
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-024-05947-8

1 3

Urban sound classification using neural networks
on embedded FPGAs

Jose A. Belloch1 · Raul Coronado1 · Oscar Valls2 · Rocío del Amor2 ·
German Leon3 · Valery Naranjo2 · Manuel F. Dolz3 · Adrian Amor‑Martin4 ·
Gema Piñero5

Accepted: 28 January 2024
© The Author(s) 2024

Abstract
Sound classification using neural networks has recently produced very accurate
results. A large number of different applications use this type of sound classifiers
such as controlling and monitoring the type of activity in a city or identifying dif-
ferent types of animals in natural environments. While traditional acoustic process-
ing applications have been developed on high-performance computing platforms
equipped with expensive multi-channel audio interfaces, the Internet of Things (IoT)
paradigm requires the use of more flexible and energy-efficient systems. Although
software-based platforms exist for implementing general-purpose neural networks,
they are not optimized for sound classification, wasting energy and computational
resources. In this work, we have used FPGAs to develop an ad hoc system where
only the hardware needed for our application is synthesized, resulting in faster and
more energy-efficient circuits. The results show that our developments are acceler-
ated by a factor of 35 compared to a software-based implementation on a Raspberry
Pi.

Keywords FPGA · Sound classification · Hardware acceleration · Convolutional
neural networks · Deep learning

1 Introduction

One of the major applications of convolutional neural networks (CNNs) lies in
image classification through the use of filters capable of extracting local charac-
teristics in the images [1–3]. Numerous studies have focused on the use of these
convolutional networks for applications in speech recognition [4, 5] or music analy-
sis [6, 7]. It was not until 2015 that Piczak created a convolutional neural network
specifically for the classification of environmental sounds [8]. Since then, differ-
ent acoustic features have been studied with the goal of increasing the accuracy of

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05947-8&domain=pdf

 J. A. Belloch et al.

1 3

these environmental classification networks. In [9], a network that consisted of two
input channels with aggregated features that significantly increased this accuracy
was studied. His network was composed of four convolutional layers and one fully
connected layer divided into two channels. In addition, it made use of five differ-
ent acoustic features. The CNN designed in this work is built with the aggregated
feature technique as input to the convolutional network. Our contribution is on the
implementation of this design from the point of view of performance, which is not
commonly addressed in the literature. For example, in [10], an overview of features
is shown to take into account for the design, but they do not go deep into efficient
implementations of sound classification systems. Our work focuses, on the one
hand, on accelerating the execution time of the inference process and, on the other
hand, on how the accuracy varies during the quantization process. To this end, we
train our model for the purpose of urban sound classification using the aggregated
features methodology.

The CNN will be deployed on an Avnet Ultra96-V2 [11] development board
using the Vitis AI (VAI) tools from Xilinx [12]. With the VAI development environ-
ment, inference times can be accelerated on Xilinx hardware platforms. The use of
its Intellectual Property (IP) cores and tools focused on the use of FPGAs in arti-
ficial intelligence makes it really easy to port different neural network models to
hardware designs in which the inference process can be performed faster and more
efficiently than using most microprocessor-based digital systems.

In addition to analyzing the effects of quantization on the percentage accuracy of
the model, a system capable of classifying urban sounds individually on the Ultra96-
V2 board has been created with the intention of testing which are the limiting ele-
ments that affect its application in real time. This system is programmed in the
PYNQ framework [13] in order to extract the different acoustic characteristics using
Python on the Cortex A-53 microprocessor present on the board.

Finally, an analysis will be performed on the acceleration of spectrogram acquisi-
tion using FPGAs in the context of development boards with fewer resources where
VAI tools cannot be used for neural network deployment. On these boards, the neu-
ral network models can only be used by the embedded processor, leaving the rest of
the processes to be accelerated by the FPGA. To perform these tests, the Digilent
PYNQ-Z1 development board [14] will be used and a hardware design will be cre-
ated capable of accelerating the processes necessary for the generation of spectro-
grams. Figure 1 shows both the two boards used in the development process.

