
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-024-05955-8

1 3

Automatic generation of ARM NEON micro‑kernels
for matrix multiplication

Guillermo Alaejos1 · Héctor Martínez2 · Adrián Castelló1 · Manuel F. Dolz3 ·
Francisco D. Igual4 · Pedro Alonso‑Jordá1 · Enrique S. Quintana‑Ortí1

Accepted: 3 February 2024
© The Author(s) 2024

Abstract
General matrix multiplication (gemm) is a fundamental kernel in scientific computing
and current frameworks for deep learning. Modern realisations of gemm are mostly
written in C, on top of a small, highly tuned micro-kernel that is usually encoded in
assembly. The high performance realisation of gemm in linear algebra libraries in gen-
eral include a single micro-kernel per architecture, usually implemented by an expert.
In this paper, we explore a couple of paths to automatically generate gemm micro-ker-
nels, either using C++ templates with vector intrinsics or high-level Python scripts that
directly produce assembly code. Both solutions can integrate high performance soft-
ware techniques, such as loop unrolling and software pipelining, accommodate any data
type, and easily generate micro-kernels of any requested dimension. The performance
of this solution is tested on three ARM-based cores and compared with state-of-the-art
libraries for these processors: BLIS, OpenBLAS and ArmPL. The experimental results
show that the auto-generation approach is highly competitive, mainly due to the possi-
bility of adapting the micro-kernel to the problem dimensions.

Keywords Matrix multiplication · ARM NEON · SIMD arithmetic units · High
performance

1 Introduction

The general matrix multiplication (gemm) is a key computational kernel on top of
which a significant part of the basic linear algebra subprograms (BLAS) [1] is built
[2, 3]. In addition, gemm plays a fundamental role for convolutional (deep) neural
networks that are prominent in computer vision tasks, as well as for transformers
that are currently used in natural language processing [4, 5]. For these reasons, it
is natural that considerable effort has been spent over the past decades to optimise
gemm in basically any computer architecture.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05955-8&domain=pdf

 G. Alaejos et al.

1 3

The performance of gemm is strongly determined by the efficiency of a small
architecture-specific component, known as the micro-kernel [6–8]. Most modern
instances of BLAS contain a single micro-kernel per processor architecture, usually
encoded in assembly by a computer architecture expert. However, the benefits of
choosing among multiple micro-kernels have been illustrated for deep learning in
[9] and for dense linear algebra, as well as scientific computing in general in [10].

This paper contributes towards the development of optimised versions of gemm
by presenting two methods to automatically generate competitive micro-kernels
for ARM NEON (v8.2) processors equipped with single-instruction multiple-data
(SIMD) vector units. This is especially interesting for processors from the same
family that do not yet have a tuned instance of gemm. In more detail, our work makes
the following specific contributions:

• Initially, we generalise the initial solution proposed in [9] to leverage C++ tem-
plates in order to produce micro-kernels, based on vector intrinsics, at compi-
lation time. This allows to deal more efficiently with “corner” cases that arise
when the architecture cache configuration parameters are not integer multiples
of the micro-kernel dimensions. In addition, the adoption of templates eases the
generation of code for distinct data types using a single generator.

• Next, we take one step forward to directly produce assembly micro-kernels,
using Python scripts. Compared with the previous solution, this method presents
the advantage of enforcing a given order of the micro-kernel instructions that the
compiler will not change.

• For three distinct ARM-based architectures and a collection of representative prob-
lem instances arising from practical deep learning applications, we demonstrate that

Fig. 1 Baseline algorithm for gemm (top), data transfers across the memory hierarchy (bottom-left), and
packing (bottom-right)

1 3

Automatic generation of ARM NEON micro‑kernels for matrix…

a gemm routine that integrates the automatically generated micro-kernels provides
competitive performance, on par or even outperforming the realisation of gemm in
highly tuned linear algebra libraries such as BLIS, OpenBLAS and ArmPL

At this point, it is worth noting that our work targets ARM NEON processors, yet
the Python scripts can be easily adapted to target ARM SVE, AMD AVX2, Intel
AVX512 or even the RISC-V vector extension.

The remainder of the paper is structured as follows: In Sect. 2, we briefly review
the modern implementation of gemm for current processors, with SIMD vector units
and a multilayered memory hierarchy. In Sects. 3 and 4, we describe the two auto-
matic generators introduced in this paper, respectively, relying on vector intrinsics
and assembly. In Sect. 5, we evaluate the performance of the different solutions, and
finally, in Sect. 6, we close the paper with the conclusion.

2 Baseline implementation of GEMM

Consider the gemm C = C + AB , where A, B and C are matrices of dimensions m × k ,
k × n and m × n , respectively. Modern high-performance instances of this computa-
tional kernel, for conventional processor architectures with deep memory hierarchies,
follow GotoBLAS [6] to encode it as five nested loops comprising two packing routines
and a micro-kernel. Furthermore, for processors with SIMD vector units, the micro-
kernel consists of an additional loop that performs an outer product per iteration. Fig-
ure 1 (top) displays the baseline algorithm for gemm, identifying the six loops, the two
packings, and the micro-kernel. Portable realisations of gemm encode the five outer-
most loops and the two packing routines of the baseline algorithm in a high-level pro-
gramming language such as C. In contrast, for high performance, the micro-kernel is an
architecture-specific piece of code, usually encoded in assembly.

