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Abstract
Graphics processing units (GPUs) have become integral to embedded systems and 
supercomputing centres due to their large memory, cutting-edge technology and 
high performance per watt. However, their susceptibility to transient errors requires 
a comprehensive analysis of error sensitivity, as well as the development of error 
mitigation techniques and fault-tolerant algorithms. This study focuses on evaluating 
the soft-error sensitivity of two distinct versions of LU decomposition algorithms 
implemented on two very different GPUs—a low-power SoC embedded GPU and 
a high-performance massively parallel GPU. Through extensive fault injection cam-
paigns on both GPUs, we examine the vulnerability of the algorithms, identify error 
causes, and determine critical code components requiring enhanced protection. The 
experiments reveal that most single bit flip fault injections in the instruction results 
lead to erroneous outcomes or unrecoverable errors. Notably, efficient GPU resource 
utilisation can increase the number of masked errors, thereby enhancing error resil-
ience. Additionally, while different parts of the code exhibit similar error occurrence 
types and rates, the propagation of errors to elements within the result matrix differs 
significantly.

 *	 Jose M. Badia 
	 badia@uji.es

	 German Leon 
	 leon@uji.es

	 Jose A. Belloch 
	 jbelloc@ing.uc3m.es

	 Almudena Lindoso 
	 lindoso@ing.uc3m.es

	 Luis Entrena 
	 entrena@ing.uc3m.es

1	 Depto. de Ingeniería y Ciencia de Computadores, Universitat Jaume I de Castelló, Avda. Sos 
Baynat, s/n, 12071 Castellón, Spain

2	 Depto. de Tecnología Electrónica, Universidad Carlos III de Madrid, Avda Universidad, 30, 
28911 Leganés, Madrid, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05925-0&domain=pdf


	 G. Leon et al.

1 3

Keywords  GPU · Soft errors · Sensitivity · Fault injection · LU decomposition

1  Introduction

Due to their massive parallelism and high performance per watt, GPUs have become 
a staple for accelerating computation [1]. These devices can be found in a wide 
range of platforms, from low-power system-on-chip (SoC) to the nodes of the largest 
supercomputers (http://​top500.​org). Typically, when developing algorithms for such 
devices, the goal is to optimise computational performance and power consumption. 
However, in certain environments it is also essential to reduce the number of soft 
errors and increase reliability [2, 3].

GPUs entered the embedded domain to meet the growing demand for multime-
dia-based handheld and consumer devices such as smartphones [4]. More recently, 
mobile GPUs are increasingly being used to accelerate heavy workloads, for appli-
cations ranging from signal processing [5], to advanced driving assistance systems 
(ADAS) in cars [6], or to accelerate the computational requirements of deep neural 
networks [7]. SoCs with low-power GPUs can meet the requirements of many of 
these applications due to their high performance per watt and the programming flex-
ibility of their various parallel components. For example, commercial off-the-shelf 
(COTS) platforms incorporating such devices are candidates to replace traditional 
radiation-hardened systems in small satellites [8]. However, fault tolerance is a key 
consideration in all these applications and the reliability of embedded GPUs needs 
to be assessed and improved. For example, stringent risk-based safety standards such 
as ISO 26262 must be considered in the design and construction of electrical and 
electronic systems in production vehicles, including driver assistance, propulsion 
and vehicle dynamics control systems [9].

On the other hand, the high computational power of GPUs is driving the scien-
tific discovery process on a large scale. Applications in fields as diverse as climate 
simulation [10], electromagnetic fields [11], and molecular dynamics [12] have effi-
ciently exploited GPU parallelism. This type of device uses last-generation CMOS 
or FinFET technology and contains thousands of cores with different computing 
elements and very large and fast memories. Most recent GPUs also include special 
units, such as tensor cores, to accelerate key steps in machine learning applications 
[13]. High-performance computing (HPC) workloads are typically long-running 
simulations that use various techniques, such as checkpointing and restarting, to 
complete in the event of failures. Most supercomputer sites contain many thousands 
of high-performance GPUs, which increases the probability of failure due to both 
hardware and soft errors [14]. Failures in HPC nodes can be caused by temperature, 
voltage variations, environmental disturbances, firmware errors or manufacturing 
processes, among other things. However, one of the most common causes is radia-
tion, which consists of particles such as neutrons, electrons, protons and heavy ions, 
as well as electromagnetic radiation. Experiments in supercomputer centres with 
more than ten thousand GPUs have detected failures every few tens of hours, and 
the number of nodes is constantly increasing [3, 15]. Therefore, understanding the 
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characteristics of GPU-related faults in large-scale systems is likely to benefit sys-
tem operators, designers and end users.