2 Convolutional neural network design

As previously mentioned, our convolutional neural network design is based on [9]
with aggregated features. In this paper, five different features were initially consid-
ered: Log-Mel Spectrogram, MFCC, Chroma, Spectral Contrast, and Tonnetz. How-
ever, we opted not to include the Tonnetz feature due to its significant delay in the
feature extraction process. The decision to exclude MFCC was driven by its inher-
ent similarity to the Log-Mel Spectrogram. Specifically, MFCC, which is a com-
pressed representation derived from the Discrete-Cosine Transform (DCT) of the

1 3

Urban sound classification using neural networks on embedded…

Log-Mel Spectrogram, essentially encapsulates similar sound event information.
Consequently, to enhance efficiency and avoid redundancy, we focused on the con-
catenation of the Log-Mel Spectrogram, Chroma, and Spectral Contrast in the first
channel. The second channel was dedicated to computing the deltas of the first chan-
nel, offering a localized derivative estimation.

As in [9], feature extraction will be done in 41 frames of approximately 23 ms
with an overlap of 50% and a sampling rate of 44.1 kHz, resulting in fragments of
943 ms. The bands used for the Log-Mel Spectrogram, Chroma and Spectral Con-
trast are 60, 12 and 7, respectively. By concatenating these features we have an input
size of 41x79. The original model consisted of two different branches for each of
the inputs and provided a classification performance of 95%. For the development
of this work in the proposed hardware, we decided to simplify the network, using
a single branch that receives as the input two different channels, where the second
channel is the estimation of the derivative of each feature, which have been extracted
using Librosa.

The architecture of the convolutional neural network used is as follows:

1. Input layer of size 41 × 79 × 25.
2. First convolutional layer with 32 kernels of size 3 × 3 , batch-normalization and

Rectified Linear Unit (ReLU) activation function.
3. Second convolutional layer with 32 kernels of size 3 × 3 , batch-normalization,

ReLU activation and max-pooling with pooling size of 2 × 2.
4. Third convolutional layer with 64 kernels of size 3 × 3 , batch-normalization,

ReLU activation and 2 × 2 max-pooling.
5. Fourth convolutional layer with 64 kernels of size 3 × 3 , batch-normalization,

ReLU activation and 2 × 2 max-pooling.
6. Fully connected layer with two dense hidden layers of 2048 and 1024 neurons

with ReLu activation.
7. Output layer composed of ten units with softmax activation.

To connect the fourth convolutional layer to the fully connected layer we make use
of a Flatten layer. With this method, we feed all the resulting data to this last layer.
Other techniques were studied such as the use of a Global-Max-Pooling layer that
collects the maximum values of each of the feature maps. This greatly increased the

Fig. 1 Digilent PYNQ-Z1 and Avnet Ultra96-V2 are shown on the left and right sides, respectively

 J. A. Belloch et al.

1 3

accuracy of the network, however, such layers are not compatible with the quantiza-
tion used by the VAI tools. The main analysis of the paper lies in the inference time
instead of the accuracy; therefore, we make use of the Flatten layer despite the fact
that it implies a degradation in accuracy. Figure 2 shows the structure of the four
convolutional layers of the model design.

3 Vitis AI quantization and compilation

For the hardware implementation of the design we use the Xilinx DPUCZDX8G IP,
a Deep-learning Processor Unit (DPU) designed for the Zynq UltraScale+ MPSoC
[15]. This DPU is optimized for its use with convolutional neural networks. As for
its configuration, the B2304 convolution architecture will be selected, which allows
2304 multiply-accumulate operations (MACs) to be performed in each clock cycle.
In addition, the low usage mode of digital signal processing (DSP) slices will be
used, which means that these slices will only be used in the convolution multiplica-
tions and not in the accumulations. Table 1 shows the resources used by the DPU
block in the Ultra96-V2.