Cache hierarchy The three outermost loops of the baseline algorithm parti-
tion the matrix operands conformal to the processor cache hierarchy. This spe-
cific nesting of the loops, together with a proper packing of A, B (see the bottom
right plot in Fig. 1) plus a careful selection of the cache configuration parameters
m

c
, n

c
, k

c
 [11], favour that, during the execution of the micro-kernel, the buffers

A
c
,B

c
 , respectively, remain in the L2 and L3 cache memories.

 G. Alaejos et al.

1 3

Micro-kernel for SIMD processors The micro-kernel streams an m
r
× n

r
 micro-tile

C
r
 of C from the main memory into the processor registers; an m

r
× k

c
 micro-panel A

r

of A
c
 from the L2 cache; and a k

c
× n

r
 micro-panel B

r
 of B

c
 from the L1 cache; see the

bottom-left plot in Fig. 1. Packings also ensure that the contents of buffers A
r
,B

r
 are

accessed with a unit stride during the execution of the micro-kernel, enabling the use of
vector instructions to retrieve their contents. The arithmetic-to-memory access ratio (or
arithmetic intensity [12]) of the micro-kernel is given by

Choosing large values for m
r
≈ n

r
 thus maximises this ratio. For the same reason, it

is convenient to maximise the use of vector registers, without incurring into register
spilling [11], by ensuring that

where ��_�� denotes the number of floating point numbers (elements) that fit into a
single vector register and �� is the number of vector registers.

Parallelism The multi-threaded parallelization of gemm has been analysed for
conventional multicore processors, modern many-threaded architectures, and
asymmetric ARM-based processors in [7, 13, 14]. In those works, the paralleli-
zation of gemm is approached by extracting parallelism from any of the loops
L1, L3, L4, L5, or a combination of them. (Loops L2 and L6 are not conveni-
ent as they introduce race conditions.)

The parallelization technique is rather orthogonal to the micro-kernel: As the paral-
lelization targets one (or more) of the five outermost loops of gemm (L1–L5, except
L2), and the micro-kernel only comprises the sixth loop (L6), any of the micro-kernels
proposed in this work can be combined with the parallel approaches proposed in the lit-
erature. In consequence, and in order to keep the paper focused on the generation of the
micro-kernel, we will omit the analysis of parallelism in the following.

3 ARM NEON micro‑kernels for GEMM using vector intrinsics

In this section, we pursue the development of architecture-specific SIMD-based
micro-kernels for ARM processors using vector intrinsics. However, instead of
a manual development process, we demonstrate that it is feasible to generate the
micro-kernels automatically, significantly easing this task while delivering fair
performance.

For simplicity, hereafter we choose the 32-bit floating point (FP32) as the
basic data type for all the routines/codes presented in the section (in C language,

2m
r
n
r
k
c

(m
r
+ n

r
) k

c

=
2m

r
n
r

m
r
+ n

r

flops permemory access.

⌈
mr

vl fp

⌉
nr

︸ ︷︷ ︸
Micro-tile of C

+
⌈

mr

vl fp

⌉

︸ ︷︷ ︸
Column of Ar

+
⌈

nr

vl fp

⌉

︸ ︷︷ ︸
Row of Br

= mv (nr + 1) + nv ≤ vr,

1 3

Automatic generation of ARM NEON micro‑kernels for matrix…

float). Furthermore, we target ARM NEON v8.2, for which the vector length is
128 bits (i.e. 16 bytes) so that, for FP32, vl_fp32=4 (FP32 numbers per vector
register). The same ideas for automatic generation apply to other data types and
SIMD-enabled processor architectures.

3.1 A simple generic micro‑kernel

In [9], we took a significant step forward toward improving the portability and main-
tainability of the BLAS by introducing a “generic” (i.e. multiplatform) scheme that
relies on C macros to abstract the vector data type and the basic vector intrinsics for
load, store, and axpy (scalar � times x plus y) update. In addition, when supported by
the compiler, the generic micro-kernel can accommodate a micro-tile of any dimension
m

r
× n

r
 using arrays of vector registers.

Listing 1: Generic micro-kernel that operates with an mr ×nr micro-tile using vector
intrinsics.

 G. Alaejos et al.

1 3

Listing 2: C macros to customise the generic micro-kernel for ARM NEON (v8.2)
and FP32.

In order to present the solution in [9], assume for simplicity that m
r
, n

r
 are both

integer multiples of vl_fp32. We then need m
v
n
r
= (m

r
∕��_��32) n

r
 vector reg-

isters to store the micro-tile C
r
 ; m

v
 for a single column of A

r
 ; and n

v
= n

r
∕��_��32

for a single row of B
r
 . Listing 1 displays our original generic micro-kernel, where

we highlight a couple of details:

• Prior to the main loop, indexed by kr (line 25), we load the contents of the
m

r
× n

r
 micro-tile of C into the array of vector registers Cr via two nested loops

(lines 21–23). The transfer in the opposite direction, from the vector registers
back to the memory, is carried out after the main loop (lines 40–42).

