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Abstract
General matrix multiplication (gemm) is a fundamental kernel in scientific computing 
and current frameworks for deep learning. Modern realisations of gemm are mostly 
written in C, on top of a small, highly tuned micro-kernel that is usually encoded in 
assembly. The high performance realisation of gemm in linear algebra libraries in gen-
eral include a single micro-kernel per architecture, usually implemented by an expert. 
In this paper, we explore a couple of paths to automatically generate gemm micro-ker-
nels, either using C++ templates with vector intrinsics or high-level Python scripts that 
directly produce assembly code. Both solutions can integrate high performance soft-
ware techniques, such as loop unrolling and software pipelining, accommodate any data 
type, and easily generate micro-kernels of any requested dimension. The performance 
of this solution is tested on three ARM-based cores and compared with state-of-the-art 
libraries for these processors: BLIS, OpenBLAS and ArmPL. The experimental results 
show that the auto-generation approach is highly competitive, mainly due to the possi-
bility of adapting the micro-kernel to the problem dimensions.

Keywords Matrix multiplication · ARM NEON · SIMD arithmetic units · High 
performance

1 Introduction

The general matrix multiplication (gemm) is a key computational kernel on top of 
which a significant part of the basic linear algebra subprograms (BLAS) [1] is built 
[2, 3]. In addition, gemm plays a fundamental role for convolutional (deep) neural 
networks that are prominent in computer vision tasks, as well as for transformers 
that are currently used in natural language processing [4, 5]. For these reasons, it 
is natural that considerable effort has been spent over the past decades to optimise 
gemm in basically any computer architecture.
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The performance of gemm is strongly determined by the efficiency of a small 
architecture-specific component, known as the micro-kernel [6–8]. Most modern 
instances of BLAS contain a single micro-kernel per processor architecture, usually 
encoded in assembly by a computer architecture expert. However, the benefits of 
choosing among multiple micro-kernels have been illustrated for deep learning in 
[9] and for dense linear algebra, as well as scientific computing in general in [10].

This paper contributes towards the development of optimised versions of gemm 
by presenting two methods to automatically generate competitive micro-kernels 
for ARM NEON (v8.2) processors equipped with single-instruction multiple-data 
(SIMD) vector units. This is especially interesting for processors from the same 
family that do not yet have a tuned instance of gemm. In more detail, our work makes 
the following specific contributions:

• Initially, we generalise the initial solution proposed in [9] to leverage C++ tem-
plates in order to produce micro-kernels, based on vector intrinsics, at compi-
lation time. This allows to deal more efficiently with “corner” cases that arise 
when the architecture cache configuration parameters are not integer multiples 
of the micro-kernel dimensions. In addition, the adoption of templates eases the 
generation of code for distinct data types using a single generator.

• Next, we take one step forward to directly produce assembly micro-kernels, 
using Python scripts. Compared with the previous solution, this method presents 
the advantage of enforcing a given order of the micro-kernel instructions that the 
compiler will not change.

• For three distinct ARM-based architectures and a collection of representative prob-
lem instances arising from practical deep learning applications, we demonstrate that 

Fig. 1  Baseline algorithm for gemm (top), data transfers across the memory hierarchy (bottom-left), and 
packing (bottom-right)
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a gemm routine that integrates the automatically generated micro-kernels provides 
competitive performance, on par or even outperforming the realisation of gemm in 
highly tuned linear algebra libraries such as BLIS, OpenBLAS and ArmPL

At this point, it is worth noting that our work targets ARM NEON processors, yet 
the Python scripts can be easily adapted to target ARM SVE, AMD AVX2, Intel 
AVX512 or even the RISC-V vector extension.

The remainder of the paper is structured as follows: In Sect. 2, we briefly review 
the modern implementation of gemm for current processors, with SIMD vector units 
and a multilayered memory hierarchy. In Sects. 3 and 4, we describe the two auto-
matic generators introduced in this paper, respectively, relying on vector intrinsics 
and assembly. In Sect. 5, we evaluate the performance of the different solutions, and 
finally, in Sect. 6, we close the paper with the conclusion.