The original convolutional network design is generated and trained in Tensor-
Flow. After the training process, for its quantization, we will make use of the VAI
tools provided by Xilinx. VAI uses data-free quantization through weight equaliza-
tion and bias correction as its quantization technique [16]. This technique achieves
8-bit quantization with minimal performance degradation. To perform this quan-
tization, the official Xilinx Docker container will be used, which has all the nec-
essary tools to recompile DPU models to be deployed on the board. In this way,
from within the docker environment, a script has been created capable of generat-
ing, training, quantizing and compiling the models for the desired board. Likewise,

Fig. 2 Architecture of the convolutional neural network

Table 1 Resources used by the
DPUCZDX8G in the Avnet
Ultra96-V2

Resources B2304 Available Percentage (%)

LUT 44,709 70,560 63.36
Register 73,942 141,120 52.39
Block RAM 165 216 76,39
DSP 342 360 95

1 3

Urban sound classification using neural networks on embedded…

the models are evaluated before and after quantization to compare the difference in
accuracy in this same script.

3.1 Performance comparison

To evaluate the model, we will use the UrbanSound8K [17] dataset as a reference,
which consists of 8732 urban sound fragments labeled in 10 different classes. We
use the tenfold cross-validation method with average accuracy over the 10 splits pre-
defined in the dataset for testing purposes. Table 2 reflects the accuracy of each of
the folders before and after the quantization process. Our approach here is to com-
pare the degradation of the performance due to the quantization in a non-optimized
implementation such as our basic convolutional network design.

It can be seen from Table 2 that there is no significant degradation in accuracy
when quantizing the 32-bit floating-point model to INT8. Moreover, it can be seen
that there is even a slight improvement in performance once the model has been
quantized for this specific dataset, going from a 60.52% accuracy rate before quan-
tization to 60.96% once it has been quantized. If we look at the performance of the
model we can observe which are the folders that achieve the worst accuracy rate,
specifically folder three is the split with the worst performance with a 52.40% accu-
racy rate before quantization and 51.73% after quantization. On the other hand,
folder nine achieves the highest performance with 68.54% and 68.55%, before and
after the quantization process, respectively.

In order to compile the quantized network we will need a number of files and con-
figuration parameters which includes an “arch.json" file specifying the target board
and the convolution architecture that we want to use. In our case, it contains the fin-
gerprint that points to the Ultra96 board and the B2304 architecture. It is important
to note that the VAI version used only allows having a single subgraph of the model
for the entire DPU block. Functions such as sigmoidal activation are not compatible
with quantization and therefore will be scheduled on the CPU. This causes more

Table 2 Performance of the
model before and after the
quantization process

Folder Pre-quantization perfor-
mance

Post-quantiza-
tion perfor-
mance

1 0.596768 0.578222
2 0.581106 0.599666
3 0.524094 0.517311
4 0.603009 0.646164
5 0.639304 0.64528
6 0.597834 0.599409
7 0.587644 0.60072
8 0.63193 0.614124
9 0.685424 0.685542
10 0.618819 0.615945
Average 0.605235 0.609604

 J. A. Belloch et al.

1 3

than one subgraph to be created by having to send information between the DPU
and the CPU. These functions cannot be used in this version of VAI and will be
replaced by activation functions that can be quantized like ReLU. Once the model
is correctly quantized and compiled, we will obtain the neural network in “.xmodel"
format that can be used directly by the DPU.

4 Deployment of the model

The model is deployed using the PYNQ framework. To do this we will need to have
the PYNQ image on the microSD card from which the board will be booted. We
have used PYNQ version 2.7 which is compatible with Xilinx Tools version 2020.2
and uses VAI version 1.4. Once the model is compiled and we have obtained the
model in “.xmodel" format it can be directly loaded into the DPU-PYNQ overlay.

The tests performed involved evaluating and labeling all the audio files from each
of the splits of the UrbanSound8K dataset in order to test the execution time of the
inference process of the new hardware model. For this, we will need to load the
DPU hardware design as an overlay folDPSd by the model in “.xmodel" format.
Once we have the validation data loaded on the board, we can start making predic-
tions and check the speedup of the hardware model compared to the original model.

To make these predictions we will use the Vitis AI Runtime (VART) which
allows the use of the DPU block asynchronously. The inference process of the hard-
ware convolutional neural network model quantized and compiled with VAI takes
2.1 ms for each of the 943 ms fragments. This is a substantial improvement in exe-
cution time concerning the tests performed on a general-purpose personal computer
(GPC), equipped with an Intel Core i5-7200U processor, and on a Raspberry Pi.
The GPC used the original TensorFlow model and the Raspberry Pi is loaded with
a TensorFlow Lite quantized model. The execution times in these cases are reflected
in Table 3 and are 48.9 ms for the GPC and 85 ms in the case of the Raspberry Pi,
giving resulting speedup coefficients of 20.37 and 35.42, respectively.