• At each iteration of the main loop, a column of m
r
 elements of A

r
 and a row of n

r

elements of B
r
 are first loaded into the appropriate vector registers (lines 27–28

for ar and lines 29–30 for br, respectively). These elements then participate in
the update of the micro-tile stored in Cr (lines 33–36).

The generic micro-kernel in Listing 1 is customised for ARM NEON (v8.2) and
FP32 using the C macros displayed in Listing 2.

3.2 Evolving the generic micro‑kernel

For the gemm baseline algorithm, when m
c
, n

c
 are not integer multiples of m

r
, n

r
 ,

respectively, a significant benefit can be obtained by developing specialised micro-
kernels which employ SIMD instructions to update the “corner” cases. To illustrate
this, imagine we have adopted a 8 × 8 micro-kernel as the baseline. Unfortunately,
we will encounter certain cases where it is necessary to process a micro-tile of
smaller dimensions, for example 4 × 8 . In that particular case, it may be more effi-
cient to employ a 4 × 8 micro-kernel with vector instructions to update this smaller
micro-tile than to employ a scalar (i.e. non-SIMD) routine the baseline 8 × 8 micro-
kernel. Furthermore, the corner cases where the any or both micro-tile dimensions
are not integer multiples of the vector register length (e.g. 3 × 7) can be dealt via
a micro-kernel of dimensions immediately superior that are integer multiples (e.g.
m

r
× n

r
= 4 × 8), exploiting the fact that the buffers A

c
,B

c
 will accommodate this

excess in the dimensions and using scalar instructions to load and store only the nec-
essary elements of C

r
.

1 3

Automatic generation of ARM NEON micro‑kernels for matrix…

Listing 3: Generic micro-kernel that leverages C++17 templates to operate
with any mr × nr micro-tile using vector intrinsics.

To address these scenarios, the top part of Listing 3 presents an enhanced version of
the generic micro-kernel in Listing 1 that utilises C++ templates to facilitate the gen-
eration of a collection of micro-kernels for any combination of m

r
 and n

r
 . To achieve

this, a set of auxiliary template functions are responsible for unrolling the micro-kernel
loops using recursive integer template parameters and constant conditional (static-if)
expressions specific to the C++17 standard (see Listing 10 in the appendix for details).
During compilation, these functions are evaluated to generate the appropriate instruc-
tions within the loop body based on the values of m

r
 and n

r
 . For instance, in the main

function depicted at the bottom part of Listing 3, we instantiate gemm micro-kernels for
sizes 4 × 4 , 4 × 8 , and 8 × 4.

In conclusion, as in the case of the initial generic micro-kernel, this tem-
plate-based version produces customised code for any architecture. It also
accommodates the generation of code for a family of micro-kernels of different
sizes at compile time.

4 ARM NEON micro‑kernels for GEMM using assembly

In this section, we also address automatic generation of micro-kernels, but now
targeting architecture-specific SIMD-based routines for ARM NEON proces-
sors using assembly instead of vector intrinsics.

 G. Alaejos et al.

1 3

4.1 Simple micro‑kernels using ARM NEON assembly

In Listing 4, we show a simple micro-kernel of dimension m
r
× n

r
= 4 × 4 for

FP32 data and encoded using ARM NEON assembly. The routine receives the
same five parameters as its counterpart with vector intrinsics in Listing 1: The
dimension k

c
 ; address pointers to A

r
 , B

r
 and C; and the leading dimension ldC.

Note the connection between the two versions of the micro-kernel, emphasised
with the use of the same comments for those blocks of the two codes that per-
form analogous functions. The assembly routine proceeds as follows:

• From the address pointer C (≡ C00) to the appropriate entry of the matrix
C, the routine initialises the pointers C01, C02, C03 to the remaining three
columns of the 4 × 4 micro-tile taking into account the matrix column stride
(lines 9–11).

• Prior to the main loop, four columns of C, each consisting of four FP32
numbers, are loaded into four vector registers: Crq00–Crq03, using the
assembly SIMD instruction ldr, which has a analogous function to that of
the vector intrinsics vld1q_f32 (lines 13–16). After the loop, the contents
of these vector registers are stored back into the matrix C using the assem-
bly SIMD instruction str, with an analogous function to that of the vector
intrinsics vst1q_f32 (lines 33–36). Note that CrqXY and CrvXY refer to
the same register, but are referenced depending on whether the register is,
respectively, involved in a memory (load/store) instruction or an arithmetic
operation.

• At each iteration of the main loop, the routine loads one column of A
r
 into

a vector register arq0 (line 19), one row of B
r
 into a vector register brq0

(line 21), and updates Crv00–Crv03 via four AXPYs (lines 24–27) using
the assembly SIMD instruction fmla, which performs a vector fused mul-
tiply-add (functionally equivalent to the vector intrinsic vfmaq_laneq_
f32.

1 3

Automatic generation of ARM NEON micro‑kernels for matrix…

Listing 4: Micro-kernel that operates with a 4×4micro-tile using ARM NEON
assembly.

