
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-024-05925-0

1 3

Comparative analysis of soft‑error sensitivity in LU
decomposition algorithms on diverse GPUs

German Leon1 · Jose M. Badia1 · Jose A. Belloch2 · Almudena Lindoso2 ·
Luis Entrena2

Accepted: 21 January 2024
© The Author(s) 2024

Abstract
Graphics processing units (GPUs) have become integral to embedded systems and
supercomputing centres due to their large memory, cutting-edge technology and
high performance per watt. However, their susceptibility to transient errors requires
a comprehensive analysis of error sensitivity, as well as the development of error
mitigation techniques and fault-tolerant algorithms. This study focuses on evaluating
the soft-error sensitivity of two distinct versions of LU decomposition algorithms
implemented on two very different GPUs—a low-power SoC embedded GPU and
a high-performance massively parallel GPU. Through extensive fault injection cam-
paigns on both GPUs, we examine the vulnerability of the algorithms, identify error
causes, and determine critical code components requiring enhanced protection. The
experiments reveal that most single bit flip fault injections in the instruction results
lead to erroneous outcomes or unrecoverable errors. Notably, efficient GPU resource
utilisation can increase the number of masked errors, thereby enhancing error resil-
ience. Additionally, while different parts of the code exhibit similar error occurrence
types and rates, the propagation of errors to elements within the result matrix differs
significantly.

 *	 Jose M. Badia
	 badia@uji.es

	 German Leon
	 leon@uji.es

	 Jose A. Belloch
	 jbelloc@ing.uc3m.es

	 Almudena Lindoso
	 lindoso@ing.uc3m.es

	 Luis Entrena
	 entrena@ing.uc3m.es

1	 Depto. de Ingeniería y Ciencia de Computadores, Universitat Jaume I de Castelló, Avda. Sos
Baynat, s/n, 12071 Castellón, Spain

2	 Depto. de Tecnología Electrónica, Universidad Carlos III de Madrid, Avda Universidad, 30,
28911 Leganés, Madrid, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05925-0&domain=pdf

	 G. Leon et al.

1 3

Keywords  GPU · Soft errors · Sensitivity · Fault injection · LU decomposition

1  Introduction

Due to their massive parallelism and high performance per watt, GPUs have become
a staple for accelerating computation [1]. These devices can be found in a wide
range of platforms, from low-power system-on-chip (SoC) to the nodes of the largest
supercomputers (http://​top500.​org). Typically, when developing algorithms for such
devices, the goal is to optimise computational performance and power consumption.
However, in certain environments it is also essential to reduce the number of soft
errors and increase reliability [2, 3].

GPUs entered the embedded domain to meet the growing demand for multime-
dia-based handheld and consumer devices such as smartphones [4]. More recently,
mobile GPUs are increasingly being used to accelerate heavy workloads, for appli-
cations ranging from signal processing [5], to advanced driving assistance systems
(ADAS) in cars [6], or to accelerate the computational requirements of deep neural
networks [7]. SoCs with low-power GPUs can meet the requirements of many of
these applications due to their high performance per watt and the programming flex-
ibility of their various parallel components. For example, commercial off-the-shelf
(COTS) platforms incorporating such devices are candidates to replace traditional
radiation-hardened systems in small satellites [8]. However, fault tolerance is a key
consideration in all these applications and the reliability of embedded GPUs needs
to be assessed and improved. For example, stringent risk-based safety standards such
as ISO 26262 must be considered in the design and construction of electrical and
electronic systems in production vehicles, including driver assistance, propulsion
and vehicle dynamics control systems [9].

On the other hand, the high computational power of GPUs is driving the scien-
tific discovery process on a large scale. Applications in fields as diverse as climate
simulation [10], electromagnetic fields [11], and molecular dynamics [12] have effi-
ciently exploited GPU parallelism. This type of device uses last-generation CMOS
or FinFET technology and contains thousands of cores with different computing
elements and very large and fast memories. Most recent GPUs also include special
units, such as tensor cores, to accelerate key steps in machine learning applications
[13]. High-performance computing (HPC) workloads are typically long-running
simulations that use various techniques, such as checkpointing and restarting, to
complete in the event of failures. Most supercomputer sites contain many thousands
of high-performance GPUs, which increases the probability of failure due to both
hardware and soft errors [14]. Failures in HPC nodes can be caused by temperature,
voltage variations, environmental disturbances, firmware errors or manufacturing
processes, among other things. However, one of the most common causes is radia-
tion, which consists of particles such as neutrons, electrons, protons and heavy ions,
as well as electromagnetic radiation. Experiments in supercomputer centres with
more than ten thousand GPUs have detected failures every few tens of hours, and
the number of nodes is constantly increasing [3, 15]. Therefore, understanding the

http://top500.org

1 3

Comparative analysis of soft‑error sensitivity in LU…

characteristics of GPU-related faults in large-scale systems is likely to benefit sys-
tem operators, designers and end users.

The use of GPU resources by applications determines their reliability. Obviously,
if an application uses more resources or uses them more intensively, it is more likely
to be affected by an incoming particle. However, it is also true that more efficient use
of resources reduces the execution time of applications and thus the likelihood that
they will be affected by radiation. Furthermore, not all components of a GPU are
equally susceptible to the effects of radiation, nor do all defects in the architecture
lead to errors. Also, not all faults are equally important or affect the same number
of tasks running in parallel. For example, a particle may cause a bit flip on the result
of an instruction executed by only one thread, but it may also modify a memory cell
read by all threads executing the application. As can be seen, modelling the fault
tolerance of applications on GPUs is complex and must take into account a large
number of factors, some of which have opposing effects [16, 17]. Over the last dec-
ade, numerous works have been carried out to analyse all of the above factors. Most
of them use fault injection or device radiation as the analysis mechanism.

To achieve high performance on GPUs, we need to increase the utilisation of
their many cores, but also use their fastest memories, including shared memory and
register file. However, increasing the workload and use of GPU resources can also
increase the soft-error sensitivity of the algorithms [2]. As a first approach, in [18]
we examined the soft-error sensitivity of two different implementations of matrix
multiplication on a GPU-accelerated system-on-chip. Both implementations started
only one kernel and made different use of the resources of the GPU, in particular the
different memories of the device. One of the algorithms is memory-bound, while
the other uses a block strategy that exploits the fast shared memory of the GPU to
achieve better performance. The results showed that soft-error sensitivity depends
on the implementation of the algorithm and how it uses the resources of the GPU. In
particular, the block algorithm is not only much more efficient, but also masks many
more errors than the memory-bound implementation. However, the use of shared
memory in the block algorithm increases the number of unrecoverable crashes.

