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A B S T R A C T   

The incorporation of sex and gender (S/G) related factors is commonly acknowledged as a necessary step to 
advance towards more personalized diagnoses and treatments for somatic, psychiatric, and neurological diseases. 
Until now, most attempts to integrate S/G-related factors have been reduced to identifying average differences 
between females and males in behavioral/ biological variables. The present commentary questions this tradi-
tional approach by highlighting three main sets of limitations: 1) Issues stemming from the use of classic 
parametric methods to compare means; 2) challenges related to the ability of means to accurately represent the 
data within groups and differences between groups; 3) mean comparisons impose a results’ binarization and a 
binary theoretical framework that precludes advancing towards precision medicine. Alternative methods free of 
these limitations are also discussed. We hope these arguments will contribute to reflecting on how research on S/ 
G factors is conducted and could be improved.   

1. Introduction 

«It is tempting, if the only tool you have is a hammer, to treat everything as 
if it were a nail». 
Maslow, AH. The Psychology of science: A reconnaissance. 1966 
«Statistics offers a toolbox of methods, not just a single hammer […] 
Statistical thinking involves analyzing the problem at hand and then 
selecting the best tool in the statistical toolbox or even constructing such a 
tool». 
Gigerenzer et al. The null ritual, 2004 

Sex and gender (S/G)1-related factors contribute to individual vari-
ability in physiology and behavior, and a S/G-biased prevalence, 
manifestation, and progression for many somatic, psychiatric, and 
neurological diseases and disorders has been reported (Altemus et al., 

2014; Mauvais-Jarvis et al., 2020; Pinares-Garcia et al., 2018). There-
fore, it is currently thought that incorporating S/G-related factors in 
research and data analysis may be crucial for the understanding of these 
diseases and for advancing precision medicine and refining diagnostic 
and treatment strategies in healthcare (Bartz et al., 2020; Stachenfeld 
and Mazure, 2022). Accordingly, funding agencies in the EU, US, Can-
ada, and other geographical regions have implemented recommenda-
tions and mandates to promote or ensure the incorporation of S/G- 
related factors in biomedical preclinical and clinical research (White 
et al., 2021). 

However, the effectiveness of these policies to improve current 
knowledge about the role of S/G-related factors in health and disease 
will critically depend not only on the number of studies addressing these 
factors, but also of their quality and methodological soundness (Rich- 
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choice allows us to avoid the relevant but unresolved debates regarding the precise definition of these constructs. It also serves us to acknowledge that, although they 
can be theoretically distinguishable, the elements traditionally linked to sex and gender are inherently intertwined and rarely (if ever) separable, especially in human 
studies.For practical convenience, we operationalize S/G as consisting of two S/G-related categories, which we refer to as “females” and “males”. These terms were 
adopted from the 1200 Subject Release of the Human Connectome Project, from which the dataset used in this commentary to provide specific examples was 
extracted. It is important to note that these categories and their labels should be viewed as pragmatic place-holders without implying any specific definition or 
connotation. In fact, the term “S/G-related categories” is intentionally used to acknowledge the diversity of possible definitions for these categories, depending on the 
specific research context in which they are defined (See Richardson, 2022). 
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Edwards et al., 2018; Rich-Edwards and Maney, 2023). Specifically, 
ensuring rigorous research practices is imperative for drawing reliable 
conclusions about the exact role and quantitative contribution of S/G- 
related factors. In this regard, several recent studies (Galea et al., 
2020; Garcia-Sifuentes and Maney, 2021; Rechlin et al., 2022) have 
confirmed a progressive increase in the number of studies including both 
male and female research subjects, but they have also identified some 
important methodological deficiencies, such as the omission of sample 
size, an imbalanced use of males and females, or failing to test formally 
for S/G effects. This commentary tries to bring attention to another 
methodological concern of these studies: the overreliance on mean 
comparisons using classic parametric tests (e.g., Student’s t-tests and 
ANOVAs). 

The overreliance on mean comparisons is not exclusive of S/G- 
related studies, but observed across most domains of social, behav-
ioral, and biological sciences. For example, recent systematic reviews 
indicate that t-tests and/or ANOVAs are used in 84.5 % of physiology 
studies (Weissgerber et al., 2018) and up to 12.8 times more frequently 
than their nonparametric counterparts in psychological research (Blanca 
et al., 2018). These classic parametric methods are widely used because 
they are the methods most frequently taught (Aiken et al., 2008; Cobb, 
2007; Kline, 2013), and the reason why they are so frequently taught is 
because they are the most commonly used. This is problematic for at 
least four reasons: 1) These methods are usually taught, learned and put 
in practice dogmatically, hence replacing statistical thinking by an 
automatized testing strategy that pays little attention to the tests’ as-
sumptions and that frequently misinterprets the tests’ results (Giger-
enzer et al., 2004; Hoekstra et al., 2012; Kline, 2013); 2) ANOVAs and t- 
tests s operate under assumptions that are rarely met, exhibiting low 
power and providing unsatisfactory/ misleading results when these as-
sumptions are violated (Rousselet et al., 2017; Wilcox, 1998); 3) Even 
when their assumptions are met, parametric methods comparing means 
can be of limited informative value (Rousselet et al., 2017; Wilcox and 
Keselman, 2003); 4) Statistics have much more to offer to researchers 
than simple average comparisons (Gigerenzer et al., 2004; Wilcox, 2023, 
2022), but these new methods have not been incorporated to the sta-
tistics curriculum of most researchers (Cobb, 2007). 

While the overreliance on mean comparisons pervades scientific 
research, its impact is particularly pronounced in S/G-related studies. 
This commentary highlights three levels of limitations associated to 
mean comparisons in this research domain: first, general issues stem-
ming from assumptions and misinterpretations of classic methods 
comparing means (Sections 2.1, 2.2, and 2.3.1); second, challenges 
related to the representativeness of means, which are especially perti-
nent in the case of large, non-randomly-assigned groups such as S/G- 
related categories (Section 2.3.2); and third, the categorical model 
imposed by means and mean comparisons that hinders the goal of 
incorporating S/G-related factors for the understanding of disorders and 
diseases and the development of individualized treatments (Section 3.1). 
In response to these problems and limitations, alternative analytical 
strategies are also briefly introduced.2 Particular attention is paid to a 
statistical method (the shift function; section 3.2) that allows a non- 
binary treatment of S/G-related information, even when this informa-
tion is collected as obtained from two categories, and that seems more 
promising to achieve the goals of S/G-related biobehavioral research. 

In conclusion, by unveiling the methodological and conceptual lim-
itations of mean comparisons and proposing alternative strategies, this 
commentary aims to inspire a more nuanced statistical approach in S/G- 

related biomedical and behavioral studies. From our viewpoint, 
embracing appropriate, diverse, and informatively rich analytical tools 
is a key step to unlocking the full potential of S/G-related factors in 
disease understanding, treatment refinement, and individualized 
healthcare. 

2. Problems with means and mean comparisons 

2.1. Normality and the mean 

«Let him know how to choose the mean and avoid the extremes on either 
side, as far as possible, not only in this life but in all that which is to come. 
For this is the way of happiness» 
Plato. The republic (circa 427 – 347B.C.E.). 
«The average man, the type of our species, is also the model of beauty 
[…] The margins of variation (higher or lower) are more restricted in 
a population the closer it gets to perfection» 
Adolphe Quetelet. Du systeme social et des lois qui le régissent (1848) 

The connection between the midpoint and some concept of virtue, 
goodness, or truth can be traced back to the philosophies of ancient 
Greece and the earliest Buddhist writings. In 19th century, Adolphe 
Quetelet introduced his concept of the ’homme moyen’ (’the average 
man’; (Caponi, 2013; Grue and Heiberg, 2006)), and proposed that 
human traits follow a normal distribution, with a tendency to cluster 
around a central value (the mean). He believed that the mean of any 
human trait represents the nature’s ideal value for that trait, while 
values on either side of the mean were, for excess or defect, deviations 
from this natural ideal. Quetelet’s work played a pivotal role in popu-
larizing the use of the mean and the normal distribution in the social and 
behavioral sciences. Today, the normal distribution and the mean are 
central in statistics, and the idea that the mean reflects the ideal or the 
’true’ value of any variable remains deeply ingrained in our minds. 