The use of GPU resources by applications determines their reliability. Obviously, 
if an application uses more resources or uses them more intensively, it is more likely 
to be affected by an incoming particle. However, it is also true that more efficient use 
of resources reduces the execution time of applications and thus the likelihood that 
they will be affected by radiation. Furthermore, not all components of a GPU are 
equally susceptible to the effects of radiation, nor do all defects in the architecture 
lead to errors. Also, not all faults are equally important or affect the same number 
of tasks running in parallel. For example, a particle may cause a bit flip on the result 
of an instruction executed by only one thread, but it may also modify a memory cell 
read by all threads executing the application. As can be seen, modelling the fault 
tolerance of applications on GPUs is complex and must take into account a large 
number of factors, some of which have opposing effects [16, 17]. Over the last dec-
ade, numerous works have been carried out to analyse all of the above factors. Most 
of them use fault injection or device radiation as the analysis mechanism.

To achieve high performance on GPUs, we need to increase the utilisation of 
their many cores, but also use their fastest memories, including shared memory and 
register file. However, increasing the workload and use of GPU resources can also 
increase the soft-error sensitivity of the algorithms [2]. As a first approach, in [18] 
we examined the soft-error sensitivity of two different implementations of matrix 
multiplication on a GPU-accelerated system-on-chip. Both implementations started 
only one kernel and made different use of the resources of the GPU, in particular the 
different memories of the device. One of the algorithms is memory-bound, while 
the other uses a block strategy that exploits the fast shared memory of the GPU to 
achieve better performance. The results showed that soft-error sensitivity depends 
on the implementation of the algorithm and how it uses the resources of the GPU. In 
particular, the block algorithm is not only much more efficient, but also masks many 
more errors than the memory-bound implementation. However, the use of shared 
memory in the block algorithm increases the number of unrecoverable crashes.

We evaluate in this work a different application that allows us to extend and 
deepen the evaluation of the influence of the parallelisation strategy on the soft error 
sensitivity of algorithms on GPUs. Specifically, we compare the soft error sensitiv-
ity of two different strategies to perform LU decomposition. First of all, it should be 
noted that we do not intend to use the most efficient version of the LU on GPUs, but 
to compare two versions with very different performance and use of GPU resources. 
Thus, error injection could cause a clearly differentiated behaviour of both versions 
and allow us to relate the errors detected to the use of resources such as global mem-
ory or shared memory. Therefore, we first chose the version of the decomposition 
most widely used in the literature related to fault tolerance of GPUs. This is the lud 
version included in the Rodinia test suite [19]. This is a relatively efficient block 
version that uses three different kernels with different degrees of parallelism and 
takes advantage of the shared memory of the GPU. Second, we modified one of 
the kernels of the block algorithm to implement a memory-bound version of the 
decomposition, which is much less efficient, uses only one kernel and with a much 
lower degree of parallelism. This version relies only on global memory, which has 
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consequences on its performance, the type of errors that can arise from the injection 
and the propagation of errors. On each iteration of the block version the algorithm 
launches successively three kernels. This allows us to analyse the soft error sensitiv-
ity of different steps of the algorithm involving different matrix panels. To this end, 
we inject faults on the different kernels and analyse their error rates and also the 
error propagation pattern on each of them. Matrix decompositions, such as LU, are 
fundamental in many applications. Studying their sensitivity to errors on GPUs can 
help us to design better fault-tolerant algorithms on this kind of accelerator.