 G. Alaejos et al.

1 3

Listing 5: Macros forthe micro-kernel usingARM NEON assembly.
The 4 × 4 micro-kernel in Listing 4 exhibits a regular structure that is possible to gen-

eralise to many other dimensions. (This is demonstrated, for example, with the excerpt
of code in Listing 11 provided in the appendix, which corresponds to the main loop of a
12 × 8 assembly micro-kernel for ARM NEON and FP32 data.) Concretely, we identify
the following characteristics which are independent of the micro-kernel dimensions:

1. The contents of the micro-tile are retrieved from memory into vector registers
prior to the loop and written from there back to memory after it.

2. The micro-kernel employs m
v
× n

r
 vector registers to keep the contents of the

m
r
× n

r
 micro-tile.

3. At each iteration, the loop loads the contents of one column of A
r
 and one row of

B
r
 , and then uses them to update the micro-tile once.

This similarity is the basis that motivates the automatic generation of assembly
micro-kernels.

1 3

Automatic generation of ARM NEON micro‑kernels for matrix…

4.2 A python generator of micro‑kernels using ARM NEON assembly

A basic generator The regularity of the basic micro-kernels can be leveraged to
automatically elaborate their code using the Python routine in Listing 6. (Indeed, the
ARM NEON assembly codes for the 4 × 4 and 12 × 8 micro-kernels in Listings 4, 5,
and 11 were obtained using this generator.) Inspecting the instructions of the genera-
tor, we can easily identify the different parts that produce the code fragments for the
load/store of C, A

r
 , B

r
 , and the arithmetic. Note that this generator assumes that C is

stored in column-major order. In case C is stored in row-major order, we can still use
the same micro-kernel by swapping the roles of A

r
 and B

r
 and adjusting the leading

dimension of C accordingly.

Listing 6: Micro-kernel generator that operates with an mr × nr micro-tile using
ARM NEON assembly.

 G. Alaejos et al.

1 3

The simple generator in Listing 6 builds a micro-kernel that operates with an
m

r
× n

r
 micro-tile of C, assuming there are enough vector registers for this. This

can result in a compilation error if the number of utilised vector registers exceeds
the maximum. This would be the case, for example, of a 16 × 8 micro-kernel,
which would require 32 vector registers for the micro-tile of C, 4 for the column
of A

r
 , and 2 for the row of B

r
 , for a total of 38. In the actual generator, this type

of situations are avoided with a simple logic test.
Automatic generation of advanced micro-kernels The basic generator has been

extended to produce more sophisticated micro-kernels enhanced with advanced
techniques such as loop unrolling and software pipelining [15]. For example, the
former can be accommodated in the 4 × 4 micro-kernel using the macro in Fig. 7,
which comprises the loads of A

r
,B

r
 and the arithmetic in Listing 4 (lines 19–27).

Listing 7: Macros for the 4 × 4 micro-kernel.
We can then generate the main loop of the micro-kernel with an unrolling factor

of 4 by replicating the loop body that number of times, via the macro, as shown in
Listing 8. For simplicity, we do not show here how to extend the code for the cases
where k

c
 is not an integer multiple of 4.

Listing 8: Main loop of the 4 × 4 micro-kernel unrolled with a factor 4.
A complementary technique that can be integrated in the automatic generator is

Software pipelining is a complementary technique which, during an iteration, pre-
loads the data that will be utilised in the “next” iteration of the main loop, separating
these memory accesses from the arithmetic operations where the data is utilised.
The excerpt of code in Listing 9 combines software pipelining and loop unrolling
with a factor of 4. Again, for simplicity, we do not discuss the code required to cover
the final iterations or the cases where k

c
 is not an integer multiple of 4.

1 3

Automatic generation of ARM NEON micro‑kernels for matrix…

Listing 9: Main loop of the 4 × 4 micro-kernel unrolled with a factor 4 and with
software pipelining.

Dealing with “corner” cases Our Python generator for assembly micro-kernels
is not oblivious to corner cases that were already discussed in the case of vector
intrinsics. Indeed, the Python generator takes this into account and, when asked to
produce an m

r
× n

r
 micro-kernel, it actually builds the requested one plus a full col-

lection of smaller micro-kernels to tackle other micro-tile dimensions. In addition,
there is a complete logic that is integrated into the gemm routine and invokes the
micro-kernel that better matches the specific dimensions of each corner case.

5 Experimental evaluation

In this section, we assess the performance of the gemm realisations embedding the
automatically generated micro-kernels. For reference, we include in the comparison
an evaluation of the gemm in optimised instances of BLIS, OpenBLAS and ArmPL
for the target platforms.

5.1 Problem cases

Much of the interest of our work lies in the fact that the matrix multiplication kernel
is the backbone of the convolution operation, once the im2col (or im2row) trans-
form casts this operator into a gemm. The convolution is found in well-known neu-
ral network layers for signal processing (including computer vision) and, moreover,
bears most of the computational weight of model execution. For example, in [16]
we report that the convolution layers in the ResNet-50 v1.5 model combined with
ImageNet can consume between 45% and 87% of the inference time, depending on
the optimisations that are applied. Thus, given the interest in deploying deep learn-
ing technologies, the dataset for the experimentation here includes matrix multipli-
cations with their dimensions determined by the application of im2col to the con-
volution layers in the neural networks ResNet-50 v1.5 [17] and GoogleLeNet [18],
combined with the ImageNet dataset. In the experiments, the batch size is set to 1
sample, reflecting a latency-oriented scenario [16, 19].

