcompany@uji.es
* Correspondence: mcontero@upv.es; Tel.: +34-963879512

Featured Application: This work examines the detection of dashed lines in engineering sketches, a
subproblem of the more ambitious challenge of automating the reconstruction of 3D models from
sketches (sketch-based modeling), which remains unresolved. The detection of dashed lines helps
gather valuable information for the interpretation of sketches and consequently improves the
quality of the reconstructed 3D models. Sketch-based modeling remains relevant partly because it
is aligned with advances in additive manufacturing, e.g., 3D printing, and the mass customization
of manufacturing systems. Sketch-based modeling simplifies the CAD/CAM process and allows
non-expert users to create their own designs. It also allows designers to quickly create conceptual
prototypes of products from sketches, which facilitates the exploration of ideas.

Abstract: Sketched drawings sometimes include non-solid lines drawn as sets of consecutive strokes.
They represent dashed lines, which are useful for various purposes. Recognizing such dashed
lines while parsing drawings is reasonably straightforward if they are outlined with a ruler and
compass but becomes challenging when they are hand-drawn. The problem is manageable if the
strokes are drawn consecutively so we can leverage the entire sequence. However, it becomes more
challenging if they are drawn unordered, and/or we do not have access to the sequence (like in
batch vectorization). In this paper, we describe a new approach to identify groups of strokes as
depicting single hand-drawn dashed lines. The approach does not use sequence information and is
tolerant with irregularities and imprecisions of the strokes. Our goal is to identify hidden lines of
sketched engineering line-drawings, which would enable the interpretation of line-drawings with
hidden edges, which currently cannot be efficiently vectorized. We speculate that other fields like
hand-drawn graph interpretation may also benefit from our approach.

Keywords: vectorization; dashed lines; hidden lines; hand-drawn sketches; sketch-based modeling

1. Introduction

Non-solid lines (also known as discontinuous lines) are commonly used as variants
of continuous lines to link a graphical attribute to the lines (a sort of tag associated with
the line) as a way to assign specific meaning that is commonly defined in advance and
explained in a sort of legend. For instance, a graph displays the mutual relationships
between the components of a set of objects. The objects are represented by simple figures
(like circles or rectangles, perhaps enclosing textual annotations), which are called vertices.
Lines that connect vertices represent relationships between objects. Using lines other than
solid ones helps to visualize different types of relationships between the same set of objects
(as illustrated in Figure 1).

Appl. Sci. 2024, 14, 4023. https://doi.org/10.3390/app14104023 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14104023
https://doi.org/10.3390/app14104023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8018-8039
https://orcid.org/0000-0002-6081-9988
https://orcid.org/0000-0001-6399-4717
https://doi.org/10.3390/app14104023
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14104023?type=check_update&version=1

Appl. Sci. 2024, 14, 4023 2 of 20

Appl. Sci. 2024, 14, x FOR PEER REVIEW 2 of 20

In this paper, we describe a new approach to identify hand-drawn dashed lines. Alt-
hough the approach is intended to be as generic as possible, we are mainly interested in
dashed lines used in line-drawings. In this regard, there are typically two types of line-
drawings of solid shapes: natural and wireframe. Neither of them includes dashed lines.
However, there is also a hybrid type of line-drawings: wireframes with hidden edges rep-
resented as dashed lines. This type of drawing is supported by drawing standards (such
as ISO 128-2:2020) and has been—and continues to be—widely used in engineering draw-
ings. It has been historically less common in sketch-based modeling (SBM) because it re-
quires an additional workload from the part of the designer, and it is more challenging
for the computer.

Figure 1. An example diagram illustrating the use of dashed lines to represent relationships between
classes in computer code.

In this context, an algorithm that could detect hand-drawn dashed lines would ena-
ble SBM approaches to process line-drawings that include hidden edges represented as
dashed lines. Such an algorithm would obviously provide information about the type of
the edge (visible or hidden) represented by each line, thus easing the procedure to find
the 3D shape depicted by the 2D line-drawing. The grouped line would be marked as
“dashed”, facilitating the subsequent detection of hidden edges. In addition, such an al-
gorithm would also facilitate the vectorization process by grouping non-solid strokes be-
fore they may be—incorrectly—parsed as independent edges. To sum up, an algorithm to
detect dashed lines eases vectorization, while providing high-level semantic information
that may improve the subsequent reconstruction process.

After justifying the benefits of an algorithm to detect hand-drawn dashed lines, the
rest of the paper is organized as follows: We first review the related work to conclude
that—to the best of our knowledge—no similar algorithms have been published so far.
The problems the algorithm could solve are faced by alternative approaches that require
human intervention and/or limit the scope of the automatic approaches. In Section 3, we
describe the general process of vectorization to provide context and understanding of the
objective and tasks of the algorithm under consideration in this work. In Section 4, we
detail the main guidelines of our approach. In short, we assume that short strokes are
candidate dashes, and then we recursively find chains of such candidate dashes by search-
ing for dashes that precede or follow the current chain until no more candidates remain
and/or they do not meet the requirements. We use a set of geometric and perceptual cri-
teria to guide the search for the most plausible dashes. The tuning parameters that govern
those criteria are first introduced in Section 4 and summarized in Section 5. A collection
of varied examples is used to validate the approach and evaluate its goodness in Section
6. Finally, the concluding remarks are outlined in the last section.

Figure 1. An example diagram illustrating the use of dashed lines to represent relationships between
classes in computer code.

In this paper, we describe a new approach to identify hand-drawn dashed lines.
Although the approach is intended to be as generic as possible, we are mainly interested
in dashed lines used in line-drawings. In this regard, there are typically two types of
line-drawings of solid shapes: natural and wireframe. Neither of them includes dashed
lines. However, there is also a hybrid type of line-drawings: wireframes with hidden edges
represented as dashed lines. This type of drawing is supported by drawing standards (such
as ISO 128-2:2020 [1]) and has been—and continues to be—widely used in engineering
drawings. It has been historically less common in sketch-based modeling (SBM) because it
requires an additional workload from the part of the designer, and it is more challenging
for the computer.

In this context, an algorithm that could detect hand-drawn dashed lines would enable
SBM approaches to process line-drawings that include hidden edges represented as dashed
lines. Such an algorithm would obviously provide information about the type of the edge
(visible or hidden) represented by each line, thus easing the procedure to find the 3D
shape depicted by the 2D line-drawing. The grouped line would be marked as “dashed”,
facilitating the subsequent detection of hidden edges. In addition, such an algorithm
would also facilitate the vectorization process by grouping non-solid strokes before they
may be—incorrectly—parsed as independent edges. To sum up, an algorithm to detect
dashed lines eases vectorization, while providing high-level semantic information that may
improve the subsequent reconstruction process.

After justifying the benefits of an algorithm to detect hand-drawn dashed lines, the
rest of the paper is organized as follows: We first review the related work to conclude
that—to the best of our knowledge—no similar algorithms have been published so far. The
problems the algorithm could solve are faced by alternative approaches that require human
intervention and/or limit the scope of the automatic approaches. In Section 3, we describe
the general process of vectorization to provide context and understanding of the objective
and tasks of the algorithm under consideration in this work. In Section 4, we detail the
main guidelines of our approach. In short, we assume that short strokes are candidate
dashes, and then we recursively find chains of such candidate dashes by searching for
dashes that precede or follow the current chain until no more candidates remain and/or
they do not meet the requirements. We use a set of geometric and perceptual criteria to
guide the search for the most plausible dashes. The tuning parameters that govern those
criteria are first introduced in Section 4 and summarized in Section 5. A collection of varied
examples is used to validate the approach and evaluate its goodness in Section 6. Finally,
the concluding remarks are outlined in the last section.

2. Related Work

The problem of reconstructing 3D shapes from 2D drawings is challenging, as the
information provided by the user is a flat image and the output is a volumetric shape. It

Appl. Sci. 2024, 14, 4023 3 of 20

is, thus, necessary to bring out the hidden third dimension. In addition, drawings may be
hand-drawn, which prevents the problem from being solved by applying only geometric
principles. The use of hand-drawn sketches remains significant in the early stages of con-
ceptual design. Veisz et al. [2] argued that sketching improves the designer’s spatial ability,
which is positively correlated with their ability to generate technical artifacts. In short,
input 2D sketches contain insufficient geometric information and may be “geometrically
corrupted.” This problem is at the core of the field of sketch-based modeling (SBM). Readers
interested in this topic can find a recent state of the art by Camba, Company and Naya [3],
where balancing geometric rules with perceptual principles is repeatedly advocated for. A
recent work by Hähnlein et al. [4] builds on the so-called “design principles” (previously
explored by other authors like Agrawala et al. [5]), which the authors define as “insights
about sketching and design practices” (based on recommendations of expert designers
on how to sketch). We consider them quite promising as a third type of information that
may complement and enrich geometric and perceptual information. However, we have
not included these principles in our study as we do not want to limit our study to the
sequential placement of dashes, which is the primary principle related to the identification
of dashed lines.

Vectorization is just one of the stages in SBM (Figure 2). For instance, after fitting
lines to strokes, the 2D refinement stage contributes to remove the imperfections of the
line-drawing, such as fitting vertices [6]. SBM leverages the fact that sketches convey
valuable information through cues, which, when perceived, reveal regularities and features
of the object. Bringing out as many cues as possible facilitates the reconstruction process.
Regarding the lines that depict edges, they may represent visible or hidden edges. The
removal of hidden edges from a drawing makes it appear as representing a “solid” and
“opaque” object. Hence, they are more “natural,” as most of the objects we see are not
transparent. We “perceive” the shapes more easily when looking at a natural line-drawing.
However, from the point of view of communicating geometrical information, they are less
rich than wireframes, as the back of the object is not depicted and must be “inferred”.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 20

2. Related Work
The problem of reconstructing 3D shapes from 2D drawings is challenging, as the

information provided by the user is a flat image and the output is a volumetric shape. It
is, thus, necessary to bring out the hidden third dimension. In addition, drawings may be
hand-drawn, which prevents the problem from being solved by applying only geometric
principles. The use of hand-drawn sketches remains significant in the early stages of con-
ceptual design. Veisz et al. [1] argued that sketching improves the designer’s spatial abil-
ity, which is positively correlated with their ability to generate technical artifacts. In short,
input 2D sketches contain insufficient geometric information and may be “geometrically
corrupted.” This problem is at the core of the field of sketch-based modeling (SBM). Read-
ers interested in this topic can find a recent state of the art by Camba, Company and Naya
[2], where balancing geometric rules with perceptual principles is repeatedly advocated
for. A recent work by Hähnlein et al. [3] builds on the so-called “design principles” (pre-
viously explored by other authors like Agrawala et al. [4]), which the authors define as
“insights about sketching and design practices” (based on recommendations of expert de-
signers on how to sketch). We consider them quite promising as a third type of infor-
mation that may complement and enrich geometric and perceptual information. How-
ever, we have not included these principles in our study as we do not want to limit our
study to the sequential placement of dashes, which is the primary principle related to the
identification of dashed lines.