We use two fault injection tools to inject single bit flips into the results of a ran-
domly chosen instruction of the algorithms on two very different GPUs: a low-
power system-on-chip embedded GPU that can be used in safety-critical environ-
ments, and a much faster and power-hungry GPU that can be included in the nodes 
of high-performance supercomputers. Experimental results show that most fault 
injections cause Silent Data Corruptions (SDC) or Detected Unrecoverable Errors 
(DUE). The use of shared memory increases the performance of the block algorithm 
on both GPUs, but also the number of DUEs caused by illegal memory accesses. 
As we show in Sect. 5.2, the block algorithm has a larger number of DUE and most 
of them are due to illegal accesses to the shared memory of the GPU. Finally, the 
experiments also show that different sections of the code have different fault injec-
tion sensitivities and error propagation rates and patterns.

The main contributions of this paper are as follows:

•	 Compare the soft error sensitivity of two different algorithms for performing LU 
decomposition on GPUs.

•	 Analyse the causes of DUEs as a function of algorithm and GPU device.
•	 Study the error propagation as a function of the code section affected by the 

SDCs.
•	 Study the soft error sensitivity of algorithms on two GPU devices that are very 

different in terms of architecture, computing power and application scope.

The rest of the paper is structured as follows. Section 2 summarises the related work. 
Section 3 briefly describes the two LU decomposition algorithms analysed on this 
paper. Section 4 describes the experimental environment and Sect.  5 analyses the 
experimental results. Finally, Sect. 6 summarises the main conclusions of the paper.

2 � Related work

The study of the reliability of heterogeneous embedded systems is gaining momen-
tum because they combine high parallelism, low power consumption, the flexibility 
offered by their diverse components, and the possibility of using low-cost and light-
weight COTS devices [20, 21]. Today, most of these systems can be found in mobile 
devices, where various reliability assessments are currently being carried out [22].

GPUs are a common computing resource found on such systems. Their reliabil-
ity has been widely analysed in the literature over the last decade [3, 17, 23]. Many 
different benchmarks have been used to analyse and improve the reliability of such 
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devices. These include basic computational kernels [24], including matrix multi-
plication [2], FFT [25], or microbenchmarks [17] to evaluate their various compo-
nents, or benchmark suites such as Rodinia [19]. More recently, several papers have 
analysed the reliability of GPUs using convolutional neural networks (CNNs). For 
example, in [13], the authors evaluate and propose strategies to improve the object 
detection reliability of three CNN algorithms using an embedded GPU and two 
high-performance GPUs. In [26], the authors analyse the impact of faults affecting 
the hidden modules of GPUs on an entire CNN execution (LeNET) without under-
mining the correctness of the reliability evaluation by combining simulation and 
software fault injection. The impact of tensor cores and mixed precision on the reli-
ability of matrix multiplication in a high-performance GPU is studied in [27]. Effec-
tive microarchitectural selective hardening of GPU modules to mitigate errors that 
affect the correct execution of instructions is proposed in [28].

Matrix factorisations such as Cholesky, LU, and QR decompositions have also 
been used to analyse the reliability of GPUs as they are basic operations in many 
applications [29–32]. The soft error sensitivity of this type of factorisation has been 
analysed in several papers, and various algorithm-based fault tolerance (ABFT) 
techniques have been proposed to improve their reliability [33–35]. Much effort 
has been devoted to designing ABFT versions of one-sided matrix decompositions, 
including LU. This design philosophy was introduced in [36], where the author 
applied it to matrix multiplication and LU decomposition. It is based on modify-
ing the algorithm by adding some elements and computations to detect and in some 
cases correct the errors. This first approach tolerated only single errors and applied 
an off-line correction scheme, i.e. it detected and corrected errors at the end of the 
computation, after the errors had propagated and accumulated. In contrast, online 
schemes detect, locate, and correct errors in the middle of the computation, avoiding 
their propagation and reducing the overhead. For example, [37] introduced an online 
method for LU decomposition, which was also applied to Cholesky and QR decom-
positions on distributed memory multicomputers in [38], with an overhead fluctuat-
ing around 5%. Most previous methods only maintain checksums in one dimension, 
protecting only a part of the matrix. In [35], the authors propose a full checksum 
method. They also analyse the error propagation patterns of the three kernels used to 
perform the decomposition and propose a checksum scheme adapted to the different 
error sensitivities of each kernel.