The centrality of the mean is not just a metaphor about its impor-
tance in statistics, but the main reason of its importance and predomi-
nant usage. When data are normally distributed, the mean sits exactly in 
the middle of the distribution, so the mean is the most centered and also 
the most frequently expected value (i.e., its value coincides with that of 
the median and the mode). In such cases, the standard deviation accu-
rately accounts for the values’ spread at each side of the mean, and these 
two statistics suffice to properly describe the variable under consider-
ation (i.e., how common or uncommon is each of its possible values). 
Accordingly, when data are normally distributed, classic parametric 
tests (i.e., Student’s t test, ANOVAs) and effect sizes (e.g., Cohen’s d) 
rooted on means and standard deviations provide a suitable strategy to 
compare two or more groups and quantify the size of their differences. 

Among other reasons (introduced in section 2.3.2), methods such as 
ANOVAs and t-tests are problematic because data are almost never 
normally distributed (Blanca et al., 2013; Micceri, 1989). Moreover, 
neither the mean or the standard deviation is robust (i.e., their values 
and those of their confidence interval can be very much affected by a few 
outlying values; (Hampel et al., 1986; Högel et al., 1994; Huber and 
Ronchetti, 2009)). Thus, even relatively small deviations from normality 
can make the sample mean and standard deviation to provide distorted 
estimates of the typical value of a group and of the group’s dispersion 
(Tukey, 1960). This, in turn, results in a substantial reduction of the 
power of classical parametric tests to detect differences between groups 
when they actually exist (false negative or Type II errors; (Tukey, 
1960)), but can also inflate the chances of finding a statistically signif-
icant difference when there is none (i.e., false positive findings or Type I 
errors; (Wilcox and Serang, 2017)), and make classic effect sizes as 
Cohen’s d to yield an inaccurate estimation of the size of these differ-
ences (Algina et al., 2005; Wilcox and Serang, 2017). 

When researchers are confronted with these warnings about the 
normality assumption and how its violation distorts the output of classic 
statistical methods, they may react with disbelief and resort to some 

2 The newer and more robust methods we aim to introduce have not yet been 
incorporated into commercial statistical software packages, but one of the au-
thors (RRW) has developed functions to implement them using the free soft-
ware R. These (and other) methods are described in Wilcox (2022, 2023) and 
their corresponding functions included in the Rallfun-v41 file, which can be 
freely downloaded from https://osf.io/xhe8u/. 
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common statistical misconceptions to justify their use of t-tests and 
ANOVAs.3 Thus, for example, many researchers think that distributions 
are “normal enough” when their samples are “large enough”, so they feel 
confident applying parametric methods. This belief is also endorsed in 
some statistics textbooks and specialized articles (e.g., “The basic as-
sumptions for ANOVA are independence (i.e., independent experimental 
units and not repeated assessments of the same unit), normally distributed 
outcomes, and homogeneity of variances across comparison groups. With 
large samples (n>30 per group), normality is typically ensured by the central 
limit theorem; however, with small sample sizes in many basic science ex-
periments, normality must be specifically examined. This can be done with 
graphic displays […] There are also specific statistical tests of normality (e. 
g., Kolmogorov-Smirnov, Shapiro-Wilk) …”; (Sullivan et al., 2016)). 
However, this rationale is based on the results of some old studies that 
overlooked the problems associated to the presence of outliers, heavy- 
tailed distributions, and skewness (Field and Wilcox, 2017; Wilcox 
and Rousselet, 2018). Indeed, there are formal proofs that even a slight 
departure from a normal distribution can render methods based on 
means and variances highly misleading (Hampel et al., 1986; Huber and 
Ronchetti, 2009; Staudte and Sheather, 1990). Furthermore, trying to 
establish the normality of a distribution from the visual inspection of a 
distribution is a fraught and error-prone strategy (Thompson, 2008), as 
is relying the results of the Kolmogorov-Smirnov, Shapiro-Wilk, and 
other similar tests, especially when samples are not truly large (n>200 
per group or even more). 

A simple example might be useful to illustrate these problems and 
their consequences. Therefore, throughout this manuscript, the points to 
be made will be illustrated using a dataset that contains the information 
about self-reported S/G-related categories (male/ female) and the body 
mass index (BMI) scores of 800 individuals (400 males and 400 females). 
The BMI was developed by Adolphe Quetelet, and we focus on this 
variable because it is known that it is non-normally distributed (Sil-
verman and Lipscombe, 2022; Tsang et al., 2018), but nevertheless 
many studies employ t-tests to compare the BMI scores of females and 
males (e.g., (Friedmann et al., 2001; Mastorci et al., 2020; Vijayalakshmi 
et al., 2017)). 

2.2. When mean comparisons are meaningless (an example and a brief 
description of some robust alternatives) 

According to the current practices (Blanca et al., 2018; Weissgerber 
et al., 2018), the most typical method to compare the BMI scores of 
females and males would be to compare their means with a Student’s t- 

test for independent samples.4 The values of these means are 26.81 and 
26.19 and, when compared with a t-test, there is no sufficient evidence 
to conclude that there is a statistically significant difference between 
them (t798=1.75, p=0.080). The crude means’ difference (0.62) corre-
sponds to a Cohen’s d of 0.12 [-0.03, 0.27] standard deviation units (sd), 
which according the commonly used benchmarks (Cohen, 1988) could 
be considered as a “negligible” effect. Therefore, it would be ordinarily 
concluded that “males and females do not differ in BMI” (Hoekstra et al., 
2006) and many researchers would probably stop their inquiries at this 
point. However, that would be a wrong decision based on an erroneous 
conclusion that stems from misleading results obtained with an inade-
quate analytical strategy. 

To understand this chain of errors, it is important to start by 
depicting the distributions of BMI scores of females and males (some-
thing crucial, but seldomly done (Weissgerber et al., 2015); see also 
section 2.3.2). Panels A and B of Fig. 1 show these empirical distribu-
tions, and also depict the expected ones if cases had been sampled from 
normal distributions with the same means and standard deviations. 

When looking at the empirical BMI distributions, it would be hard to 
conclude that the females’ data are “normal enough”, but more doubts 
could arise when judging the normality of the males’ data. However, 
none of these distributions is really normal, both are right-skewed 
(skewnessmales= 0.71, skewnessfemales=1.06) and leptokurtic 
(kurtosismales=3.27, kurtosisfemales=3.89).5 But what would normality 
tests say about them? To address this question, the outcomes of three 
normality tests on 1,000 random samples of various sizes (n=10, 20, 40, 
80, 160, 320, and 400 per group) drawn from both empirical and ex-
pected distributions were evaluated (panels C and D of Fig. 1). As can be 
readily observed, when sampling from truly normal distributions, the 
likelihood of incorrectly classifying a sample as “non-normal” remained 
consistent at the expected 5%, irrespective of the test or sample size. 
However, when sampling from the non-normally distributed empirical 
datasets, these tests were prone to misclassifying as ’normal’ distribu-
tions that are not when n < 80, a situation commonly encountered in 
experimental studies. With n > 80, the females’ distribution’s non- 
normality was reliably detected at the expected 95% rate. In contrast, 
the same did not hold true for the males’ distribution. Even with a 
substantial sample size, such as n=400, the Kolmogorov-Smirnov test 
struggled to detect ’non-normality’ in the males’ BMI distribution, with 
a success rate below 75%. 

From Fig. 1, it can be appreciated that, in addition to not being 
normal or even symmetrical, the males’ and females’ distributions differ 

3 In other cases, researchers may be aware that their data are not normally 
distributed and may try to achieve normality by transforming their original 
data (e.g., by applying logarithmic or Box-Cox transformations). This approach 
can be adequate and useful in some scenarios, and it has been traditionally 
favored in introductory statistics’ books due to the historical neglect of classic 
non-parametric methods. However it should be noted that: 1) Data trans-
formation does not always solve the problems associated with outliers and 
skewed distributions; 2) When comparing two groups, it is necessary to find a 
transformation that works equally well for both groups, but situations can be 
encountered in which the best transformation for the data group 1 is not the 
same than for group 2; 3) Transformations can significantly complicate the 
interpretation of results. For instance, once a transformation such as the square 
root is applied, inferences about the means of the original data become 
impractical. Additionally, back-transforming data from the square root scale 
typically does not yield satisfactory estimates of the original population pa-
rameters.; 4) In contrast to their classic predecessors, recently developed non- 
parametric methods are just as flexible and powerful as t-tests and other pop-
ular parametric methods. Therefore, although this issue remains unresolved, we 
suggest that, in most cases, it may be safer to avoid transformations and instead 
conduct group comparisons using these more recently developed methods. For 
a more comprehensive discussion, refer to (Grayson, 2004; Keselman et al., 
2002; Pek et al., 2018; Wilcox, 2022)). 