Vectorization is just one of the stages in SBM (Figure 2). For instance, after fitting lines
to strokes, the 2D refinement stage contributes to remove the imperfections of the line-
drawing, such as fitting vertices [5]. SBM leverages the fact that sketches convey valuable
information through cues, which, when perceived, reveal regularities and features of the
object. Bringing out as many cues as possible facilitates the reconstruction process. Re-
garding the lines that depict edges, they may represent visible or hidden edges. The re-
moval of hidden edges from a drawing makes it appear as representing a “solid” and
“opaque” object. Hence, they are more “natural,” as most of the objects we see are not
transparent. We “perceive” the shapes more easily when looking at a natural line-draw-
ing. However, from the point of view of communicating geometrical information, they are
less rich than wireframes, as the back of the object is not depicted and must be “inferred”.

Figure 2. Main stages in SBM. Figure 2. Main stages in SBM.

In principle, there are two classical approaches to deal with hidden edges in SBM. In
the first, the user creates a natural drawing and then the system tries to automatically infer
the back of it (which is not provided by the user). In the second, the user draws a wireframe

Appl. Sci. 2024, 14, 4023 4 of 20

representation of the solid shape without distinguishing that hidden from visible edges.
Both are drawn as solid lines. Reconstruction approaches cannot rely on the visibility of
the edges, which is generally unknown.

There is, however, a third alternative. A common artifact that is successfully used to
convey information of the back of an object while increasing the perceptual sensation of
volume involves the use of dashed lines to represent surfaces, edges, or corners of objects
that are hidden from view (Figure 3).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 20

In principle, there are two classical approaches to deal with hidden edges in SBM. In
the first, the user creates a natural drawing and then the system tries to automatically infer
the back of it (which is not provided by the user). In the second, the user draws a
wireframe representation of the solid shape without distinguishing that hidden from vis-
ible edges. Both are drawn as solid lines. Reconstruction approaches cannot rely on the
visibility of the edges, which is generally unknown.

There is, however, a third alternative. A common artifact that is successfully used to
convey information of the back of an object while increasing the perceptual sensation of
volume involves the use of dashed lines to represent surfaces, edges, or corners of objects
that are hidden from view (Figure 3).

Figure 3. Wireframe (left), natural (center), and hidden lines (right) in isometric line-drawings.

A review of all three approaches concludes that drawing with hidden lines communi-
cates higher-level geometric information more effectively than the other two approaches.
However, it has not been explored extensively, presumably because detecting hand-
drawn dashed lines remains an open problem.

Bonnici and Camilleri [6] contributed to finding hidden lines in a natural line-draw-
ing, refining Varley’s original approach [7,8], and the approach provided by Kyratzi et al.
[9–11]. All these approaches assume that the natural sketch is created in the most informa-
tive view, meaning that there is nothing on the ‘‘back of the sketch’’ that cannot be directly
inferred from the visible part of it [10] and, most importantly, the user draws a sketch
without hidden lines, which must be automatically inferred—and labeled as such—by the
application. Therefore, dashed lines arise while parsing the sketch, but are missing at the
input.

Wireframe drawings include hidden lines, but these are not identified as such. Con-
sequently, the well-known ambiguity of wireframes (Figure 4) is commonly solved by re-
construction approaches that cannot rely on the visibility of the edges. As the recent re-
view by Camba et al. shows [2], the reconstruction of wireframes operates by extracting
alternative cues, such as faces and form features, while commonly avoiding trying to ex-
plicitly infer hidden edges.

Figure 4. Wireframe model of polyhedral shape (A), with multiple volumetric interpretations in
axonometric views (B–D).

Figure 3. Wireframe (left), natural (center), and hidden lines (right) in isometric line-drawings.

A review of all three approaches concludes that drawing with hidden lines communi-
cates higher-level geometric information more effectively than the other two approaches.
However, it has not been explored extensively, presumably because detecting hand-drawn
dashed lines remains an open problem.

Bonnici and Camilleri [7] contributed to finding hidden lines in a natural line-drawing,
refining Varley’s original approach [8,9], and the approach provided by Kyratzi et al. [10–12].
All these approaches assume that the natural sketch is created in the most informative
view, meaning that there is nothing on the “back of the sketch” that cannot be directly
inferred from the visible part of it [11] and, most importantly, the user draws a sketch
without hidden lines, which must be automatically inferred—and labeled as such—by
the application. Therefore, dashed lines arise while parsing the sketch, but are missing
at the input.

Wireframe drawings include hidden lines, but these are not identified as such. Con-
sequently, the well-known ambiguity of wireframes (Figure 4) is commonly solved by
reconstruction approaches that cannot rely on the visibility of the edges. As the recent
review by Camba et al. shows [3], the reconstruction of wireframes operates by extracting
alternative cues, such as faces and form features, while commonly avoiding trying to
explicitly infer hidden edges.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 20

In principle, there are two classical approaches to deal with hidden edges in SBM. In
the first, the user creates a natural drawing and then the system tries to automatically infer
the back of it (which is not provided by the user). In the second, the user draws a
wireframe representation of the solid shape without distinguishing that hidden from vis-
ible edges. Both are drawn as solid lines. Reconstruction approaches cannot rely on the
visibility of the edges, which is generally unknown.

There is, however, a third alternative. A common artifact that is successfully used to
convey information of the back of an object while increasing the perceptual sensation of
volume involves the use of dashed lines to represent surfaces, edges, or corners of objects
that are hidden from view (Figure 3).

Figure 3. Wireframe (left), natural (center), and hidden lines (right) in isometric line-drawings.

A review of all three approaches concludes that drawing with hidden lines communi-
cates higher-level geometric information more effectively than the other two approaches.
However, it has not been explored extensively, presumably because detecting hand-
drawn dashed lines remains an open problem.

Bonnici and Camilleri [6] contributed to finding hidden lines in a natural line-draw-
ing, refining Varley’s original approach [7,8], and the approach provided by Kyratzi et al.
[9–11]. All these approaches assume that the natural sketch is created in the most informa-
tive view, meaning that there is nothing on the ‘‘back of the sketch’’ that cannot be directly
inferred from the visible part of it [10] and, most importantly, the user draws a sketch
without hidden lines, which must be automatically inferred—and labeled as such—by the
application. Therefore, dashed lines arise while parsing the sketch, but are missing at the
input.

Wireframe drawings include hidden lines, but these are not identified as such. Con-
sequently, the well-known ambiguity of wireframes (Figure 4) is commonly solved by re-
construction approaches that cannot rely on the visibility of the edges. As the recent re-
view by Camba et al. shows [2], the reconstruction of wireframes operates by extracting
alternative cues, such as faces and form features, while commonly avoiding trying to ex-
plicitly infer hidden edges.

Figure 4. Wireframe model of polyhedral shape (A), with multiple volumetric interpretations in
axonometric views (B–D).

Figure 4. Wireframe model of polyhedral shape (A), with multiple volumetric interpretations in
axonometric views (B–D).

To the best of our knowledge, the only publicly available algorithm to distinguish
visible edges from hidden edges in wireframe drawings was published by Conesa [13]; it
was an exhaustive search of all possible permutations of hidden/visible edges, or exhaus-
tive permutations of hidden/visible faces (if faces were calculated in advance, for instance,
following the approach of Varley et al. [14]).

Appl. Sci. 2024, 14, 4023 5 of 20

Some algorithms to detect dashed lines are used for other purposes, like human–
tablet interaction [15]. However, they depend on assumptions that may be acceptable only
while interactively interpreting simple diagrams. For instance, forcing the user to draw
the strokes consecutively enables a trivial procedure to detect dashed lines interactively.
The algorithm must simply group the strokes in the order the user introduces them. The
problem becomes much more challenging when there is no time information available
(off-line interpretation) or when the user does not follow a particular sequence for drawing
the strokes (repaired or beautified sketches).

The works of Lai and Kasturi [16] and Agam et al. [17] are some of the most representa-
tive of the initial works that were carried out in the field of the recognition and detection of
dashed lines. Lai and Kasturi [16] attempted to recognize dashed lines by linking short and
isolated bars in drawings and maps. Agam et al. [17] investigated the detection of dashed
lines with straight and curved shapes on a pixel basis. Both have served as inspiration for
subsequent work in the development of algorithms for image processing.

Finally, in recent years, the use of machine learning in image recognition has become
widespread. In this regard, several methods with specific applications within engineering
and design were developed. For instance, Fu and Kara [18] presented a method based on the
use of a Convolutional Neural Network (CNN) as a trainable engineering symbol recognizer
for network diagrams. The CNN can learn the visual characteristics of predefined symbol
categories from a few diagrams provided by the user and a set of synthetically generated
training samples. However, the method is not directly applicable to the recognition of
dashed lines. Similarly, Moon et al. [19] introduced a method for recognizing lines and flow
arrows in piping and instrumentation diagrams. The model was trained by a combination
of image processing techniques and deep neural networks. Nevertheless, as the authors
themselves acknowledge, the use of methods based in deep learning has limitations, such
as the quality of the training dataset, which affects the accuracy of recognition results, as
well as the difficulty in recognizing hand-drawn or non-standard symbols. In response to
these limitations, there is growing interest among researchers in exploring hybrid models
that integrate neural networks with symbolic artificial intelligence in different domains,
such as the integration of visual language in AI systems [20].

For the reasons described above, we decided to employ and propose heuristic algo-
rithms in this work. These types of algorithms are valuable and necessary for defining and
developing more effective training for machine learning systems. Additional advantages
of these algorithms are that they are more transparent than automated deep learning or
machine learning methods, and they help understand human reasoning before automating
it in a more modular or compartmentalized manner.

3. Vectorization Overview

Vectorization is a complex task, which commonly requires different stages aimed at
producing 2D line-drawings, made of high semantic geometric elements, and intended as
intermediate results to output 3D CAD models. The main stage involves fitting strokes
into lines, i.e., skipping low-semantic-level geometric elements (typical output in raster to
vector conversions) to identify the high-semantic-level primitives depicted by the strokes
of a sketch. However, some sketch refinement is required:

• Some users tend to redraw the lines of the sketch by overlapping different strokes. This
“sweeping the lines” produces overtraced strokes, which require grouping overtraces, to
identify each single stroke/line, which was intended to represent.

• Some users sketch non-solid lines that are drawn as sets of consecutive strokes (for
instance, by drawing hidden edges as dashed lines). Grouping non-solid strokes fa-
cilitates vectorization, while providing high-level information that may ease the
subsequent reconstruction.

• There is no univocal relationship between strokes and lines, since some users do not
pen-up when a stroke is created just to pen-down to start the following stroke that
begins exactly where the previous one ends. Instead, they sketch a single stroke that

Appl. Sci. 2024, 14, 4023 6 of 20

depicts multiple lines. This “continuous” stroke produces poly-strokes that must be
segmented by the suitable corner finding module, to bring up the different geometric
primitives it contains.

In our approach, the first step of vectorization is to calculate fits of all the strokes. The
second step involves grouping the overtraced strokes. A set of strokes is replaced by a single
stroke that encompasses them all. The fit of the resulting stroke is calculated and the strokes
that have been grouped are removed from the sketch. The third step involves grouping
non-solid strokes. The strokes of all the dashes are replaced by one single stroke that
encompasses all of them (and the fit of this resulting stroke is calculated). The strokes that
do not fit well with either straight lines or ellipse arcs are segmented, and their segments
are fitted, thus obtaining an initial vectorized drawing, which is later refined.

From the overall vectorization process, only the stage of grouping non-solid lines is
studied here. Readers interested in fitting are recommended to explore the works by Plumed
et al. [21,22], Ku et al. [23], and Bartolo et al. [24], which introduced overtrace detection and
clustering. Wang et al. have also contributed with interesting advances [25–27] and the
work by Xiong and LaViola [28] is useful to understand the problem of detecting corners.