2  Baseline implementation of GEMM

Consider the gemm C = C + AB , where A, B and C are matrices of dimensions m × k , 
k × n and m × n , respectively. Modern high-performance instances of this computa-
tional kernel, for conventional processor architectures with deep memory hierarchies, 
follow GotoBLAS [6] to encode it as five nested loops comprising two packing routines 
and a micro-kernel. Furthermore, for processors with SIMD vector units, the micro-
kernel consists of an additional loop that performs an outer product per iteration. Fig-
ure 1 (top) displays the baseline algorithm for gemm, identifying the six loops, the two 
packings, and the micro-kernel. Portable realisations of gemm encode the five outer-
most loops and the two packing routines of the baseline algorithm in a high-level pro-
gramming language such as C. In contrast, for high performance, the micro-kernel is an 
architecture-specific piece of code, usually encoded in assembly.

Cache hierarchy The three outermost loops of the baseline algorithm parti-
tion the matrix operands conformal to the processor cache hierarchy. This spe-
cific nesting of the loops, together with a proper packing of A, B (see the bottom 
right plot in Fig. 1) plus a careful selection of the cache configuration parameters 
m

c
, n

c
, k

c
 [11], favour that, during the execution of the micro-kernel, the buffers 

A
c
,B

c
 ,  respectively, remain in the L2 and L3 cache memories.
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Micro-kernel for SIMD processors The micro-kernel streams an m
r
× n

r
 micro-tile 

C
r
 of C from the main memory into the processor registers; an m

r
× k

c
 micro-panel A

r
 

of A
c
 from the L2 cache; and a k

c
× n

r
 micro-panel B

r
 of B

c
 from the L1 cache; see the 

bottom-left plot in Fig. 1. Packings also ensure that the contents of buffers A
r
,B

r
 are 

accessed with a unit stride during the execution of the micro-kernel, enabling the use of 
vector instructions to retrieve their contents. The arithmetic-to-memory access ratio (or 
arithmetic intensity [12]) of the micro-kernel is given by

Choosing large values for m
r
≈ n

r
 thus maximises this ratio. For the same reason, it 

is convenient to maximise the use of vector registers, without incurring into register 
spilling [11], by ensuring that

where ��_�� denotes the number of floating point numbers (elements) that fit into a 
single vector register and �� is the number of vector registers.

Parallelism The multi-threaded parallelization of gemm has been analysed for 
conventional multicore processors, modern many-threaded architectures, and 
asymmetric ARM-based processors in [7, 13, 14]. In those works, the paralleli-
zation of gemm is approached by extracting parallelism from any of the loops 
L1, L3, L4, L5, or a combination of them. (Loops L2 and L6 are not conveni-
ent as they introduce race conditions.)

The parallelization technique is rather orthogonal to the micro-kernel: As the paral-
lelization targets one (or more) of the five outermost loops of gemm (L1–L5, except 
L2), and the micro-kernel only comprises the sixth loop (L6), any of the micro-kernels 
proposed in this work can be combined with the parallel approaches proposed in the lit-
erature. In consequence, and in order to keep the paper focused on the generation of the 
micro-kernel, we will omit the analysis of parallelism in the following.

3  ARM NEON micro‑kernels for GEMM using vector intrinsics

In this section, we pursue the development of architecture-specific SIMD-based 
micro-kernels for ARM processors using vector intrinsics. However, instead of 
a manual development process, we demonstrate that it is feasible to generate the 
micro-kernels automatically, significantly easing this task while delivering fair 
performance.

For simplicity, hereafter we choose the 32-bit floating point (FP32) as the 
basic data type for all the routines/codes presented in the section (in C language, 

2m
r
n
r
k
c

(m
r
+ n

r
) k

c

=
2m

r
n
r

m
r
+ n

r

flops permemory access.
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float). Furthermore, we target ARM NEON v8.2, for which the vector length is 
128 bits (i.e. 16 bytes) so that, for FP32, vl_fp32=4 (FP32 numbers per vector 
register). The same ideas for automatic generation apply to other data types and 
SIMD-enabled processor architectures.