4 For simplicity, we focus our comment on the simplest case of comparing 
two means with t-tests for independent samples. However, the same limitations 
and criticisms apply to all variations of this test and to the situations in which 
more than two means are compared with ANOVAs. Similarly, although here we 
only describe suitable robust alternatives to t-tests, robust alternatives to all 
kinds of ANOVAs and ANCOVA methods have been developed. An extensive 
description of these methods as well as of the description of the R functions to 
apply them can be found in (Wilcox, 2023, 2022) and some worked case- 
examples are described in (Field and Wilcox, 2017; Wilcox and Rousselet, 
2023a, 2023b).  

5 In a normal distribution, skewness is zero because this distribution is 
perfectly symmetrical. A commonly rule of thumb considers distributions as 
“approximately symmetric” if skewness is between − 0.5 and 0.5, “moderately 
skewed” if skewness is between − 1 and − 0.5 or between 0.5 and 1, and “highly 
skewed” when skewness is less than − 1 or greater than 1.The normal distri-
bution has kurtosis of 3 and it is considered mesokurtic. Thus, when the value of 
kurtosis is >3 distributions are considered leptokurtic and this indicates that 
they have “fat” tails (that is, the distribution has more values at the extremes 
than a normal distribution has). Conversely, when kurtosis <3, the distribution 
is platykurtic, meaning it has less values in the extremes than those found in a 
normal distribution. Note that some statistical software programs do not 
calculate kurtosis but “excess kurtosis” (kurtosis − 3) to provide a simple and 
direct comparison to the normal distribution. 
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in skewness and, also, in spread. In this scenario, the standard error of 
each mean grows very large and the T-statistic does not follow its ex-
pected distribution, so the power of t-tests to detect a difference between 
two means is severely reduced (for a complete and technical explana-
tion, see (Wilcox, 2022)). Furthermore, disparities in skewness among 
distributions can profoundly disrupt methodologies grounded in means 
(Ozdemir et al., 2013; Pratt, 1964; Wilcox and Rousselet, 2023a), and 
because kurtosis increases the value of the standard deviation, Cohen’s 
d values are artefactually reduced, hence suggesting that effects are 
smaller than they really are (see Fig. 2 and (Algina et al., 2005; Wilcox, 
2023, 2022)). 

From the panels A and B of Fig. 1 it can be also appreciated that, 
when distributions are not normal, the means no longer sit at the middle 
nor at the peak of the distribution. In fact, when distributions of 
continuous variables are right-skewed, the mean value is larger than the 
median’s value and the median is larger than that of the mode, so the 
mean does not represent the most central nor the most frequent value 
and this discrepancy grows with the degree of skewness. In other words, 
when distributions depart from normality toward a skewed distribution, 
the mean does not reflect a typical response and comparing two groups 
through them becomes not only inaccurate but largely arbitrary and 
potentially misleading. 

At this point it is worth remembering that the mean is only one of 
many existing central location measures, and it is not a robust one. The 

median and the trimmed means6 are also central location measures, and 
they are much more robust than the mean (for an overview of these and 
other robust central location measures, see (Wilcox, 2022; Wilcox and 
Keselman, 2003)). Similarly, there are several statistics more robust 
than the standard deviation to quantify dispersion (for an overview, see 
(Högel et al., 1994; Wilcox, 2022)). The use of robust measures of 
central location coupled with robust measures of spread provides a se-
ries of robust, non-parametric analogs of the classic Student’s t-test and 
Cohen’s d (for an overview, see (Algina et al., 2005; Wilcox, 2023, 2022; 
Wilcox and Keselman, 2003)). These alternative methods are almost as 

Fig. 1. The distribution of Body Mass Index (BMI) scores. Panels A and B depict the empirical distribution of the males’ (blue) and females’ (red) BMI scores 
observed in sample with n = 400, respectively. The panels also include the expected distribution (black dashed curves) if cases would have been sampled from a 
normal distribution with the same mean and standard deviation. Panels C and D depict the percent of samples declared as “non-normal” by different normality tests 
in a simulation performed on 1,000 iterations over random samples with n = 10, 20, 40, 80, 160, 320, or 400 extracted from the empirical and expected distributions 
depicted in panels A and B. (Abbreviations: SW, Shapiro-Wilks’ test; KS, Kogolmorov-Smirnov test, Pchi, Pearson-Chi squared normality test; Emp = empirical, norm 
= expected when sampling from a normal distribution). 

6 Trimmed means is the name given to the means calculated after eliminating 
(“trimming”) a percent (usually, around 10%) of values of each tail of the 
original distribution. Although ignoring part of the sample might seem some-
how “wrong”, it is not when the removed values are suspected to introduce 
some sort of “contamination” to the distribution of interest (that is, when these 
values may represent individuals of a different population or measurements 
under different, often unnoticed and/or unusual, circumstances). Eliminating 
truly contaminating values is necessary to obtain robust estimators, but prob-
lems arise when using incorrect methods that may eliminate “proper” values or 
failing to eliminating all the contaminating values (for an ampler discussion, see 
(Hampel et al., 1986; Rousseeuw and Stahel, 2011) In this respect, it should be 
noted that common practices of eliminating cases +2 standard deviations are 
inadequate (see (Leys et al., 2013; Wilcox and Keselman, 2003)). 

C. Sanchis-Segura and R.R. Wilcox                                                                                                                                                                                                         



Frontiers in Neuroendocrinology 73 (2024) 101133

5

powerful and accurate as these classic statistics when the assumptions of 
normality and equal variances are met. However, because they do not 
make any assumption about the distributions from which they are 
calculated, they are much more accurate and powerful to unravel 
between-group differences when the normality and homoscedasticity 
assumptions are violated. This can be illustrated with the data of our 

example. The values of the 20% trimmed means for males and females 
are 26.31 and 25.18, and their difference is statistically significant (p=
0.003) and no longer “negligible” but “small” in size (0.24 [0.08, 0.39]). 
Similarly, the values of the medians are 26.25 and 24.83, the p-value 
associated to their comparison with a percentile bootstrap method is 
<0.001, and the size of their difference is 0.32 [0.15, 0.47]. These 

Fig. 2. Comparison of the Student’s t-test and Cohen’s d with some of their robust analogs. Panel A depicts the percentage of occasions on which the performed 
tests comparing the means, the 20 % trimmed means, or the medians of the BMI scores of females and males yield a p-value lower than 0.05. These results are based 
on a simulation involving 1,000 iterations on random samples with sizes n = 10, 20, 40, 80, 160, 320, or 400. Panel B depicts the average of the estimated values of 
different effect size indexes across the same random samples. The effect size indexes compared were the classic Cohen’s d and two robust analogs of this index, one 
based on trimmed means and winsorized standard deviations (KMS) and another based on medians and the median absolute deviation (“median ES”). Note that, 
although robust effect size indexes are standardized with spread measures other than the standard deviation, they are usually re-scaled to standard deviation units, so 
their values have the same scale and interpretation than Cohen’s d. 

Table 1 
Misinterpretations (fallacies) of p-values commonly observed in scientific studies. Items marked with (*) are specifically discussed in the main text. For a more 
comprehensive list of these and other fallacies, refer to Kline (2013) and the references included herein.  

Fallacies generally affecting p-values interpretation. 

“Odds against chance fallacy” The false (and almost ubiquitous) belief that p-values indicate the probability that a result happened by “chance” or sampling error.  

“Inverse probability fallacy” 
(“Bayesian Id’s wishful 
thinking”) 

The erroneous belief that confounds the likelihood of observing evidence if a hypothesis is true with the likelihood of the hypothesis being true if 
the evidence is observed. This results in false statements such as saying that, when p < 0.05, the probability that the null hypothesis is true is <
0.05.  

“Local Type I error fallacy” The mistaken belief that p-values inform about the likelihood of erroneously rejecting the null hypothesis in a particular study (e.g., stating that, 
when p < 0.05, the likelihood of being erroneously rejecting the null hypothesis is < 5 %). It often arises from the “inverse probability fallacy” and 
it implies forgetting that, for any particular study, the probability of erroneously rejecting (or failing to reject) the null hypothesis can only be 
0 or 1 and that, therefore, p-values do not inform of the correctness of the decision of rejecting the null hypothesis in any particular study.  

“The sanctification fallacy” The mistaken belief regarding p-values, wherein an effect (or its significance) is often assumed when p < 0.05, even if it’s by a narrow margin, 
while the absence of an effect is concluded when p is just slightly above 0.05 

Fallacies commonly associated to p > 0.05  

“Zero fallacy”(*) 
(“the slippery slope of non- 
significance”)  

The erroneous belief that the failure to reject the null hypothesis reveals that the difference between the means of two populations equal to zero.  