4. Non-Solid Line Clustering

Algorithm 1 identifies potential dashed strokes by chaining dashes that are short,
isolated, consecutive, and aligned. The general flow is explained by the next pseudocode:

Algorithm 1. Dashed Stroke Identification Algorithm

Input: Set of strokes in a sketch drawing.
Output: Identified dashed stroke chains.

1: Initialization:
• Put short and isolated strokes in a list of candidate dashes.
• Label dashes of the list as non-visited.

2: Main Loop:
• While there exist non-visited candidate dashes:

2.1: Select one non-visited candidate dash from the list.
2.2: Start a new chain with the selected candidate dash.
2.3: Label the candidate dash as visited.
2.4:. Explore adjacent candidate dashes:

• For each candidate dash not yet visited:
• If the current candidate dash is consecutive to the chain:

• Evaluate its consecutiveness merit.
• If the current candidate dash is aligned with the chain:

• Evaluate its alignment merit.
• Evaluate its overall dash merit by combining

consecutiveness and alignment merits.
• If the dash merit is greater than the current best merit:

• Select the current candidate dash as the best-
continuation.

• While a best-continuation was found:
• Add the best-continuation dash to the chain.
• Label the best-continuation dash as visited.
• Repeat the exploration from step 2.4.

2.5: Merge all dashes of the chain into a common line if the chain contains more than one dash.
2.6: Label all dashes of the chain as visited.
2.7:. Repeat the main loop until all candidate dashes have been visited.
End Algorithm

Terms like “short”, “isolated”, “consecutive”, and “aligned” pose computational
challenges due to their unprecise nature. They are qualitative criteria that depend on a
mixture of geometric and perceptual concepts. Therefore, it is important to highlight that

Appl. Sci. 2024, 14, 4023 7 of 20

the algorithm depends on certain configuration parameters that must be tuned for the
dashed stroke search as they significantly impact the efficiency and quality of the process.
When used along this section, these parameters are denoted in bold and italics for easy
identification. They are further analyzed in Section 5.

Next, we first detail the input data; then, we describe the criteria to select candi-
date dashes. We subsequently describe the recursive procedure to search for chains of
consecutive dashes, to finally explain the output information.

4.1. Input Data

The input to our algorithm is a sketch represented as a set of strokes. These strokes are
hand-drawn lines obtained by sampling scribbled lines by way of a set of consecutive nodes
that are automatically sampled by the device (mouse, pen, etc.) between the pen-down and
pen-up movements. The result is a set of ordered points, which are connected by segments
to approach the original scribble.

Along with the sketch, we input the endpoints of segments that best fit their strokes.
This information was calculated in advance ([21,22]). For this purpose, we employ a
regression fit, a method that is slower than others but less susceptible to sketch inaccuracies,
which can be critical for short strokes, which are commonly found in dashed lines. The
fitted segment is determined by the regression line encapsulating the stroke and delimited
by the points on the regression line closest to the tips of the stroke (refer to Figure 5 for
an illustration). The implementation of the typical line-of-best-fit algorithm considers the
need to swap coordinates for lines with a slope greater than 1, preventing the well-known
issue of regression failure for vertical lines. For each stroke, the fitting algorithm calculates

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 20

• Add the best-continuation dash to the chain.
• Label the best-continuation dash as visited.
• Repeat the exploration from step 2.4.

2.5: Merge all dashes of the chain into a common line if the chain contains more than one
dash.
2.6: Label all dashes of the chain as visited.
2.7:. Repeat the main loop until all candidate dashes have been visited.
End Algorithm

Terms like “short”, “isolated”, “consecutive”, and “aligned” pose computational
challenges due to their unprecise nature. They are qualitative criteria that depend on a
mixture of geometric and perceptual concepts. Therefore, it is important to highlight that
the algorithm depends on certain configuration parameters that must be tuned for the
dashed stroke search as they significantly impact the efficiency and quality of the process.
When used along this section, these parameters are denoted in bold and italics for easy
identification. They are further analyzed in Section 5.

Next, we first detail the input data; then, we describe the criteria to select candidate
dashes. We subsequently describe the recursive procedure to search for chains of consec-
utive dashes, to finally explain the output information.

4.1. Input Data
The input to our algorithm is a sketch represented as a set of strokes. These strokes

are hand-drawn lines obtained by sampling scribbled lines by way of a set of consecutive
nodes that are automatically sampled by the device (mouse, pen, etc.) between the pen-
down and pen-up movements. The result is a set of ordered points, which are connected
by segments to approach the original scribble.

Along with the sketch, we input the endpoints of segments that best fit their strokes.
This information was calculated in advance ([20,21]). For this purpose, we employ a re-
gression fit, a method that is slower than others but less susceptible to sketch inaccuracies,
which can be critical for short strokes, which are commonly found in dashed lines. The
fitted segment is determined by the regression line encapsulating the stroke and delimited
by the points on the regression line closest to the tips of the stroke (refer to Figure 5 for an
illustration). The implementation of the typical line-of-best-fit algorithm considers the
need to swap coordinates for lines with a slope greater than 1, preventing the well-known
issue of regression failure for vertical lines. For each stroke, the fitting algorithm calculates
• Coordinates of the initial tip of the fitting segment (<TipBegin (x, y)>);
• Coordinates of the final tip of the fitting segment (<TipEnd (x, y)>);
• Length of the segment (<Length>);
• Orientation (angle in radians).

Figure 5. Fitting one stroke to its regression line.

4.2. Obtaining Candidate Dashes
To enhance the efficiency of the search process, the algorithm first discards those

strokes that are implausible dashes, following these steps:
1. Exclusion of Long Strokes:

Excessively long strokes are excluded as candidate dashes, as SBM dashed lines typ-
ically represent hidden edges, which can only be hidden by faces delimited by edges that
are necessarily larger than the dashes. The algorithm determines the length of the longest

Figure 5. Fitting one stroke to its regression line.

• Coordinates of the initial tip of the fitting segment (<TipBegin (x, y)>);
• Coordinates of the final tip of the fitting segment (<TipEnd (x, y)>);
• Length of the segment (<Length>);
• Orientation (angle in radians).

4.2. Obtaining Candidate Dashes

To enhance the efficiency of the search process, the algorithm first discards those
strokes that are implausible dashes, following these steps:

1. Exclusion of Long Strokes:

Excessively long strokes are excluded as candidate dashes, as SBM dashed lines
typically represent hidden edges, which can only be hidden by faces delimited by edges
that are necessarily larger than the dashes. The algorithm determines the length of the
longest segment in the sketch, denoted as <MaxLength>. Subsequently, a threshold value
<TrimLength> is calculated as a percentage of <MaxLength>:

TrimLength = MaxLength ·DashSizeMax (1)

where DashSizeMax has a default percentage of 50%. Segments exceeding the length of
<TrimLength> are discarded and labeled as non-visitable.

2. Discarding non-isolated strokes:

Candidate stroke tips must maintain a significant distance from neighboring tips.
The valence of each tip is then calculated to identify potential shared vertices, avoiding
collinearity. Closeness is determined by a threshold relative to stroke size, calculated as

Threshold = |Segment length|·IsolatedTipThreshold (2)

Appl. Sci. 2024, 14, 4023 8 of 20

The default value of IsolatedTipThreshold is 25% of the dash length. The algorithm
then identifies endpoints near stroke tips, excluding collinear strokes. If both tips have a
valence > 0, the stroke is discarded as dashed and marked as non-visitable.

3. Assessment of stroke similarity:

The algorithm temporarily excludes strokes that significantly deviate from the average
stroke length. At the start of each search iteration, the average length of the remaining
candidate strokes <avgLength> is recalculated. Based on the principle of similarity, the
algorithm assumes that only similar dashes belong to a single dashed stroke. It uses the
average length of remaining candidate strokes, <avgLength>, to establish the length range
for currently visitable dashes:

DashLengthMin =
avgLength

DashSizeShortRange

DashLengthMax = avgLength ·DashSizeLongRange (3)

where DashSizeShortRange is the number of times that a stroke should be shorter than the
average dash to be excluded (default is 5 times shorter). DashSizeLongRange is the number
of times that a stroke should be longer than the average dash to be excluded (default is
2.5 times longer). Candidate strokes that fall outside the range [DashLengthMin, Dash-
LengthMax] are temporarily discarded and labeled as currently non-visitable. These strokes
may become visitable later as the algorithm progresses and adjusts the average length
based on remaining non-visited dashes. Hence, these parameters must be recalculated
each time a candidate dashed line is created and the search for remaining dashed strokes is
relaunched. Since shorter strokes are prioritized for visitation, these parameters tend to
increase as the search progresses and the short strokes are gradually grouped together.

4. Evaluation of gap consistency:

Following again the perceptual principle of similarity, the algorithm assumes that only
dashes that are separated by similar gaps may belong to a single dashed stroke. Therefore,
<avgLength> is used to calculate the gap range for currently visitable dashes, which is
computed as follows:

DashGapMin =
avgLength

DashGapShortRange

DashGapMax = avgLength·DashGapLongRange (4)

where DashGapShortRange specifies how much shorter the fictitious segment connecting
two consecutive tips must be than the average dash to be excluded (default: 10 times
shorter). DashGapLongRange indicates how much longer this segment must be than the
average dash to be excluded (default: 2 times longer). Subsequently, candidate dashes
with gaps outside the range [DashGapMin, DashGsapMax] are temporarily discarded and
labeled as currently non-visitable.

5. Straightness check:

Straightness of dashes is evaluated after the chain is complete. The merit of each stroke
(MeritDashLine[i]) is calculated by following the approach by Plumed et al., controlled
by three parameters, as explained in [21]: LineTolMin defines the narrow tolerance band
for optimal straight strokes, LineTolMax defines the wider tolerance band for acceptable
straight strokes, and LineSmoothPenalty reduces deviations to maintain stroke shape
integrity. The merits reach a value of 1 if the shape of the stroke closely resembles a straight
line (inside the narrow tolerance band) and 0 when there is a significant deviation beyond
the relaxed band. Those merits are compared against the user-defined parameter DashMin-
MeritLine (which defaults at 0.25). Each dash is labeled as straight-enough or non-straight,
and the chain must possess more than a minimum threshold of MaxNonStraightDashes, a

Appl. Sci. 2024, 14, 4023 9 of 20

percent of the minimum number of straight dashes (default is 40%). This filter, described in
Algorithm 2, is used to avoid the acceptance of chained irregular strokes, while tolerating a
moderate level of imperfection in the single dashes of a dashed line (Figure 6).