 G. Alaejos et al.

1 3

5.2 Hardware setup

In the evaluation, we target the following three ARM-based development platforms:

• An NVIDIA Cortex-A78AE processor, embedded in the NVIDIA Jetson AGX
Orin board, with a 64-KB L1 data cache, a 256-KB L2 cache, a 2-MB L3 cache,
and a 32-GB LPDDR5 memory.

• An NVIDIA Carmel processor in the NVIDIA Jetson AGX Xavier platform,
with a 64-KB L1 data cache, a 2-MB L2 cache, a 4-MB L3 cache, and a 16-GB
LPDDR4x memory.

• An NVIDIA Cortex A57 processor, in the NVIDIA Jetson Nano board, with a
32-KB L1 data cache, a 2-MB L2 cache, and a 4-GB LPDDR4 memory.

These target systems, listed from highest to lowest computational power, are repre-
sentative of the type of equipment that can be used to run machine learning infer-
ence workloads.

In order to reduce variability in the experiments, the frequency of the proces-
sor cores is fixed in all cases. A single core is employed in the three architectures,
with a thread bound to it. All experiments are carried out in IEEE FP32 arithmetic,
and they are repeated a large number of times, reporting the average results. Per-
formance is measured in terms of billions of floating point operations per second
(GFLOPS) or, in the final part of the section, in execution time (s).

5.3 Software setup

We focus on the performance gains that can be obtained when leveraging specific
micro-kernels for the convolution operators in the ResNet and GoogleLeNet neural
networks. The goals are to show the performance obtained in each layer with our
gemm using the best micro-kernel for that layer and to demonstrate that, by choos-
ing the appropriate computational kernel, i.e. the gemm with the appropriate micro-
kernel dimensions and optimisation techniques, it is possible to obtain performance
similar, or even superior in many cases, to that offered by the implementation of
gemm in optimised libraries. Concretely, for reference, the comparison includes data
for the gemm realisations contained in BLIS (version v0.8.1) [13], OpenBLAS (ver-
sion v0.3.19) [8], and ArmPL (version v21.1) [20].

5.4 Performance per layer

Figures 2, 2 and 4 report the performance of the five gemm implementations on the
three platforms, for the individual convolutional layers present in the two convo-
lutional neural networks (CNNs). For the two most powerful platforms, NVIDIA
Jetson AGX Orin and Xavier, the results are similar, with our automatically gener-
ated micro-kernels being, in a large majority of layers, among the top-3 best options;
and in many cases, offering the best choice. The results are quite different for the

1 3

Automatic generation of ARM NEON micro‑kernels for matrix…

NVIDIA Jetson Nano, where BLIS and OpenBLAS present superior performance.
In consequence, we comment these two cases separately.

NVIDIA Jetson AGX Xavier/Orin As the number of results is large, we will focus
our comments on one scenario that we believe is representative of the remaining

Fig. 2 Performance in GFLOPS of each representative convolutional layer of neural networks ResNet-50
v1.5 (top) and GoogleLeNet (middle and bottom) on Nvidia Jetson AGX Orin

 G. Alaejos et al.

1 3

Fig. 3 Performance in GFLOPS of each representative convolutional layer of neural networks ResNet-50
v1.5 (top) and GoogleLeNet (middle and bottom) on Nvidia Jetson AGX Xavier

1 3

Automatic generation of ARM NEON micro‑kernels for matrix…

Fig. 4 Performance in GFLOPS of each representative convolutional layer of neural networks ResNet-50
v1.5 (top) and GoogleLeNet (middle and bottom) on Nvidia Jetson AGX Nano

 G. Alaejos et al.

1 3

cases on these two platforms and both CNN models. In particular, we describe in
detail the outcome of the execution of the convolutional layers in ResNet-50 v1.5 on
the NVIDIA Jetson AGX Xavier; see the top plot in Fig. 3. The results there show
that the pair of solutions that integrate our automatically generated micro-kernels
(labeled as Autogen-ASM and Autogen-Templates) outperform the library-
based implementations (labeled as BLIS, OpenBLAS, and ARMPL) for layers #2 to
#5, #7, #10 to #12, #15, #16 (10 cases out of 20, that is, 50%). In contrast, ARMPL
is the best option for layers #13, #17, #18 (3 cases out of 20, 15%). For layers #1,
#6, #8, #9, #14, #20 (6 cases, 30%), the best performance is attained by Autogen-
ASM/Templates and ARMPL, with little differences between them. Finally, in one
layer, #19, Autogen-ASM/Templates and BLIS offer similar performance,
superior to that of the other alternatives. In summary, our automatically generated
codes deliver the highest performance in all except three layers, where they are out-
performed by ARMPL.