3.1  A simple generic micro‑kernel

In [9], we took a significant step forward toward improving the portability and main-
tainability of the BLAS by introducing a “generic” (i.e. multiplatform) scheme that 
relies on C macros to abstract the vector data type and the basic vector intrinsics for 
load, store, and axpy (scalar � times x plus y) update. In addition, when supported by 
the compiler, the generic micro-kernel can accommodate a micro-tile of any dimension 
m

r
× n

r
 using arrays of vector registers.

Listing 1: Generic micro-kernel that operates with an mr ×nr micro-tile using vector 
intrinsics.
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Listing 2: C macros to customise the generic micro-kernel for ARM NEON (v8.2) 
and FP32.

In order to present the solution in [9], assume for simplicity that m
r
, n

r
 are both 

integer multiples of vl_fp32. We then need m
v
n
r
= (m

r
∕��_��32) n

r
 vector reg-

isters to store the micro-tile C
r
 ; m

v
 for a single column of A

r
 ; and n

v
= n

r
∕��_��32 

for a single row of B
r
 . Listing 1 displays our original generic micro-kernel, where 

we highlight a couple of details:

• Prior to the main loop, indexed by kr (line 25), we load the contents of the 
m

r
× n

r
 micro-tile of C into the array of vector registers Cr via two nested loops 

(lines 21–23). The transfer in the opposite direction, from the vector registers 
back to the memory, is carried out after the main loop (lines 40–42).

• At each iteration of the main loop, a column of m
r
 elements of A

r
 and a row of n

r
 

elements of B
r
 are first loaded into the appropriate vector registers (lines 27–28 

for ar and lines 29–30 for br, respectively). These elements then participate in 
the update of the micro-tile stored in Cr (lines 33–36).

The generic micro-kernel in Listing 1 is customised for ARM NEON (v8.2) and 
FP32 using the C macros displayed in Listing 2.

3.2  Evolving the generic micro‑kernel

For the gemm baseline algorithm, when m
c
, n

c
 are not integer multiples of m

r
, n

r
 , 

respectively, a significant benefit can be obtained by developing specialised micro-
kernels which employ SIMD instructions to update the “corner” cases. To illustrate 
this, imagine we have adopted a 8 × 8 micro-kernel as the baseline. Unfortunately, 
we will encounter certain cases where it is necessary to process a micro-tile of 
smaller dimensions, for example 4 × 8 . In that particular case, it may be more effi-
cient to employ a 4 × 8 micro-kernel with vector instructions to update this smaller 
micro-tile than to employ a scalar (i.e. non-SIMD) routine the baseline 8 × 8 micro-
kernel. Furthermore, the corner cases where the any or both micro-tile dimensions 
are not integer multiples of the vector register length (e.g. 3 × 7 ) can be dealt via 
a micro-kernel of dimensions immediately superior that are integer multiples (e.g. 
m

r
× n

r
= 4 × 8 ), exploiting the fact that the buffers A

c
,B

c
 will accommodate this 

excess in the dimensions and using scalar instructions to load and store only the nec-
essary elements of C

r
.
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Listing 3: Generic micro-kernel that leverages C++17 templates to operate 
with any mr × nr micro-tile using vector intrinsics.

To address these scenarios, the top part of Listing 3 presents an enhanced version of 
the generic micro-kernel in Listing 1 that utilises C++ templates to facilitate the gen-
eration of a collection of micro-kernels for any combination of m

r
 and n

r
 . To achieve 

this, a set of auxiliary template functions are responsible for unrolling the micro-kernel 
loops using recursive integer template parameters and constant conditional (static-if) 
expressions specific to the C++17 standard (see Listing 10 in the appendix for details). 
During compilation, these functions are evaluated to generate the appropriate instruc-
tions within the loop body based on the values of m

r
 and n

r
 . For instance, in the main 

function depicted at the bottom part of Listing 3, we instantiate gemm micro-kernels for 
sizes 4 × 4 , 4 × 8 , and 8 × 4.

In conclusion, as in the case of the initial generic micro-kernel, this tem-
plate-based version produces customised code for any architecture. It also 
accommodates the generation of code for a family of micro-kernels of different 
sizes at compile time.

