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Abstract—This paper presents a solution to the challenging
problem of estimating the state of charge (SOC) of batteries using
a Kalman filter algorithm. The algorithm requires knowledge
of the dynamical model and its parameters, along with the
covariance matrices associated with measurement noise, process
noise, and initial estimation error. However, determining the
values for the process noise and initial estimation error matrices
is often difficult. To address this issue, we propose a novel
method to tune these matrices based on a new tuning parameter,
the measurement noise variance, and the expected slope of the
open circuit voltage vs. state of charge curve. We demonstrate
the effectiveness of the proposed approach through extensive
simulations involving various batteries and operating conditions
in an electrical driving scenario. We assess the performance of
the Kalman filter estimation under noisy environments, wrong
initial conditions, and modeling errors, obtaining dimensionless
performance indices that quantify its behavior. By analyzing the
simulation results, we establish a general design procedure for the
process covariance matrix, where the user only needs to set the
desired limits for the state of charge error in noisy environments
and the convergence time under wrong initializations. This design
procedure is applicable to batteries of any type, sampling period,
or measurement noise level, providing a practical and efficient
solution for accurate state of charge estimation

Index Terms—State of charge estimation, battery, Kalman
filter, process noise covariance matrix, tuning parameters, dimen-
sionless design, measurement noise, open circuit voltage, SOC
curve, modeling errors.

I. INTRODUCTION

Lithium-ion batteries (LIBs) are the cornerstone for the
successful development of electrical vehicles (EVs), which
play a key role on the decarbonization of the mobility sector
[1]. Beyond technical challenges, much of the industry’s
concern is about cost. Although LIBs have been experiencing a
very significant cost decrease in the last decade, this trend has
recently shown signs of reversing [2]. So, LIBs still represent
one of the most relevant factors in the final cost of EVs.

One of the ways to reduce the size of a battery and,
accordingly, its cost is to extend the profitable state of charge
(SOC) range. However, since overcharging or overdischarging
a battery is dangerous, it is of great importance to properly
estimate SOC. Furthermore, this estimation is also required
for a precise determination of the remaining driving autonomy,
which is a relevant feature for the popularization of EV.

One of the most extended methods to estimate SOC, because
of its simplicity, is the Coulomb counting (also known as

ampere-hour counting or current integration). However, it is an
open loop estimator very sensitive to different error sources,
such as the initial SOC, actual battery capacity, or current
measurement precision [3]. On the contrary, estimation by
measuring the open circuit voltage (OCV) can be very accurate
(when there is a good precision in the voltage measurement)
but it generally requires a very long rest time, which makes it
unpractical to use in real-time applications [4].

In this context, approaches which combine both an open
loop model and voltage measurement, i.e. state observer based
estimators, have been widely proposed in the literature [4], [5].
In particular, because of its popularity in many other fields,
Kalman filters (KFs), and its modifications such as extended
Kalman filters (EKFs) or unscented Kalman filters (UKFs), are
some of the most used algorithms for the design of observers in
this application [6]. For their adequate functioning, KF-based
algorithms require a proper design of their parameters, i.e. the
matrices for covariance of the process noise (Qk), covariance
of the observation noise (Rk) and initial covariance of the
estimation error (P0).

Some authors formulate some assumptions to try to calcu-
late, as accurately as possible, the real values of these matrices
[3], [7]. If these values are correct and some hypotheses
are valid, the KF is guaranteed to be optimal. Nevertheless,
these hypotheses (absence of modelling error, white noise
and disturbances, uncorrelated noises, etc...) are too strong in
virtually all cases, and, therefore, the effort on determining the
real covariance matrices does not provide any clear advantage.

Even like that, despite not fulfilling the hypotheses for
optimality under which the KF was developed, the algorithm is
still valid and covariance matrices can be considered as tuning
parameters of the filter, which determine the performance of
the observer. Many works in the literature regard these matri-
ces as parameters and offer some very broad recommendations
[7] but, to the authors’ knowledge, it does not exist a precise
procedure for their design for any battery in a general case,
and in fact this is considered a difficult task [6].