Algorithm 2. Detection of non-straight chain

1: for (long i = 0; i < Chain.size; i++);
2: if (MeritDashLine[i] < DashMinMeritLine) then

3: NonStraight++;
4: end if

5: end for
6: if (NonStraight > MaxNonStraightDashes · Chain.size) then
7: reject Chain;
8: end if

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 20

with gaps outside the range [DashGapMin, DashGsapMax] are temporarily discarded and
labeled as currently non-visitable.
5. Straightness check:

Straightness of dashes is evaluated after the chain is complete. The merit of each
stroke (MeritDashLine[i]) is calculated by following the approach by Plumed et al., con-
trolled by three parameters, as explained in [20]: LineTolMin defines the narrow tolerance
band for optimal straight strokes, LineTolMax defines the wider tolerance band for ac-
ceptable straight strokes, and LineSmoothPenalty reduces deviations to maintain stroke
shape integrity. The merits reach a value of 1 if the shape of the stroke closely resembles
a straight line (inside the narrow tolerance band) and 0 when there is a significant devia-
tion beyond the relaxed band. Those merits are compared against the user-defined param-
eter DashMinMeritLine (which defaults at 0.25). Each dash is labeled as straight-enough
or non-straight, and the chain must possess more than a minimum threshold of
MaxNonStraightDashes, a percent of the minimum number of straight dashes (default is
40%). This filter, described in Algorithm 2, is used to avoid the acceptance of chained ir-
regular strokes, while tolerating a moderate level of imperfection in the single dashes of a
dashed line (Figure 6).

Algorithm 2. Detection of non-straight chain
1: for (long i = 0; i < Chain.size; i++);

2: if (MeritDashLine[i] < DashMinMeritLine) then
3: NonStraight++;

4: end if
5: end for
6: if (NonStraight > MaxNonStraightDashes · Chain.size) then
7: reject Chain;
8: end if

The algorithm detects non-straight chains based on the evaluation of individual dash
merits compared to a predefined threshold.

Figure 6. Non-straight dash in context.

4.3. Chaining DASHED STROKES
Chains of strokes are calculated recursively by adding new strokes that must meet

the following criteria: (1) they should not have been previously visited (which is easily
achieved by labeling the dashes already visited); (2) their length must align with the cur-
rent range (candidate dashes must fall inside the range [DashLengthMin, DashLength-
Max], as explained previously); (3) they must be consecutive to one of the tips of the cur-
rent chain of dashes (without overlapping or being too distant), by falling inside the range
[DashGapMin, DashGapMax], as explained earlier; and (4) they should exhibit a similar
orientation to previous dashes, within a specified angle and offset. We next describe in
detail the procedures that guarantee that the last two conditions are satisfied.
• Consecutiveness verification:

Figure 6. Non-straight dash in context.

The algorithm detects non-straight chains based on the evaluation of individual dash
merits compared to a predefined threshold.

4.3. Chaining DASHED STROKES

Chains of strokes are calculated recursively by adding new strokes that must meet
the following criteria: (1) they should not have been previously visited (which is easily
achieved by labeling the dashes already visited); (2) their length must align with the current
range (candidate dashes must fall inside the range [DashLengthMin, DashLengthMax],
as explained previously); (3) they must be consecutive to one of the tips of the current
chain of dashes (without overlapping or being too distant), by falling inside the range
[DashGapMin, DashGapMax], as explained earlier; and (4) they should exhibit a similar
orientation to previous dashes, within a specified angle and offset. We next describe in
detail the procedures that guarantee that the last two conditions are satisfied.

• Consecutiveness verification:

The new stroke must be consecutive (continue or precede, not overlapping) to the
current chain (which may contain more than one stroke). Furthermore, the gap, which
represents the minimum distance between the new stroke[i] and the chain, as illustrated
in Figure 7, must fall within the range defined by the calculated maximum and minimum
gap, as per Equation (4). The decision is made following the Algorithm 3:

Algorithm 3. Consecutive stroke verification

1: gap = min(F0, F1, L0, L1);
2: if ((gap > DashGapMax) ||(gap < DashGapMin)) then
3: Discard stroke[i]
4: end if

Appl. Sci. 2024, 14, 4023 10 of 20

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 20

The new stroke must be consecutive (continue or precede, not overlapping) to the cur-
rent chain (which may contain more than one stroke). Furthermore, the gap, which repre-
sents the minimum distance between the new stroke[i] and the chain, as illustrated in Fig-
ure 7, must fall within the range defined by the calculated maximum and minimum gap,
as per Equation (4). The decision is made following the Algorithm 3:

Algorithm 3. Consecutive stroke verification
1: gap = min(F0, F1, L0, L1);
2: if ((gap > DashGapMax) ||(gap < DashGapMin)) then
3: Discard stroke[i]
4: end if

The algorithm verifies the consecutiveness of strokes and checks if they fall within
the defined gap range.

Figure 7. The gap is the minimum distance between tips of the chain and the new stroke.

For valid gaps, their merit (meritGap) is calculated as a ramp function that equals 1
for a gap equal to the average gap, while it equals 0 for gaps equal to DashGapMin or
DashGapMax (Figure 8).

Figure 8. Gap merit ramp function.

• Alignment with current segment:
The new stroke should also be reasonably aligned with the current chain. To perform

this verification, the thresholds derived from the user-configured dashed line search pa-
rameters (refer to Section 5) are employed. 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐴𝑛𝑔𝑙𝑒 𝑖 = 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑𝑇𝑜𝑙 𝑖 ∙ 𝑴𝒂𝒙𝑫𝒂𝒔𝒉𝑨𝒏𝒈𝒍𝒆 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑂𝑓𝑓𝑠𝑒𝑡 𝑖 = 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑𝑇𝑜𝑙 𝑖 ∙ 𝑴𝒂𝒙𝑫𝒂𝒔𝒉𝑶𝒇𝒇𝒔𝒆𝒕 (5)

It must be noted that the tolerances used for the thresholds are calculated relative to
their lengths. This is performed to automatically adapt the algorithm to detect dashed
lines of different sizes, which typically coexist in the same sketch. The calculations are as
follows:

Figure 7. The gap is the minimum distance between tips of the chain and the new stroke.

The algorithm verifies the consecutiveness of strokes and checks if they fall within the
defined gap range.

For valid gaps, their merit (meritGap) is calculated as a ramp function that equals 1
for a gap equal to the average gap, while it equals 0 for gaps equal to DashGapMin or
DashGapMax (Figure 8).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 20

The new stroke must be consecutive (continue or precede, not overlapping) to the cur-
rent chain (which may contain more than one stroke). Furthermore, the gap, which repre-
sents the minimum distance between the new stroke[i] and the chain, as illustrated in Fig-
ure 7, must fall within the range defined by the calculated maximum and minimum gap,
as per Equation (4). The decision is made following the Algorithm 3:

Algorithm 3. Consecutive stroke verification
1: gap = min(F0, F1, L0, L1);
2: if ((gap > DashGapMax) ||(gap < DashGapMin)) then
3: Discard stroke[i]
4: end if

The algorithm verifies the consecutiveness of strokes and checks if they fall within
the defined gap range.

Figure 7. The gap is the minimum distance between tips of the chain and the new stroke.

For valid gaps, their merit (meritGap) is calculated as a ramp function that equals 1
for a gap equal to the average gap, while it equals 0 for gaps equal to DashGapMin or
DashGapMax (Figure 8).

Figure 8. Gap merit ramp function.

• Alignment with current segment:
The new stroke should also be reasonably aligned with the current chain. To perform

this verification, the thresholds derived from the user-configured dashed line search pa-
rameters (refer to Section 5) are employed. 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐴𝑛𝑔𝑙𝑒 𝑖 = 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑𝑇𝑜𝑙 𝑖 ∙ 𝑴𝒂𝒙𝑫𝒂𝒔𝒉𝑨𝒏𝒈𝒍𝒆 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑂𝑓𝑓𝑠𝑒𝑡 𝑖 = 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑𝑇𝑜𝑙 𝑖 ∙ 𝑴𝒂𝒙𝑫𝒂𝒔𝒉𝑶𝒇𝒇𝒔𝒆𝒕 (5)

It must be noted that the tolerances used for the thresholds are calculated relative to
their lengths. This is performed to automatically adapt the algorithm to detect dashed
lines of different sizes, which typically coexist in the same sketch. The calculations are as
follows:

Figure 8. Gap merit ramp function.

• Alignment with current segment:

The new stroke should also be reasonably aligned with the current chain. To per-
form this verification, the thresholds derived from the user-configured dashed line search
parameters (refer to Section 5) are employed.

ThresholdAngle[i] = IncreasedTol[i]·MaxDashAngle

ThresholdO f f set[i] = IncreasedTol[i]·MaxDashOffset (5)

It must be noted that the tolerances used for the thresholds are calculated relative to
their lengths. This is performed to automatically adapt the algorithm to detect dashed
lines of different sizes, which typically coexist in the same sketch. The calculations are
as follows:

IncreasedTol[i] = 1 + IncreasedDashTolerances·
(

1 − L[i]− Lmin
Lmax − Lmin

)
(6)

where Lmin and Lmax are the minimum and maximum lengths of the candidate strokes,
and L[i] is the length of the current stroke.

The orientation of stroke[i] should closely match that of the chain segment (Figure 9);
therefore, if the difference between both orientations exceeds the threshold, stroke[i] is
discarded as outlined in Algorithm 4.

Algorithm 4. Orientation matching

1: if ((|αa – αb|) > ThresholdAngle[i]), then
2: stroke[i] is discarded;
3: end if

Appl. Sci. 2024, 14, 4023 11 of 20

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 20

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑𝑇𝑜𝑙 𝑖 = 1 𝑰𝒏𝒄𝒓𝒆𝒂𝒔𝒆𝒅𝑫𝒂𝒔𝒉𝑻𝒐𝒍𝒆𝒓𝒂𝒏𝒄𝒆𝒔 ∙ 1 𝐿 𝑖 𝐿𝑚𝑖𝑛𝐿𝑚𝑎𝑥 𝐿𝑚𝑖𝑛 (6)

where Lmin and Lmax are the minimum and maximum lengths of the candidate strokes,
and L[i] is the length of the current stroke.

The orientation of stroke[i] should closely match that of the chain segment (Figure 9);
therefore, if the difference between both orientations exceeds the threshold, stroke[i] is
discarded as outlined in Algorithm 4.

Algorithm 4. Orientation matching
1: if ((|αa – αb|) > ThresholdAngle[i]), then
2: stroke[i] is discarded;
3: end if

The algorithm checks for orientation matching between stroke[i] and the chain seg-
ment.

Figure 9. Different orientation between chain and dash.

For valid orientations, their merit (meritAngle) is calculated as a ramp function that
equals 1 for exactly the same orientation, while it equals 0 for differences in orientation
greater than the ThresholdAngle (Figure 10).

Figure 10. Orientation merit ramp function.

The offset value is determined as a combination of two factors. For very close lines,
the gap line connecting their ends may be far from collinear. Alternatively, for more dis-
tant lines, the gap line discriminates poorly, while the step is the parameter that best
measures the gap. We assume that when segments are closer to each other, the same step
is perceived as more likely intentional. Hence, we measure both the angles and the step,
as depicted in Figure 11:

Figure 11. Offset measurement for close and distant dashes.

Figure 9. Different orientation between chain and dash.

The algorithm checks for orientation matching between stroke[i] and the chain segment.
For valid orientations, their merit (meritAngle) is calculated as a ramp function that

equals 1 for exactly the same orientation, while it equals 0 for differences in orientation
greater than the ThresholdAngle (Figure 10).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 20

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑𝑇𝑜𝑙 𝑖 = 1 𝑰𝒏𝒄𝒓𝒆𝒂𝒔𝒆𝒅𝑫𝒂𝒔𝒉𝑻𝒐𝒍𝒆𝒓𝒂𝒏𝒄𝒆𝒔 ∙ 1 𝐿 𝑖 𝐿𝑚𝑖𝑛𝐿𝑚𝑎𝑥 𝐿𝑚𝑖𝑛 (6)

where Lmin and Lmax are the minimum and maximum lengths of the candidate strokes,
and L[i] is the length of the current stroke.