4  ARM NEON micro‑kernels for GEMM using assembly

In this section, we also address automatic generation of micro-kernels, but now 
targeting architecture-specific SIMD-based routines for ARM NEON proces-
sors using assembly instead of vector intrinsics.
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4.1  Simple micro‑kernels using ARM NEON assembly

In Listing 4, we show a simple micro-kernel of dimension m
r
× n

r
= 4 × 4 for 

FP32 data and encoded using ARM NEON assembly. The routine receives the 
same five parameters as its counterpart with vector intrinsics in Listing 1: The 
dimension k

c
 ; address pointers to A

r
 , B

r
 and C; and the leading dimension ldC. 

Note the connection between the two versions of the micro-kernel, emphasised 
with the use of the same comments for those blocks of the two codes that per-
form analogous functions. The assembly routine proceeds as follows:

• From the address pointer C ( ≡ C00) to the appropriate entry of the matrix 
C, the routine initialises the pointers C01, C02, C03 to the remaining three 
columns of the 4 × 4 micro-tile taking into account the matrix column stride 
(lines 9–11).

• Prior to the main loop, four columns of C, each consisting of four FP32 
numbers, are loaded into four vector registers: Crq00–Crq03, using the 
assembly SIMD instruction ldr, which has a analogous function to that of 
the vector intrinsics vld1q_f32 (lines 13–16). After the loop, the contents 
of these vector registers are stored back into the matrix C using the assem-
bly SIMD instruction str, with an analogous function to that of the vector 
intrinsics vst1q_f32 (lines 33–36). Note that CrqXY and CrvXY refer to 
the same register, but are referenced depending on whether the register is, 
respectively, involved in a memory (load/store) instruction or an arithmetic 
operation.

• At each iteration of the main loop, the routine loads one column of A
r
 into 

a vector register arq0 (line 19), one row of B
r
 into a vector register brq0 

(line 21), and updates Crv00–Crv03 via four AXPYs (lines 24–27) using 
the assembly SIMD instruction fmla, which performs a vector fused mul-
tiply-add (functionally equivalent to the vector intrinsic vfmaq_laneq_
f32.
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Listing 4: Micro-kernel that operates with a 4×4micro-tile using ARM NEON 
assembly.
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Listing 5: Macros forthe micro-kernel usingARM NEON assembly.
The 4 × 4 micro-kernel in Listing 4 exhibits a regular structure that is possible to gen-

eralise to many other dimensions. (This is demonstrated, for example, with the excerpt 
of code in Listing 11 provided in the appendix, which corresponds to the main loop of a 
12 × 8 assembly micro-kernel for ARM NEON and FP32 data.) Concretely, we identify 
the following characteristics which are independent of the micro-kernel dimensions: 

1. The contents of the micro-tile are retrieved from memory into vector registers 
prior to the loop and written from there back to memory after it.

2. The micro-kernel employs m
v
× n

r
 vector registers to keep the contents of the 

m
r
× n

r
 micro-tile.

3. At each iteration, the loop loads the contents of one column of A
r
 and one row of 

B
r
 , and then uses them to update the micro-tile once.

This similarity is the basis that motivates the automatic generation of assembly 
micro-kernels.
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4.2  A python generator of micro‑kernels using ARM NEON assembly

A basic generator The regularity of the basic micro-kernels can be leveraged to 
automatically elaborate their code using the Python routine in Listing 6. (Indeed, the 
ARM NEON assembly codes for the 4 × 4 and 12 × 8 micro-kernels in Listings 4, 5, 
and 11 were obtained using this generator.) Inspecting the instructions of the genera-
tor, we can easily identify the different parts that produce the code fragments for the 
load/store of C, A

r
 , B

r
 , and the arithmetic. Note that this generator assumes that C is 

stored in column-major order. In case C is stored in row-major order, we can still use 
the same micro-kernel by swapping the roles of A

r
 and B

r
 and adjusting the leading 

dimension of C accordingly.