In this work we consider whether it is possible to define
some criteria for the selection of the values to be used in the
Qk, Rk and P0 matrices and applied to any battery. To do so,
we propose the analysis of the behavior of the estimator in
different scenarios of estimation error, for different batteries
and with different observation noise levels. These scenarios
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Fig. 1. Equivalent electrical circuit.

include the study of: the speed of convergence as a function
of SOC initialization errors, high-frequency errors due to
voltage measurement noise, and steady-state errors due to
modeling inaccuracies. Furthermore, we establish dimension-
less techniques for the assignment of values to the covariance
matrices required by the KF, as well as for the performance
analysis. With the combination of both proposals we present an
approach that allows us to predict the behavior of the estimator
for any battery. Based on this, we propose a procedure for
the design of estimators based on the KF that allow certain
performances to be guaranteed.

Some known limitations of this work to be addressed in
future works include, regarding the implementation of the
algorithm: we neglected in the design phase the effect of P0

matrix and the terms of Qk matrix that refer to states different
from the SOC; and, regarding the simulated scenarios: we did
not analyze the effect of the modeling error on the passive
elements of the equivalent circuit (resistances and capacitors),
and we did not include noise in the current sensor.

The structure of the paper is as follows. In Section II
we formulate the problem, including the battery model used
and the KF algorithm implementation. Section III is devoted
to introduce our proposal for the parameters tuning and the
dimensionless analysis of the observer performance. In Section
IV we validate the proposal with a benchmark including
different battery models. Section V summarizes the design pro-
cedure and, finally, Section VI introduces some conclusions.

II. PROBLEM STATEMENT

A. Battery model

In this work, we consider an equivalent circuit model (ECM)
with a series resistance and two RC branches (2RC) as the
one shown in Fig. 1. This kind of model is extensively
implemented for online SOC estimation as it offers a good
compromise between simplicity and accuracy [6].

In Fig. 1, I(t) is the charging current; V (t) is the terminal
voltage; Voc is the OCV, which depends on SOC; R0 is the
series resistance; and the RC branches are used to model the
time constants τ1 = R1C1 and τ2 = R2C2 that describe the
slow and fast transient response caused by charge transfer and
diffusion within the LIBs [5].

By applying elemental circuit principles, the behavior of the
LIB is modelled by the following differential equations:

SOC(t) = SOC(0) +
η

Cbat

∫ t

0

I(t) dt (1)

0
SOC

Voc

1

∆Voc

Fig. 2. Open circuit voltage vs state of charge.

V̇c1(t) =
−1

τ1
Vc1(t) +

R1

τ1
I(t) (2)

V̇c2(t) =
−1

τ2
Vc2(t) +

R2

τ2
I(t) (3)

V (t) = Voc(SOC(t)) +R0 I(t) + Vc1(t) + Vc2(t) (4)

where Cbat is the LIB capacity; η is the efficiency, and
Vc1(t) and Vc2(t) are the voltages in both capacitors.

For the observer design phase, Cbat, η and all the passive
ECM elements are considered constant in time and indepen-
dent from SOC and temperature, although some robustness
analyses will be pursued.

OCV presents a dependence with SOC that is usually known
in commercial LIBs or can be derived, as a piecewise function,
from a stepwise measurement of OCV after a sufficient rest
time for different values of SOC. Fig. 2 shows a typical
OCV − SOC characteristic for a generic LIB.

Although this curve can slightly change throughout the
LIB lifetime, it is considered constant in this work. However,
if some degradation was observed in the LIB behaviour,
the curve could be updated with new stepwise experiments.
Finally, hysteresis effects are neglected.