4.1 Individual audio labeling design

To have a complete system that allows the classification of urban sounds, a program
aimed at the Ultra96-V2 was created to classify and label sounds individually. This
requires extracting the Log-Mel Spectrogram, Chroma and Spectral Contrast fea-
tures from the board itself for each of the audio files before they can be classified.

Table 3 Time comparison of the
inference process between the
Ultra96-V2, PC and Raspberry
Pi

Inference execution
time (ms)

Acceleration coefficient
(with respect to Ultra96)

Ultra96-V2 2.1 1
GPC 48.9 20.37
Raspberry Pi 85 35.42

1 3

Urban sound classification using neural networks on embedded…

With Librosa we can extract the acoustic characteristics of the audio files that serve
as input to our hardware model.

Figure 3 represents the flowchart of the program for labeling individual audio
files. The inference process is still 2.1 ms, and the feature extraction process takes
approximately 250 ms for each 943 ms fragment. By obtaining a processing time
less than this threshold of 943 ms, we are fulfilling real-time conditions.

5 Spectrogram hardware acceleration

In the case of development boards with a reduced amount of resources that are not
capable of deploying neural network models in hardware using VAI, we propose to
speed up the feature extraction process as an alternative. The tests performed dur-
ing this section are based on the convolutional neural network model proposed by
Piczak in 2015 [8], where the Log-Mel Spectrogram is the only feature used as input
to the network and will be deployed on the Digilent PYNQ-Z1 development board,
specifically designed to make use of the PYNQ framework.

To create a spectrogram from an audio signal, it must first be windowed in order
to divide it into different chunks of fixed length. In our case, we will use chunks
of 23 ms. Once we have all the fragments, we perform the Fast Fourier Transform
(FFT) in each of them to calculate the magnitude of the frequency spectrum of the
signal. Each of these spectra represents a small portion of the signal and when we
concatenate them all together we obtain the spectrogram.

The hardware design that has been created for the PYNQ-Z1 FPGA is based on
the FFT IP from Xilinx. The calculation of this FFT will be performed in hardware,
while all the rest of the spectrogram creation process will be performed in software
by the Cortex-A9 microprocessor on the board. All the programming of the micro-
processor is done through PYNQ. Additional tests are carried out, calculating the
FFTs in software to compare the speed in both cases and test the effectiveness of
hardware acceleration.

Communication between the processing system (PS) and the programmable logic
(PL) is achieved through AXI Direct Memory Access (DMA). The PS will be in
charge of fragmenting the audio file into different chunks. The chunks have a size

Fig. 3 Flow diagram of the individual labeling program

 J. A. Belloch et al.

1 3

of 1024 samples since the FFT IP works with that number of samples. Audio files
with a sampling rate of 44.1 kHz have been chosen so that the size of each chunk
corresponds to the selected duration of 23 ms. In addition, if the audio is in the ste-
reo format it will be converted to mono to facilitate the hardware calculations. Once
all the audio chunks are obtained, they will be sent by AXI DMA to the PL one by
one, waiting to receive the output back by DMA before sending the next set of data.
Finally, the data are interpreted by the PS.

Figure 4 represents the hardware design in Vivado, composed of three main
blocks. The Zynq Processing System represents the microprocessor. The AXI DMA
IP provides direct access between memory and target peripherals with AXI-Stream
inputs. In our design, this block has two functions, converting the input data coming
from the microprocessor from AXI to AXI-Stream format to connect it to the input
of the FFT block and the reverse process of converting AXI-Stream data from the
output of the block to AXI format to be sent back to the microprocessor. The data
sending in both cases is done through a High Performance (HP) port. Finally, the
Fast Fourier Transform block performs the calculation of the different FFTs.

In order to assess the portability of our implementation, we carried out tests by
using synthetic audio files of different lengths so that we can check our design oper-
ates at reasonable processing times. To this end, we generate audio files varying
from 50 ms to 10 s and test the rate the data were transferred to the board. The
results indicated that the processing time is proportional to the data.