The orientation of stroke[i] should closely match that of the chain segment (Figure 9);
therefore, if the difference between both orientations exceeds the threshold, stroke[i] is
discarded as outlined in Algorithm 4.

Algorithm 4. Orientation matching
1: if ((|αa – αb|) > ThresholdAngle[i]), then
2: stroke[i] is discarded;
3: end if

The algorithm checks for orientation matching between stroke[i] and the chain seg-
ment.

Figure 9. Different orientation between chain and dash.

For valid orientations, their merit (meritAngle) is calculated as a ramp function that
equals 1 for exactly the same orientation, while it equals 0 for differences in orientation
greater than the ThresholdAngle (Figure 10).

Figure 10. Orientation merit ramp function.

The offset value is determined as a combination of two factors. For very close lines,
the gap line connecting their ends may be far from collinear. Alternatively, for more dis-
tant lines, the gap line discriminates poorly, while the step is the parameter that best
measures the gap. We assume that when segments are closer to each other, the same step
is perceived as more likely intentional. Hence, we measure both the angles and the step,
as depicted in Figure 11:

Figure 11. Offset measurement for close and distant dashes.

Figure 10. Orientation merit ramp function.

The offset value is determined as a combination of two factors. For very close lines,
the gap line connecting their ends may be far from collinear. Alternatively, for more distant
lines, the gap line discriminates poorly, while the step is the parameter that best measures
the gap. We assume that when segments are closer to each other, the same step is perceived
as more likely intentional. Hence, we measure both the angles and the step, as depicted in
Figure 11:

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 20

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑𝑇𝑜𝑙 𝑖 = 1 𝑰𝒏𝒄𝒓𝒆𝒂𝒔𝒆𝒅𝑫𝒂𝒔𝒉𝑻𝒐𝒍𝒆𝒓𝒂𝒏𝒄𝒆𝒔 ∙ 1 𝐿 𝑖 𝐿𝑚𝑖𝑛𝐿𝑚𝑎𝑥 𝐿𝑚𝑖𝑛 (6)

where Lmin and Lmax are the minimum and maximum lengths of the candidate strokes,
and L[i] is the length of the current stroke.

The orientation of stroke[i] should closely match that of the chain segment (Figure 9);
therefore, if the difference between both orientations exceeds the threshold, stroke[i] is
discarded as outlined in Algorithm 4.

Algorithm 4. Orientation matching
1: if ((|αa – αb|) > ThresholdAngle[i]), then
2: stroke[i] is discarded;
3: end if

The algorithm checks for orientation matching between stroke[i] and the chain seg-
ment.

Figure 9. Different orientation between chain and dash.

For valid orientations, their merit (meritAngle) is calculated as a ramp function that
equals 1 for exactly the same orientation, while it equals 0 for differences in orientation
greater than the ThresholdAngle (Figure 10).

Figure 10. Orientation merit ramp function.

The offset value is determined as a combination of two factors. For very close lines,
the gap line connecting their ends may be far from collinear. Alternatively, for more dis-
tant lines, the gap line discriminates poorly, while the step is the parameter that best
measures the gap. We assume that when segments are closer to each other, the same step
is perceived as more likely intentional. Hence, we measure both the angles and the step,
as depicted in Figure 11:

Figure 11. Offset measurement for close and distant dashes. Figure 11. Offset measurement for close and distant dashes.

Angles are measured by simply selecting the greater one, and comparing against the
threshold as described in Algorithm 5:

Algorithm 5: Angle measurement

1: if (max(Angle1, Angle2) > ThresholdAngle[i]) then
2: stroke[i] is discarded
3: end if;

The algorithm discards stroke[i] if the maximum angle exceeds the threshold.
For valid orientations, their merit (meritOffsetAngle) is calculated by the ramp function

described in Figure 10.
To measure the step, the following calculations are performed. First, the maximum

allowable step is calculated as a percentage (specified by ThresholdStep[i] in Equation (7))
of the length of the shortest segment (selected between stroke[i] and the chain).

O f f setStep[i] = Min(|stroke[i]|, |chain|)·ThresholdStep[i] (7)

Appl. Sci. 2024, 14, 4023 12 of 20

Second, the two distances of the tips that delimit the gap (A1 and B0 in the example of
Figure 12) to the line defined by the other segment are calculated. The greater distance is
selected as the “step” and compared to the offset (Algorithm 6).

Algorithm 6: Step comparison

if (step= max(dA1, dB0) > OffsetStep[i]) then
discard stroke[i]
end if;

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 20

Angles are measured by simply selecting the greater one, and comparing against the
threshold as described in Algorithm 5:

Algorithm 5: Angle measurement
1: if (max(Angle1, Angle2) > ThresholdAngle[i]) then
2: stroke[i] is discarded
3: end if;

The algorithm discards stroke[i] if the maximum angle exceeds the threshold.
For valid orientations, their merit (meritOffsetAngle) is calculated by the ramp func-

tion described in Figure 10.
To measure the step, the following calculations are performed. First, the maximum

allowable step is calculated as a percentage (specified by ThresholdStep[i] in Equation (7))
of the length of the shortest segment (selected between stroke[i] and the chain). 𝑂𝑓𝑓𝑠𝑒𝑡𝑆𝑡𝑒𝑝 𝑖 = 𝑀𝑖𝑛 |𝑠𝑡𝑟𝑜𝑘𝑒 𝑖 |, |𝑐ℎ𝑎𝑖𝑛| ∙ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝑡𝑒𝑝 𝑖 (7)

Second, the two distances of the tips that delimit the gap (A1 and B0 in the example
of Figure 12) to the line defined by the other segment are calculated. The greater distance
is selected as the “step” and compared to the offset (Algorithm 6).

Algorithm 6: Step comparison
if (step= max(dA1, dB0) > OffsetStep[i]) then
discard stroke[i]
end if;

The algorithm compares the maximum distance between the tips of the gap to the
offset step.

Figure 12. Distances from each tip to the line defined by the other segment.

For the valid steps, their merit (meritOffsetStep) is calculated as a ramp function that
equals 1 for a null step, and 0 for greater than OffsetStep[i] (Figure 13).

Figure 13. Step merit ramp function.

The merit of the whole offset (meritOffset) is calculated by balancing both meri-
tOffsetAngle and meritOffsetStep, as follows:

Figure 12. Distances from each tip to the line defined by the other segment.

The algorithm compares the maximum distance between the tips of the gap to the
offset step.

For the valid steps, their merit (meritOffsetStep) is calculated as a ramp function that
equals 1 for a null step, and 0 for greater than OffsetStep[i] (Figure 13).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 20

Angles are measured by simply selecting the greater one, and comparing against the
threshold as described in Algorithm 5:

Algorithm 5: Angle measurement
1: if (max(Angle1, Angle2) > ThresholdAngle[i]) then
2: stroke[i] is discarded
3: end if;

The algorithm discards stroke[i] if the maximum angle exceeds the threshold.
For valid orientations, their merit (meritOffsetAngle) is calculated by the ramp func-

tion described in Figure 10.
To measure the step, the following calculations are performed. First, the maximum

allowable step is calculated as a percentage (specified by ThresholdStep[i] in Equation (7))
of the length of the shortest segment (selected between stroke[i] and the chain). 𝑂𝑓𝑓𝑠𝑒𝑡𝑆𝑡𝑒𝑝 𝑖 = 𝑀𝑖𝑛 |𝑠𝑡𝑟𝑜𝑘𝑒 𝑖 |, |𝑐ℎ𝑎𝑖𝑛| ∙ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝑡𝑒𝑝 𝑖 (7)

Second, the two distances of the tips that delimit the gap (A1 and B0 in the example
of Figure 12) to the line defined by the other segment are calculated. The greater distance
is selected as the “step” and compared to the offset (Algorithm 6).

Algorithm 6: Step comparison
if (step= max(dA1, dB0) > OffsetStep[i]) then
discard stroke[i]
end if;

The algorithm compares the maximum distance between the tips of the gap to the
offset step.

Figure 12. Distances from each tip to the line defined by the other segment.

For the valid steps, their merit (meritOffsetStep) is calculated as a ramp function that
equals 1 for a null step, and 0 for greater than OffsetStep[i] (Figure 13).

Figure 13. Step merit ramp function.

The merit of the whole offset (meritOffset) is calculated by balancing both meri-
tOffsetAngle and meritOffsetStep, as follows:

Figure 13. Step merit ramp function.

The merit of the whole offset (meritOffset) is calculated by balancing both meritOffse-
tAngle and meritOffsetStep, as follows:

meritO f f set =
meritO f f setAngle + meritO f f setStep

2
(8)

We note that both meritOffsetAngle and meritOffsetStep must not be null to obtain
the candidate dash accepted as such.

MeritDash is finally calculated for each candidate dash, thus allowing the candidate
dash with the highest merit to be added to the chain:

meritDash = [meritGap·DashBalanceGapAngle + meritAngle·(1 − DashBalanceStepAngle)]·meritO f f set (9)

where DashBalanceStepAngle is an adjustable parameter (default is 50%).

4.4. Output Stroke Clustering

Upon completing the detection of a dashed stroke, the sketch undergoes an update to
consolidate dashes. For each chain of dashed strokes, the process is described as follows:

• Create a chained stroke encompassing all the dashes of the chain.
• Save the chained stroke by replacing the first original dash.
• Remove the remaining dashes of the chain.

The chained stroke is created by linking the start point, midpoint, and endpoint of
each dash. The endpoint of each dash is connected to the start point of the consecutive dash

Appl. Sci. 2024, 14, 4023 13 of 20

(Figure 14). A flag indicating whether each dash follows the same or the inverse direction
of the chain is calculated in advance. Thus, the algorithm swaps the first and last points for
reversed dashes (like the middle dash shown in Figure 14).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 20

𝑚𝑒𝑟𝑖𝑡𝑂𝑓𝑓𝑠𝑒𝑡 = 𝑚𝑒𝑟𝑖𝑡𝑂𝑓𝑓𝑠𝑒𝑡𝐴𝑛𝑔𝑙𝑒 𝑚𝑒𝑟𝑖𝑡𝑂𝑓𝑓𝑠𝑒𝑡𝑆𝑡𝑒𝑝2 (8)

We note that both meritOffsetAngle and meritOffsetStep must not be null to obtain
the candidate dash accepted as such.

MeritDash is finally calculated for each candidate dash, thus allowing the candidate
dash with the highest merit to be added to the chain: 𝑚𝑒𝑟𝑖𝑡𝐷𝑎𝑠ℎ = 𝑚𝑒𝑟𝑖𝑡𝐺𝑎𝑝 ∙ 𝐷𝑎𝑠ℎ𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝐺𝑎𝑝𝐴𝑛𝑔𝑙𝑒 𝑚𝑒𝑟𝑖𝑡𝐴𝑛𝑔𝑙𝑒∙ 1 𝐷𝑎𝑠ℎ𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑆𝑡𝑒𝑝𝐴𝑛𝑔𝑙𝑒 ∙ 𝑚𝑒𝑟𝑖𝑡𝑂𝑓𝑓𝑠𝑒𝑡

(9)

where DashBalanceStepAngle is an adjustable parameter (default is 50%).