We evaluate in this work a different application that allows us to extend and
deepen the evaluation of the influence of the parallelisation strategy on the soft error
sensitivity of algorithms on GPUs. Specifically, we compare the soft error sensitiv-
ity of two different strategies to perform LU decomposition. First of all, it should be
noted that we do not intend to use the most efficient version of the LU on GPUs, but
to compare two versions with very different performance and use of GPU resources.
Thus, error injection could cause a clearly differentiated behaviour of both versions
and allow us to relate the errors detected to the use of resources such as global mem-
ory or shared memory. Therefore, we first chose the version of the decomposition
most widely used in the literature related to fault tolerance of GPUs. This is the lud
version included in the Rodinia test suite [19]. This is a relatively efficient block
version that uses three different kernels with different degrees of parallelism and
takes advantage of the shared memory of the GPU. Second, we modified one of
the kernels of the block algorithm to implement a memory-bound version of the
decomposition, which is much less efficient, uses only one kernel and with a much
lower degree of parallelism. This version relies only on global memory, which has

	 G. Leon et al.

1 3

consequences on its performance, the type of errors that can arise from the injection
and the propagation of errors. On each iteration of the block version the algorithm
launches successively three kernels. This allows us to analyse the soft error sensitiv-
ity of different steps of the algorithm involving different matrix panels. To this end,
we inject faults on the different kernels and analyse their error rates and also the
error propagation pattern on each of them. Matrix decompositions, such as LU, are
fundamental in many applications. Studying their sensitivity to errors on GPUs can
help us to design better fault-tolerant algorithms on this kind of accelerator.

We use two fault injection tools to inject single bit flips into the results of a ran-
domly chosen instruction of the algorithms on two very different GPUs: a low-
power system-on-chip embedded GPU that can be used in safety-critical environ-
ments, and a much faster and power-hungry GPU that can be included in the nodes
of high-performance supercomputers. Experimental results show that most fault
injections cause Silent Data Corruptions (SDC) or Detected Unrecoverable Errors
(DUE). The use of shared memory increases the performance of the block algorithm
on both GPUs, but also the number of DUEs caused by illegal memory accesses.
As we show in Sect. 5.2, the block algorithm has a larger number of DUE and most
of them are due to illegal accesses to the shared memory of the GPU. Finally, the
experiments also show that different sections of the code have different fault injec-
tion sensitivities and error propagation rates and patterns.

The main contributions of this paper are as follows:

•	 Compare the soft error sensitivity of two different algorithms for performing LU
decomposition on GPUs.

•	 Analyse the causes of DUEs as a function of algorithm and GPU device.
•	 Study the error propagation as a function of the code section affected by the

SDCs.
•	 Study the soft error sensitivity of algorithms on two GPU devices that are very

different in terms of architecture, computing power and application scope.

The rest of the paper is structured as follows. Section 2 summarises the related work.
Section 3 briefly describes the two LU decomposition algorithms analysed on this
paper. Section 4 describes the experimental environment and Sect. 5 analyses the
experimental results. Finally, Sect. 6 summarises the main conclusions of the paper.

2 � Related work

The study of the reliability of heterogeneous embedded systems is gaining momen-
tum because they combine high parallelism, low power consumption, the flexibility
offered by their diverse components, and the possibility of using low-cost and light-
weight COTS devices [20, 21]. Today, most of these systems can be found in mobile
devices, where various reliability assessments are currently being carried out [22].

GPUs are a common computing resource found on such systems. Their reliabil-
ity has been widely analysed in the literature over the last decade [3, 17, 23]. Many
different benchmarks have been used to analyse and improve the reliability of such

1 3

Comparative analysis of soft‑error sensitivity in LU…

devices. These include basic computational kernels [24], including matrix multi-
plication [2], FFT [25], or microbenchmarks [17] to evaluate their various compo-
nents, or benchmark suites such as Rodinia [19]. More recently, several papers have
analysed the reliability of GPUs using convolutional neural networks (CNNs). For
example, in [13], the authors evaluate and propose strategies to improve the object
detection reliability of three CNN algorithms using an embedded GPU and two
high-performance GPUs. In [26], the authors analyse the impact of faults affecting
the hidden modules of GPUs on an entire CNN execution (LeNET) without under-
mining the correctness of the reliability evaluation by combining simulation and
software fault injection. The impact of tensor cores and mixed precision on the reli-
ability of matrix multiplication in a high-performance GPU is studied in [27]. Effec-
tive microarchitectural selective hardening of GPU modules to mitigate errors that
affect the correct execution of instructions is proposed in [28].

Matrix factorisations such as Cholesky, LU, and QR decompositions have also
been used to analyse the reliability of GPUs as they are basic operations in many
applications [29–32]. The soft error sensitivity of this type of factorisation has been
analysed in several papers, and various algorithm-based fault tolerance (ABFT)
techniques have been proposed to improve their reliability [33–35]. Much effort
has been devoted to designing ABFT versions of one-sided matrix decompositions,
including LU. This design philosophy was introduced in [36], where the author
applied it to matrix multiplication and LU decomposition. It is based on modify-
ing the algorithm by adding some elements and computations to detect and in some
cases correct the errors. This first approach tolerated only single errors and applied
an off-line correction scheme, i.e. it detected and corrected errors at the end of the
computation, after the errors had propagated and accumulated. In contrast, online
schemes detect, locate, and correct errors in the middle of the computation, avoiding
their propagation and reducing the overhead. For example, [37] introduced an online
method for LU decomposition, which was also applied to Cholesky and QR decom-
positions on distributed memory multicomputers in [38], with an overhead fluctuat-
ing around 5%. Most previous methods only maintain checksums in one dimension,
protecting only a part of the matrix. In [35], the authors propose a full checksum
method. They also analyse the error propagation patterns of the three kernels used to
perform the decomposition and propose a checksum scheme adapted to the different
error sensitivities of each kernel.