“Equivalence fallacy” (*)  The mistaken belief that the failure to reject the null hypothesis in a means-based comparison reveals that two populations are equivalent. 

Fallacies commonly associated to p < 0.05  

“Valid research hypothesis fallacy” 
(*)  

The false belief that, when p < 0.05, the probability that the alternative/ research hypothesis is > 0.95. 

“Replicability fallacy” (*)  The mistaken belief that the complement of p indicates the probability of obtaining a “significant” result in a replication study. 

“Causality fallacy” (*)  The erroneous belief that statistical significance proves that the tested independent variable is the underlying causal agent (literally, “the factor” 
or “doer”) of the phenomenon under investigation.  

“Magnitude fallacy” (*) 
(“the slippery slope of 
significance”)  

The use of the term “significant” (without the qualifier “statistically”), when describing results, and their automatic interpretation as “large” or 
“important”.  
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results are quite similar between them, but quite different than those 
obtained from means (26.81 and 26.19) and a t-test (p=0.080; 0.12 
[-0.03, 0.27]) on the same subjects. 

To better illustrate the behavior of these robust methods and 
compare their results with those yielded by t-tests and Cohen’s d, we 
evaluated their performance across several sample sizes. The results of 
these simulations based on BMI data are illustrated in Fig. 2. As it can be 
readily observed, rejecting the null hypothesis required large samples 
because the estimated between group differences are truly small, but 
robust methods have consistently more (in this case, around twice the) 
power to detect these differences than t-tests. Thus, for example, the 
method based on median comparisons rejects the null hypothesis at rates 
close to the expected 95% when n≥ 320, whereas under the same con-
ditions the classic t-test based on means only rejects the null hypothesis 
in 37–40% of the cases. Panel B of Fig. 2 illustrates that the size of the 
between groups standardized difference is substantially (in this case, 2- 
fold) larger when based on robust statistics of location and spread (such 
as medians and median absolute deviation) than when based in the 
means and standard deviations that are much more affected by extreme 
values. 

In summary, there are many situations in which the data are not 
normally distributed and normality tests may fail to detect this situation, 
especially when sample size is limited. In this scenario, the mean and the 
standard deviation are invalid estimators of central location and spread. 
Consequently, t-tests and other similar parametric statistics are largely 
insensitive to between-group differences and Cohen’s d underestimates 
their magnitude. However, there are more sensitive and accurate testing 
methods and effect size indexes to identify and describe these 
differences. 

2.3. What means and mean comparisons mean? 

Just as the assumptions of commonly used parametric tests are often 
ignored because of existing statistical myths about their robustness 
against normality violations, the interpretation of their results is usually 
flawed because of commonly shared misconceptions about p-values and 
means. Most of these false beliefs seem to reveal a wishful attempt to 
bridge the gap between what these comparisons can provide and what it 
is wanted to know. Because the fallacies commonly associated to the 
interpretation of p-values in the context of significance testing have been 
extensively debated (Cohen, 1994; Hirschauer et al., 2022; Kline, 2013), 
we will not discuss all of them here (but see Table 1). Rather, we will 
briefly discuss some misconceptions about means and mean-based 
comparisons, an issue that has received far less attention despite of 
being similarly important. In this last regard, note that, although for 
simplicity we will mainly refer to means and their comparisons, some of 

the criticisms and limitations also apply to their just described robust 
analogs. 

2.3.1. Common misinterpretations of p-values in the context of mean 
comparisons 

«What’s wrong with NHST [null hypothesis significance testing]? Well, 
among many other things, it does not tell us what we want to know and we 
so much want to know what we want to know that, out of desperation, we 
nevertheless believe that it does!» 
Cohen, J. (1994) 

As hinted at the beginning of section 2.2, concluding that “males and 
females do not differ in BMI” because the p-value associated to this 
comparison was higher than 0.05 would not be unusual, but it is erro-
neous for several reasons. Thus, this conclusion stems from a dichoto-
mous interpretation of p-values and it incurs in the so called zero fallacy 
(also known as the slippery slope of non-significance; (Cumming, 2012)). 
This common misinterpretation of p-values> 0.05 takes the absence of 
evidence for a statistically significant difference between two (or more) 
groups as evidence of the absence of a difference between these groups 
(Altman and Bland, 1995; Cumming, 2012). However, significance tests 
cannot prove the absence of a difference.7 Moreover, p-values larger 
than 0.05 can be obtained even if two groups actually differ when sta-
tistical power is insufficient. It is well known that insufficient power can 
be due to the use of small samples (which was clearly not the case in our 
example), but it is generally less known that power is also substantially 

Fig. 3. Mean comparisons often hide more than they reveal. Panel A illustrates the distributions of the BMI scores of the females and males included in our 
sample. Panel B depicts what is tested (and how much is obviated) when conducting a Student t-test for independent samples. Panel C depicts how inappropriate 
graphical depictions impede judging the capability of means and mean comparisons to represent the compared S/G-related categories and their possible differences. 

7 Although it is often overlooked, significance testing only allows us to either 
reject or fail to reject the null hypothesis of no differences. That is, the null 
hypothesis can never be accepted and, therefore, hypotheses can never be 
falsified with significance testing methods. It has been argued (Heene and 
Ferguson, 2017) that this implies an inversion of the proper process of hy-
potheses falsification that characterizes science (which assumes that there are 
not “true” hypotheses but only hypotheses proved false or yet to be been proven 
false).For the study of S/G-related effects, this inverted logic implies the 
impossibility of showing that a difference between females and males (or 
whatever other S/G categories) does not exist or to statistically substantiate S/ 
G-similarities with the p-values obtained from hypothesis testing methods. This 
fact, together with the current praise of significance testing methods and p- 
values, promote an asymmetrical framework that equates a gain of knowledge 
with the identification of statistically significant differences between S/G- 
related categories (see also note #8). Therefore, is worth reminding here 
that, as eloquently put by (McCarthy and Konkle, 2005) almost twenty years 
ago, “Understanding how the sexes are the same is just as important as how they 
differ, but the latter receives far less attention and little value as a genuine scientific 
finding”. 
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reduced when comparing groups of unequal size (which, again, is not 
the case in our example but it seems to occur in around a third of 
neuroscience and psychiatry S/G studies (Rechlin et al., 2022)), or when 
employing statistical methods that are not really suited for the data at 
hand (as it was the case in our example). In a related but yet different 
sense, this conclusion incurs also in the so-called equivalence fallacy 
(Kline, 2013) as it erroneously interprets the failure to reject a null 
hypothesis of no differences between means as indicative that the 
compared populations are equivalent or “not different”. However, 
means are not populations, and, as illustrated in section 2.2, the fact that 
there is not a statistically significant difference between their means 
does not necessarily entail that there is not a difference between males 
and females (see also section 3). 

In a similar vein, concluding that “males and females significantly 
differ in their BMI scores” because the p-value associated with a mean (or 
other average-based) comparison is less than 0.05 is also very common 
but incorrect. This conclusion also stems from a dichotomous interpre-
tation of p-values and, in this case, it falls in the so-called valid research 
hypothesis fallacy (Carver, 1993, 1978), which takes the rejection of the 
null hypothesis as evidence supporting the researcher’s hypothesis. 
However, the researchers’ hypothesis is not under evaluation, only the 
null hypothesis is, and it is known beforehand that the null hypothesis of 
no differences is false8 (though statistical power may not always be 
sufficient to demonstrate this; for an ampler discussion, see (Cohen, 
1994; Hirschauer et al., 2022; Tukey, 1991)). This should not be inter-
preted as if p-values would have no meaning or utility, but rather that 
they should be properly understood and used. In the words of Wassertein 
et al (2019), “we are not recommending that the calculation and use of 
continuous p-values be discontinued. Where p-values are used, they should be 
reported as continuous quantities (e.g., p=0.08). They should also be 
described in language stating what the value means in the scientific context. 
[…] we must recognize afresh that statistical inference is not—and never has 
been—equivalent to scientific inference” and, therefore, when interpreting 
p-values, it is necessary to “Accept uncertainty. Be thoughtful, open, and 
modest”. 

