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Abstract
Sound classification using neural networks has recently produced very accurate 
results. A large number of different applications use this type of sound classifiers 
such as controlling and monitoring the type of activity in a city or identifying dif-
ferent types of animals in natural environments. While traditional acoustic process-
ing applications have been developed on high-performance computing platforms 
equipped with expensive multi-channel audio interfaces, the Internet of Things (IoT) 
paradigm requires the use of more flexible and energy-efficient systems. Although 
software-based platforms exist for implementing general-purpose neural networks, 
they are not optimized for sound classification, wasting energy and computational 
resources. In this work, we have used FPGAs to develop an ad hoc system where 
only the hardware needed for our application is synthesized, resulting in faster and 
more energy-efficient circuits. The results show that our developments are acceler-
ated by a factor of 35 compared to a software-based implementation on a Raspberry 
Pi.

Keywords  FPGA · Sound classification · Hardware acceleration · Convolutional 
neural networks · Deep learning

1  Introduction

One of the major applications of convolutional neural networks (CNNs) lies in 
image classification through the use of filters capable of extracting local charac-
teristics in the images [1–3]. Numerous studies have focused on the use of these 
convolutional networks for applications in speech recognition [4, 5] or music analy-
sis [6, 7]. It was not until 2015 that Piczak created a convolutional neural network 
specifically for the classification of environmental sounds [8]. Since then, differ-
ent acoustic features have been studied with the goal of increasing the accuracy of 
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these environmental classification networks. In [9], a network that consisted of two 
input channels with aggregated features that significantly increased this accuracy 
was studied. His network was composed of four convolutional layers and one fully 
connected layer divided into two channels. In addition, it made use of five differ-
ent acoustic features. The CNN designed in this work is built with the aggregated 
feature technique as input to the convolutional network. Our contribution is on the 
implementation of this design from the point of view of performance, which is not 
commonly addressed in the literature. For example, in [10], an overview of features 
is shown to take into account for the design, but they do not go deep into efficient 
implementations of sound classification systems. Our work focuses, on the one 
hand, on accelerating the execution time of the inference process and, on the other 
hand, on how the accuracy varies during the quantization process. To this end, we 
train our model for the purpose of urban sound classification using the aggregated 
features methodology.

The CNN will be deployed on an Avnet Ultra96-V2 [11] development board 
using the Vitis AI (VAI) tools from Xilinx [12]. With the VAI development environ-
ment, inference times can be accelerated on Xilinx hardware platforms. The use of 
its Intellectual Property (IP) cores and tools focused on the use of FPGAs in arti-
ficial intelligence makes it really easy to port different neural network models to 
hardware designs in which the inference process can be performed faster and more 
efficiently than using most microprocessor-based digital systems.

In addition to analyzing the effects of quantization on the percentage accuracy of 
the model, a system capable of classifying urban sounds individually on the Ultra96-
V2 board has been created with the intention of testing which are the limiting ele-
ments that affect its application in real time. This system is programmed in the 
PYNQ framework [13] in order to extract the different acoustic characteristics using 
Python on the Cortex A-53 microprocessor present on the board.

Finally, an analysis will be performed on the acceleration of spectrogram acquisi-
tion using FPGAs in the context of development boards with fewer resources where 
VAI tools cannot be used for neural network deployment. On these boards, the neu-
ral network models can only be used by the embedded processor, leaving the rest of 
the processes to be accelerated by the FPGA. To perform these tests, the Digilent 
PYNQ-Z1 development board [14] will be used and a hardware design will be cre-
ated capable of accelerating the processes necessary for the generation of spectro-
grams. Figure 1 shows both the two boards used in the development process.

2 � Convolutional neural network design

As previously mentioned, our convolutional neural network design is based on [9] 
with aggregated features. In this paper, five different features were initially consid-
ered: Log-Mel Spectrogram, MFCC, Chroma, Spectral Contrast, and Tonnetz. How-
ever, we opted not to include the Tonnetz feature due to its significant delay in the 
feature extraction process. The decision to exclude MFCC was driven by its inher-
ent similarity to the Log-Mel Spectrogram. Specifically, MFCC, which is a com-
pressed representation derived from the Discrete-Cosine Transform (DCT) of the 
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Log-Mel Spectrogram, essentially encapsulates similar sound event information. 
Consequently, to enhance efficiency and avoid redundancy, we focused on the con-
catenation of the Log-Mel Spectrogram, Chroma, and Spectral Contrast in the first 
channel. The second channel was dedicated to computing the deltas of the first chan-
nel, offering a localized derivative estimation.