On the other hand, various fault injection tools have been used to study the behav-
iour of the LU decomposition implementation included in the Rodinia suite. In [39],
the authors present a fault injection tool that can inject at two levels of abstraction,
namely the intermediate representation level (ptx) and the assembler level (sass). The
tool can inject into different hardware components of the GPU, such as the register
file, shared memory, Single Instruction Multiple Threads (SIMT) stack, or instruction
buffer. Experiments on a Fermi GPU show that the error rate depends on the hard-
ware component targeted. For example, register file injections cause errors in less than
5% of tests, while shared memory injections cause errors in more than 75% of cases.
The authors also show that the three kernels used to perform LU decomposition have
different architectural vulnerability factors (AVFs). Another injection tool (SASSIFI)
is introduced in [40] and applied to LU decomposition, among many other Rodinia

	 G. Leon et al.

1 3

benchmarks. The results show that injecting single bit flip errors into the target registers
of Kepler GPU instructions causes SDCs in about 40% of the tests, while the injection
is masked in the rest of the tests. Finally, in [41] the authors propose a fault injection
method that reduces the number of injections based on the identification of frequently
executed instructions. They use SASSIFI to perform fault injections in all Rodinia
benchmarks, including LU decomposition, causing SDCs or DUE in more than 60% of
the tests.

Contrary to previous work, [39–41], where only the version of the LU included in
the Rodinia benchmark suite [19] was injected, one of our main objectives was to ana-
lyse the influence of the use of different decomposition strategies on its soft-error sen-
sitivity. In this sense, we compare two different versions of the LU in terms of their
use of GPU resources. We have also included, as one of the two devices under test, a
low-power GPU embedded in a SoC platform. The evaluation of the reliability of this
type of device is of particular interest, as they are candidates for inclusion in safety-
critical environments such as space and advanced driver assistance systems [42, 43]. In
[44], we evaluated the reliability of the two LU decomposition algorithms described in
the next section under proton irradiation on one of the Devices Under Test used in this
paper, a Jetson TK1 SoC. Results show that a more intensive use of the resources of
the GPU increases the cross section and that most of the radiation-induced errors could
only be solved by rebooting the platform.

3 � LU decomposition algorithms

In this paper, we evaluate the error sensitivity of two algorithms that implement LU
decomposition. We have used the Compute Unified Device Architecture (CUDA) pro-
gramming model to implement these algorithms [45]. The code executed in the cores
of the GPU is written as functions called kernels. Each kernel is executed in paral-
lel by multiple elementary processes called threads. The threads are logically grouped
into thread blocks, which are assigned to a Streaming Multiprocessor (SM) of the GPU
device and share memory. Thread blocks are then organised in a grid. Efficient algo-
rithms try to take advantage of all the architecture’s components, including its multiple
cores and fastest memories.

The first LU decomposition algorithm, called block, is the block-parallel version
implemented with CUDA and included in the Rodinia benchmark suite.

Figure 1 shows the main panels of the first iteration of the LU decomposition
included in Rodinia. The algorithm starts from the upper left corner and performs the
following three steps:

(1)A
11

← L
11
U

11

(2)L
21

← A
21
U

−1

11
U

12
← L

−1

11
A
12

(3)A
�

22
← A

22
− L

21
U

12

1 3

Comparative analysis of soft‑error sensitivity in LU…

The decomposition is then continued by recursively applying the same steps to the
A

′

22
 panel. The three steps are implemented as three CUDA kernel functions [45]

called diagonal, perimeter and internal, respectively. Figure 1 shows the
panels affected by each kernel during the first iterations on a different colour. The
last two kernels divide the panels A

12
 , A

21
 and A

22
 into square blocks of size b × b

(red lines in Fig. 1) and copy and update them in parallel, using the shared memory
of the GPU to increase the performance of the algorithm.

The kernel diagonal uses a simple method where a thread block of b
threads performs the LU decomposition of the upper left panel A

11
 . Each thread

is responsible for computing one row of U
11

 and one column of L
11

 in shared
memory. The second parallel algorithm we tested, called rc, uses the same
method but applied to the whole matrix. In addition, all computations are per-
formed in the global memory of the GPU, and each thread can compute more
than one row and column, depending on the size of the matrix (see Fig. 2). The
rc algorithm, which is obviously slower than the block version, allows us to
analyse the effects of error injection using a method that is much less efficient in
terms of GPU resources.

Both algorithms make very different use of not only memory but also other
components of the GPU. The block algorithm iterates the execution of three
kernels with different grid and thread block sizes. For example, suppose Fig. 1
represents a matrix of size 64 × 64 , where each small square block is of size
16 × 16 , then during the first iteration of the algorithm, kernel diagonal will
start a block of threads of size 16; kernel perimeter will start 3 blocks of
threads of size 32; and kernel internal will start 3 × 3 blocks of threads of
size 16 × 16 . The rc algorithm uses a grid of size 1 and starts only once a block
of threads of size 64. Therefore, the number of kernels launched when running
the two algorithms is quite different, as is the occupancy of the cores and the use
of the GPU’s block and warp schedulers.

Fig. 1   Main panels and updates during the first iteration of the block LU decomposition

	 G. Leon et al.

1 3

4 � GPU‑based experimental environment

4.1 � GPU devices

We used two very different GPU devices to perform our experiments, the main fea-
tures of which can be seen in Table 1. The first experimental platform is a low-
power Tegra K1 (TK1) system-on-chip (SoC) embedded in the Jetson developer kit
[46]. This particular system consists of a quad-core ARM Cortex A15 processor (or
CPU), a battery-saving ARM Cortex A15 shadow core, and an NVIDIA “Kepler”
K20A GPU with 1 SM containing 192 CUDA cores. The SM has four warp schedul-
ers and eight instruction dispatchers. It can then select four warps of 32 threads and
issue two independent instructions per warp per cycle. The TK1 SoC is designed
to increase performance per watt. It typically consumes between 0.6W and 3W of
power during normal use, and a maximum of 15W when the CPU, GPU, and codec
hardware are pushed to their limits.

Fig. 2   In the rc version of the
LU decomposition each thread
(e.g. thi and thj ) computes one
or more rows of matrix L and
the corresponding columns of
matrix U 

Table 1   Main features of the
GPUs under test

Feature K20A (Kepler) GV100

Architecture Kepler Volta
Compute capability 3.2 7.0
Number of SMs 1 80
Total number of cores 192 5120
Global memory 2 GB (DDR3) 32 GB (HBM2)
Shared memory 48 KB 7680 KB
L2 cache size 128 KB 6144 KB
Register file size 256 KB 20480 KB

1 3

Comparative analysis of soft‑error sensitivity in LU…

We also used a high-performance Tesla V100 with the Volta architecture consist-
ing of 80 SM [47]. Each SM is divided into four processing blocks, each with 16
FP32 cores, 8 FP64 cores, 16 INT32 cores, and two new mixed-precision tensor
cores for deep learning matrix arithmetic. Each block also includes a warp scheduler
and two dispatch units. This GPU is connected to a server with 2 Intel Xeon Gold
6126 2.6 GHz processors, each with 12 cores and a total of 64 GB of memory.