Unfortunately, these calls are often unattended and the allure of 
“significant results” is such that p-values< 0.05 ordinarily trigger many 
other sophisms. For example, it is commonly assumed that, when 
p<0.05, the probability of replicating the same result in future studies 
must be >0.95 (replicability fallacy;(Carver, 1978)), and that the factor 
tested is “the cause” of the observed effect (causality fallacy;(Kline, 
2013)). In terms of replicability, it’s important to highlight that if the 
effect size in the entire population matches that observed in a sample 
where a t-test produces a p-value below 0.05, the likelihood of obtaining 
a p-value <0.05 in a replication study is 0.5, not 0.95 (Greenwald et al., 
1996). On the other hand, establishing causality requires more than just 

statistical testing − it also involves careful consideration of the research 
design, potential confounding variables, and alternative explanations 
for the observed results. The challenges in establishing causation 
become even much more pronounced when the factor tested cannot be 
directly manipulated and random assignment is not possible, as is the 
case when comparing S/G-related categories (Cox, 2006; Jacklin, 1981). 
Thus, to avoid the causality fallacy (and the essentialist statements about 
S/G categories frequently associated with it, see below), it is worth 
remembering that “Sex is not a force that produces these contrasts; it is 
merely a name for our total impression of the differences” (Lillie, 1939) and 
that S/G, especially if operationalized in two (or more) categories, is 
more often a moderator than a “true” factor (for an ampler discussion, 
see (Jacklin, 1981; Krieger, 2003; Maney, 2016; Richardson, 2022; 
Springer et al., 2012)). 

Additional problems with the conclusion “males and females signifi-
cantly differ in their BMI scores” arise from its omission of two highly 
relevant words: “statistically” and “means”. Firstly, bereft of its neces-
sary complement (statistically), the term “significant” acquires its or-
dinary meaning, incorporating additional connotations such as “large,” 
“important,” or even “fundamental.” This fallacy is referred to as the 
slippery slope of significance (Cumming, 2012). It is more likely to occur 
when there are pre-existing notions about the compared categories as 
being intrinsically different or even “opposite” (as is commonly the case 
for S/G-related categories), and its consequences are aggravated when 
not including any effect size index. Secondly, omitting the word “means” 
when describing the obtained results allows ’females’ and ’males’ to 
become the subjects of the sentence. This omission is also more likely to 
occur when comparing categories perceived as intrinsically or essen-
tially different (e.g., S/G-related categories), and makes the conclusion 
to become a generic statement that does not properly represent the 
analysis performed. Furthermore, the omission of the term “means” may 
incorrectly imply that all males’ BMI scores are different from all fe-
males, even when this has not been actually tested and is unlikely to be 
true. The following section delves deeper into this issue. 

2.3.2. Can mean differences be really considered group differences? 

«The over-reliance on the mean expresses a way of thinking about dis-
tributions and variability that we believe poses potentially grave problems 
for our science». 
Speelman, CP and McGann, M (2013) 

At the beginning of section 2, we mentioned that Adolphe Quetelet 
popularized the use of the mean, which he believed represented the 
ideal or true value of a trait as opposed to those values lying to either 
side, which he regarded as undesirable deviations or errors. While 
contemporary researchers do not endorse Quetelet’s ideas, the statistical 
approaches most commonly used still rely on the mean as the best value 
to summarize a set of scores and treat the variation as “error” or “noise”. 

(Speelman and McGann, 2013). In this regard, it is revealing to 
observe that measures of spread are ordinarily replaced with the stan-
dard error of the mean (SEM) that tell us nothing about the scores’ 
distribution (Andrade, 2020; Davies, 1998) and that bar and line graphs 
depicting means and SEMs − but hiding the data distribution- are 
commonly used for presenting continuous data (Lane and Sándor, 2009; 
Weissgerber et al., 2015). The brain pictures typically found in neuro-
imaging studies have the same concealing effects (Allen et al., 2012; 
Roskies, 2007). It is very unlikely that these generalized practices stem 
from a shared, thought-out model or from deliberate attempts to conceal 
variation. Rather, they probably are a mere reproduction of a learned 
tradition about the usage of means that is largely blind to its own as-
sumptions, limitations, and implications. 

Reducing a set of scores to its mean, or any similar statistic, carries 
with it the assumption that the information inherent in these data can be 
accurately encapsulated by a single number. While means (and other 
summary statistics) are convenient for communicating complex or 

8 As Tukey made clear "It is foolish to ask ’Are the effects of A and B different?’ 
They are always different—for some decimal place" (Tukey, 1991). This fact im-
plies that, with a sample sufficiently large, any difference will achieve statistical 
significance. Therefore, when working with very large datasets, statistical sig-
nificance may be largely irrelevant. To deal with this situation, Tukey proposed 
to interpret p-values as a continuous index quantifying the strength of the 
empirical evidence that a decision about which group has a larger value in a 
location measure can be made, and not as quantifying the evidence supporting the 
researchers’ hypotheses (Tukey’s “three-decisions rule”; (Jones and Tukey, 2000; 
Rice and Krakauer, 2023)). As discussed by Cohen (1994), this implies recog-
nizing that p-values are solely informative about the possible direction of an 
effect and, consequently, the need to establishing the effect’s size (and its 
confidence intervals) as well as its practical significance (the “so what” ques-
tion). Other authors have proposed testing non-nil null hypotheses through 
equivalence testing procedures (Lakens et al., 2018; Seaman and Serlin, 1998)) 
or to include some alternatives/ complements to p-values (e.g., s-values; 
(Greenland, 2019); SGPV, (Blume et al., 2019); “analysis of credibility” (Mat-
thews, 2019)). For a recent and comprehensive overview of how p-values 
should (and should not) be used, see Wassertein (2019). 
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extensive datasets, their utility hinges on their representativeness. 
However, means are trees that can make us miss the forest and, therefore, 
we must ask whether means faithfully represent the data or whether 
they conceal important nuances. In this regard, it’s worth remembering 
that, as illustrated in section 2.2, when improperly applied (i.e., when 
data are non-normally distributed), means may not accurately reflect the 
data and can prompt misleading conclusions. However, even when 
dealing with normally distributed data, solely reporting means results in 
a major loss of information that can make data to appear more uniform 
or stable than they really are (Speelman and McGann, 2013). Unfortu-
nately, because − as already mentioned- scores’ distributions are rarely 
shown, it is often impossible to assess to which extent means actually 
provide an adequate summary of the data (Lane and Sándor, 2009; 
Weissgerber et al., 2015). 

Mean comparisons share the assumptions, limitations, and potential 
pitfalls of averaging but also introduce a new one − that the differences 
among members within the compared group are constant, or at the very 
least, adequately represented by the results of a single comparison. 
When this assumption is not satisfied, the identified means’ difference 
(or absence thereof) does not represent the distinction between the 
compared groups. At best, it just illustrates the distinction existing be-
tween a subset of members from one group and a subset of members 

from the other group (Anastasi, 1981; Jacklin, 1981; Speelman and 
McGann, 2013) but, in the worse scenario, it may just provide a 
misleading summary of several effects running in the same or in opposite 
directions (see section 3). These distortions may occur when comparing 
any two groups, but they are more likely to happen when comparing 
large, non-randomly-assigned groups (as it is the case of S/G-related 
categories;(Anastasi, 1981; Jacklin, 1981)). 

The validity and representativeness of mean comparisons are rarely 
questioned, but there is a large gap between the complexity and infor-
mational richness of what is measured and the scarcity of what it is 
tested (although improper graphical representations impede both to 
realize this gap and to evaluate its extent; see Fig. 3). Similarly, there is 
also a gap between what is tested and what is concluded. As already 
mentioned, the identification between means and the populations they 
aim to speak for is so strong that the word “means” is often omitted, 
hence leading to generic and misleading statements such as “males and 
females do not differ in BMI” or “males and females significantly differ in 
their BMI scores”. These generic statements often make us to forget about 
within-group differences and also that, when these differences are larger 
than those observed between the means, an individuals’ membership in 
a given group provides little or no information about its status in the 
considered trait (Anastasi, 1981). 

Fig. 4. Averaging imposes a binary analytical and interpretative framework. Panel A illustrates how, by producing a categorization (in most cases, a binar-
ization) of the information collected about S/G-related categories, averaging prompts binary conclusions (often mispresented in terms of “sex dimorphism”) that 
feedback the use of these categories and averages and keeps S/G-related research away from its goal of advancing toward precision medicine. Panel B shows that this 
self-reinforcing but counterproductive loop can be broken when averages are replaced with other analytical strategies that allow for the treatment of S/G-related 
categories as distributions (see section 3.2), hence providing more detailed and nuanced information that may potentially be more useful when incorporating S/ 
G-related information into the design of individualized health interventions. 