B. State of charge estimation
As previously discussed, model-based state observers are

widely used in the literature for SOC estimation, mainly
because terminal voltage can be very easily measured. This
kind of observers requires a discrete equivalent model for the
system, described as:

xk+1 = Axk +B uk + wk (5)
yk = g(xk, uk) + vk (6)

with

xk =

SOCk

Vc1,k

Vc2,k

 , uk ≡ Ik, yk ≡ Vk (7)

A =

1 0 0

0 e
−Ts
τ1 0

0 0 e
−Ts
τ2

 B =


Ts η
Cbat

R1(1− e
−Ts
τ1 )

R2(1− e
−Ts
τ2 )

 (8)

where Ts is the sample period; Ik = I(k Ts); Vk = V (k Ts);
and wk and vk are included to denote the uncertainty in the
state and measurement equations, respectively.

From (4) and the definition of the system states, the output
equation g(xk, uk) has the form:

g(xk, uk) = Voc(xk,1) + xk,2 + xk,3 +R0 uk (9)



With previous equations, the SOC is estimated by means of
a model based observer:

x̂−
k = Âx̂k−1 + B̂ uk−1 (10)

ŷ−k = ĝ(x̂−
k , uk) (11)

x̂k = x̂−
k + Lk(yk − ŷ−k ) (12)

ˆSOCk =
[
1 0 0

]
x̂k (13)

where Â, B̂, and ĝ are introduced to consider potential
modelling errors in the ECM parameters and Lk is the time-
variant observer gain.

This observer must be initialized at a given initial value x̂0

that includes the estimate of the initial value of SOC and that
of the voltages in the two capacitors included in the model.
The most widespread alternative to obtain the observer gain
is the EKF technique, in which the gain Lk is defined every
sampling period using the following equations:

P−
k = Â Pk−1 Â

T +Qk (14)

Lk = P−
k ĈT

(
Ĉk P

−
k ĈT

k +Rk

)−1

(15)

Pk = (I − Lk Ĉk)P
−
k (16)

where Pk models the state error propagation:

Pk = E{x̃k x̃
T
k }, x̃k = xk − x̂k (17)

Note that, as the measurement equation includes a nonlinear
function, there is no Ck matrix for the real system. However,
Ĉk can be obtained by using the partial derivative of ĝ(x, u):

Ĉk =

[
∂ĝ(x,u)
∂x1

∣∣∣
x=x̂−

k ,u=uk

1 1

]
(18)

C. Motivation

The EKF algorithm (14)-(16) requires an initial value for P0

that should be equal to the covariance of the initial estimate
error of the state, i.e., P0 = E{(x0 − x̂0) (x0 − x̂0)

T } 1.
Furthermore, the matrices Qk and Rk must be defined as
a function of the error propagation model in both the state
equation and the output equation. In the state equation, Qk

refers to the uncertainty that is associated with the modeling
error or the available current measurement. On the other hand,
the term Rk refers to the measurement noise of the voltage
sensor as well as the measurement noise due to the current
sensor introduced through the term R0 Ik.

The KF is an observer that ensures that the estimate of the
state is optimal in the sense of minimizing the total squared
error trace(Pk). However, this statement is only true under
the following conditions: when the error propagation model
coincides with the one indicated above; when the algorithm is
initialized with the exact value of the initial error covariance;
and when both disturbance wk and measurement noise vk are
white noise type signals with zero mean and, together with

1Impossible to know since we don’t know the actual initial state x0.

the estimation error of the starting state x̃k−1, are signals
uncorrelated in time, that is, if

wk ∼ N(0, Qk), vk ∼ N(0, Rk), (19)

and E{wkvk} = E{wkx̃
T
k−1} = E{vkx̃T

k−1} = 0.
If these hypotheses are not fulfilled by the system the ob-

server is no longer optimal and, then, performing an exhaustive
analysis to determine matrices P0, Qk and Rk is not justified.
However, the values that we assign to these matrices used in
the algorithm (14)-(16) to obtain the gain matrix Lk can still
be used as adjustment factors (tuning parameters) to achieve
a certain behavior of the SOC estimator.