As in [9], feature extraction will be done in 41 frames of approximately 23 ms 
with an overlap of 50% and a sampling rate of 44.1 kHz, resulting in fragments of 
943 ms. The bands used for the Log-Mel Spectrogram, Chroma and Spectral Con-
trast are 60, 12 and 7, respectively. By concatenating these features we have an input 
size of 41x79. The original model consisted of two different branches for each of 
the inputs and provided a classification performance of 95%. For the development 
of this work in the proposed hardware, we decided to simplify the network, using 
a single branch that receives as the input two different channels, where the second 
channel is the estimation of the derivative of each feature, which have been extracted 
using Librosa.

The architecture of the convolutional neural network used is as follows: 

1.	 Input layer of size 41 × 79 × 25.
2.	 First convolutional layer with 32 kernels of size 3 × 3 , batch-normalization and 

Rectified Linear Unit (ReLU) activation function.
3.	 Second convolutional layer with 32 kernels of size 3 × 3 , batch-normalization, 

ReLU activation and max-pooling with pooling size of 2 × 2.
4.	 Third convolutional layer with 64 kernels of size 3 × 3 , batch-normalization, 

ReLU activation and 2 × 2 max-pooling.
5.	 Fourth convolutional layer with 64 kernels of size 3 × 3 , batch-normalization, 

ReLU activation and 2 × 2 max-pooling.
6.	 Fully connected layer with two dense hidden layers of 2048 and 1024 neurons 

with ReLu activation.
7.	 Output layer composed of ten units with softmax activation.

To connect the fourth convolutional layer to the fully connected layer we make use 
of a Flatten layer. With this method, we feed all the resulting data to this last layer. 
Other techniques were studied such as the use of a Global-Max-Pooling layer that 
collects the maximum values of each of the feature maps. This greatly increased the 

Fig. 1   Digilent PYNQ-Z1 and Avnet Ultra96-V2 are shown on the left and right sides, respectively
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accuracy of the network, however, such layers are not compatible with the quantiza-
tion used by the VAI tools. The main analysis of the paper lies in the inference time 
instead of the accuracy; therefore, we make use of the Flatten layer despite the fact 
that it implies a degradation in accuracy. Figure 2 shows the structure of the four 
convolutional layers of the model design.

3 � Vitis AI quantization and compilation

For the hardware implementation of the design we use the Xilinx DPUCZDX8G IP, 
a Deep-learning Processor Unit (DPU) designed for the Zynq UltraScale+ MPSoC 
[15]. This DPU is optimized for its use with convolutional neural networks. As for 
its configuration, the B2304 convolution architecture will be selected, which allows 
2304 multiply-accumulate operations (MACs) to be performed in each clock cycle. 
In addition, the low usage mode of digital signal processing (DSP) slices will be 
used, which means that these slices will only be used in the convolution multiplica-
tions and not in the accumulations. Table 1 shows the resources used by the DPU 
block in the Ultra96-V2.

The original convolutional network design is generated and trained in Tensor-
Flow. After the training process, for its quantization, we will make use of the VAI 
tools provided by Xilinx. VAI uses data-free quantization through weight equaliza-
tion and bias correction as its quantization technique [16]. This technique achieves 
8-bit quantization with minimal performance degradation. To perform this quan-
tization, the official Xilinx Docker container will be used, which has all the nec-
essary tools to recompile DPU models to be deployed on the board. In this way, 
from within the docker environment, a script has been created capable of generat-
ing, training, quantizing and compiling the models for the desired board. Likewise, 

Fig. 2   Architecture of the convolutional neural network

Table 1   Resources used by the 
DPUCZDX8G in the Avnet 
Ultra96-V2

Resources B2304 Available Percentage (%)

LUT 44,709 70,560 63.36
Register 73,942 141,120 52.39
Block RAM 165 216 76,39
DSP 342 360 95
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the models are evaluated before and after quantization to compare the difference in 
accuracy in this same script.