Listing 6: Micro-kernel generator that operates with an mr × nr micro-tile using 
ARM NEON assembly.
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The simple generator in Listing 6 builds a micro-kernel that operates with an 
m

r
× n

r
 micro-tile of C, assuming there are enough vector registers for this. This 

can result in a compilation error if the number of utilised vector registers exceeds 
the maximum. This would be the case, for example, of a 16 × 8 micro-kernel, 
which would require 32 vector registers for the micro-tile of C, 4 for the column 
of A

r
 , and 2 for the row of B

r
 , for a total of 38. In the actual generator, this type 

of situations are avoided with a simple logic test.
Automatic generation of advanced micro-kernels The basic generator has been 

extended to produce more sophisticated micro-kernels enhanced with advanced 
techniques such as loop unrolling and software pipelining [15]. For example, the 
former can be accommodated in the 4 × 4 micro-kernel using the macro in Fig. 7, 
which comprises the loads of A

r
,B

r
 and the arithmetic in Listing 4 (lines 19–27).

Listing 7: Macros for the 4 × 4 micro-kernel.
We can then generate the main loop of the micro-kernel with an unrolling factor 

of 4 by replicating the loop body that number of times, via the macro, as shown in 
Listing 8. For simplicity, we do not show here how to extend the code for the cases 
where k

c
 is not an integer multiple of 4.

Listing 8: Main loop of the 4 × 4 micro-kernel unrolled with a factor 4.
A complementary technique that can be integrated in the automatic generator is 

Software pipelining is a complementary technique which, during an iteration, pre-
loads the data that will be utilised in the “next” iteration of the main loop, separating 
these memory accesses from the arithmetic operations where the data is utilised. 
The excerpt of code in Listing 9 combines software pipelining and loop unrolling 
with a factor of 4. Again, for simplicity, we do not discuss the code required to cover 
the final iterations or the cases where k

c
 is not an integer multiple of 4.
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Listing 9: Main loop of the 4 × 4 micro-kernel unrolled with a factor 4 and with 
software pipelining.

Dealing with “corner” cases Our Python generator for assembly micro-kernels 
is not oblivious to corner cases that were already discussed in the case of vector 
intrinsics. Indeed, the Python generator takes this into account and, when asked to 
produce an m

r
× n

r
 micro-kernel, it actually builds the requested one plus a full col-

lection of smaller micro-kernels to tackle other micro-tile dimensions. In addition, 
there is a complete logic that is integrated into the gemm routine and invokes the 
micro-kernel that better matches the specific dimensions of each corner case.

5  Experimental evaluation

In this section, we assess the performance of the gemm realisations embedding the 
automatically generated micro-kernels. For reference, we include in the comparison 
an evaluation of the gemm in optimised instances of BLIS, OpenBLAS and ArmPL 
for the target platforms.

5.1  Problem cases

Much of the interest of our work lies in the fact that the matrix multiplication kernel 
is the backbone of the convolution operation, once the im2col (or im2row) trans-
form casts this operator into a gemm. The convolution is found in well-known neu-
ral network layers for signal processing (including computer vision) and, moreover, 
bears most of the computational weight of model execution. For example, in [16] 
we report that the convolution layers in the ResNet-50 v1.5 model combined with 
ImageNet can consume between 45% and 87% of the inference time, depending on 
the optimisations that are applied. Thus, given the interest in deploying deep learn-
ing technologies, the dataset for the experimentation here includes matrix multipli-
cations with their dimensions determined by the application of im2col to the con-
volution layers in the neural networks ResNet-50 v1.5 [17] and GoogleLeNet [18], 
combined with the ImageNet dataset. In the experiments, the batch size is set to 1 
sample, reflecting a latency-oriented scenario [16, 19].
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5.2  Hardware setup

In the evaluation, we target the following three ARM-based development platforms:

• An NVIDIA Cortex-A78AE processor, embedded in the NVIDIA Jetson AGX 
Orin board, with a 64-KB L1 data cache, a 256-KB L2 cache, a 2-MB L3 cache, 
and a 32-GB LPDDR5 memory.

• An NVIDIA Carmel processor in the NVIDIA Jetson AGX Xavier platform, 
with a 64-KB L1 data cache, a 2-MB L2 cache, a 4-MB L3 cache, and a 16-GB 
LPDDR4x memory.