In order to characterise these results, we first need to link them with the dimen-
sions of the gemm associated with each layer; see Table 1. Depending on the value of
m, a classification can be established into four groups of problems: large, medium,
small, and tiny. This clustering offers a characterisation of performance for the two

Table 1 Dimension of the
gemm problems associated with
the convolutional layers in
ResNet-50 v1.5+ImageNet for
batch size b = 1

The horizontal lines divide the layers into four groups depending
on the dimension m: large, medium, small, and tiny. The rightmost
column reports the best gemm implementation(s), for that particular
layer of the CNN model, on the NVIDIA Jetson AGX Xavier

Layer n m k Best option

1 64 12,544 147 Autogen/ARMPL

2 64 3136 64 Autogen

3 64 3136 576 Autogen

4 256 3136 64 Autogen

5 64 3136 256 Autogen

6 128 3136 256 Autogen/ARMPL

7 128 784 1152 Autogen

8 512 784 128 Autogen/ARMPL

9 512 784 256 Autogen/ARMPL

10 128 784 512 Autogen

11 256 784 512 Autogen

12 256 196 2304 Autogen

13 1024 196 256 ARMPL

14 1024 196 512 Autogen/ARMPL

15 256 196 1024 Autogen

16 512 196 1024 Autogen

17 512 49 4608 ARMPL

18 2048 49 512 ARMPL

19 2048 49 1024 Autogen/BLIS

20 512 49 2048 Autogen/ARMPL

1 3

Automatic generation of ARM NEON micro‑kernels for matrix…

groups in the middle. Concretely, for medium m and k ≥ 512 , Autogen-ASM/
Templates offers the best performance while, for the same group and smaller k,
the performance of that option is similar to that of ARMPL. Similarly, for small m
and large k(≥1,024) Autogen-ASM/Templates is again the best but its perfor-
mance tends to decay with respect to ARMPL as k decreases. In general, for large m
the best automatically generated micro-kernel is m

r
× n

r
= 20 × 4 , moving towards

other variants with smaller m
r
 (16 × 4 , 12 × 8 , 8 × 12) as m becomes also smaller.

Explaining the different behaviour of the gemm instances requires a careful case-
by-case analysis as it is the consequence of a combination of factors related to the
micro-kernel, that we revise in the following list:

• Micro-kernel. The dimensions of the micro-kernel and the ratio m
r
∕n

r
 deter-

mine its arithmetic intensity [12] and, therefore, its performance under ideal
conditions. For example, in a separate experiment, we could determine that,
on the NVIDIA Jetson AGX Xavier, the larger micro-kernels automatically
generated with our tool (m

r
× n

r
 = 8 ×12, 12× 8, 4 ×16, 4 ×20, 16× 4, and 20× 4,

are compute-bound while the smaller ones are bounded by the L2 cache band-
width.

• Dimensions n
r
 and k. According to the GotoBLAS scheme, an k

c
× n

r
 micro-

panel of B should populate a significant fraction of the L1 cache, proportional to
the ratio n

r
∕(m

r
+ n

r
) [11]. Now, looking to the dimension k of the problems in

Table 1, we observe that k
c
≤ k and, therefore, a large value n

r
 , which depends

on that dimension of the micro-kernel, can yield a more efficient use of L1 cache
even when k

c
= k is small.

• Packing routines. Fourth, the packing routines help to reduce cache eviction
but, at the same time, introduce a certain overhead, which can be significant in
case there is not enough reuse of the buffers A

c
,B

c
 . As the matrices A/B can be

stored in either row- or column-major order, and they have to be packed into
narrow micro-panels, respectively, of m

r
 rows/n

r
 columns, the dimension of the

micro-kernel interacts with the storage format to impact the cost of the packing
procedures.

• Edge cases. The cache configuration parameters m
c
, n

c
, k

c
 , and the micro-kernel

dimensions m
r
, n

r
 decompose the gemm problem into a collection of packing

operations and micro-kernels of different sizes. When m is not an integer multi-
ple of m

c
 and/or the latter is not an integer multiple of m

r
 , these edge cases could

benefit from specialised routines, which are not always efficiently implemented.
The same applies to the trio n, n

c
, n

r
 ; and the pair k, k

c
.

Note that in this list we have omitted the cache configuration parameters. These
are set differently for each library/platform and obviously play a role on the perfor-
mance as they have a direct impact on the utilisation of the cache hierarchy. In sum-
mary, explaining how all these factors interact to determine the overall performance
of a specific gemm implementation, for a particular problem dimension, is very inter-
esting, but also quite complex, especially for sophisticated libraries implemented by
others.

 G. Alaejos et al.

1 3

NVIDIA Jetson Nano. The performance of the five routines on this system show a
wider variability of the best option. Our gemm routine does not stand out as optimal
yet, in general, it does not lose track with respect to the best option. Concretely, we
find layers for which some routines, like ARMPL, perform well for many layers (#7,
#20 of ResNet-50 v1.5) but quite poorly for others (layers #12, #16). OpenBLAS is
better tuned for the core in Nano than for that in Xavier. The regularity in perfor-
mance of Autogen-ASM is one of the most remarkable aspects of our proposal
compared with the use of optimised libraries.

The superior performance of BLIS and OpenBLAS for the NVIDIA Jetson Nano
is mainly due to a couple of factors: 1) BLIS and OpenBLAS contain micro-kernels
with extensive use of hardware prefetching; and 2) BLIS and OpenBLAS provide
vectorised version of the packing routines. From our observations, while these two
factors have no major effect on the two other platforms, on a resource-constrained
system such as the NVIDIA Jetson Nano, they explain the superior performance of
the instances of gemm in these libraries.