6 Conclusion

In this work, we have tested the capabilities of FPGAs in the acceleration of artifi-
cial intelligence applications, specifically focused on convolutional neural networks
for urban sound classification. By using the Xilinx tools, it has been possible to cre-
ate a hardware neural network model capable of performing the inference process
more efficiently in comparison with microprocessor-based systems. In addition, it
has been proven that the quantization process of the model does not produce a sig-
nificant degradation in the percentage of accuracy of the network, even being able
to increase it slightly. For development boards that do not have enough resources to
implement and deploy these hardware models, it has been proposed to accelerate the

Fig. 4 Vivado block design for FFT calculation

1 3

Urban sound classification using neural networks on embedded…

extraction of spectrograms using FPGAs. In this way, two different approaches have
demonstrated to take advantage of the potential that these devices have when work-
ing in the field of artificial intelligence.

Author contributions All authors contributed equally to this work.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
This work has been funded by the NextGenerationEU/PRTR, MCIN/AEI/10.13039/501100011033 and
“ERDF A way of making Europe” through Grants PID2020-113656RB, PID2021-124280OB-C21,
PID2022-137048OA-C43, TED2021-131401B-C21 (DIPSY-AI), and TED2021-131401A-C22 (DIPSY-
TECH), and by CM through PROGRAMA MIMACUHSPACE-CM-UC3M. G. Piñero and V. Naranjo’s
work has been partially funded by GVA through PROGRAMA PROMETEO 2023-CIPROM/2022/20.
Manuel F. Dolz was also supported by the Plan Gen–T grant CIDEXG/2022/013 of the Generalitat
Valenciana.

Data availability No additional data or materials available.

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Sultana F, Sufian A, Dutta P (2018) Advancements in image classification using convolutional neu-
ral network. In: 2018 Fourth International Conference on Research in Computational Intelligence
and Communication Networks (ICRCICN), pp 122–129. https:// doi. org/ 10. 1109/ ICRCI CN. 2018.
87187 18

 2. Rawat W, Wang Z (2017) Deep convolutional neural networks for image classification: a compre-
hensive review. Neural Comput 29(9):2352–2449. https:// doi. org/ 10. 1162/ neco_a_ 00990

 3. Sharma N, Jain V, Mishra A (2018) An analysis of convolutional neural networks for image classifi-
cation. Procedia Comput Sci 132:377–384. https:// doi. org/ 10. 1016/j. procs. 2018. 05. 198

 4. Richardson F, Reynolds D, Dehak N (2015) Deep neural network approaches to speaker and lan-
guage recognition. IEEE Signal Process Lett 22:1–1. https:// doi. org/ 10. 1109/ LSP. 2015. 24200 92

 5. Ali H, Tran S, Benetos E, Garcez A (2018) Speaker recognition with hybrid features from a deep
belief network. Neural Comput Appl. https:// doi. org/ 10. 1007/ s00521- 016- 2501-7

 6. Dieleman S, Brakel P, Schrauwen B (2011) Audio-based music classification with a pretrained con-
volutional network, pp 669–674

 7. Ghosal D, Kolekar M (2018) Music genre recognition using deep neural networks and transfer
learning, pp 2087–2091. https:// doi. org/ 10. 21437/ Inter speech. 2018- 2045

 8. Piczak KJ (2015) Environmental sound classification with convolutional neural networks. In: 2015
IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP), pp 1–6.
https:// doi. org/ 10. 1109/ MLSP. 2015. 73243 37

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICRCICN.2018.8718718
https://doi.org/10.1109/ICRCICN.2018.8718718
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1016/j.procs.2018.05.198
https://doi.org/10.1109/LSP.2015.2420092
https://doi.org/10.1007/s00521-016-2501-7
https://doi.org/10.21437/Interspeech.2018-2045
https://doi.org/10.1109/MLSP.2015.7324337

 J. A. Belloch et al.

1 3

 9. Su Y, Zhang K, Wang J, Madani K (2019) Environment sound classification using a two-stream
CNN based on decision-level fusion. Sensors 19:1733. https:// doi. org/ 10. 3390/ s1907 1733