In this paper we aim to design the Qk and Rk matrices to
be used in the EKF for the SOC estimation with two goals:
to ensure the estimator’s properties can be guaranteed from
the design phase, and to eliminate the need for an exhaustive
analysis of the battery’s dynamic model, the uncertainty, or
the available signals.

III. PROPOSAL

This section presents and justifies our proposal to establish
the values of the matrices P0, Qk and Rk. Furthermore, a
proposal for the analysis of the estimator’s performance in
different scenarios is presented. With this, the guaranteed (for
the hypotheses established in the work) design proposal of
observers is finally presented.

A. Parameter tuning
We present here our proposal for the design of the

matricesRk, Qk, and P0. As will be seen, each parameter will
be a function of the previously assigned one.

1) Covariance of the measurement noise Rk: In this work
it is proposed a constant matrix equal to the variance of
the measurement noise of the voltage sensor, Rk = R. We
assume that the noise is a zero mean bounded signal with
maximum absolute value Vmax. Under the assumption of
uniform distribution, we can obtain the variance of this signal
with R =

V 2
max

9 , that is also a valid approximation in the case
of Gaussian distribution. In the output equation (9) for our
implementation of the EKF, it can be seen that the output is
also influenced by the uncertainty that may be present in the
current measurement (∆I), both in the form of noise and poor
calibration or resolution errors. However, we assume that the
term R0 ∆I is much smaller than the error introduced by the
measurement noise of the voltage sensor.

2) Covariance of the process noise Qk: Our proposal is to
use a constant diagonal Qk matrix of the form Qk = Q =
diag([q, 0, 0]). This proposal is supported on the fact that the
poles corresponding to states xk,2 and xk,3 (Vc1,k and Vc2,k)
are stable in open loop. Thus, their error will converge with
error dynamics equal to the corresponding pole (that is, with
time constants τ1 and τ2 respectively) even if they are not
estimated in closed loop (i.e. if the estimate was not corrected
with the help of measurements). Accepting these hypotheses,
we propose for matrix Q the following expression

Q = diag([q, 0, 0]), q = γ
R

(∆Voc)2
(20)



being ∆Voc the expected value of the partial derivative in (18).
This value can be computed by approximating the SOC-Voc
curve using a first order function of the form V = a+ b SOC
as shown in Fig. 2 (with b ≡ ∆Voc). To obtain this value, the
known curve of the battery can be used and an approximation
by least squares can be made.

This proposal is based on the analysis of the a priori error
propagation in the filter. Analyzing (15) (where the gain Lk

is calculated), we see in the denominator the expected value
of the squared error of the estimation of the output voltage
(E{(yk−ŷ−k )(yk−ŷ−k )

T }), which is given by (Ĉk P
−
k ĈT

k +R).
This can be rewritten as

E{(yk − ŷ−k )(yk − ŷ−k )
T } = Ĉk P

−
k ĈT

k +R

= ĈkÂ Pk−1 Â
T ĈT

k + Ĉk QĈT
k +R

In view of this equation, our proposal is that the term
Ĉk QĈT

k (error in the voltage estimation due to the propa-
gated uncertainty or due to the input disturbance variance) is
expressed in relative terms w.r.t. measurement noise covariance
R. With our proposed Q = diag([q, 0, 0]) this term is

Ĉk QĈT
k = q

(
∂ĝ(x, u)

∂x̂1

)2
∣∣∣∣∣
x=x̂−

k ,u=uk

(21)

The partial derivate of g(x, u) changes over time but, for
simplicity, we propose to use its expected value, calculated
as the slope of the linear regression indicated in Fig. 2, ∆Voc.
With this simplification andthe proposed value for q in (20),
we have

Ĉk QĈT
k = q(∆Voc)

2 = γ R (22)