4.4. Output Stroke Clustering
Upon completing the detection of a dashed stroke, the sketch undergoes an update

to consolidate dashes. For each chain of dashed strokes, the process is described as fol-
lows:
• Create a chained stroke encompassing all the dashes of the chain.
• Save the chained stroke by replacing the first original dash.
• Remove the remaining dashes of the chain.

The chained stroke is created by linking the start point, midpoint, and endpoint of
each dash. The endpoint of each dash is connected to the start point of the consecutive
dash (Figure 14). A flag indicating whether each dash follows the same or the inverse di-
rection of the chain is calculated in advance. Thus, the algorithm swaps the first and last
points for reversed dashes (like the middle dash shown in Figure 14).

Figure 14. Chained stroke.

The output of our algorithm is the updated sketch, where dashes are removed and
chained strokes are added (including their fitting parameters: coordinates of tips, length,
and orientation).

5. Tuning Parameters
As said in the previous section, the algorithm requires the user to define several tun-

ing parameters beforehand. These parameters are used to adapt the algorithm’s behavior
to the characteristics of the sketch (sketching quality, stroke line style, etc.) and contribute
to enhancing the algorithm’s overall efficiency. The choice of parameters along with the
arguments to support the values assigned to them are explained based on the perceptual
principles like the principle of continuity of the Gestalt law, combined with our own ex-
perience.

Table 1 summarizes the tuning parameters used in the decision-making rules defined
in the previous section. They are grouped by their goals. The third column includes the
suggested default values based on our experience. The implications of relaxing or restrict-
ing these values are also detailed in the table.

Table 1. User-adjustable tuning parameters.

Goal Parameter Default Value If Increased If Decreased

Figure 14. Chained stroke.

The output of our algorithm is the updated sketch, where dashes are removed and
chained strokes are added (including their fitting parameters: coordinates of tips, length,
and orientation).

5. Tuning Parameters

As said in the previous section, the algorithm requires the user to define several
tuning parameters beforehand. These parameters are used to adapt the algorithm’s be-
havior to the characteristics of the sketch (sketching quality, stroke line style, etc.) and
contribute to enhancing the algorithm’s overall efficiency. The choice of parameters along
with the arguments to support the values assigned to them are explained based on the
perceptual principles like the principle of continuity of the Gestalt law, combined with our
own experience.

Table 1 summarizes the tuning parameters used in the decision-making rules defined
in the previous section. They are grouped by their goals. The third column includes
the suggested default values based on our experience. The implications of relaxing or
restricting these values are also detailed in the table.

Table 1. User-adjustable tuning parameters.

Goal Parameter Default Value If Increased If Decreased

Exclude implausible
dashes

DashSizeMax 50%

Computational time
would be lost, as
implausible dashes should
be parsed.

Some dashed lines could
be incomplete, as
legitimate dashes should
be labeled as
non-candidate dashes.

IsolatedTipThreshold 25%

Even very distant tips
could be incorrectly
labeled as sharing a vertex
with the current stroke,
which would be
incorrectly labelled as
non-candidate dash.

Edges sharing
non-perfectly sketched
vertices could be
incorrectly labeled as
candidate dashes
(Figure 6).

Detect
similar dashes

DashSizeShortRange 5 (times shorter than
average length)

Excessively short strokes,
intended to represent dots,
could be accepted as valid
dashes (Figure 7).

Only fairly regular dashed
lines with dashes close to
the average length would
be accepted.

DashSizeLongRange 2.5 (times longer than
average length)

Excessively long strokes
could be accepted as valid
dashes, thus incorrectly
connecting solid lines to
dashed lines.

Only regular dashed lines
with dashes close to the
average length would be
accepted.

Appl. Sci. 2024, 14, 4023 14 of 20

Table 1. Cont.

Goal Parameter Default Value If Increased If Decreased

Detect chains

DashGapShortRange 10 (times shorter than
average length)

Excessively short gaps
could be accepted.
Consecutive lines could be
incorrectly converted into
dashed lines.

Only regular dashed lines
with gaps close to the
average length would
be accepted.

DashGapLongRange 2 (times longer than
average length)

Excessively long gaps
could be accepted.
Consecutive dashed lines
could be merged.

Only regular dashed lines
with gaps close to the
average length would
be accepted.

MaxDashAngle 20◦

Dashed arcs would be
detected, while closely
parallel dashed straight
strokes could become
incorrectly merged.

Small failures in
alignment of dashes could
result in false negatives.

MaxDashOffset 15%

More irregular dashed
lines would be detected, at
the cost of producing false
positives, by grouping
dashes of parallel
dashed lines.

Even small irregularities
would prevent actual
dashed lines from
being detected.

IncreasedDashTolerances 50%
Tolerances would be
further increased for
short dashes.

Tolerances for short
dashes would be very
similar to those for
long dashes.

DashBalanceStepAngle 50%

Step would be more
critical than orientation of
the gap line. This would
be better for
sparse dashes.

Orientation of the gap line
would be more critical
than step. This would be
better for dense dashes.

Check straightness

MaxNonStraightDashes 40% Low-quality dashes would
be accepted as straight.

Dashed lines would only
be made of clearly
straight dashes.

LineTolMin 5%
Low-quality dashes could
be incorrectly labeled as
meritorious straight lines.

High-quality dashes could
be incorrectly labeled as
non-straight lines.

LineTolMax 15%
Low-quality dashes could
be incorrectly labeled as
acceptable straight lines.

Acceptable-quality dashes
could be incorrectly
labeled as
non-straight lines.

LineSmoothPenalty 0.1%
A larger number of
irregular dashes would be
accepted as straight.

Only nearly perfect
strokes would be fitted as
straight lines.

DashMinMeritLine 0.25 (over 1)

Could result in false
negatives. Only very
straight dashes would be
labeled as straight.

Could result in false
positives, as clearly
non-straight dashes could
be labeled as straight.

The filter IsolatedTipThreshold is critical to prevent false positives. Failure in removing
non-isolated strokes as candidate dashes (resulting from reducing the parameter) can result
in false-positive dashed strokes such as those shown in Figure 15.

The recommended value of the filter DashSizeShortRange (which controls Dash-
LengthMin) may result in false positives (as dash–dot lines are classified as dashed lines) by
ignoring the interspersed dots or short dashes (Figure 16). The detection of dash–dot lines
in advance would solve this problem. The removal of this filter would naively allow for
the detection of dash–dot lines, but short dashes should be parsed as dots (thus preventing
checking its orientation, which is prone to be irrelevant).

Appl. Sci. 2024, 14, 4023 15 of 20
Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 20

Figure 15. False dashed strokes grouped by color. Each group is numbered to differentiate be-
tween them.

The recommended value of the filter DashSizeShortRange (which controls Dash-
LengthMin) may result in false positives (as dash–dot lines are classified as dashed lines)
by ignoring the interspersed dots or short dashes (Figure 16). The detection of dash–dot
lines in advance would solve this problem. The removal of this filter would naively allow
for the detection of dash–dot lines, but short dashes should be parsed as dots (thus pre-
venting checking its orientation, which is prone to be irrelevant).

Figure 16. Dash–dot line parsed as a dashed line.

Even dashes that are too close are clearly perceived as such when looking at an iso-
lated dashed line (Figure 17), but accepting very small gaps could result in chaining cross-
ing dashed lines.

Figure 17. Excessively short gap.

The filters DashGapShortRange and DashGapLongRange act in tandem to delimit
the range of admissible lengths of the intervals between consecutive dashes. The proposed
values (10, 2) are a compromise solution to detect both lines with very close dashes (see
the condensed dashed stroke in the upper side of Figure 18), and those with more dis-
persed dashes (see the scattered dashed stroke in the lower side of Figure 18). For example,
decreasing DashGapShortRange results in failures in detecting condensed dashed
strokes: a value of 4 (instead of 10) results in incorrectly labeling one single dashed stroke
as two overlapped dashed strokes with alternating dashes. To further increase the effec-
tiveness of the algorithm, this pair of parameters should be tuned differently to detect
condensed dashes (20, 1) and scattered dashes (4, 4).

Figure 15. False dashed strokes grouped by color. Each group is numbered to differentiate
between them.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 20

Figure 15. False dashed strokes grouped by color. Each group is numbered to differentiate be-
tween them.

The recommended value of the filter DashSizeShortRange (which controls Dash-
LengthMin) may result in false positives (as dash–dot lines are classified as dashed lines)
by ignoring the interspersed dots or short dashes (Figure 16). The detection of dash–dot
lines in advance would solve this problem. The removal of this filter would naively allow
for the detection of dash–dot lines, but short dashes should be parsed as dots (thus pre-
venting checking its orientation, which is prone to be irrelevant).

Figure 16. Dash–dot line parsed as a dashed line.

Even dashes that are too close are clearly perceived as such when looking at an iso-
lated dashed line (Figure 17), but accepting very small gaps could result in chaining cross-
ing dashed lines.

Figure 17. Excessively short gap.

The filters DashGapShortRange and DashGapLongRange act in tandem to delimit
the range of admissible lengths of the intervals between consecutive dashes. The proposed
values (10, 2) are a compromise solution to detect both lines with very close dashes (see
the condensed dashed stroke in the upper side of Figure 18), and those with more dis-
persed dashes (see the scattered dashed stroke in the lower side of Figure 18). For example,
decreasing DashGapShortRange results in failures in detecting condensed dashed
strokes: a value of 4 (instead of 10) results in incorrectly labeling one single dashed stroke
as two overlapped dashed strokes with alternating dashes. To further increase the effec-
tiveness of the algorithm, this pair of parameters should be tuned differently to detect
condensed dashes (20, 1) and scattered dashes (4, 4).

Figure 16. Dash–dot line parsed as a dashed line.

Even dashes that are too close are clearly perceived as such when looking at an isolated
dashed line (Figure 17), but accepting very small gaps could result in chaining crossing
dashed lines.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 20

Figure 15. False dashed strokes grouped by color. Each group is numbered to differentiate be-
tween them.

The recommended value of the filter DashSizeShortRange (which controls Dash-
LengthMin) may result in false positives (as dash–dot lines are classified as dashed lines)
by ignoring the interspersed dots or short dashes (Figure 16). The detection of dash–dot
lines in advance would solve this problem. The removal of this filter would naively allow
for the detection of dash–dot lines, but short dashes should be parsed as dots (thus pre-
venting checking its orientation, which is prone to be irrelevant).

Figure 16. Dash–dot line parsed as a dashed line.

Even dashes that are too close are clearly perceived as such when looking at an iso-
lated dashed line (Figure 17), but accepting very small gaps could result in chaining cross-
ing dashed lines.

Figure 17. Excessively short gap.

The filters DashGapShortRange and DashGapLongRange act in tandem to delimit
the range of admissible lengths of the intervals between consecutive dashes. The proposed
values (10, 2) are a compromise solution to detect both lines with very close dashes (see
the condensed dashed stroke in the upper side of Figure 18), and those with more dis-
persed dashes (see the scattered dashed stroke in the lower side of Figure 18). For example,
decreasing DashGapShortRange results in failures in detecting condensed dashed
strokes: a value of 4 (instead of 10) results in incorrectly labeling one single dashed stroke
as two overlapped dashed strokes with alternating dashes. To further increase the effec-
tiveness of the algorithm, this pair of parameters should be tuned differently to detect
condensed dashes (20, 1) and scattered dashes (4, 4).

Figure 17. Excessively short gap.