 10. Vandendriessche J, Wouters N, da Silva B, Lamrini M, Chkouri MY, Touhafi A (2021) Environmen-
tal sound recognition on embedded systems: from fpgas to tpus. Electronics 10(21):2622

 11. Ultra96-V2 Single Board Computer Hardware User’s Guide. https:// www. 96boa rds. org/ docum entat
ion/ consu mer/ ultra 96/ ultra 96- v2/ hardw are- docs/. Accessed 25 Oct 2022

 12. Vitis AI User Guide (UG1414). https:// docs. xilinx. com/r/ 2.0- Engli sh/ ug1414- vitis- ai. Accessed 25
Oct 2022

 13. PYNQ - Python productivity for Zynq. http:// www. pynq. io/. Accessed 25 Oct 2022
 14. PYNQ-Z1 Reference Manual. https:// digil ent. com/ refer ence/ progr ammab le- logic/ pynq- z1/ refer

ence- manual. Accessed 25 Oct 2022
 15. DPUCZDX8G for Zynq UltraScale+MPSoCs Product Guide (PG338). https:// docs. xilinx. com/r/ en-

US/ pg338- dpu. Accessed 25 Oct 2022
 16. Nagel M. Baalen MV, Blankevoort T, Welling M (2019) Data-free quantization through weight

equalization and bias correction. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV)

 17. Salamon J, Jacoby C, Bello JP (2014) A dataset and taxonomy for urban sound research. In: 22nd
ACM International Conference on Multimedia (ACM-MM’14), Orlando, FL, USA, pp 1041–1044

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Jose A. Belloch1 · Raul Coronado1 · Oscar Valls2 · Rocío del Amor2 ·
German Leon3 · Valery Naranjo2 · Manuel F. Dolz3 · Adrian Amor‑Martin4 ·
Gema Piñero5

 * Jose A. Belloch
 jbelloc@ing.uc3m.es

 Raul Coronado
 rcoronad@ing.uc3m.es

 Oscar Valls
 osvallo@i3b.upv.es

 Rocío del Amor
 madeam2@upvnet.upv.es

 German Leon
 leon@uji.es

 Valery Naranjo
 vnaranjo@dcom.upv.es

 Manuel F. Dolz
 dolzm@uji.es

 Adrian Amor-Martin
 aamor@ing.uc3m.es

 Gema Piñero
 gpinyero@iteam.upv.es

1 Depto. de Tecnología Electrónica, Universidad Carlos III de Madrid, Avda Universidad 30,

https://doi.org/10.3390/s19071733
https://www.96boards.org/documentation/consumer/ultra96/ultra96-v2/hardware-docs/
https://www.96boards.org/documentation/consumer/ultra96/ultra96-v2/hardware-docs/
https://docs.xilinx.com/r/2.0-English/ug1414-vitis-ai
http://www.pynq.io/
https://digilent.com/reference/programmable-logic/pynq-z1/reference-manual
https://digilent.com/reference/programmable-logic/pynq-z1/reference-manual
https://docs.xilinx.com/r/en-US/pg338-dpu
https://docs.xilinx.com/r/en-US/pg338-dpu

1 3

Urban sound classification using neural networks on embedded…

28911 Leganés, Madrid, Spain
2 Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Universitat

Politècnica de València, Camino de Vera s/n, 46022 Valencia, Valencia, Spain
3 Depto. de Ingeniería y Ciencia de Computadores, Universitat Jaume I de Castellón, Avda. Sos

Baynat s/n, 12071 Castellón, Castellón, Spain
4 Depto. Teoría de la Señal y Comunicaciones, Universidad Carlos III de Madrid, Avda

Universidad 30, 28911 Leganés, Madrid, Spain
5 Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universitat Politecnica de

Valencia, Camino de Vera s/n, 46022 Valencia, Valencia, Spain

	Urban sound classification using neural networks on embedded FPGAs
	Abstract
	1 Introduction
	2 Convolutional neural network design
	3 Vitis AI quantization and compilation
	3.1 Performance comparison

	4 Deployment of the model
	4.1 Individual audio labeling design

	5 Spectrogram hardware acceleration
	6 Conclusion
	References