The two GPUs represent very different types of devices with different targets.
While the K20A GPU is a low-power device that can be used in embedded systems to
reduce power consumption, the Tesla V100 is a high-performance GPU that provides
massive data parallelism with thousands of cores, suitable for use in HPC nodes. Both
GPUs are built on very different technologies. While the K20A uses standard 28nm
CMOS transistors, the Tesla V100 is built on new 12nm FFN technology, NVIDIA’s
proprietary FinFET manufacturing process. Based on physical simulations and test-
chip experiments, FinFET transistors have been reported to have a much lower neu-
tron-induced error rate compared to CMOS [48]. Matrix multiplication and neural
networks used to compare both technologies under neutron irradiation in [13] show
an order of magnitude lower error rate of 16 nm FinFET compared to 28 nm CMOS.

Another important difference between the two GPUs is the automatic error pro-
tection of the memory. Unlike other Kepler GPUs, the K20A does not include error
correction code (ECC) in any of its memories. However, the Tesla V100 global
memory subsystem supports Single-Error Correction Double-Error Detecting
(SECDED). In addition, other key structures such as the register file and L1 and L2
caches are protected by the same mechanism. As with the technology, this mecha-
nism could detect radiation-induced errors. However, faults injected into the results
of instructions are not detected by any ECC mechanism.

4.2 � Fault injectors

We did not use the same fault injection tool on both experimental platforms because
they do not support compatible versions of the software they require (i.e. CUDA
toolkit, CUDA GDB, LLVM compilation framework, etc.). Instead, we used two
injection tools that allow us to perform the same type of fault injection and result
analysis.

In the Jetson board, we used LLFI-GPU, which is an extension of the open source
LLFI fault injection tool [49]. It first profiles the programme to get the number of
kernels, threads, and instructions. Next, it uses the LLVM compiler framework to
instrument the IR (intermediate representation) of the CUDA code. It can then inject
single bit flips into the registers that store the results of a random instruction in a
random thread of one of the kernels. It uses the profiling information to inject the
error with a uniform probability in all instructions executed. You can annotate the
code to choose specific kernels to inject the fault. Its main limitation is that it does
not inject errors into other components of the architecture, such as the GPU memo-
ries, the condition codes, or the memory addresses and their values.

In the Volta GPU, we used CAROL-FI, a fault injector based on the GNU GDB
debugger, which was introduced in [50] to analyse the behaviour of Xeon Phi

	 G. Leon et al.

1 3

processors. The original version of the tool injects faults at any source code vari-
able allocated to a memory position. It works in two main phases. It first uses the
debugger to launch the code and interrupt its execution after a random time. Then,
it selects one of the available threads and active subroutines and flips one or more
bits of one of its variables. It allows several fault models, including single and dou-
ble bit flips and overwriting every bit with zeros or random values. We have modi-
fied the version based on CUDA GDB [51] to perform a fault injection similar to
the one performed by the LLFI-GPU injector. Specifically, we have modified one
of the injection modes to perform a single bit flip in the target register values of the
instructions. We have also modified the injector to be able to select the instruction to
inject, and thus the kernel affected by the injection. One of the main limitations of
CAROL-FI is that it is based on the CUDA debugger and so the injection process is
slower than with tools like LLFI-GPU.

4.3 � Experimental methodology

We have performed injection campaigns using both injectors, always consisting of
1000 tests for each algorithm and problem size. We always injected one error in each
LU decomposition. The following error categories were used in all experiments:

•	 Masked: we get a correct result of the LU decomposition. The results are com-
pared with a previously computed golden version.

•	 Silent Data Corruption (SDC): one or more elements of the result do
not match the golden output.

•	 Detected Unrecoverable Error (DUE): an error occurs because the
programme has tried to perform an invalid action (e.g. read outside its memory
segment). This error can be captured by a debugger, the process can be killed,
and the operating system can start the next test (e.g. LU decomposition).

Our experimental setup includes two timeouts. The first timeout, associated with
the process performing the decomposition, is set to a time slightly greater than the
maximum predictable duration of the operation. We use this timeout on the CUDA
debugger to detect the DUE errors of our test [52]. In addition, we have used the
watchdog Linux API to implement a hardware watchdog that reboots the platform if
it hangs for more than 30 s. This is not considered a DUE error as it is not applica-
tion related but operating system related and is a very rare type of error.

5 � Experimental results and evaluation

5.1 � Performance of the algorithms

To compare the performance of the two LU decomposition algorithms, we meas-
ured their execution times on the Jetson TK1 board with different problem sizes.
Figure 3 shows the results for matrices ranging from 128 to 2048. We can see that

1 3

Comparative analysis of soft‑error sensitivity in LU…

the block algorithm is always much faster than the rc algorithm. Specifically,
it is 8 times faster for matrices of size 1024 and 10 times faster for matrices of
size 2048. This behaviour is mainly due to two factors. First, the block algo-
rithm uses the fast shared memory of the GPU and reduces accesses to the slower
global memory, increasing the ratio of floating point operations per memory
access. Second, the rc algorithm uses the GPU cores less efficiently.

Using the CUDA profiler [53], we have seen that this algorithm only achieves
a 50% occupancy of the GPU. On the contrary, the internal kernel, which is
the most used on the block algorithm, achieves a 91.96% occupancy. In addi-
tion, the rc algorithm executes only 0.12 instructions per cycle (IPC), which is
far from the optimal IPC that can be executed using the eight instruction dis-
patchers of the K20A GPU. In contrast, the internal kernel executes 1.23
instructions per cycle, which is more than ten times better than the rc algorithm.
There are more efficient implementations of LU decomposition on GPUs, such as
the one included in the MAGMA library [54]. However, our goal was not to test
the fastest implementation available, but to compare the soft-error sensitivity of
two implementations with very different uses of GPU resources.

5.2 � Soft error sensitivity of the algorithms

We ran similar fault injection campaigns on both platforms. The results for the
error categories shown in this section do not depend on the size of the matrices or
the block size used in the block algorithm.