5.5 Aggregated time

The GFLOPS rate provides a normalised metric to evaluate the performance of the
different implementations of gemm, but it does not reveal the contribution of the lay-
ers to the total execution time and therefore the relevance of the differences. The
final experiment, with results shown in Figs. 5, 6, and 7, shows the aggregated time
on the two CNN models and the three platforms. To reflect a realistic execution, we
report the execution time for all the convolution layers in the CNN models, not only
those with different dimensions, as was the case of the previous experiments in this
section.

The results show that, when comparing the option with automatically generated
micro-kernels to the best library-based solution, the overall gain for the NVIDIA
Jetson AGX Orin is small, between 2% and 3% depending on the CNN model; it
is larger for the NVIDIA Jetson AGX Xavier, between 8% and 12%. Finally, in the
NVIDIA Jetson Nano, the loss is between 6% and 10%.

6 Conclusion

We have proposed two approaches to automatically generate gemm micro-kernels
that mimic the encoding effort done by an expert, relieving this programmer from
a significant part of the effort required in (the initial steps of) this error-prone task.
Concretely, our generators produce either a C code with vector intrinsics or directly
an assembly routine, for any data type and micro-kernel dimensions. Furthermore,
they integrate high performance techniques such as loop unrolling and software
pipelining.

Our experimental study shows the benefits of the automatic solution in com-
parison with optimised implementations of gemm in state-of-the-art libraries for
three ARM-based processors and a representative collection of problem instances.

1 3

Automatic generation of ARM NEON micro‑kernels for matrix…

Fig. 5 Aggregated time of the convolutional layers of ResNet-50 v1.5 (top) and GoogleLeNet (bottom)
on the NVIDIA Jetson AGX Orin

 G. Alaejos et al.

1 3

Fig. 6 Aggregated time of the convolutional layers of ResNet-50 v1.5 (top) and GoogleLeNet (bottom)
on the NVIDIA Jetson AGX Xavier

1 3

Automatic generation of ARM NEON micro‑kernels for matrix…

Fig. 7 Aggregated time of the convolutional layers of ResNet-50 v1.5 (top) and GoogleLeNet (bottom)
on the NVIDIA Jetson Nano

 G. Alaejos et al.

1 3

The possibility of dynamically generating a family of micro-kernels, choosing the
most efficient one as a function of the problem dimension, is demonstrated to be
key to outperforming the static implementation of gemm in this libraries, which only
include a single micro-kernel per architecture.

A Additional code snippets

Listing 10: Auxiliary generic micro-kernel function templates to operate with any
mr × nr micro-tile using vector intrinsics.

1 3

Automatic generation of ARM NEON micro‑kernels for matrix…

Listing 11: Main loop of the micro-kernel that operates with a 12×8 micro-tile
using ARM NEON assembly. The macros introduced to ease the presentation are
omitted for brevity.

Acknowledgements This work received funding from projects PID2020-113656RB and
PID2021-12657NB-I00 of MCIN/AEI/ 10.13039/501100011033; PROMETEO 2023-CIPROM/2022/20
and the European High-Performance Computing Joint Undertaking (JU) under grant agreement No
955558 (eFlows4HPC project). The JU receives support from the European Union’s Horizon 2020
research and innovation programme, and Spain, Germany, France, Italy, Poland, Switzerland, Norway. A.
Castelló is a FJC2019-039222-I fellow supported by MCIN/AEI/10.13039/501100011033. M. F. Dolz is
supported by the Plan Gen–T grant CIDEXG/2022/013 of the Generalitat Valenciana. H. Martínez is a
POSTDOC_21_00025 postdoctoral fellow supported by Junta de Andalucía.

Author contributions G.A executed the experiments, H.M. implemented the assembly generation, and
A.C implemented the generic generator script and wrote different sections of the paper. H.M, P.A. and
A.C reviewed G.A work and methodology. M.D. implemented the C++ template approach. F.I. and E.Q
conducted the research and wrote several paper sections. All authors reviewed the manuscript.

 G. Alaejos et al.

1 3

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
European Commission, European Union, 95555. Junta de Andalucía, POSTDOC_21_00025 Agencia
Estatal de Investigación, FJC2019-039222, PID2020-113656R, PID2021-12657NB-I00. Generalitat
Valenciana, CIDEXG/2022/013, PROMETEO 2023-CIPROM/2022/20

Data availability Not applicable.

Declarations

Conflict of interest The authors declare no competing interests.