C. Sanchis-Segura and R.R. Wilcox                                                                                                                                                                                                         



Frontiers in Neuroendocrinology 73 (2024) 101133

9

It should be emphasized that, even when the average of one group 
exceeds that of the other by a large amount, some individuals in the 
lower-scoring group surpass some individuals in the higher-scoring 
group and that this should be quantified with appropriate effect size 
indexes (i.e., probability of superiority; PS).9 In our sample the PS es-
timate is 0.57, which again indicates that females and males seem to not 
differ much in their BMI scores. However, PS and other probabilistic 
effect size indexes are more apprehensible and meaningful than Cohen’s 
d,10 provide a complementary perspective about how the groups differ 
(Grissom & Kim, 2005; Wilcox & Rousselet, 2017, 2023), and also show 
how misleading the generic statements that often stem from mean 
comparisons can be. 

3. Rethinking analytical strategies for s/g research 

3.1. Are mean comparisons useful, useless, or counterproductive in 
studying s/g research? 

«It is difficult to understand why statisticians [and endocrinologists/ 
physiologists] commonly limit their inquiries to Averages, and do not revel 
in more comprehensive views» 
Galton, F.R.S. Natural inheritance (1889) 

It is often overlooked that the statistical methods used, rather than 
the theoretical models one may subscribe, shape how research aims are 
translated into specific questions and determine the nature and quality 
of the answers obtained. In this section, we discuss how the overreliance 
on means and mean comparisons not only reduces S/G-related research 
to the search of average differences between S/G-related categories but 
also introduces a categorical model that hinders the goal of increasing 

current knowledge about the role of S/G-related factors in health and 
disease. 

It might seem that when sample size is “small” (e.g., when n< 10–20 
cases per group), comparing S/G-related categories through their means 
is probably all what can be done. However, these comparisons can be 
improved by: 1) Depicting the data distribution with scatterplots, box 
plots, or violin plots; 2) Comparing medians or trimmed means, which 
(as shown in section 2.2) almost always provide more accurate and more 
powerful comparisons than those based on means when sample size is 
small; 3) Incorporating probabilistic effect sizes such as the PS. These 
effect size indexes provide a complementary perspective to those 
informing about the magnitude of the averages’ difference and should 
prevent generic statements about “(all) males and (all) females” when 
drawing conclusions; 4) Strictly restricting conclusions to what has been 
compared (averages) and explicitly naming in these conclusions the kind 
of average that has been compared. Nevertheless, even when all these 
improvements are incorporated, the results of studies conducted with 
small sample sizes and comparing S/G categories through a single cen-
tral location measure should be regarded with caution and may 
contribute little to our understanding. 

When samples are large, comparing S/G-related categories through 
their averages should be regarded as an inefficient allocation of re-
sources and a missed opportunity to get deeper insights about the data. 
Think about this common situation: Substantial efforts and resources are 
devoted to collect the largest possible sample (in some cases including 
hundreds or thousands of females and males), but this information is 
reduced to a single number, the difference between their respective 
means (or, worse even, the p-value associated to this difference). This 
single value is then used to draw conclusions not only about the dif-
ferences between the samples but also about the samples themselves, 
and even about the broader populations they aim to represent. Is this 
approach truly sensible? Is it really the best we can do? 

Probably not, but it is what is most frequently done in S/G-related 
research. In fact, this analytical strategy is so common (and not only 
among S/G-related studies) that it does not have a name, but it could 
very well be called “the hourglass fallacy”. The hourglass metaphor is 
aimed to emphasize the significant gap between the resources invested 
and the information obtained, as well as the exaggerated conclusions 
drawn, while highlighting the inherent fragility of situating average 
differences as the epicenter of this approach. Referring to it as a fallacy 
may seem too severe, but the term seems appropriate when considering 
that this analytical strategy does not only imply a suboptimal allocation 
of resources but also imposes a categorical (often binary) framework. 
This categorical/ binary framework seems particularly inappropriate for 
biobehavioral S/G-related research as it hinders its main goal 
− describing S/G-related variation to promote more personalized health 
interventions. 

Averaging and average comparisons may seem justified (or even the 
only possible analytical strategy) in S/G-related research because data 
are ordinarily collected as belonging to two distinct and mutually- 
exclusive categories (males and females). However, it is the process of 
averaging (and not the way data are collected) that generates a cate-
gorization of the outcome, imposing a dichotomization that may not 
actually exist in the data. In fact, even when information about S/G- 
related factors is collected as a categorical variable with only two 
possible and mutually-excluding values (males or females), their mea-
surements in almost any trait are rarely dichotomous (Hyde, 2014; Joel, 
2011; Maney, 2016; Reis and Carothers, 2014). That is, once a trait is 
measured, females and males no longer form two categories but two 
empirical distributions that spread at different probability levels within 
particular ranges of the outcome’s continuum. Therefore, it is only when 
all this information is forcefully simplified into a single number, typi-
cally the mean, that S/G-related data becomes actually binary (Fig. 4A). 
These averages not only contribute little to the goals of biomedical S/G 
research but may also discard crucial aspects that this research could or 
should provide. In fact, the overreliance on mean comparisons has led to 

9 Probability of Superiority (PS) is one of the many names used to designate a 
series of estimators of the probability that the values of a group “A” are higher 
than those coming from another group “B” (Grissom and Kim, 2012). The PS 
can be derived from the value of Cohen’s d using some established formulas 
(and then it is commonly referred as “common language effect size” or CLES 
(McGraw and Wong, 1992)) but these calculations (as Cohen’s d itself) assume 
that scores follow a normal distribution. Consequently, their results can be 
misleading when the normality assumption is violated and it is safer (and often, 
more accurate) to estimate this probability from non-parametric methods 
(Ruscio, 2008; Wilcox, 2022). Thus, for example, in our sample the probability 
of a male having a larger BMI score than a female is 0.53 when directly derived 
from Cohen’s d, but 0.57 when non-parametrically estimated.From Cohen’s 
d other probabilistic effect sizes can be derived, such as U1 (the percent of 
overlap between two distributions), U2 (the percentage of cases of group A that 
exceeds the same percentage in group B), and U3 (the percentage of cases of 
group A that exceeds the median of group B). These statistics also assume 
normality (Cohen, 1988), but non-parametric estimators for U1 (Pastore and 
Calcagnì, 2019) and a robust extension of U3 based on the median (“quantile 
shift”; Wilcox, 2021) have been developed.A final worth mentioning variation 
of PS is Cliff’s delta (Cliff, 2014). This statistic estimates the probability that a 
randomly selected observation from one group is larger than a randomly 
selected observation from another group, minus the reverse probability (i.e., P 
(A>B) minus P(B>A)). Cliff’s delta is both an informative effect size and a 
robust non-parametric test of the differences between two (or more) groups that 
does not relies on any location measure (Wilcox, 2022, 2021, 2006).  
10 Cohen’s d is commonly used but difficult to understand and, often, poorly 

interpreted (Acion et al., 2006; Hanel and Mehler, 2019; Ruscio, 2008). In fact, 
most people find difficult to grab what 0.2 or any other number of standard 
deviations actually implies or means. Some “translations” of Cohen’s d have 
been developed to make it more readily comprehensible and meaningful (e.g., 
the “common language effect size” and Cohen’s U statistics; see note #9). Yet, 
Cohen’s d is very frequently interpreted resorting to some cut-offs that classify 
effects as “negligible”, “small”, “moderate” and “large”. This has been very 
much criticized (Glass et al., 1982; Thompson, 2011) and, in fact, Cohen 
himself warned about using those boundaries and explicitly noted that they 
might be especially inappropriate in biological research and other similar 
experimental contexts (Cohen, 1988). 
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a situation where more is known about whether the means of S/G- 
related categories differ than about how the members of these cate-
gories relate to specific traits. 

However, since the goal is not to draw conclusions about mean dif-
ferences but about males and females themselves, simplistic compari-
sons between ’the average male’ and ’the average female’ are often used 
to make unwarranted generic statements and conclusions about all fe-
males and all males. As already mentioned, these generic statements 
omit key words (such as “statistically” and “means”) then hiding the 
reductionist nature of average comparisons and making differences be-
tween S/G-related categories appear as “large” and “universal”. This 
terminological and conceptual drift reaches its peak (and is bolstered by) 
the currently common misuse of the term sexual dimorphism in 
biomedical studies. Although this term literally means “two-forms”, it is 
often employed to refer to any statistically significant difference found 
between females and males, hence ignoring that, except for a few aspects 
related to reproductive functions, these differences rarely (if ever) take 
two distinct forms. To the contrary, when effect sizes are calculated, 
females and males show a high degree of overlap in most traits, and 
individual differences within the members of each of these categories 
can be as large or even larger than that existing between their averages 
(e.g., (Hyde, 2014; Maney, 2016; Reis and Carothers, 2014; Ritchie 
et al., 2018; Zell et al., 2015). There have been repeated calls to cease 
this misleading and uniformizing use of the term “sexual dimorphism” 
and to classify female-male differences according to their statistical 
characteristics and other criteria (DeCasien et al., 2022; Eliot et al., 
2023, 2021; Joel, 2011; Joel and McCarthy, 2017; McCarthy et al., 
2012). Nevertheless, these claims have had little effect on how re-
searchers ordinarily report their findings, and the misuse of the term 
“sexual dimorphism” continues feeding back the same binary framework 
based on averages that initially motivated its use (Fig. 4A). 