Both algorithms have a different sensitivity to soft errors, as can be seen in
Fig. 4. Most of the error injections result in SDCs or DUEs of the algorithms,
but the percentages are highly dependent on the algorithm and the platform. For
example, the block algorithm masks more errors than the rc algorithm on the

 0

 2000

 4000

 6000

 8000

 10000

 12000

 128 256 512 1024 2048

E
xe

cu
tio

n
tim

e
(m

s)

Matrix size (n x n)

Algorithm
block

rc

Fig. 3   Execution times of both algorithms on a Jetson TK1

	 G. Leon et al.

1 3

Kepler GPU, while the opposite is true on the Volta GPU. The SDC percentages
are higher for rc than for block on both platforms. The different behaviour of
the two algorithms on the two GPUs could be due to two main reasons. First, it
may be due to their different architectures and how the faults injected into the
registers with the results of the instructions affect the behaviour of the code and
the results it produces in the LU decomposition. Secondly, the different behav-
iour may be due to the fact that the two injectors used may not select the kernels,
threads and instructions into which the faults are injected in the same way. The
probabilities with which different result registers and instructions are affected on
the two GPUs may be different due to the details of how the two injection tools
work. This behaviour of the tools and their effect on the errors detected in the
code is independent of the architecture of the GPUs. In addition, the thread block
and shared memory size is defined by the size of the matrix in the rc algorithm
and by the size of the blocks of elements in the block algorithm. We have per-
formed the experiments using matrices and blocks of elements with the same size
in both architectures. Therefore, the different behaviour is not due to differences
in those sizes.

Nevertheless, we tried to get more information about the causes of the DUEs
by using the cuda-gdb debugger to run the fault injection tests. This allows us to
catch the various exceptions that trigger most of the DUEs. Figure 5 shows the
percentage of DUEs caused by different types of errors. In particular, only 3 of
the 15 types of exceptions defined in [52] occurred on each platform (4 types
in total), all of them related to memory access problems. Specifically, cuda-gdb
caught the following exceptions:

•	 Ex5: Occurs when any thread within a warp accesses an address outside its valid
range of local or shared memory regions.

•	 Ex6: Occurs when any thread within a warp accesses an address in the local or
shared memory regions that is not correctly aligned.

•	 Ex10: Occurs when a thread accesses an illegal (out of bounds) global address.
Only on the Jetson platform.

0%

20%

40%

60%

80%

100%

block-(jetson) rc-(jetson) block-(volta) rc-(volta)

%
 o

f
re

su
lt

s

Algorithm-(Device)

Masked SDC DUE

Fig. 4   Fault injection results of the LU decomposition algorithms in both GPUs

1 3

Comparative analysis of soft‑error sensitivity in LU…

•	 Ex14: Occurs when a thread accesses an illegal (out of bounds) global/local/
shared address. Only on the Volta platform.

Figure 5 shows, on the one hand, that most errors of the block algorithm are
caused by illegal or misaligned accesses to shared memory (Ex5 and Ex6). This
type of memory improves the performance of the algorithm, but greatly increases
the total number of DUEs. Shared memory is much smaller than global memory, and
is also distributed across the different blocks of threads. Therefore, any small change
in a shared memory address can easily produce an address outside the valid address
range for a thread, resulting in a Ex5 and eventually a DUE. In contrast, much larger
global memory can be accessed by all threads, and it is more difficult for address
changes to result in illegal global addresses. On the other hand, the rc algorithm
only accesses global memory, which explains why the only exceptions caught on the
Jetson platform are related to illegal accesses to this type of memory (Ex10). This
type of illegal access produces a Ex14 exception in the Volta platform. The Ex5 in
the case of the rc algorithm detected in the Volta platform can only be due to illegal
accesses to local memory, as this algorithm does not use shared memory. This algo-
rithm does not produce this kind of exception in the Jetson platform.

A very interesting aspect to analyse is the behaviour of the different kernels
used by the block algorithm. This allows us, for example, to tailor the mitigation
techniques used at each step of the code. Figure 6 shows the relative distribution of
errors in each of the three kernels, and that they have very similar sensitivities to
error injection. Injection of bit flips in the instructions of the three basic parts of the
code has almost the same effect on the result of LU decomposition. About 36% of
the fault injections are masked, 37% cause SDCs and 27% cause a DUE. Moreover,
this behaviour does not depend on the size of the matrix.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

block-(jetson) rc-(jetson) block-(volta) rc-(volta)

%
 o

f
re

su
lt

s
w

it
h

 a
n

 E
xc

ep
ti

o
n

Algorithm-(Device)

Ex5 Ex6 Ex10 Ex14

Fig. 5   Causes of the DUEs in the injected LU algorithms in both GPUs. Percentage over the all the
injected tests

	 G. Leon et al.

1 3

5.3 � Error propagation

One of the main problems of the SDC soft errors introduced in any matrix element
during the computation of the LU decomposition is that they can propagate to a
large number of elements of the matrix [33, 35]. The propagation rate depends on
the algorithm and, more specifically, on the kernel affected by the error injection.
If the bit flip changes the value of one element of the result matrix, this error can
propagate to other elements that are computed with the wrong result. The number
of elements affected depends on the position of the element initially modified by
the fault injection and how it is used to compute the remaining elements of the LU
decomposition.

Fig. 7 show that errors introduced in both algorithms propagate to different per-
centages of elements of the result. Errors in the block algorithm propagate on
average to 17% of the elements, while errors in the rc algorithm propagate to more
than 28% of the elements of the result.

In fact, the propagation rate of the algorithm depends on the part of the code
where the error is injected. As can be seen in Fig. 8, errors introduced in the three
kernels of the block algorithm propagate on average to quite different numbers of
elements of the result.