3.1 � Performance comparison

To evaluate the model, we will use the UrbanSound8K [17] dataset as a reference, 
which consists of 8732 urban sound fragments labeled in 10 different classes. We 
use the tenfold cross-validation method with average accuracy over the 10 splits pre-
defined in the dataset for testing purposes. Table 2 reflects the accuracy of each of 
the folders before and after the quantization process. Our approach here is to com-
pare the degradation of the performance due to the quantization in a non-optimized 
implementation such as our basic convolutional network design.

It can be seen from Table 2 that there is no significant degradation in accuracy 
when quantizing the 32-bit floating-point model to INT8. Moreover, it can be seen 
that there is even a slight improvement in performance once the model has been 
quantized for this specific dataset, going from a 60.52% accuracy rate before quan-
tization to 60.96% once it has been quantized. If we look at the performance of the 
model we can observe which are the folders that achieve the worst accuracy rate, 
specifically folder three is the split with the worst performance with a 52.40% accu-
racy rate before quantization and 51.73% after quantization. On the other hand, 
folder nine achieves the highest performance with 68.54% and 68.55%, before and 
after the quantization process, respectively.

In order to compile the quantized network we will need a number of files and con-
figuration parameters which includes an “arch.json" file specifying the target board 
and the convolution architecture that we want to use. In our case, it contains the fin-
gerprint that points to the Ultra96 board and the B2304 architecture. It is important 
to note that the VAI version used only allows having a single subgraph of the model 
for the entire DPU block. Functions such as sigmoidal activation are not compatible 
with quantization and therefore will be scheduled on the CPU. This causes more 

Table 2   Performance of the 
model before and after the 
quantization process

Folder Pre-quantization perfor-
mance

Post-quantiza-
tion perfor-
mance

1 0.596768 0.578222
2 0.581106 0.599666
3 0.524094 0.517311
4 0.603009 0.646164
5 0.639304 0.64528
6 0.597834 0.599409
7 0.587644 0.60072
8 0.63193 0.614124
9 0.685424 0.685542
10 0.618819 0.615945
Average 0.605235 0.609604
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than one subgraph to be created by having to send information between the DPU 
and the CPU. These functions cannot be used in this version of VAI and will be 
replaced by activation functions that can be quantized like ReLU. Once the model 
is correctly quantized and compiled, we will obtain the neural network in “.xmodel" 
format that can be used directly by the DPU.

4 � Deployment of the model

The model is deployed using the PYNQ framework. To do this we will need to have 
the PYNQ image on the microSD card from which the board will be booted. We 
have used PYNQ version 2.7 which is compatible with Xilinx Tools version 2020.2 
and uses VAI version 1.4. Once the model is compiled and we have obtained the 
model in “.xmodel" format it can be directly loaded into the DPU-PYNQ overlay.

The tests performed involved evaluating and labeling all the audio files from each 
of the splits of the UrbanSound8K dataset in order to test the execution time of the 
inference process of the new hardware model. For this, we will need to load the 
DPU hardware design as an overlay folDPSd by the model in “.xmodel" format. 
Once we have the validation data loaded on the board, we can start making predic-
tions and check the speedup of the hardware model compared to the original model.

To make these predictions we will use the Vitis AI Runtime (VART) which 
allows the use of the DPU block asynchronously. The inference process of the hard-
ware convolutional neural network model quantized and compiled with VAI takes 
2.1 ms for each of the 943 ms fragments. This is a substantial improvement in exe-
cution time concerning the tests performed on a general-purpose personal computer 
(GPC), equipped with an Intel Core i5-7200U processor, and on a Raspberry Pi. 
The GPC used the original TensorFlow model and the Raspberry Pi is loaded with 
a TensorFlow Lite quantized model. The execution times in these cases are reflected 
in Table 3 and are 48.9 ms for the GPC and 85 ms in the case of the Raspberry Pi, 
giving resulting speedup coefficients of 20.37 and 35.42, respectively.

4.1 � Individual audio labeling design

To have a complete system that allows the classification of urban sounds, a program 
aimed at the Ultra96-V2 was created to classify and label sounds individually. This 
requires extracting the Log-Mel Spectrogram, Chroma and Spectral Contrast fea-
tures from the board itself for each of the audio files before they can be classified. 