On the other hand, various fault injection tools have been used to study the behav-
iour of the LU decomposition implementation included in the Rodinia suite. In [39], 
the authors present a fault injection tool that can inject at two levels of abstraction, 
namely the intermediate representation level (ptx) and the assembler level (sass). The 
tool can inject into different hardware components of the GPU, such as the register 
file, shared memory, Single Instruction Multiple Threads (SIMT) stack, or instruction 
buffer. Experiments on a Fermi GPU show that the error rate depends on the hard-
ware component targeted. For example, register file injections cause errors in less than 
5% of tests, while shared memory injections cause errors in more than 75% of cases. 
The authors also show that the three kernels used to perform LU decomposition have 
different architectural vulnerability factors (AVFs). Another injection tool (SASSIFI) 
is introduced in [40] and applied to LU decomposition, among many other Rodinia 
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benchmarks. The results show that injecting single bit flip errors into the target registers 
of Kepler GPU instructions causes SDCs in about 40% of the tests, while the injection 
is masked in the rest of the tests. Finally, in [41] the authors propose a fault injection 
method that reduces the number of injections based on the identification of frequently 
executed instructions. They use SASSIFI to perform fault injections in all Rodinia 
benchmarks, including LU decomposition, causing SDCs or DUE in more than 60% of 
the tests.

Contrary to previous work, [39–41], where only the version of the LU included in 
the Rodinia benchmark suite [19] was injected, one of our main objectives was to ana-
lyse the influence of the use of different decomposition strategies on its soft-error sen-
sitivity. In this sense, we compare two different versions of the LU in terms of their 
use of GPU resources. We have also included, as one of the two devices under test, a 
low-power GPU embedded in a SoC platform. The evaluation of the reliability of this 
type of device is of particular interest, as they are candidates for inclusion in safety-
critical environments such as space and advanced driver assistance systems [42, 43]. In 
[44], we evaluated the reliability of the two LU decomposition algorithms described in 
the next section under proton irradiation on one of the Devices Under Test used in this 
paper, a Jetson TK1 SoC. Results show that a more intensive use of the resources of 
the GPU increases the cross section and that most of the radiation-induced errors could 
only be solved by rebooting the platform.

3 � LU decomposition algorithms

In this paper, we evaluate the error sensitivity of two algorithms that implement LU 
decomposition. We have used the Compute Unified Device Architecture (CUDA) pro-
gramming model to implement these algorithms [45]. The code executed in the cores 
of the GPU is written as functions called kernels. Each kernel is executed in paral-
lel by multiple elementary processes called threads. The threads are logically grouped 
into thread blocks, which are assigned to a Streaming Multiprocessor (SM) of the GPU 
device and share memory. Thread blocks are then organised in a grid. Efficient algo-
rithms try to take advantage of all the architecture’s components, including its multiple 
cores and fastest memories.

The first LU decomposition algorithm, called block, is the block-parallel version 
implemented with CUDA and included in the Rodinia benchmark suite.

Figure  1 shows the main panels of the first iteration of the LU decomposition 
included in Rodinia. The algorithm starts from the upper left corner and performs the 
following three steps:
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The decomposition is then continued by recursively applying the same steps to the 
A

′

22
 panel. The three steps are implemented as three CUDA kernel functions [45] 

called diagonal, perimeter and internal, respectively. Figure 1 shows the 
panels affected by each kernel during the first iterations on a different colour. The 
last two kernels divide the panels A

12
 , A

21
 and A

22
 into square blocks of size b × b 

(red lines in Fig. 1) and copy and update them in parallel, using the shared memory 
of the GPU to increase the performance of the algorithm.

The kernel diagonal uses a simple method where a thread block of b 
threads performs the LU decomposition of the upper left panel A

11
 . Each thread 

is responsible for computing one row of U
11

 and one column of L
11

 in shared 
memory. The second parallel algorithm we tested, called rc, uses the same 
method but applied to the whole matrix. In addition, all computations are per-
formed in the global memory of the GPU, and each thread can compute more 
than one row and column, depending on the size of the matrix (see Fig. 2). The 
rc algorithm, which is obviously slower than the block version, allows us to 
analyse the effects of error injection using a method that is much less efficient in 
terms of GPU resources.