These results are consistent with those obtained in [35]. Although the authors
analysed the error propagation pattern of a slightly different block algorithm, their
conclusions can be applied to the LU implementation included in the Rodinia suite.
Errors in kernel internal can only propagate to one row or column of the matrix
panel modified by the kernel, while errors in kernels diagonal and perimeter
can propagate beyond one row or column. Figure 9 shows the results obtained after
completing the first iteration of the block LU decomposition when we inject an error
into each of the three kernels. These are representative examples of how the errors
usually propagate to blocks of rows and columns in the case of the diagonal and
perimeter kernels, while in most cases they only affect one element in the case of
the internal kernel. For each of the three kernels, the figure only shows the prop-
agation of the errors in the elements of the panels modified by the corresponding

0%

20%

40%

60%

80%

100%

diagonal perimeter internal All

%
 o

f
re

su
lt

s

Kernel

Masked SDC DUE

Fig. 6   Fault injection results of the CUDA kernels of the block algorithm in the Jetson board

1 3

Comparative analysis of soft‑error sensitivity in LU…

0%

5%

10%

15%

20%

25%

30%

32 64 128 256 512

E
rr

o
r

p
ro

p
ag

at
io

n

Matrix size

Block
rc

Fig. 7   Average percentage of wrong elements in the result when a SDC occurs on each algorithm.
Results in the Jetson platform

0%

5%

10%

15%

20%

25%

30%

35%

32 64 128 256 512

E
rr

o
r

p
ro

p
ag

at
io

n

Matrix size

diagonal
perimeter

internal

Fig. 8   Average percentage of wrong elements in the result of the algorithm block when a SDC occurs
depending on the kernel where the fault is injected

Fig. 9   Example of error propagation in each of the three kernels of the algorithm block 

	 G. Leon et al.

1 3

kernel. Wrong elements computed by the diagonal or perimeter kernels will
propagate to the elements of the rest of the matrix computed from them. This behav-
iour justifies that errors produced in the last kernel propagate to a much smaller per-
centage of elements than errors produced in the diagonal kernels (see Fig. 8).

We have seen that the errors produced in the diagonal and perimeter
kernels propagate to a larger number of elements of the result matrix. Therefore,
detection and correction of these errors would reduce the total number of elements
affected. Therefore, it is critical to apply mitigation techniques to these two kernels
if we want to reduce error propagation.

For example, experiments show that the diagonal and perimeter kernels
are executed with occupancy of both GPUs well below 30%. This fact allows us to
apply mitigation techniques based on duplicating or even tripling the execution of
these kernels without significantly increasing the execution time of these steps of the
algorithm.

6 � Conclusions

Fault injection campaigns on two different versions of LU decomposition show that
the soft-error sensitivity of the algorithm depends on the strategy for performing
such a transformation and on how the resources of the GPU are used. For example,
using the shared memory of the GPU is a common approach that increases the per-
formance of algorithms in GPUs. However, it can also increase the sensitivity to soft
errors by generating more DUEs. Specifically, we have performed fault injection
campaigns on a slow memory-bound (rc) and a faster compute-bound (block)
version of LU decomposition. The second version uses the fast shared memory of
the GPU to reduce the execution time significantly. However, this results in a sig-
nificant increase in the number of DUE. This behaviour is the same on a low-power
embedded GPU and on a high-performance GPU. On the contrary, the number of
SDCs in the second version of the algorithm is much smaller on both GPUs.

Our experiments also show that the SDCs generated when injecting the instruc-
tions of both algorithms and their kernels propagate to a quite different number of
elements of the result matrix. While in the rc algorithm the average percentage of
wrong elements as a result of an SDC is 28%, in the block algorithm this figure
drops to 17%. Moreover, while the percentage of SDCs and DUE is quite similar in
the three kernels of the algorithm block, the error propagation is quite different.
That is, the percentage of elements affected is very different, as is the spatial pattern
of error propagation.

As future work, it would be interesting to include an ABFT version of the LU to
compare its behaviour with the two versions of the decomposition used in this work.

Author contributions  All authors contributed equally to this work.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer
Nature. This work has been supported by the Spanish Government PID2020-113656RB-C21,

1 3

Comparative analysis of soft‑error sensitivity in LU…

PID2022-138696OB-C21, PID2022-1370480A-C43 as well as the Regional Government of Madrid
throughout the project MIMACUHSPACE-CM-UC3M.

Data availability  No additional data or materials are available.

Declarations 

Conflict of interest  The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Belloch JA, Badía JM, Igual FD, Cobos M (2019) Practical considerations for acoustic source
localization in the IoT era: platforms, energy efficiency, and performance. IEEE Internet Things J
6(3):5068–5079. https://​doi.​org/​10.​1109/​JIOT.​2019.​28957​42

	 2.	 Rech P, Pilla LL, Navaux POA, Carro L (2014) Impact of GPUs parallelism management on safety-
critical and HPC applications reliability. In: 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. IEEE, pp 455–466

	 3.	 Gomez LB, Cappello F, Carro L, DeBardeleben N, Fang B, Gurumurthi S, Pattabiraman K, Rech
P, Reorda MS (2014) Gpgpus: how to combine high computational power with high reliability. In:
2014 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, pp 1–9

	 4.	 Belloch JA, Ramos G, Badia JM, Cobos M (2020) An efficient implementation of parallel paramet-
ric HRTF models for binaural sound synthesis in mobile multimedia. IEEE Access 8:49562–49573

	 5.	 Belloch JA, Badía JM, Igual FD, Gonzalez A, Quintana-Ortí ES (2018) Optimized fundamental
signal processing operations for energy minimization on heterogeneous mobile devices. IEEE Trans
Circuits Syst I Regul Pap 65(5):1614–1627

	 6.	 Sakhare KV, Tewari T, Vyas V (2020) Review of vehicle detection systems in advanced driver assis-
tant systems. Arch Comput Methods Eng 27(2):591–610

	 7.	 Hatcher WG, Yu W (2018) A survey of deep learning: platforms, applications and emerging
research trends. IEEE Access 6:24411–24432

	 8.	 Furano G, Menicucci A (2018) Roadmap for on-board processing and data handling systems in
space. In: Dependable Multicore Architectures at Nanoscale. Springer, pp 253–281

	 9.	 Alcaide S, Kosmidis L, Tabani H, Hernandez C, Abella J, Cazorla FJ (2018) Safety-related chal-
lenges and opportunities for GPUs in the automotive domain. IEEE Micro 38(6):46–55. https://​doi.​
org/​10.​1109/​MM.​2018.​28738​70

	10.	 Demeshko I, Maruyama N, Tomita H, Matsuoka S (2013) Multi-GPU implementation of the
NICAM atmospheric model. In: Caragiannis I, Alexander M, Badia RM, Cannataro M, Costan A,
Danelutto M, Desprez F, Krammer B, Sahuquillo J, Scott SL, Weidendorfer J (eds) Euro-Par 2012:
parallel processing workshops. Springer, pp 175–184

	11.	 Badía JM, Amor-Martin A, Belloch JA, García-Castillo LE (2020) GPU acceleration of a non-stand-
ard finite element mesh truncation technique for electromagnetics. IEEE Access 8:94719–94730