3) Initial estimate of the state error covariance matrix P0:
From equations (14)-(16), it follows that the EKF requires an
initialization for matrix Pk. If the original algorithm assump-
tions were met, this value should be equal to E{x̃0x̃

T
0 }. Since

they are not fulfilled in general, nor can the initial value of x̃0

be known, the proposal is to initialize it taking into account
the permanent regime value expected for Pk. In this sense,
the value of Pk, if the matrices Qk, Rk and Ĉk are constant,
converges to a constant steady state value. In our case, Qk = Q
and Rk = R are constant matrices by design decision, and Ĉk,
when we approximate the partial derivate of g(x, u) as ∆Voc

too.
This can be achieved by first obtaining the permanent value

for P̄−
k (P̄−) by solving the Ricatti algebraic equation

ÂP̄−ÂT − P̄−− ÂP̄−ĈT (ĈP̄−ĈT +R)−1ĈP̄−ÂT +R = 0
(23)

With this, our proposal for the initization of Pk is its steady
state value for Pk (P0 = P̄ ) computed as2

P̄ = Â−1(P̄− −Q)(ÂT )−1 (24)

2This result is directly given by MATLAB command dlqe

B. Performance evaluation

The goal of the KF is to provide a SOC estimation with low
errors in the face of different situations that we can associate
to different frequency ranges (measurement noise, errors in the
initial conditions or modeling errors). This paper proposes to
analyze these phenomena separately using a different metric
for each of them.

Next, we propose how to evaluate the estimation error
˜SOC = (SOC − ˆSOC) under different scenarios.
1) Measurement noise: The measurement noise is consid-

ered a signal with abrupt variations between consecutive sam-
ples, so it can be considered a high frequency signal that also
causes certain high frequency variations in the estimated SOC
( ˆSOC). To analyze the isolated effect of the measurement
noise on ˆSOC, it is proposed to test the estimator behavior
in a situation in which the initial conditions of the observer
coincide with reality (x̂0 = x0) and where the model used
does not contain errors (Â = A, B̂ = B, w = 0) but where
there is measurement noise with a certain known variance R.
Knowing R, Q and P0 can be adjusted as indicated above. It
is proposed to quantify this behavior through the maximum
absolute value of SOC estimation error

˜SOCmax = max | ˜SOCk| (25)

2) Initial conditions: When the observer is started, both an
estimated value for the state estimate x̂0 and the matrix P0

are required. During the initial transient, the state estimated
by the observer (SOC and capacitor voltages) must converge
to its real value in the shortest possible time. The time required
for this convergence depends on the actual initial state of the
system, on its estimate, and on the value of matrix P0. The
proposal for this matrix has already been discussed previously.
Regarding the effect of the initial error, it is proposed to
initialize the estimate of the state in x̂0 = [0.5, 0, 0], that is, an
intermediate value of the SOC and a null value in the capacitor
voltages.

In order to analyze the isolated effect of the initialization
error on ˜SOC, it is proposed to subject the estimator to a
situation in which the measurement noise and the modeling
error are null, but the initial conditions of the battery are
x0 = [1, 0, 0] (battery fully charged and at rest with discharged
capacitors).It is proposed to quantify this behavior through the
settling time at 98%

ts98 = k · Ts, k = {min k : ˜SOCk ≤ 0.01} (26)

being 0.01 the 2% of the initial error ˜SOC0 = 0.5.
This scenario allows evaluating the performance of the

observer at medium frequencies, which is where the response
speed is defined. This index will make it possible to estimate
the response times that would occur in other similar situations
where there is a high initial error in estimating SOC.