Both algorithms make very different use of not only memory but also other 
components of the GPU. The block algorithm iterates the execution of three 
kernels with different grid and thread block sizes. For example, suppose Fig. 1 
represents a matrix of size 64 × 64 , where each small square block is of size 
16 × 16 , then during the first iteration of the algorithm, kernel diagonal will 
start a block of threads of size 16; kernel perimeter will start 3 blocks of 
threads of size 32; and kernel internal will start 3 × 3 blocks of threads of 
size 16 × 16 . The rc algorithm uses a grid of size 1 and starts only once a block 
of threads of size 64. Therefore, the number of kernels launched when running 
the two algorithms is quite different, as is the occupancy of the cores and the use 
of the GPU’s block and warp schedulers.

Fig. 1   Main panels and updates during the first iteration of the block LU decomposition
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4 � GPU‑based experimental environment

4.1 � GPU devices

We used two very different GPU devices to perform our experiments, the main fea-
tures of which can be seen in Table  1. The first experimental platform is a low-
power Tegra K1 (TK1) system-on-chip (SoC) embedded in the Jetson developer kit 
[46]. This particular system consists of a quad-core ARM Cortex A15 processor (or 
CPU), a battery-saving ARM Cortex A15 shadow core, and an NVIDIA “Kepler” 
K20A GPU with 1 SM containing 192 CUDA cores. The SM has four warp schedul-
ers and eight instruction dispatchers. It can then select four warps of 32 threads and 
issue two independent instructions per warp per cycle. The TK1 SoC is designed 
to increase performance per watt. It typically consumes between 0.6W and 3W of 
power during normal use, and a maximum of 15W when the CPU, GPU, and codec 
hardware are pushed to their limits.

Fig. 2   In the rc version of the 
LU decomposition each thread 
(e.g. thi and thj ) computes one 
or more rows of matrix L and 
the corresponding columns of 
matrix U 

Table 1   Main features of the 
GPUs under test

Feature K20A (Kepler) GV100

Architecture Kepler Volta
Compute capability 3.2 7.0
Number of SMs 1 80
Total number of cores 192 5120
Global memory 2 GB (DDR3) 32 GB (HBM2)
Shared memory 48 KB 7680 KB
L2 cache size 128 KB 6144 KB
Register file size 256 KB 20480 KB
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We also used a high-performance Tesla V100 with the Volta architecture consist-
ing of 80 SM [47]. Each SM is divided into four processing blocks, each with 16 
FP32 cores, 8 FP64 cores, 16 INT32 cores, and two new mixed-precision tensor 
cores for deep learning matrix arithmetic. Each block also includes a warp scheduler 
and two dispatch units. This GPU is connected to a server with 2 Intel Xeon Gold 
6126 2.6 GHz processors, each with 12 cores and a total of 64 GB of memory.

The two GPUs represent very different types of devices with different targets. 
While the K20A GPU is a low-power device that can be used in embedded systems to 
reduce power consumption, the Tesla V100 is a high-performance GPU that provides 
massive data parallelism with thousands of cores, suitable for use in HPC nodes. Both 
GPUs are built on very different technologies. While the K20A uses standard 28nm 
CMOS transistors, the Tesla V100 is built on new 12nm FFN technology, NVIDIA’s 
proprietary FinFET manufacturing process. Based on physical simulations and test-
chip experiments, FinFET transistors have been reported to have a much lower neu-
tron-induced error rate compared to CMOS [48]. Matrix multiplication and neural 
networks used to compare both technologies under neutron irradiation in [13] show 
an order of magnitude lower error rate of 16 nm FinFET compared to 28 nm CMOS.

Another important difference between the two GPUs is the automatic error pro-
tection of the memory. Unlike other Kepler GPUs, the K20A does not include error 
correction code (ECC) in any of its memories. However, the Tesla V100 global 
memory subsystem supports Single-Error Correction Double-Error Detecting 
(SECDED). In addition, other key structures such as the register file and L1 and L2 
caches are protected by the same mechanism. As with the technology, this mecha-
nism could detect radiation-induced errors. However, faults injected into the results 
of instructions are not detected by any ECC mechanism.

4.2 � Fault injectors

We did not use the same fault injection tool on both experimental platforms because 
they do not support compatible versions of the software they require (i.e. CUDA 
toolkit, CUDA GDB, LLVM compilation framework, etc.). Instead, we used two 
injection tools that allow us to perform the same type of fault injection and result 
analysis.