• An NVIDIA Cortex A57 processor, in the NVIDIA Jetson Nano board, with a 
32-KB L1 data cache, a 2-MB L2 cache, and a 4-GB LPDDR4 memory.

These target systems, listed from highest to lowest computational power, are repre-
sentative of the type of equipment that can be used to run machine learning infer-
ence workloads.

In order to reduce variability in the experiments, the frequency of the proces-
sor cores is fixed in all cases. A single core is employed in the three architectures, 
with a thread bound to it. All experiments are carried out in IEEE FP32 arithmetic, 
and they are repeated a large number of times, reporting the average results. Per-
formance is measured in terms of billions of floating point operations per second 
(GFLOPS) or, in the final part of the section, in execution time (s).

5.3  Software setup

We focus on the performance gains that can be obtained when leveraging specific 
micro-kernels for the convolution operators in the ResNet and GoogleLeNet neural 
networks. The goals are to show the performance obtained in each layer with our 
gemm using the best micro-kernel for that layer and to demonstrate that, by choos-
ing the appropriate computational kernel, i.e. the gemm with the appropriate micro-
kernel dimensions and optimisation techniques, it is possible to obtain performance 
similar, or even superior in many cases, to that offered by the implementation of 
gemm in optimised libraries. Concretely, for reference, the comparison includes data 
for the gemm realisations contained in BLIS (version v0.8.1) [13], OpenBLAS (ver-
sion v0.3.19) [8], and ArmPL (version v21.1) [20].

5.4  Performance per layer

Figures 2, 2 and 4 report the performance of the five gemm implementations on the 
three platforms, for the individual convolutional layers present in the two convo-
lutional neural networks (CNNs). For the two most powerful platforms, NVIDIA 
Jetson AGX Orin and Xavier, the results are similar, with our automatically gener-
ated micro-kernels being, in a large majority of layers, among the top-3 best options; 
and in many cases, offering the best choice. The results are quite different for the 



1 3

Automatic generation of ARM NEON micro‑kernels for matrix…

NVIDIA Jetson Nano, where BLIS and OpenBLAS present superior performance. 
In consequence, we comment these two cases separately.

NVIDIA Jetson AGX Xavier/Orin As the number of results is large, we will focus 
our comments on one scenario that we believe is representative of the remaining 

Fig. 2  Performance in GFLOPS of each representative convolutional layer of neural networks ResNet-50 
v1.5 (top) and GoogleLeNet (middle and bottom) on Nvidia Jetson AGX Orin
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Fig. 3  Performance in GFLOPS of each representative convolutional layer of neural networks ResNet-50 
v1.5 (top) and GoogleLeNet (middle and bottom) on Nvidia Jetson AGX Xavier
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Fig. 4  Performance in GFLOPS of each representative convolutional layer of neural networks ResNet-50 
v1.5 (top) and GoogleLeNet (middle and bottom) on Nvidia Jetson AGX Nano
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cases on these two platforms and both CNN models. In particular, we describe in 
detail the outcome of the execution of the convolutional layers in ResNet-50 v1.5 on 
the NVIDIA Jetson AGX Xavier; see the top plot in Fig. 3. The results there show 
that the pair of solutions that integrate our automatically generated micro-kernels 
(labeled as Autogen-ASM and Autogen-Templates) outperform the library-
based implementations (labeled as BLIS, OpenBLAS, and ARMPL) for layers #2 to 
#5, #7, #10 to #12, #15, #16 (10 cases out of 20, that is, 50%). In contrast, ARMPL 
is the best option for layers #13, #17, #18 (3 cases out of 20, 15%). For layers #1, 
#6, #8, #9, #14, #20 (6 cases, 30%), the best performance is attained by Autogen-
ASM/Templates and ARMPL, with little differences between them. Finally, in one 
layer, #19, Autogen-ASM/Templates and BLIS offer similar performance, 
superior to that of the other alternatives. In summary, our automatically generated 
codes deliver the highest performance in all except three layers, where they are out-
performed by ARMPL.