	12.	 Barreales GN, Novalbos M, Otaduy MA, Sanchez A (2021) Mdscale: Scalable multi-GPU bonded
and short-range molecular dynamics. J Parall Distrib Comput 157:243–255. https://​doi.​org/​10.​
1016/j.​jpdc.​2021.​07.​006

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/JIOT.2019.2895742
https://doi.org/10.1109/MM.2018.2873870
https://doi.org/10.1109/MM.2018.2873870
https://doi.org/10.1016/j.jpdc.2021.07.006
https://doi.org/10.1016/j.jpdc.2021.07.006

	 G. Leon et al.

1 3

	13.	 dos Santos FF, Pimenta PF, Lunardi C, Draghetti L, Carro L, Kaeli D, Rech P (2019) Analyz-
ing and increasing the reliability of convolutional neural networks on GPUs. IEEE Trans Reliab
68(2):663–677

	14.	 Canal R, Hernandez C, Tornero R, Cilardo A, Massari G, Reghenzani F, Fornaciari W, Zapater M,
Atienza D, Oleksiak A et al (2020) Predictive reliability and fault management in exascale systems:
state of the art and perspectives. ACM Comput Surv (CSUR) 53(5):1–32

	15.	 Tiwari D, Gupta S, Rogers J, Maxwell D, Rech P, Vazhkudai S, Oliveira D, Londo D, DeBardeleben
N, Navaux P, et al (2015) Understanding gpu errors on large-scale hpc systems and the implications for
system design and operation. In: 2015 IEEE 21st International Symposium on High Performance Com-
puter Architecture (HPCA). IEEE, pp 331–342

	16.	 Sastry Hari SK, Rech P, Tsai T, Stephenson M, Zulfiqar A, Sullivan M, Shirvani P, Racunas P, Emer
J, Keckler SW (2020) Estimating silent data corruption rates using a two-level model. arXiv e-prints,
2005

	17.	 dos Santos FF, Hari SKS, Basso PM, Carro L, Rech P (2021) Demystifying GPU reliability: comparing
and combining beam experiments, fault simulation, and profiling. In: 2021 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, pp 289–298

	18.	 León G, Badía JM, Belloch JA, Lindoso A, Entrena L (2020) Evaluating the soft error sensitivity of a
GPU-based SoC for matrix multiplication. Microelectron Reliab 114:113856

	19.	 Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Lee S-H, Skadron K (2009) Rodinia: a benchmark
suite for heterogeneous computing. In: 2009 IEEE International Symposium on Workload Characteri-
zation (IISWC). IEEE, pp 44–54

	20.	 Didehban M, Shrivastava A (2018) A compiler technique for processor-wide protection from soft errors
in multithreaded environments. IEEE Trans Reliab 67(1):249–263. https://​doi.​org/​10.​1109/​TR.​2018.​
27930​98

	21.	 Bodmann P, Papadimitriou G, Gizopoulos D, Rech P (2021) The impact of SoC integration and OS
deployment on the reliability of ARM processors. In: 2021 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), pp 223–225. https://​doi.​org/​10.​1109/​ISPAS​
S51385.​2021.​00040. IEEE

	22.	 Cotroneo D, Iannillo AK, Natella R, Rosiello S (2021) Dependability assessment of the android OS
through fault injection. IEEE Trans Reliab 70(1):346–361. https://​doi.​org/​10.​1109/​TR.​2019.​29543​84

	23.	 de Oliveira DAGG, Pilla LL, Santini T, Rech P (2016) Evaluation and mitigation of radiation-induced
soft errors in graphics processing units. IEEE Trans Comput 65(3):791–804

	24.	 Zhu Y, Liu Y, Zhang G (2020) FT-PBLAS: PBLAS-based fault-tolerant linear algebra computation on
high-performance computing systems. IEEE Access 8:42674–42688. https://​doi.​org/​10.​1109/​ACCESS.​
2020.​29758​32

	25.	 Pilla LL, Rech P, Silvestri F, Frost C, Navaux POA, Reorda MS, Carro L (2014) Software-based hard-
ening strategies for neutron sensitive FFT algorithms on GPUs. IEEE Trans Nucl Sci 61(4):1874–1880

	26.	 Condia JER, dos Santos FF, Reorda MS, Rech P (2021) Combining architectural simulation and soft-
ware fault injection for a fast and accurate CNNs reliability evaluation on GPUs. In: 2021 IEEE 39th
VLSI Test Symposium (VTS). IEEE, pp 62–68. https://​doi.​org/​10.​1109/​VTS50​974.​2021.​94410​44

	27.	 Basso PM, Santos FFD, Rech P (2020) Impact of tensor cores and mixed precision on the reliability of
matrix multiplication in GPUs. IEEE Trans Nucl Sci 67(7):1560–1565. https://​doi.​org/​10.​1109/​TNS.​
2020.​29775​83

	28.	 Condia JER, Rech P, dos Santos FF, Carrot L, Reorda MS (2021) Protecting GPU’s Microarchitectural
Vulnerabilities via Effective Selective Hardening. In: 2021 IEEE 27th International Symposium on On-
Line Testing and Robust System Design (IOLTS), pp. 1–7. https://​doi.​org/​10.​1109/​IOLTS​52814.​2021.​
94867​03. IEEE

	29.	 Abdelfattah A, Haidar A, Tomov S, Dongarra J (2018) Optimizing GPU kernels for irregular batch
workloads: a case study for cholesky factorization. In: 2018 IEEE High Performance Extreme Comput-
ing Conference (HPEC). IEEE, pp 450–456. https://​doi.​org/​10.​1109/​HPEC.​2018.​85475​76

	30.	 Alventosa FJ, Alonso P, Vidal AM, Piñero G, Quintana-Orti ES (2018) Fast block QR update in digital
signal processing. J Supercomput 75(1):1051–1064

	31.	 Bank B, Belloch JA, Välimäki V (2017) Efficient design of a parallel graphic equalizer. J Audio Eng
Soc 65(10):817–825. https://​doi.​org/​10.​17743/​jaes.​2017.​0029