Ethical approval Not applicable

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Dongarra JJ, Du Croz J, Hammarling S, Duff I (1990) A set of level 3 basic linear algebra sub-
programs. ACM Trans Math Softw 16(1):1–17

 2. Kågström B, Ling P, van Loan C (1998) GEMM-based level 3 BLAS: High-performance
model implementations and performance evaluation benchmark. ACM Trans Math Softw
24(3):268–302

 3. Goto K, van de Geijn R (2008) High-performance implementation of the level-3 BLAS. ACM
Trans Math Soft 35(1):1–14

 4. Sze V, Chen Y-H, Yang T-J, Emer JS (2017) Efficient processing of deep neural networks: a tuto-
rial and survey. Proc IEEE 105(12):2295–2329

 5. Ben-Nun T, Hoefler T (2019) Demystifying parallel and distributed deep learning: an in-depth
concurrency analysis. ACM Comput Surv 52(4):65:1-65:43

 6. Goto K, van de Geijn RA (2008) Anatomy of a high-performance matrix multiplication. ACM
Trans Math Softw 34(3):12:1-12:25

 7. Van Zee FG, van de Geijn RA (2015) BLIS: a framework for rapidly instantiating BLAS func-
tionality. ACM Trans Math Softw 41(3):14:1-14:33

 8. OpenBLAS, http:// xianyi. github. com/ OpenB LAS/ (2012)
 9. Alaejos G, Castelló A, Martínez H, Alonso-Jordá P, Igual FD, Quintana-Ortí ES (2023)

Micro-kernels for portable and efficient matrix multiplication in deep learning. J Supercomput
79:8124–8147

 10. Martínez H, Catalán S, Igual FD, Herrero JR, Rodríguez-Sánchez R, Quintana-Ortí ES (2023)
Co-design of the dense linear algebra software stack for multicore processors, arXiv: 2304. 14480

 11. Low TM, Igual FD, Smith TM, Quintana-Ortí ES (2016) Analytical modeling is enough for
high-performance BLIS. ACM Trans Math Softw 43(2):12:1-12:18

 12. Williams S, Waterman A, Patterson D (2009) Roofline: an insightful visual performance model
for multicore architectures. Commun ACM 52(4):65–76. https:// doi. org/ 10. 1145/ 14987 65. 14987
85

 13. Zee FGV, Smith TM, Marker B, Low TM, Geijn RAVD, Igual FD, Smelyanskiy M, Zhang X,
Kistler M, Austel V, Gunnels JA, Killough L (2016) The BLIS framework: Experiments in port-
ability. ACM Trans Math Softw 42(2). https:// doi. org/ 10. 1145/ 27555 61

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://xianyi.github.com/OpenBLAS/
http://arxiv.org/abs/2304.14480
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/2755561

1 3

Automatic generation of ARM NEON micro‑kernels for matrix…

 14. Catalán S, Igual FD, Mayo R, Rodríguez-Sánchez R, Quintana-Ortí ES (2016) Architecture-
aware configuration and scheduling of matrix multiplication on asymmetric multicore proces-
sors. Clust Comput 19(3):1037–1051

 15. Dowd K, Severance CR (1998) High performance computing, 2nd edn. O’Reilly
 16. Barrachina S, Dolz MF, San Juan P, Quintana-Ortí ES (2022) Efficient and portable GEMM-

based convolution operators for deep neural network training on multicore processors. J Parallel
Distrib Comput 167(C):240–254

 17. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 770–778

 18. Szegedy C, et al (2014) Going deeper with convolutions. CoRR [Online]. Available: arXiv: 1409.
4842

 19. Chellapilla K, Puri S, Simard P (2006) High performance convolutional neural networks for doc-
ument processing. In: International Workshop on Frontiers in Handwriting Recognition

 20. ArmPL: Arm Performance Libraries, https:// devel oper. arm. com/ downl oads/-/ arm- perfo rmance-
libra ries. Accessed July 2023

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Guillermo Alaejos1 · Héctor Martínez2 · Adrián Castelló1 · Manuel F. Dolz3 ·
Francisco D. Igual4 · Pedro Alonso‑Jordá1 · Enrique S. Quintana‑Ortí1

 * Adrián Castelló
 adcastel@disca.upv.es

 Guillermo Alaejos
 galalop@upv.es

 Héctor Martínez
 el2mapeh@uco.es

 Manuel F. Dolz
 dolzm@uji.es

 Francisco D. Igual
 figual@ucm.es

 Pedro Alonso-Jordá
 palonso@upv.es

 Enrique S. Quintana-Ortí
 quintana@disca.upv.es

1 Universitat Politècnica de València, València, Spain
2 Universidad de Córdoba, Córdoba, Spain
3 Universitat Jaume I de Castelló, Castelló de la Plana, Spain
4 Universidad Complutense de Madrid, Madrid, Spain

http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://developer.arm.com/downloads/-/arm-performance-libraries
https://developer.arm.com/downloads/-/arm-performance-libraries

	Automatic generation of ARM NEON micro-kernels for matrix multiplication
	Abstract
	1 Introduction
	2 Baseline implementation of GEMM
	3 ARM NEON micro-kernels for GEMM using vector intrinsics
	3.1 A simple generic micro-kernel
	3.2 Evolving the generic micro-kernel

	4 ARM NEON micro-kernels for GEMM using assembly
	4.1 Simple micro-kernels using ARM NEON assembly
	4.2 A python generator of micro-kernels using ARM NEON assembly

	5 Experimental evaluation
	5.1 Problem cases
	5.2 Hardware setup
	5.3 Software setup
	5.4 Performance per layer
	5.5 Aggregated time

	6 Conclusion
	A Additional code snippets
	Acknowledgements
	References