Table 3   Time comparison of the 
inference process between the 
Ultra96-V2, PC and Raspberry 
Pi

Inference execution 
time (ms)

Acceleration coefficient 
(with respect to Ultra96)

Ultra96-V2 2.1 1
GPC 48.9 20.37
Raspberry Pi 85 35.42
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With Librosa we can extract the acoustic characteristics of the audio files that serve 
as input to our hardware model.

Figure  3 represents the flowchart of the program for labeling individual audio 
files. The inference process is still 2.1 ms, and the feature extraction process takes 
approximately 250 ms for each 943 ms fragment. By obtaining a processing time 
less than this threshold of 943 ms, we are fulfilling real-time conditions.

5 � Spectrogram hardware acceleration

In the case of development boards with a reduced amount of resources that are not 
capable of deploying neural network models in hardware using VAI, we propose to 
speed up the feature extraction process as an alternative. The tests performed dur-
ing this section are based on the convolutional neural network model proposed by 
Piczak in 2015 [8], where the Log-Mel Spectrogram is the only feature used as input 
to the network and will be deployed on the Digilent PYNQ-Z1 development board, 
specifically designed to make use of the PYNQ framework.

To create a spectrogram from an audio signal, it must first be windowed in order 
to divide it into different chunks of fixed length. In our case, we will use chunks 
of 23 ms. Once we have all the fragments, we perform the Fast Fourier Transform 
(FFT) in each of them to calculate the magnitude of the frequency spectrum of the 
signal. Each of these spectra represents a small portion of the signal and when we 
concatenate them all together we obtain the spectrogram.

The hardware design that has been created for the PYNQ-Z1 FPGA is based on 
the FFT IP from Xilinx. The calculation of this FFT will be performed in hardware, 
while all the rest of the spectrogram creation process will be performed in software 
by the Cortex-A9 microprocessor on the board. All the programming of the micro-
processor is done through PYNQ. Additional tests are carried out, calculating the 
FFTs in software to compare the speed in both cases and test the effectiveness of 
hardware acceleration.

Communication between the processing system (PS) and the programmable logic 
(PL) is achieved through AXI Direct Memory Access (DMA). The PS will be in 
charge of fragmenting the audio file into different chunks. The chunks have a size 

Fig. 3   Flow diagram of the individual labeling program
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of 1024 samples since the FFT IP works with that number of samples. Audio files 
with a sampling rate of 44.1 kHz have been chosen so that the size of each chunk 
corresponds to the selected duration of 23 ms. In addition, if the audio is in the ste-
reo format it will be converted to mono to facilitate the hardware calculations. Once 
all the audio chunks are obtained, they will be sent by AXI DMA to the PL one by 
one, waiting to receive the output back by DMA before sending the next set of data. 
Finally, the data are interpreted by the PS.

Figure  4 represents the hardware design in Vivado, composed of three main 
blocks. The Zynq Processing System represents the microprocessor. The AXI DMA 
IP provides direct access between memory and target peripherals with AXI-Stream 
inputs. In our design, this block has two functions, converting the input data coming 
from the microprocessor from AXI to AXI-Stream format to connect it to the input 
of the FFT block and the reverse process of converting AXI-Stream data from the 
output of the block to AXI format to be sent back to the microprocessor. The data 
sending in both cases is done through a High Performance (HP) port. Finally, the 
Fast Fourier Transform block performs the calculation of the different FFTs.

In order to assess the portability of our implementation, we carried out tests by 
using synthetic audio files of different lengths so that we can check our design oper-
ates at reasonable processing times. To this end, we generate audio files varying 
from 50 ms to 10  s and test the rate the data were transferred to the board. The 
results indicated that the processing time is proportional to the data.

6 � Conclusion

In this work, we have tested the capabilities of FPGAs in the acceleration of artifi-
cial intelligence applications, specifically focused on convolutional neural networks 
for urban sound classification. By using the Xilinx tools, it has been possible to cre-
ate a hardware neural network model capable of performing the inference process 
more efficiently in comparison with microprocessor-based systems. In addition, it 
has been proven that the quantization process of the model does not produce a sig-
nificant degradation in the percentage of accuracy of the network, even being able 
to increase it slightly. For development boards that do not have enough resources to 
implement and deploy these hardware models, it has been proposed to accelerate the 

Fig. 4   Vivado block design for FFT calculation
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extraction of spectrograms using FPGAs. In this way, two different approaches have 
demonstrated to take advantage of the potential that these devices have when work-
ing in the field of artificial intelligence.
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