At this point, we should probably ask ourselves: Is averaging − and 
the theoretical model it imposes- the best strategy to incorporate S/G- 
related factors in the description of biological and behavioral traits? Is 
averaging the best strategy to advance precision medicine and more 
individualized treatments? If the answer to both questions is “no”, we 
should also ask ourselves what exactly studies comparing the averages of 
males and females provide and whether they should be continued. Even 
more important, we should think which other analytical strategies could 
be more suitable for attaining the intended goals. In the next section, a 
promising alternative to mean comparisons is illustrated. 

3.2. A shift away from average comparisons (the shift-function) 

«An Average is but a solitary fact, whereas if a single other fact be added 
to it, an entire normal scheme, which nearly corresponds to the observed 
one, starts potentially into existence. […] 
So, in respect to the distribution of any human quality or faculty, a 
knowledge of mere averages tells but little; we want to learn how the 
quality is distributed among the various members of the Fraternity or of 
the Population, and to express what we know in so compact a form that it 
can be easily grasped and dealt with […] A knowledge of the distribution 
of any quality enables us to ascertain the Rank that each man holds 
among his fellows in respect to that quality. This is a valuable piece of 
knowledge» 
Galton, F.R.S. Natural inheritance (1889) 

To move away from the intrinsic limitations of average comparisons 
− and the theoretical model they impose- requires stop treating males 
and females as if they were homogeneous categories summarizable by a 
single number and to start treating them as distributions with appro-
priate analytical strategies (Fig. 4B). These methods should provide a 
complete assessment of differences and similarities in location, spread, 
and shape without making distribution assumptions or requiring large 
sample sizes. Moreover, they should not only be comparative but also 
descriptive, providing both numerical and graphical insights about the 

compared groups and not only about their differences. 
A method able to satisfy all these requirements is the so-called shift 

function (Doksum and Sievers, 1976; Wilcox, 2021, 2006). The shift 
function is both an inferential method and an informative graphical 
display. Without getting into its statistical details (which can be found in 
(Wilcox, 2022; Wilcox and Rousselet, 2023a)), the inferential method 
can be described as a non-parametric test that extends the robust median 
comparisons illustrated in section 2.2 to simultaneously compare several 
quantiles.11 This method can be applied when dealing with two related 
groups (Rousselet et al., 2017), two independent groups (Rousselet 
et al., 2017), or four groups in a 2x2 design (Wilcox and Rousselet, 
2023b), all without assuming normality or homoscedasticity. In addi-
tion, this procedure allows customizing which quantiles to compare (a 
decision that should take into account the available sample size; see 
below), and it provides p-values adjusted to the number of performed 
comparisons as well as the differences between these quantiles, along 
with their 95% confidence intervals as non-standardized effect sizes. The 
classic graphical display of the shift-function represents the values of the 
quantiles of one of the compared groups on the x-axis and the between- 
group quantile differences on the y-axis, hence revealing how and by 
how much one distribution must be adjusted or ’shifted’ to match the 
other. 

To illustrate this method, let’s return to our BMI example and 
compare the deciles of the males’ and females’ distributions (Fig. 5). 
From this depiction, a new finding immediately emerges: the differences 
between males and females are not consistent across the entire BMI 
range. Specifically, differences favoring males are observed for deciles 
1–5 (that is, among individuals with low to intermediate BMI, females 
have BMI scores that are consistently around 1.5 points lower). These 
differences appear to become less reliable and progressively smaller at 
deciles 6–7, ultimately reversing their direction in deciles 8 and 9, 
although evidence for this latter effect is inconclusive (that is, among 
individuals with the largest BMI scores, females seem to have larger BMI 
scores, but there is large individual variation). This in-depth analysis 
provides a comprehensive and informative view of how these two 
groups differ in location. It also explains why the mean differences were 
deemed ’negligible’ and failed to achieve statistical significance (i.e., 
because opposing effects canceled each other out when calculating the 
averages). However, the shift function does not only inform about 
location differences. Thus, the fact that the line is not parallel to the x- 
axis reveals that the groups also differ in spread, and its positive slope 
indicates that the spread is larger in the represented group (in this case, 
the females). Moreover, the non-linear nature of the shift-function in-
dicates that the distributions are skewed and, because the spread is 
larger on the right side of the divide created by the median, it can be 
deduced that the distributions are right-skewed. 

The informativeness of the shift-function becomes self-evident when 
comparing Figs. 3 and 5. Moreover, this method is powerful and does not 
require prohibitive sample sizes, allowing a reliable comparison of all 
deciles when n≥30 per group (and the comparison of the three quartiles 
when n≥20 (Wilcox and Rousselet, 2023a)). However, the classic 
graphical display of the shift function has some potential drawbacks. 

11 Quantiles are cut points that divide an ordered variable (x) in intervals each 
of them containing the same number of cases. The most commonly used 
quantiles include quartiles (Q1, Q2, and Q3), deciles (D1 to D9), and percentiles 
(P1 to P99) and the most commonly known quantile is the median (also 
denoted as Q2, D5, and P50). Quantiles are cut points, and they should not be 
confounded with the intervals they produce (e.g., quartiles are 3 values that 
split a variable into its quarters, deciles are 9 values that split a variable into its 
tenths, etc.).Quantiles provide the basis for some robust measures of location 
and spread (Wilcox, 2023, 2022), and there are different procedures to compare 
quantiles from independent or related groups and quantify the magnitude of 
these differenced in a similar way to Cohen’s d (Wilcox, 2023, 2022). Moreover, 
as hinted in the footnote #9, quantiles provide the basis to calculate some 
probabilistic effect sizes (see also footnote #12). 
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Fig. 5. The shift function of BMI data. The x-axis displays the deciles of the females’ BMI scores. The y-axis is the estimated difference between the corresponding 
deciles of females and males. For each decile (dots) the bootstrap-estimated 95% confidence interval is also depicted (vertical lines). To enhance readability, this 
graph also includes: 1) A horizontal dashed line highlights the height at which the between-group differences equal to 0; 2) A vertical dashed line marks the median 
of the females’ scores; and, 3) Dots are color-coded depending on the p-values associated to each comparison. P-values were adjusted for multiple comparisons using 
the strict Hochberg’s method. 

Fig. 6. Alternative graphical display for the shift function based on cumulative density functions (CDFs). BMI scores, organized in ascending order, are 
depicted for males (blue) and females (red). The x-axes show the BMI score range, while the y-axis indicates the proportion of cases with a BMI score equal to or lower 
than any given value. The distance between the resulting CDFs reflects male–female differences, akin to the classical shift-function. Arrows highlight decile-based 
comparisons, but the graph’s grid allows for additional user-defined comparisons (see details and examples in the main text). Colored rectangles near the x-axis 
represent tenths of the BMI distributions, showcasing male–female differences in spread and skewness. 
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Firstly, without prior exposure or guidance, this visualization might be 
challenging to interpret, especially for non-expert audiences. Secondly, 
the outlook of the shift function (e.g., the sign of observed differences 
and of the slope) depends on which group is designated as the “refer-
ence” group, so this graphical representation may be more suitable for 
comparisons in which there is true control or reference group. Finally, 
this depiction is very informative of the between-groups differences, but 
it does not describe the groups themselves. 

Fig. 6 presents an alternative graphical display for the shift function 
that may be more appropriate in the context of S/G-related research 
because it does not require designing a reference group and because 
shows all the individuals’ scores. Specifically, Fig. 6 illustrates the cu-
mulative density functions (CDFs)12 of BMI scores for males and females 
at the center of the plot. The distance between these distributions pro-
vides the same information than the classical depiction of the shift- 
function, the magnitude of the between group differences across the 
range of BMI scores. The deciles’ comparisons are graphically (arrows) 
and numerically summarized, whereas the values of the deciles them-
selves can be easily approximated from the colored rectangles included 
in the figure (that represent a breakdown of females’ and males’ dis-
tribution into its tenths). From these rectangles, the right-skewness of 
these distributions and the female-male differences in spread are also 
easily grasped. 