In the Jetson board, we used LLFI-GPU, which is an extension of the open source 
LLFI fault injection tool [49]. It first profiles the programme to get the number of 
kernels, threads, and instructions. Next, it uses the LLVM compiler framework to 
instrument the IR (intermediate representation) of the CUDA code. It can then inject 
single bit flips into the registers that store the results of a random instruction in a 
random thread of one of the kernels. It uses the profiling information to inject the 
error with a uniform probability in all instructions executed. You can annotate the 
code to choose specific kernels to inject the fault. Its main limitation is that it does 
not inject errors into other components of the architecture, such as the GPU memo-
ries, the condition codes, or the memory addresses and their values.

In the Volta GPU, we used CAROL-FI, a fault injector based on the GNU GDB 
debugger, which was introduced in [50] to analyse the behaviour of Xeon Phi 
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processors. The original version of the tool injects faults at any source code vari-
able allocated to a memory position. It works in two main phases. It first uses the 
debugger to launch the code and interrupt its execution after a random time. Then, 
it selects one of the available threads and active subroutines and flips one or more 
bits of one of its variables. It allows several fault models, including single and dou-
ble bit flips and overwriting every bit with zeros or random values. We have modi-
fied the version based on CUDA GDB [51] to perform a fault injection similar to 
the one performed by the LLFI-GPU injector. Specifically, we have modified one 
of the injection modes to perform a single bit flip in the target register values of the 
instructions. We have also modified the injector to be able to select the instruction to 
inject, and thus the kernel affected by the injection. One of the main limitations of 
CAROL-FI is that it is based on the CUDA debugger and so the injection process is 
slower than with tools like LLFI-GPU.

4.3 � Experimental methodology

We have performed injection campaigns using both injectors, always consisting of 
1000 tests for each algorithm and problem size. We always injected one error in each 
LU decomposition. The following error categories were used in all experiments:

•	 Masked: we get a correct result of the LU decomposition. The results are com-
pared with a previously computed golden version.

•	 Silent Data Corruption (SDC): one or more elements of the result do 
not match the golden output.

•	 Detected Unrecoverable Error (DUE): an error occurs because the 
programme has tried to perform an invalid action (e.g. read outside its memory 
segment). This error can be captured by a debugger, the process can be killed, 
and the operating system can start the next test (e.g. LU decomposition).

Our experimental setup includes two timeouts. The first timeout, associated with 
the process performing the decomposition, is set to a time slightly greater than the 
maximum predictable duration of the operation. We use this timeout on the CUDA 
debugger to detect the DUE errors of our test [52]. In addition, we have used the 
watchdog Linux API to implement a hardware watchdog that reboots the platform if 
it hangs for more than 30 s. This is not considered a DUE error as it is not applica-
tion related but operating system related and is a very rare type of error.

5 � Experimental results and evaluation

5.1 � Performance of the algorithms

To compare the performance of the two LU decomposition algorithms, we meas-
ured their execution times on the Jetson TK1 board with different problem sizes. 
Figure 3 shows the results for matrices ranging from 128 to 2048. We can see that 
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the block algorithm is always much faster than the rc algorithm. Specifically, 
it is 8 times faster for matrices of size 1024 and 10 times faster for matrices of 
size 2048. This behaviour is mainly due to two factors. First, the block algo-
rithm uses the fast shared memory of the GPU and reduces accesses to the slower 
global memory, increasing the ratio of floating point operations per memory 
access. Second, the rc algorithm uses the GPU cores less efficiently.

Using the CUDA profiler [53], we have seen that this algorithm only achieves 
a 50% occupancy of the GPU. On the contrary, the internal kernel, which is 
the most used on the block algorithm, achieves a 91.96% occupancy. In addi-
tion, the rc algorithm executes only 0.12 instructions per cycle (IPC), which is 
far from the optimal IPC that can be executed using the eight instruction dis-
patchers of the K20A GPU. In contrast, the internal kernel executes 1.23 
instructions per cycle, which is more than ten times better than the rc algorithm. 
There are more efficient implementations of LU decomposition on GPUs, such as 
the one included in the MAGMA library [54]. However, our goal was not to test 
the fastest implementation available, but to compare the soft-error sensitivity of 
two implementations with very different uses of GPU resources.