3) Model uncertainty: Modeling error is one of the main
sources of error when estimating the SOC. In particular, one
of the most common modeling errors is battery capacity, as it
can change over time due to aging.
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Bat.# Cbat ∆Voc R0 R1 C1 R2 C2

(Ah) (V) (mΩ) (mΩ) (kF) (mΩ) (kF)
1 20 12.6 304 170 109.4 90 0.66
2 42 0.75 1.31 0.69 930.4 0.72 50
3 4.4 0.54 44.1 18.6 69.2 4 0.138

TABLE I
PARAMETERS OF THE MODEL FOR THE DIFFERENT BATTERIES

In order to analyze the isolated effect of the modeling error
on ˜SOC, it is proposed to subject the estimator to a situation in
which the measurement noise is zero and the initial conditions
are known, and where the observer model uses a capacity value
different from the real one, that is, B̂1 = Tsη

Ĉbat
.

This behavior can be quantified through the maximum error

˜SOCmax = max | ˜SOCk| (27)

which evaluates the observer’s low frequency performance.

IV. VALIDATION OF THE PROPOSAL

In the following, we present different implementations of a
Simulink-Simscape model consisting of three different batteries
for which measurements have been taken with different noise
levels and different sampling periods. For each scenario, the
observer matrices have been defined with different values of
the only adjustment parameter γ. Based on these data, and
with these matrices, the SOC has been estimated against the
three scenarios proposed above (measurement noise, initial
conditions and model uncertainty) and the indices (25) -(27)
have been obtained. Finally, a scaling of these indices is
shown that will allow us to establish a dimensionless design
procedure in the following section.

A. Benchmark setup

In this work we have modeled three batteries from dif-
ferent sources. Battery #1 is a complete battery pack from
an electrical motorcycle whose electrical model has been
identified according to the procedure described in [7]; battery
#2 is the NMC pouch cell from [8]; and battery #3 is the
NMC cylindrical cell from [7]. Each battery is defined by
its Voc − SOC curve and electrical parameters as shown,
respectively, in figure 3 (where the voltage shown for battery
#1 is divided by 17, the number of cells in series) and in table
I.

Each of the batteries has been tested in the following way.
We assume that initially the battery is completely charged and
waits in steady state (i.e., with null voltage in the capacitors)
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Fig. 4. One cycle current of the UDSS for battery #1.
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Fig. 5. Evolution of the Voc voltage and SOC in the experiment for bat. #1.

to be discharged. The discharge of the battery is performed
by a current profile which repeats five times the Urban
Dynamometer Driving Schedule (UDDS), extracted from [9]
and scaled for each battery in such a way that the maximum
discharge current corresponds to a 1C C-rate. This way, the
SOC profile for each battery is the same. Fig. 4 and 5 show, as
an example, the current profile cycle UDDS (that is repeated 5
times), the battery voltage and SOC evolution for battery #1.

As a result of this experiment, for each battery we get a
current profile I(t) (model input u), the real evolution of
SOC(t) (state x1 to be estimated), and the voltage at the
battery terminals V (t) (noise free). To validate the proposal,
a uniform random signal has been generated in the range
[−Vmax, Vmax] and it has been added to V (t) to have the
variable y of our noisy model. We have run experiments with 6
different noise levels for each battery within the range [∆Voc

1000 ≤
Vmax ≤ ∆Voc

10 ]. Likewise, these values have been sampled with
three different periods: Ts = {0.1, s; 0.5, s; 2.5 s}.

Each dataset that the observers have been experimented with
is thus defined by the use of a particular battery, a noise level
and a given sampling period.

B. Simulation results

For each of the datasets, the (10)-(16) estimation algorithm
has been launched with different values of γ in the scenarios
indicated in Section III-B. Assuming noise covariance R as
known data and following the indications in III-A for the
parameter tuning, different estimates of SOC are obtained.