The filters DashGapShortRange and DashGapLongRange act in tandem to delimit the
range of admissible lengths of the intervals between consecutive dashes. The proposed
values (10, 2) are a compromise solution to detect both lines with very close dashes (see the
condensed dashed stroke in the upper side of Figure 18), and those with more dispersed
dashes (see the scattered dashed stroke in the lower side of Figure 18). For example,
decreasing DashGapShortRange results in failures in detecting condensed dashed strokes:
a value of 4 (instead of 10) results in incorrectly labeling one single dashed stroke as two
overlapped dashed strokes with alternating dashes. To further increase the effectiveness
of the algorithm, this pair of parameters should be tuned differently to detect condensed
dashes (20, 1) and scattered dashes (4, 4).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 20

Figure 18. Condensed dashed stroke, incorrectly parsed as two overlapped dashed strokes (top),
and scattered dashed stroke (bottom). Each dashed stroke group is numbered for clarity.

The filter MaxDashOffset is highly sensitive, as a small gap variation may prevent
poorly drawn dashed strokes from being accurately chained (Figure 19). Further increas-
ing its value, however, would result in the incorrect chaining of dashes that belong to
closely parallel dashed strokes.

Figure 19. Upper dashed stroke is below offset threshold, while lower dashed stroke is above.

Additionally, relaxing MaxDashAngle and MaxDashOffset may result in false nega-
tives for close parallel dashed lines that may be incorrectly chained with some swapped
dashes (Figure 20).

.

Figure 20. Swapped dashes in parallel dashed strokes.

6. Evaluation
Table 2 presents a collection of representative examples on which the algorithm has

been tested. The left column depicts hand-drawn sketches with diverse arrangements of
dashed lines and varying sketch qualities. The right column illustrates the outcome of the
algorithm, reflecting the results of the vectorization process. In all cases, the results ob-
tained are accurate and coherent. It is important to note that a significant factor that

Figure 18. Condensed dashed stroke, incorrectly parsed as two overlapped dashed strokes (top), and
scattered dashed stroke (bottom). Each dashed stroke group is numbered for clarity.

The filter MaxDashOffset is highly sensitive, as a small gap variation may prevent
poorly drawn dashed strokes from being accurately chained (Figure 19). Further increasing
its value, however, would result in the incorrect chaining of dashes that belong to closely
parallel dashed strokes.

Appl. Sci. 2024, 14, 4023 16 of 20

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 20

Figure 18. Condensed dashed stroke, incorrectly parsed as two overlapped dashed strokes (top),
and scattered dashed stroke (bottom). Each dashed stroke group is numbered for clarity.

The filter MaxDashOffset is highly sensitive, as a small gap variation may prevent
poorly drawn dashed strokes from being accurately chained (Figure 19). Further increas-
ing its value, however, would result in the incorrect chaining of dashes that belong to
closely parallel dashed strokes.

Figure 19. Upper dashed stroke is below offset threshold, while lower dashed stroke is above.

Additionally, relaxing MaxDashAngle and MaxDashOffset may result in false nega-
tives for close parallel dashed lines that may be incorrectly chained with some swapped
dashes (Figure 20).

.

Figure 20. Swapped dashes in parallel dashed strokes.

6. Evaluation
Table 2 presents a collection of representative examples on which the algorithm has

been tested. The left column depicts hand-drawn sketches with diverse arrangements of
dashed lines and varying sketch qualities. The right column illustrates the outcome of the
algorithm, reflecting the results of the vectorization process. In all cases, the results ob-
tained are accurate and coherent. It is important to note that a significant factor that

Figure 19. Upper dashed stroke is below offset threshold, while lower dashed stroke is above.

Additionally, relaxing MaxDashAngle and MaxDashOffset may result in false nega-
tives for close parallel dashed lines that may be incorrectly chained with some swapped
dashes (Figure 20).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 20

Figure 18. Condensed dashed stroke, incorrectly parsed as two overlapped dashed strokes (top),
and scattered dashed stroke (bottom). Each dashed stroke group is numbered for clarity.

The filter MaxDashOffset is highly sensitive, as a small gap variation may prevent
poorly drawn dashed strokes from being accurately chained (Figure 19). Further increas-
ing its value, however, would result in the incorrect chaining of dashes that belong to
closely parallel dashed strokes.

Figure 19. Upper dashed stroke is below offset threshold, while lower dashed stroke is above.

Additionally, relaxing MaxDashAngle and MaxDashOffset may result in false nega-
tives for close parallel dashed lines that may be incorrectly chained with some swapped
dashes (Figure 20).

.

Figure 20. Swapped dashes in parallel dashed strokes.

6. Evaluation
Table 2 presents a collection of representative examples on which the algorithm has

been tested. The left column depicts hand-drawn sketches with diverse arrangements of
dashed lines and varying sketch qualities. The right column illustrates the outcome of the
algorithm, reflecting the results of the vectorization process. In all cases, the results ob-
tained are accurate and coherent. It is important to note that a significant factor that

Figure 20. Swapped dashes in parallel dashed strokes.

6. Evaluation

Table 2 presents a collection of representative examples on which the algorithm has
been tested. The left column depicts hand-drawn sketches with diverse arrangements of
dashed lines and varying sketch qualities. The right column illustrates the outcome of
the algorithm, reflecting the results of the vectorization process. In all cases, the results
obtained are accurate and coherent. It is important to note that a significant factor that
influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

A B

1

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, 4023 17 of 20

Table 2. Cont.

A B

2

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

3

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

4

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

5

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

6

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 20

influences a successful outcome is the quality of the sketch’s strokes. Example 6A and 6B
show that the algorithm generally avoids false positives.

Table 2. Examples of input freehand sketches and the results after the vectorization process.

 A B

1

2

3

4

5

6

It is important to consider the current limitations of the algorithm, as they represent
new opportunities for improvement and areas for future work. Naturally, these improve-
ments go beyond the fact that the algorithm requires many adjustable parameters to ac-
commodate different drawing styles for the dashed lines, and different contexts in which
those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

It is important to consider the current limitations of the algorithm, as they repre-
sent new opportunities for improvement and areas for future work. Naturally, these
improvements go beyond the fact that the algorithm requires many adjustable parameters
to accommodate different drawing styles for the dashed lines, and different contexts in
which those lines are used. A future improvement should focus on distinguishing between
straight dashed lines and dashed arcs (Figure 21), which could be achieved by replacing
the collinearity constraint with a constant or “smooth” and “similar” rotation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 20

Figure 21. Examples of curved dashed strokes.

Finally, the weakest point of this method is the dependence on the sequence. To elim-
inate this dependence in which the strokes are drawn, the algorithm reorders the dashes
by size. It is assumed that smaller strokes are more likely to be dashes of a dashed line, so
they are reordered from smallest to largest. However, the primary characteristic of the
method is that it seeks to chain successive strokes. Therefore, it is very sensitive to the
chaining sequence. It is particularly sensitive to the stroke that is selected first. In the up-
per dashed line in Figure 22, the shortest stroke is the one tine of the fork shape (stroke 1).
The behavior of the algorithm is different from that of the lower dashed stroke, which is
an exact copy of the first line in which a shorter stroke has been added to the handle of
the fork (stroke 11), causing the algorithm to start chaining at said farthest end. In the
upper line, stroke 3 is chained, as it is close and reasonably aligned with stroke 1. In the
lower line, stroke 9 is not very close to the chain as stroke 6 is, but it is much more aligned
with the chain. To resolve these types of situations, the algorithm searches for forks, and
then starts chaining from the handle side.

Figure 22. Chaining from the intersection, vs. chaining from the extreme.

7. Conclusions
Although it may seem trivial, the development of an algorithm capable of detecting

hand-drawn dashed lines addresses an unsolved problem in the field of industrial prod-
uct design. This paper highlights the importance of such an algorithm, particularly in sce-
narios where designers must resort to drawing continuous lines and subsequently manu-
ally editing them into dashed lines. Our proposed algorithm represents a significant step
towards improving user experience by allowing applications to accurately interpret
dashed lines. However, it is worth noting that our current solution is partial, as it does not
yet extend to detecting other types of dashed lines, such as dot or dash–dot patterns.

To further highlight the novelty or complexity of the approach, we must remember
that fixing dashed lines that are outlined with a ruler and compass is relatively straight-
forward. Simple algorithmic approaches based on geometric principles may work reason-
ably well. The problem becomes much more challenging when lines are hand-drawn. In
this scenario, simple algorithms lack the human capability to perceive, balance, and make
choices about small imperfections. Collinear dashes become “nearly” collinear, to cite but
one example.

The main contribution of this paper is the idea of “following the path” to find pre-
ceding or following dashes until completing the chain of dashes. The approach works
with local information while favoring the formulation of the perceptual principles as cues

Figure 21. Examples of curved dashed strokes.

Finally, the weakest point of this method is the dependence on the sequence. To
eliminate this dependence in which the strokes are drawn, the algorithm reorders the
dashes by size. It is assumed that smaller strokes are more likely to be dashes of a dashed
line, so they are reordered from smallest to largest. However, the primary characteristic
of the method is that it seeks to chain successive strokes. Therefore, it is very sensitive to

Appl. Sci. 2024, 14, 4023 18 of 20

the chaining sequence. It is particularly sensitive to the stroke that is selected first. In the
upper dashed line in Figure 22, the shortest stroke is the one tine of the fork shape (stroke
1). The behavior of the algorithm is different from that of the lower dashed stroke, which is
an exact copy of the first line in which a shorter stroke has been added to the handle of the
fork (stroke 11), causing the algorithm to start chaining at said farthest end. In the upper
line, stroke 3 is chained, as it is close and reasonably aligned with stroke 1. In the lower
line, stroke 9 is not very close to the chain as stroke 6 is, but it is much more aligned with
the chain. To resolve these types of situations, the algorithm searches for forks, and then
starts chaining from the handle side.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 20

Figure 21. Examples of curved dashed strokes.

Finally, the weakest point of this method is the dependence on the sequence. To elim-
inate this dependence in which the strokes are drawn, the algorithm reorders the dashes
by size. It is assumed that smaller strokes are more likely to be dashes of a dashed line, so
they are reordered from smallest to largest. However, the primary characteristic of the
method is that it seeks to chain successive strokes. Therefore, it is very sensitive to the
chaining sequence. It is particularly sensitive to the stroke that is selected first. In the up-
per dashed line in Figure 22, the shortest stroke is the one tine of the fork shape (stroke 1).
The behavior of the algorithm is different from that of the lower dashed stroke, which is
an exact copy of the first line in which a shorter stroke has been added to the handle of
the fork (stroke 11), causing the algorithm to start chaining at said farthest end. In the
upper line, stroke 3 is chained, as it is close and reasonably aligned with stroke 1. In the
lower line, stroke 9 is not very close to the chain as stroke 6 is, but it is much more aligned
with the chain. To resolve these types of situations, the algorithm searches for forks, and
then starts chaining from the handle side.

Figure 22. Chaining from the intersection, vs. chaining from the extreme.

7. Conclusions
Although it may seem trivial, the development of an algorithm capable of detecting

hand-drawn dashed lines addresses an unsolved problem in the field of industrial prod-
uct design. This paper highlights the importance of such an algorithm, particularly in sce-
narios where designers must resort to drawing continuous lines and subsequently manu-
ally editing them into dashed lines. Our proposed algorithm represents a significant step
towards improving user experience by allowing applications to accurately interpret
dashed lines. However, it is worth noting that our current solution is partial, as it does not
yet extend to detecting other types of dashed lines, such as dot or dash–dot patterns.