In order to characterise these results, we first need to link them with the dimen-
sions of the gemm associated with each layer; see Table 1. Depending on the value of 
m, a classification can be established into four groups of problems: large, medium, 
small, and tiny. This clustering offers a characterisation of performance for the two 

Table 1  Dimension of the 
gemm problems associated with 
the convolutional layers in 
ResNet-50 v1.5+ImageNet for 
batch size b = 1

The horizontal lines divide the layers into four groups depending 
on the dimension m: large, medium, small, and tiny. The rightmost 
column reports the best gemm implementation(s), for that particular 
layer of the CNN model, on the NVIDIA Jetson AGX Xavier

Layer n m k Best option

1 64 12,544 147 Autogen/ARMPL

2 64 3136 64 Autogen

3 64 3136 576 Autogen

4 256 3136 64 Autogen

5 64 3136 256 Autogen

6 128 3136 256 Autogen/ARMPL

7 128 784 1152 Autogen

8 512 784 128 Autogen/ARMPL

9 512 784 256 Autogen/ARMPL

10 128 784 512 Autogen

11 256 784 512 Autogen

12 256 196 2304 Autogen

13 1024 196 256 ARMPL

14 1024 196 512 Autogen/ARMPL

15 256 196 1024 Autogen

16 512 196 1024 Autogen

17 512 49 4608 ARMPL

18 2048 49 512 ARMPL

19 2048 49 1024 Autogen/BLIS

20 512 49 2048 Autogen/ARMPL
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groups in the middle. Concretely, for medium m and k ≥ 512 , Autogen-ASM/
Templates offers the best performance while, for the same group and smaller k, 
the performance of that option is similar to that of ARMPL. Similarly, for small m 
and large k(≥1,024) Autogen-ASM/Templates is again the best but its perfor-
mance tends to decay with respect to ARMPL as k decreases. In general, for large m 
the best automatically generated micro-kernel is m

r
× n

r
= 20 × 4 , moving towards 

other variants with smaller m
r
 ( 16 × 4 , 12 × 8 , 8 × 12 ) as m becomes also smaller.

Explaining the different behaviour of the gemm instances requires a careful case-
by-case analysis as it is the consequence of a combination of factors related to the 
micro-kernel, that we revise in the following list:

• Micro-kernel. The dimensions of the micro-kernel and the ratio m
r
∕n

r
 deter-

mine its arithmetic intensity [12] and, therefore, its performance under ideal 
conditions. For example, in a separate experiment, we could determine that, 
on the NVIDIA Jetson AGX Xavier, the larger micro-kernels automatically 
generated with our tool ( m

r
× n

r
 = 8 ×12, 12× 8, 4 ×16, 4 ×20, 16× 4, and 20× 4, 

are compute-bound while the smaller ones are bounded by the L2 cache band-
width.

• Dimensions n
r
 and k. According to the GotoBLAS scheme, an k

c
× n

r
 micro-

panel of B should populate a significant fraction of the L1 cache, proportional to 
the ratio n

r
∕(m

r
+ n

r
) [11]. Now, looking to the dimension k of the problems in 

Table 1, we observe that k
c
≤ k and, therefore, a large value n

r
 , which depends 

on that dimension of the micro-kernel, can yield a more efficient use of L1 cache 
even when k

c
= k is small.

• Packing routines. Fourth, the packing routines help to reduce cache eviction 
but, at the same time, introduce a certain overhead, which can be significant in 
case there is not enough reuse of the buffers A

c
,B

c
 . As the matrices A/B can be 

stored in either row- or column-major order, and they have to be packed into 
narrow micro-panels, respectively, of m

r
 rows/n

r
 columns, the dimension of the 

micro-kernel interacts with the storage format to impact the cost of the packing 
procedures.

• Edge cases. The cache configuration parameters m
c
, n

c
, k

c
 , and the micro-kernel 

dimensions m
r
, n

r
 decompose the gemm problem into a collection of packing 

operations and micro-kernels of different sizes. When m is not an integer multi-
ple of m

c
 and/or the latter is not an integer multiple of m

r
 , these edge cases could 

benefit from specialised routines, which are not always efficiently implemented. 
The same applies to the trio n, n

c
, n

r
 ; and the pair k, k

c
.