5.2 � Soft error sensitivity of the algorithms

We ran similar fault injection campaigns on both platforms. The results for the 
error categories shown in this section do not depend on the size of the matrices or 
the block size used in the block algorithm.

Both algorithms have a different sensitivity to soft errors, as can be seen in 
Fig.  4. Most of the error injections result in SDCs or DUEs of the algorithms, 
but the percentages are highly dependent on the algorithm and the platform. For 
example, the block algorithm masks more errors than the rc algorithm on the 
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Kepler GPU, while the opposite is true on the Volta GPU. The SDC percentages 
are higher for rc than for block on both platforms. The different behaviour of 
the two algorithms on the two GPUs could be due to two main reasons. First, it 
may be due to their different architectures and how the faults injected into the 
registers with the results of the instructions affect the behaviour of the code and 
the results it produces in the LU decomposition. Secondly, the different behav-
iour may be due to the fact that the two injectors used may not select the kernels, 
threads and instructions into which the faults are injected in the same way. The 
probabilities with which different result registers and instructions are affected on 
the two GPUs may be different due to the details of how the two injection tools 
work. This behaviour of the tools and their effect on the errors detected in the 
code is independent of the architecture of the GPUs. In addition, the thread block 
and shared memory size is defined by the size of the matrix in the rc algorithm 
and by the size of the blocks of elements in the block algorithm. We have per-
formed the experiments using matrices and blocks of elements with the same size 
in both architectures. Therefore, the different behaviour is not due to differences 
in those sizes.

Nevertheless, we tried to get more information about the causes of the DUEs 
by using the cuda-gdb debugger to run the fault injection tests. This allows us to 
catch the various exceptions that trigger most of the DUEs. Figure 5 shows the 
percentage of DUEs caused by different types of errors. In particular, only 3 of 
the 15 types of exceptions defined in [52] occurred on each platform (4 types 
in total), all of them related to memory access problems. Specifically, cuda-gdb 
caught the following exceptions:

•	 Ex5: Occurs when any thread within a warp accesses an address outside its valid 
range of local or shared memory regions.

•	 Ex6: Occurs when any thread within a warp accesses an address in the local or 
shared memory regions that is not correctly aligned.

•	 Ex10: Occurs when a thread accesses an illegal (out of bounds) global address. 
Only on the Jetson platform.
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Fig. 4   Fault injection results of the LU decomposition algorithms in both GPUs
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•	 Ex14: Occurs when a thread accesses an illegal (out of bounds) global/local/
shared address. Only on the Volta platform.

Figure  5 shows, on the one hand, that most errors of the block algorithm are 
caused by illegal or misaligned accesses to shared memory (Ex5 and Ex6). This 
type of memory improves the performance of the algorithm, but greatly increases 
the total number of DUEs. Shared memory is much smaller than global memory, and 
is also distributed across the different blocks of threads. Therefore, any small change 
in a shared memory address can easily produce an address outside the valid address 
range for a thread, resulting in a Ex5 and eventually a DUE. In contrast, much larger 
global memory can be accessed by all threads, and it is more difficult for address 
changes to result in illegal global addresses. On the other hand, the rc algorithm 
only accesses global memory, which explains why the only exceptions caught on the 
Jetson platform are related to illegal accesses to this type of memory (Ex10). This 
type of illegal access produces a Ex14 exception in the Volta platform. The Ex5 in 
the case of the rc algorithm detected in the Volta platform can only be due to illegal 
accesses to local memory, as this algorithm does not use shared memory. This algo-
rithm does not produce this kind of exception in the Jetson platform.