However, the main strength of this figure resides on the fact that it 
does not only serve to describe the distributions or illustrate the results 
of the experimenter-chosen comparisons (in this case, the deciles’ 
comparisons). It can also be used as a computational device that enables 
readers to compare the BMI scores of females and males without other 
restrictions than those imposed by the axes’ scales. 

To conduct within- or between-groups comparisons with this graph, 
one simply needs to use its grid as in the classic “battleship” game. Thus, 
for example, one can reproduce the between-groups decile comparisons 
(or extend them to other quantiles) by first projecting a horizontal line 
from the selected proportion of individuals in the y-axis (e.g., 0.5) to 
each of the two CDFs and then projecting the corresponding vertical 
lines to the x-axes to determine and compare the approximate BMI value 
in each group (in this case, 24.8 in females, 26.2 in males). Following the 
same procedure but projecting the vertical lines till the colored rectan-
gles instead to the BMI axes, it can be found that around 65% of the 
males show BMI scores larger than the females’ median BMI then 
obtaining a non-parametric effect size similar to Cohen’s U3 (see foot-
note #8). 

Comparisons can be performed the other way around too. That is, 
one can choose any BMI value from any of the two x-axes and project a 
vertical line to each of the CDF curves and then project horizontal lines 
to the y-axis to ascertain which proportion of females and males have 
BMI scores that are lower or equal to the selected BMI value. In this 
particular example, this second type of comparisons may have especial 
value because BMI scores are usually broken in health-relevant cate-
gories (underweight, BMI<18.5; normal weight, 18.5 to 24.9; over-
weight, 25 to 29.9; obese>=30). Thus, it can be interesting to know how 
many males and females fall within these BMI categories and whether 
their relative frequencies at any of these categories differ. Such 

estimations and can be performed by taking the limits of a category in 
the x-axis and projecting lines to the CDFs, and then project the lines to 
the y-axis. Despite the scale of the axes, it is easily seen that that there 
seem to be a larger proportion of females in the underweight and normal 
weight categories but probably not in the other two categories. In fact, 
when these proportions are compared (Newcombe, 1998), it is found 
that females fall more frequently than males in the categories of un-
derweight (0.025 vs. 0.005, p=0.042) and normal weight (0.48 vs. 0.36, 
p<0.001) categories, less frequently in the overweight category (0.27 vs. 
0.44, p<0.001), and with similar frequency in the obese category (0.22 
vs. 0.19, p=0.338). 

Overall, as shown by this example and some recent studies, the 
simultaneous comparison of several quantiles allows treating S/G- 
related categories as distributions, both within simple (Fig. 6, (San-
chis-Segura et al., 2023, 2022)) and factorial designs (Fig. 7, (Sebastián- 
Tirado et al., 2023)). This approach coupled with the inclusion of 
additional effect sizes and appropriate graphical depictions, provides a 
complete description of how the individuals included in these categories 
are, and also a nuanced and informative analysis of how and by how 
much they resemble and differ. It seems reasonable to propose that such 
detailed information can probably be more useful than that provided by 
averages when trying to incorporate S/G-related information to the 
comprehension of biological and behavioral phenomena and/or when 
searching and designing more individualized health-related in-
terventions. Furthermore, the ability of the shift function to unveil 
complex patterns of relationships, which would be unnoticed or even 
masked when solely relying on average comparisons, should prompt a 
critical reflection on the potential limitations of mean comparisons in S/ 
G-related research. Specifically, we should reflect about how many 
relevant findings may have been overlooked or mischaracterized due to 
overly narrow statistical approaches, and also whether comparing av-
erages alone should be explicitly acknowledged as a limitation in bio-
behavioral studies aimed at incorporating S/G-related information. 

4. Conclusion 

«Whenever I read statistical reports, I try to imagine my unfortunate 
contemporary, the Average Person, who, according to these reports, has 
0.66 children, 0.032 cars, and 0.046 TVs». 
Kató Lomb. Polyglot (2008) 
«Far better an approximate answer to the right question, which is often 
vague, that an exact answer to the wrong question, which can always be 
made precise» 
John Tukey. The future of data analysis (1962) 

In this commentary, we have shortly reviewed the − often over-
looked- statistical shortcomings of mean comparisons. We have shown 
that means can be misleading, but also that any average is an attempt to 
reduce complex data into a single number that − more often than not- 
may be unnecessary and inappropriate. Moreover, we have shown that 
average comparisons often lead to unwarranted generic statements 
about males and females. These generic statements are not only 
misleading but also potentially dangerous or harmful. As research in 
cognitive psychology has shown, generic statements require little evi-
dence to be accepted as true, especially if coming from sources judged as 
trust worthy and/ or referring to group differences (Cimpian et al., 2010; 
Prasada and Dillingham, 2006). Furthermore, these statements are 
likely to be seen as characterizing the entire kind, prompt stereotypical 
views about the subjects of those statements (Cimpian et al., 2010; 
Gelman, 2004), and, when referring to biological properties, they evoke 
essentialist thinking (Noyes and Keil, 2019). 

We have also proposed that mean comparisons might be especially 
inappropriate in the context of S/G-related studies. This is not only 
because of the perils of generic statements about the members of S/G- 
related categories, but also because mean comparisons do not 
approach, and may even separate, S/G-related biomedical research from 

12 Cumulative distribution functions (CDFs) are graphical representations that 
display cumulative proportions on the y-axis across the values of the variable of 
interest (x-axis). A cumulative proportion represents the proportion of scores 
that are equal lower than a given value of the variable of interest (in this case 
BMI). Cumulative proportions and quantiles are related but should not be 
confused. Quantiles are cut points that divide a variable in equally populated 
intervals (see note #11), while cumulative proportions indicate the proportion 
of data points below a given value within the dataset. Thus, for example, the 
cumulative proportion of the first quartile (Q1 or P25 if expressed as a 
percentile) is 0.25, meaning that 25% of the data lies below the value of Q1 and 
75% above it. 

C. Sanchis-Segura and R.R. Wilcox                                                                                                                                                                                                         



Frontiers in Neuroendocrinology 73 (2024) 101133

13

(caption on next page) 

C. Sanchis-Segura and R.R. Wilcox                                                                                                                                                                                                         



Frontiers in Neuroendocrinology 73 (2024) 101133

14

its main goal − understanding the S/G-biased prevalence and manifes-
tations of somatic, psychiatric, and neurological diseases to advance 
towards more tailored diagnostics and therapeutics. In fact, averages 
(and specially those obtained from broadly defined and non-randomly- 
assigned categories) come at the expense of the personalization which 
precision medicine specifically aims for: Precision medicine aims to 
account for individual variability, while averages do the opposite (mask 
or ignore variability). Therefore, just documenting differences between 
the averages of S/G-categories risks producing findings with little rele-
vance to human health, but also of treating the individuals included in 
each of these categories as if they were equal or highly similar in the trait 
(s) considered, which often may not be the case (for an ampler discus-
sion, see (Epstein, 2007; Galea and Lee, 2023; Richardson et al., 2015)). 

Finally, we have tried to briefly illustrate that there are other 
analytical strategies that are informationally richer and that attend to 
both within- and between-groups variation by treating categorically 
collected information as continuous distributions. This approach is 
descriptive and not only comparative, and it conceives S/G-related 
factors as sources of individual variation and not just of between- 
group differences, hence making it more promising for advancing to-
ward precision medicine. However, we do not think switching the way 
data are analyzed suffice to achieve this goal. It is just one step that must 
be integrated with other necessary improvements. In this regard, 
showing that males and females (and that all males and all females) are 
not the same is not the same than knowing what makes them to differ. 
Thus, as others have proposed (DiMarco et al., 2022; Jacklin, 1981; 
Richardson, 2022) and it seems to be increasingly recognized (Massa 
et al., 2023; Wierenga et al., 2023; Dubois et al., in press), S/G-related 
categories need to be replaced by the specific S/G-related factors 
which are suspected to operate − often in interaction with other vari-
ables- in each particular case (e.g., chromosomal complement, differ-
ential access to health resources, etc.). This dual commitment to 
replacing S/G categories with clearly defined S/G-related factors and 
adopting methodological approaches that transcend mere average 
comparisons seems a promising strategy to navigate the complexities of 
precision medicine and uncover the intricate variability within and 
between diverse populations. 
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