	32.	 Zhou G, Bo R, Chien L, Zhang X, Shi F, Xu C, Feng Y (2017) GPU-based batch LU-factorization
solver for concurrent analysis of massive power flows. IEEE Trans Power Syst 32(6):4975–4977.
https://​doi.​org/​10.​1109/​TPWRS.​2017.​26623​22

https://doi.org/10.1109/TR.2018.2793098
https://doi.org/10.1109/TR.2018.2793098
https://doi.org/10.1109/ISPASS51385.2021.00040
https://doi.org/10.1109/ISPASS51385.2021.00040
https://doi.org/10.1109/TR.2019.2954384
https://doi.org/10.1109/ACCESS.2020.2975832
https://doi.org/10.1109/ACCESS.2020.2975832
https://doi.org/10.1109/VTS50974.2021.9441044
https://doi.org/10.1109/TNS.2020.2977583
https://doi.org/10.1109/TNS.2020.2977583
https://doi.org/10.1109/IOLTS52814.2021.9486703
https://doi.org/10.1109/IOLTS52814.2021.9486703
https://doi.org/10.1109/HPEC.2018.8547576
https://doi.org/10.17743/jaes.2017.0029
https://doi.org/10.1109/TPWRS.2017.2662322

1 3

Comparative analysis of soft‑error sensitivity in LU…

	33.	 Wu P, DeBardeleben N, Guan Q, Blanchard S, Chen J, Tao D, Liang X, Ouyang K, Chen Z (2017)
Silent data corruption resilient two-sided matrix factorizations. In: Proceedings of the 22nd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, pp 415–427

	34.	 Wu P, Guan Q, DeBardeleben N, Blanchard S, Tao D, Liang X, Chen J, Chen Z (2016) Towards practi-
cal algorithm based fault tolerance in dense linear algebra. In: Proceedings of the 25th ACM Interna-
tional Symposium on High-Performance Parallel and Distributed Computing, pp 31–42

	35.	 Chen J, Li H, Li S, Liang X, Wu P, Tao D, Ouyang K, Liu Y, Zhao K, Guan Q, et al (2018) Fault toler-
ant one-sided matrix decompositions on heterogeneous systems with GPUs. In: SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, pp 854–865

	36.	 Huang K-H, Abraham JA (1984) Algorithm-based fault tolerance for matrix operations. IEEE Trans
Comput 100(6):518–528

	37.	 Davies T, Chen Z (2013) Correcting soft errors online in LU factorization. In: Proceedings of the
22nd International Symposium on High-Performance Parallel and Distributed Computing. ACM, pp
167–178

	38.	 Wu P, Chen Z (2014) FT-ScaLAPACK: correcting soft errors on-line for ScaLAPACK Cholesky, QR,
and LU factorization routines. In: Proceedings of the 23rd International Symposium on High-Perfor-
mance Parallel and Distributed Computing. ACM, pp 49–60

	39.	 Tselonis S, Gizopoulos D (2016) GUFI: A framework for GPUs reliability assessment. In: 2016 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE, pp
90–100

	40.	 Hari SKS, Tsai T, Stephenson M, Keckler SW, Emer J (2017) SASSIFI: an architecture-level fault
injection tool for GPU application resilience evaluation. In: 2017 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, pp 249–258

	41.	 Previlon FG, Kalra C, Tiwari D, Kaeli DR (2019) PCFI: Program counter guided fault injection for
accelerating gpu reliability assessment. In: 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, pp 308–311

	42.	 Fickenscher J, Reinhart S, Hannig F, Teich J, Bouzouraa ME (2017) Convoy tracking for ADAS on
embedded GPUs. In: 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, pp 959–965

	43.	 Kosmidis L, Rodriguez I, Jover Á, Alcaide S, Lachaize J, Abella J, Notebaert O, Cazorla FJ, Steenari D
(2020) GPU4S: embedded GPUs in space-latest project updates. Microprocess Microsyst 77:103143

	44.	 Badia JM, Leon G, Belloch JA, Lindoso A, Garcia-Valderas M, Morilla Y, Entrena L (2022) Reliability
evaluation of LU decomposition on GPU-accelerated system-on-chip under proton irradiation. IEEE
Trans Nucl Sci 69(7):1467–1474

	45.	 NVIDIA (2021) CUDA C++ programming guide. PG-02829-001_v11.2. Design Guide
	46.	 NVIDIA (2014) NVIDIA Tegra K1. A new era in mobile computing. NVIDIA Whitepaper
	47.	 NVIDIA (2017) NVIDIA Tesla V100 GPU Architecture. The World’s Most Advanced Data Center

GPU. WP-08608-001_v1.1. NVIDIA,. NVIDIA
	48.	 Noh J, Correas V, Lee S, Jeon J, Nofal I, Cerba J, Belhaddad H, Alexandrescu D, Lee Y, Kwon S (2015)

Study of neutron soft error rate (SER) sensitivity: investigation of upset mechanisms by comparative
simulation of FinFET and planar MOSFET SRAMs. IEEE Trans Nucl Sci 62(4):1642–1649

	49.	 Li G, Pattabiraman K, Cher C-Y, Bose P (2016) Understanding error propagation in GPGPU applica-
tions. In: SC’16: Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis. IEEE, pp 240–251

	50.	 Oliveira D, Pilla L, DeBardeleben N, Blanchard S, Quinn H, Koren I, Navaux P, Rech P (2017) Experi-
mental and analytical study of xeon phi reliability. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp 1–12

	51.	 Oliveira D, Frattin V, Navaux P, Koren I, Rech P (2017) Carol-fi: an efficient fault-injection tool for vul-
nerability evaluation of modern hpc parallel accelerators. In: Proceedings of the Computing Frontiers
Conference, pp 295–298

	52.	 NVIDIA (2021) CUDA-GDB. CUDA Debugger. User Manual. DU-05227-042_v11.2
	53.	 NVIDIA (2023) Profiler User’s Guide. https://​docs.​nvidia.​com/​cuda/​profi​ler-​users-​guide, v12.1
	54.	 Tomov S, Dongarra J, Baboulin M (2010) Towards dense linear algebra for hybrid GPU accelerated

manycore systems. Parallel Comput 36(5–6):232–240. https://​doi.​org/​10.​1016/j.​parco.​2009.​12.​005

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://docs.nvidia.com/cuda/profiler-users-guide
https://doi.org/10.1016/j.parco.2009.12.005

	Comparative analysis of soft-error sensitivity in LU decomposition algorithms on diverse GPUs
	Abstract
	1 Introduction
	2 Related work
	3 LU decomposition algorithms
	4 GPU-based experimental environment
	4.1 GPU devices
	4.2 Fault injectors
	4.3 Experimental methodology

	5 Experimental results and evaluation
	5.1 Performance of the algorithms
	5.2 Soft error sensitivity of the algorithms
	5.3 Error propagation

	6 Conclusions
	References