A very interesting aspect to analyse is the behaviour of the different kernels 
used by the block algorithm. This allows us, for example, to tailor the mitigation 
techniques used at each step of the code. Figure 6 shows the relative distribution of 
errors in each of the three kernels, and that they have very similar sensitivities to 
error injection. Injection of bit flips in the instructions of the three basic parts of the 
code has almost the same effect on the result of LU decomposition. About 36% of 
the fault injections are masked, 37% cause SDCs and 27% cause a DUE. Moreover, 
this behaviour does not depend on the size of the matrix.
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5.3 � Error propagation

One of the main problems of the SDC soft errors introduced in any matrix element 
during the computation of the LU decomposition is that they can propagate to a 
large number of elements of the matrix [33, 35]. The propagation rate depends on 
the algorithm and, more specifically, on the kernel affected by the error injection. 
If the bit flip changes the value of one element of the result matrix, this error can 
propagate to other elements that are computed with the wrong result. The number 
of elements affected depends on the position of the element initially modified by 
the fault injection and how it is used to compute the remaining elements of the LU 
decomposition.

Fig. 7 show that errors introduced in both algorithms propagate to different per-
centages of elements of the result. Errors in the block algorithm propagate on 
average to 17% of the elements, while errors in the rc algorithm propagate to more 
than 28% of the elements of the result.

In fact, the propagation rate of the algorithm depends on the part of the code 
where the error is injected. As can be seen in Fig. 8, errors introduced in the three 
kernels of the block algorithm propagate on average to quite different numbers of 
elements of the result.

These results are consistent with those obtained in [35]. Although the authors 
analysed the error propagation pattern of a slightly different block algorithm, their 
conclusions can be applied to the LU implementation included in the Rodinia suite. 
Errors in kernel internal can only propagate to one row or column of the matrix 
panel modified by the kernel, while errors in kernels diagonal and perimeter 
can propagate beyond one row or column. Figure 9 shows the results obtained after 
completing the first iteration of the block LU decomposition when we inject an error 
into each of the three kernels. These are representative examples of how the errors 
usually propagate to blocks of rows and columns in the case of the diagonal and 
perimeter kernels, while in most cases they only affect one element in the case of 
the internal kernel. For each of the three kernels, the figure only shows the prop-
agation of the errors in the elements of the panels modified by the corresponding 
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Fig. 7   Average percentage of wrong elements in the result when a SDC occurs on each algorithm. 
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kernel. Wrong elements computed by the diagonal or perimeter kernels will 
propagate to the elements of the rest of the matrix computed from them. This behav-
iour justifies that errors produced in the last kernel propagate to a much smaller per-
centage of elements than errors produced in the diagonal kernels (see Fig. 8).

We have seen that the errors produced in the diagonal and perimeter 
kernels propagate to a larger number of elements of the result matrix. Therefore, 
detection and correction of these errors would reduce the total number of elements 
affected. Therefore, it is critical to apply mitigation techniques to these two kernels 
if we want to reduce error propagation.

For example, experiments show that the diagonal and perimeter kernels 
are executed with occupancy of both GPUs well below 30%. This fact allows us to 
apply mitigation techniques based on duplicating or even tripling the execution of 
these kernels without significantly increasing the execution time of these steps of the 
algorithm.

6 � Conclusions

Fault injection campaigns on two different versions of LU decomposition show that 
the soft-error sensitivity of the algorithm depends on the strategy for performing 
such a transformation and on how the resources of the GPU are used. For example, 
using the shared memory of the GPU is a common approach that increases the per-
formance of algorithms in GPUs. However, it can also increase the sensitivity to soft 
errors by generating more DUEs. Specifically, we have performed fault injection 
campaigns on a slow memory-bound (rc) and a faster compute-bound (block) 
version of LU decomposition. The second version uses the fast shared memory of 
the GPU to reduce the execution time significantly. However, this results in a sig-
nificant increase in the number of DUE. This behaviour is the same on a low-power 
embedded GPU and on a high-performance GPU. On the contrary, the number of 
SDCs in the second version of the algorithm is much smaller on both GPUs.

Our experiments also show that the SDCs generated when injecting the instruc-
tions of both algorithms and their kernels propagate to a quite different number of 
elements of the result matrix. While in the rc algorithm the average percentage of 
wrong elements as a result of an SDC is 28%, in the block algorithm this figure 
drops to 17%. Moreover, while the percentage of SDCs and DUE is quite similar in 
the three kernels of the algorithm block, the error propagation is quite different. 
That is, the percentage of elements affected is very different, as is the spatial pattern 
of error propagation.

As future work, it would be interesting to include an ABFT version of the LU to 
compare its behaviour with the two versions of the decomposition used in this work.
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