Note that in this list we have omitted the cache configuration parameters. These 
are set differently for each library/platform and obviously play a role on the perfor-
mance as they have a direct impact on the utilisation of the cache hierarchy. In sum-
mary, explaining how all these factors interact to determine the overall performance 
of a specific gemm implementation, for a particular problem dimension, is very inter-
esting, but also quite complex, especially for sophisticated libraries implemented by 
others.
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NVIDIA Jetson Nano. The performance of the five routines on this system show a 
wider variability of the best option. Our gemm routine does not stand out as optimal 
yet, in general, it does not lose track with respect to the best option. Concretely, we 
find layers for which some routines, like ARMPL, perform well for many layers (#7, 
#20 of ResNet-50 v1.5) but quite poorly for others (layers #12, #16). OpenBLAS is 
better tuned for the core in Nano than for that in Xavier. The regularity in perfor-
mance of Autogen-ASM is one of the most remarkable aspects of our proposal 
compared with the use of optimised libraries.

The superior performance of BLIS and OpenBLAS for the NVIDIA Jetson Nano 
is mainly due to a couple of factors: 1) BLIS and OpenBLAS contain micro-kernels 
with extensive use of hardware prefetching; and 2) BLIS and OpenBLAS provide 
vectorised version of the packing routines. From our observations, while these two 
factors have no major effect on the two other platforms, on a resource-constrained 
system such as the NVIDIA Jetson Nano, they explain the superior performance of 
the instances of gemm in these libraries.

5.5  Aggregated time

The GFLOPS rate provides a normalised metric to evaluate the performance of the 
different implementations of gemm, but it does not reveal the contribution of the lay-
ers to the total execution time and therefore the relevance of the differences. The 
final experiment, with results shown in Figs. 5, 6, and 7, shows the aggregated time 
on the two CNN models and the three platforms. To reflect a realistic execution, we 
report the execution time for all the convolution layers in the CNN models, not only 
those with different dimensions, as was the case of the previous experiments in this 
section.

The results show that, when comparing the option with automatically generated 
micro-kernels to the best library-based solution, the overall gain for the NVIDIA 
Jetson AGX Orin is small, between 2% and 3% depending on the CNN model; it 
is larger for the NVIDIA Jetson AGX Xavier, between 8% and 12%. Finally, in the 
NVIDIA Jetson Nano, the loss is between 6% and 10%.

6  Conclusion

We have proposed two approaches to automatically generate gemm micro-kernels 
that mimic the encoding effort done by an expert, relieving this programmer from 
a significant part of the effort required in (the initial steps of) this error-prone task. 
Concretely, our generators produce either a C code with vector intrinsics or directly 
an assembly routine, for any data type and micro-kernel dimensions. Furthermore, 
they integrate high performance techniques such as loop unrolling and software 
pipelining.

Our experimental study shows the benefits of the automatic solution in com-
parison with optimised implementations of gemm in state-of-the-art libraries for 
three ARM-based processors and a representative collection of problem instances. 
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Fig. 5  Aggregated time of the convolutional layers of ResNet-50 v1.5 (top) and GoogleLeNet (bottom) 
on the NVIDIA Jetson AGX Orin
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Fig. 6  Aggregated time of the convolutional layers of ResNet-50 v1.5 (top) and GoogleLeNet (bottom) 
on the NVIDIA Jetson AGX Xavier
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Fig. 7  Aggregated time of the convolutional layers of ResNet-50 v1.5 (top) and GoogleLeNet (bottom) 
on the NVIDIA Jetson Nano
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The possibility of dynamically generating a family of micro-kernels, choosing the 
most efficient one as a function of the problem dimension, is demonstrated to be 
key to outperforming the static implementation of gemm in this libraries, which only 
include a single micro-kernel per architecture.

A Additional code snippets

Listing 10: Auxiliary generic micro-kernel function templates to operate with any 
mr × nr micro-tile using vector intrinsics.
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Listing 11: Main loop of the micro-kernel that operates with a 12×8 micro-tile 
using ARM NEON assembly. The macros introduced to ease the presentation are 
omitted for brevity.
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