To further highlight the novelty or complexity of the approach, we must remember
that fixing dashed lines that are outlined with a ruler and compass is relatively straight-
forward. Simple algorithmic approaches based on geometric principles may work reason-
ably well. The problem becomes much more challenging when lines are hand-drawn. In
this scenario, simple algorithms lack the human capability to perceive, balance, and make
choices about small imperfections. Collinear dashes become “nearly” collinear, to cite but
one example.

The main contribution of this paper is the idea of “following the path” to find pre-
ceding or following dashes until completing the chain of dashes. The approach works
with local information while favoring the formulation of the perceptual principles as cues

Figure 22. Chaining from the intersection, vs. chaining from the extreme.

7. Conclusions

Although it may seem trivial, the development of an algorithm capable of detecting
hand-drawn dashed lines addresses an unsolved problem in the field of industrial product
design. This paper highlights the importance of such an algorithm, particularly in scenarios
where designers must resort to drawing continuous lines and subsequently manually
editing them into dashed lines. Our proposed algorithm represents a significant step
towards improving user experience by allowing applications to accurately interpret dashed
lines. However, it is worth noting that our current solution is partial, as it does not yet
extend to detecting other types of dashed lines, such as dot or dash–dot patterns.

To further highlight the novelty or complexity of the approach, we must remember that
fixing dashed lines that are outlined with a ruler and compass is relatively straightforward.
Simple algorithmic approaches based on geometric principles may work reasonably well.
The problem becomes much more challenging when lines are hand-drawn. In this scenario,
simple algorithms lack the human capability to perceive, balance, and make choices about
small imperfections. Collinear dashes become “nearly” collinear, to cite but one example.

The main contribution of this paper is the idea of “following the path” to find pre-
ceding or following dashes until completing the chain of dashes. The approach works
with local information while favoring the formulation of the perceptual principles as
cues and requisites. These cues are then managed as constraints, which are tuned by
different parameters, with values supported by perceptual principles combined with our
own experience.

Finally, the algorithm, which was intended as a proof-of-concept, was validated with
a wide and varied set of examples. We concluded that, with properly balanced parameters,
the level of false negatives is acceptable, and the level of false positives is very small. These
are good results, when put in the context of being one of the many stages that contribute to
complete a complex vectorization and 3D reconstruction process. In these processes, false
positives are difficult to detect and correct in later stages, whereas false negatives can be
detected and “repaired” when global information comes into play in subsequent stages.

The use of expert systems remains worthy of exploring in future research. Yet, the
main guidelines of the current approach—which mimics human perception—can be useful
to shorten the training period, and focus on the most critical aspects of detecting these
geometrically imperfect, yet fully perceivable, hand-drawn dashed lines.

Appl. Sci. 2024, 14, 4023 19 of 20

Author Contributions: Conceptualization, R.P. and P.C.; methodology, R.P. and P.C.; software, R.P.,
M.C. and F.N.; validation, R.P., M.C. and F.N.; formal analysis, R.P., M.C. and F.N.; writing—original
draft preparation, R.P. and P.C.; writing—review and editing, R.P., M.C., F.N. and P.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The full source code of the algorithm will be freely available on the
Geometric Reconstruction Group website (REGEO), http://www.regeo.uji.es, (accessed on 19 April
2024) including examples that demonstrate the capabilities and limitations of the approach.

Acknowledgments: Authors would like to extend their sincere gratitude to the reviewers for
their valuable comments and constructive suggestions, which significantly improved the quality of
this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. ISO 128-2:2020; Technical Product Documentation (TPD)—General Principles of Representation—Part 2: Basic Conventions for

Lines. ISO: Geneva, Switzerland, 2020.
2. Veisz, D.; Namouz, E.Z.; Joshi, S.; Summers, J.D. Computer-aided design versus sketching: An exploratory case study. AI EDAM

2012, 26, 317–335. [CrossRef]
3. Camba, J.D.; Pedro Company; Naya, F. Sketch-Based Modeling in Mechanical Engineering Design: Current Status and Opportu-

nities. Comput. Aided Des. 2022, 150, 103283. [CrossRef]
4. Hähnlein, F. Binary Optimization for the Analysis and Synthesis of Concept Sketches. Ph.D. Thesis, d’Université Côte d’Azur,

Inria Sophia Antipolis-Méditerannée, Nice, France, 2022.
5. Agrawala, M.; Li, W.; Berthouzoz, F. Design Principles for Visual Communication. Commun. ACM 2011, 54, 60–69. [CrossRef]
6. Pedro Company; Plumed, R.; Varley, P.A.; Camba, J.D. Algorithmic perception of vertices in sketched drawings of polyhedral

shapes. ACM Trans. Appl. Percept. (TAP) 2019, 16, 18. [CrossRef]
7. Bonnici, A.; Camilleri, K. An evolutionary approach to determining hidden lines from a natural sketch. In Proceedings of the

IEEE Symposium on Visual Languages and Human-Centric Computing, Cambridge, UK, 4–8 September 2016.
8. Varley, P.A.C. Automatic Creation of Boundary-Representation Models from Single Line Drawings. Ph.D. Thesis, Department of

Computer Science, Cardiff University, Cardiff, UK, 2003.
9. Varley, P.A.C.; Martin, R.R.; Suzuki, H. Frontal Geometry from Sketches of Engineering Objects: Is Line Labelling Necessary?

Comput. Aided Des. 2005, 37, 1285–1307. [CrossRef]
10. Kyratzi, S. Industrial-Product Concept Development: Geometric and Information Models for Interactive Design. Ph.D. Thesis,

University of the Aegean, Lemnos, Greek, 2007.
11. Kyratzi, S.; Sapidis, N. Extracting a polyhedron from a single-view sketch: Topological construction of a wireframe sketch with

minimal hidden elements. Comput. Graph. 2009, 33, 270–279. [CrossRef]
12. Kyratzi, S.; Azariadis, P. Geometric Definition of the Hidden Part of a Line Drawing in a Sketch-to-Solid Methodology. Comput.

Aided Des. Appl. 2014, 12, 355–365. [CrossRef]
13. Conesa, J. Reconstruccion Geometrica de Solidos Utilizando Tecnicas de Optimizacion. Ph.D. Thesis, Department of Structures

and Construction, Polytechnic University of Cartagena, Cartagena, Spain, 2001. (In Spanish).
14. Varley, P.A.C.; Pedro Company. A new algorithm for finding faces in wireframes. Comput. Aided Des. 2010, 42, 279–309. [CrossRef]
15. Jorge, J.A.; Fonseca, M.J. A simple approach to recognize geometric shapes interactively. In Lecture Notes in Computer Science,

Proceedings of the GREC’99, LNCS 1941; Springer: Berlin/Heidelberg, Germany, 2000; pp. 266–274.
16. Lai, C.P.; Kasturi, R. Detection of dashed lines in engineering drawings and maps. In Proceedings of the First International

Conference on Document Analysis and Recognition, Saint-Malo, France, 30 September–2 October 1991; pp. 507–515.
17. Agam, G.; Luo, H.; Dinstein, I. Morphological approach for dashed lines detection. In Graphics Recognition Methods and Applications,

Proceedings of the GREC’95, LNCS 1072; Kasturi, R., Tombre, K., Eds.; Springer: Berlin/Heidelberg, Germany, 1996. [CrossRef]
18. Fu, L.; Kara, L.B. From engineering diagrams to engineering models: Visual recognition and applications. Comput. Aided Des.

2011, 43, 278–292. [CrossRef]
19. Moon, Y.; Lee, J.; Mun, D.; Lim, S. Deep Learning-Based Method to Recognize Line Objects and Flow Arrows from Image-Format

Piping and Instrumentation Diagrams for Digitization. Appl. Sci. 2021, 11, 10054. [CrossRef]
20. Sang-Min, P.; Young-Gab, K. Visual language integration: A survey and open challenges. Comput. Sci. Rev. 2023, 48, 100548.

[CrossRef]

http://www.regeo.uji.es
https://doi.org/10.1017/S0890060412000170
https://doi.org/10.1016/j.cad.2022.103283
https://doi.org/10.1145/1924421.1924439
https://doi.org/10.1145/3345507
https://doi.org/10.1016/j.cad.2005.01.002
https://doi.org/10.1016/j.cag.2009.03.001
https://doi.org/10.1080/16864360.2014.981466
https://doi.org/10.1016/j.cad.2009.11.008
https://doi.org/10.1007/3-540-61226-2_9
https://doi.org/10.1016/j.cad.2010.12.011
https://doi.org/10.3390/app112110054
https://doi.org/10.1016/j.cosrev.2023.100548

Appl. Sci. 2024, 14, 4023 20 of 20

21. Plumed, R.; Pedro Company; Varley, P.A.C. A new approach for perceptually-based fitting strokes into straight segments. In
Proceedings of the CEIG 2015, XXV Spanish Computer Graphics Conference, Benicàssim, Spain, 1–3 July 2015; pp. 81–89.
[CrossRef]

22. Pedro Company; Plumed, R.; Varley, P.A.C. A fast approach for perceptually-based fitting strokes into elliptical arcs. Vis. Comput.
2015, 31, 775–785. [CrossRef]

23. Ku, D.C.; Qin, S.F.; Wright, D.K. Interpretation of Overtracing Freehand Sketching for Geometric Shapes. In Proceedings of the
WSCG’2006, Plzen, Czech Republic, 30 January–3 February 2006; ISBN 80-86943-03-8.

24. Bartolo, A.; Camilleri, K.P.; Fabri, S.G.; Borg, J.C.; Farrugia, P.J. Scribbles to vectors: Preparation of scribble drawings for CAD
interpretation. In Sketch-Based Interfaces and Modeling 2007—ACM SIGGRAPH/Eurographics Symposium Proceedings; ACM: New
York, NY, USA, 2007; pp. 123–130.

25. Wang, S.; Qin, S.; Gao, M. Overtraced strokes to single line drawing: Preparation of sketch for 3D interpretation. In Proceedings
of the 18th International Conference on Automation and Computing (ICAC), Loughborough, UK, 7–8 September 2012.

26. Wang, S.; Qin, S.; Gao, M. New grouping and fitting methods for interactive overtraced sketches. Vis. Comput. 2014, 30, 285–297.
[CrossRef]

27. Wang, S.; Wang, S.; Li, Y.; Zhang, Q. Grouping of Multiple Overtraced Strokes in Interactive Freehand Sketches. In Proceedings of
the 14th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics), Xi’an, China, 26–28
August 2015; pp. 232–233. [CrossRef]

28. Xiong, Y.; LaViola, J. A ShortStraw-Based Algorithm for Corner Finding in Sketch-Based Interfaces. Comput. Graph. 2010, 34,
513–527. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2312/ceig.20151203
https://doi.org/10.1007/s00371-015-1099-6
https://doi.org/10.1007/s00371-013-0844-y
https://doi.org/10.1109/CADGRAPHICS.2015.27
https://doi.org/10.1016/j.cag.2010.06.008

	Introduction
	Related Work
	Vectorization Overview
	Non-Solid Line Clustering
	Input Data
	Obtaining Candidate Dashes
	Chaining DASHED STROKES
	Output Stroke Clustering

	Tuning Parameters
	Evaluation
	Conclusions
	References