For example, Fig. 6 shows the isolated effect of noise in
the evolution of the estimated SOC in battery #2 with a
sampling period Ts = 2.5 s and with a measurement noise
Vmax = 0.075V, while Fig. 7 shows the effect of initial
conditions (eliminating sensor noise) and Fig. 8 the effect of
modeling error for the same filter parameters.
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Once we have the evolution of the estimation errors with
the different values of γ in the different scenarios, we have
analyzed the dependence of SOCmax (obtained for the first
scenario, measurement noise) vs. γ for the different batteries
and with the different noise levels. Results show that the
index ˜SOCmax · ∆V oc

Vmax roughly depends only on γ and not
on the battery number or the sampling period. Indeed, Fig. 9
shows how this is true for the different batteries, with different
sampling periods and different noise levels. It can be clearly
seen that low values of γ lead us to an observer with a better
behavior to deal with measurement noise.

Index ˜SOCmax · ∆V oc

Vmax can be understood as the ratio
between:

• the SOC estimation error obtained by the observer
• the SOC estimating error that would be obtained from
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measuring OCV in steady state with null currents with
a noisy sensor and using the inverse of curve Voc =
f(SOC), i.e., ˆSOC = f1(Voc)

With an analogous analysis, we have derived Fig. 10 that
shows ts,98

Ts
vs. γ, showing how independence of the results

from battery number and measurement noise has also been
achieved. Index ts,98

Ts
shows the number of samples needed

for the estimated SOC to converge to the true value. It can
be seen that, for the range γ ∈ (0, 1], higher values of γ have
faster behaviors. When values of γ > 1 are used, undesirable
dynamic behaviors are obtained because the discrete poles
resulting from the closed-loop observer have a negative real
part, which implies a fast oscillation of period 2Ts in the
estimator and an inadmissible noise amplification. Note that,
with the design proposal for Q, the noise level for which
the observer has been designed does not affect the estimation
result (the curves are superimposed).

Figures 9 and 10 allow to roughly predict what the effect of
the measurement noise will be on the SOC estimate and what
the convergence time of the algorithm will be for an observer
determined by γ ∈ (0, 1].

On the other hand, Fig. 11 shows for the different batteries
(with different colors) and sampling periods (with different
line type) the estimation error of SOC ˜SOCmax vs. γ when
there are modeling errors. In particular, an error on the battery
capacity is considered (Ĉbat = 1.1Cbat). In this case, it can be
seen that, the shorter the sampling period, the lower the esti-
mation error obtained, and that, for each battery, the minimum
error is obtained for a γ in the range γ ∈ [10−4, 10−2] (with
the optimal value being lower for higher battery capacities).
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Fig. 11. Absolute error ˜SOCmax vs γ under uncertainties in parameter Cbat.

Although in this work it was not possible to express this index
in dimensionless terms (and therefore it cannot be used to
accurately predict the error due to model uncertainty) it still
allows us to see the range of values for γ that will lead us to
a lower error due to uncertainty. Again, the proposed relative
definition for Q means that error results in this situation are
independent of the measurement noise.

V. DESIGN PROCEDURE

From the previous figures we can establish a design proce-
dure that includes assigning a value to γ in Q matrix in order
to guarantee a certain performance in the observer:
1) Obtain, by any of the algorithms existing in the literature, a
2RC ECM for the battery, including the slope of the line that
approximates the curve SOC-Voc (∆Voc).
2) Obtain the measurement noise of the voltage sensor (Vmax,
R =

V 2
max

9 ) and set the sampling period Ts.
3) Establish the maximum admissible error value due to
measurement noise (SOCmax,d). Using Fig. 9 and the value
SOCmax,d ·∆V oc

Vmax
, obtain γmax, the maximum value admissible

for γ. If there is no upper limit for SOCmax,d, set γmax = 1.
4) Establish the minimum admissible settling time (ts,98,d) for
the response of the estimator and, using Fig. 10 and the value
ts,98,d
Ts

get a value for γmin, the minimum value allowed for
γ. If there is no lower limit for ts,98,d, set γmin = 0.
5) Choose one of the following design goals:

1) Minimize the error due to noise, which leads us to select
the largest value γ ∈ [γmin, γmax].

2) Minimize the settling time, which leads as to select the
lowest value γ ∈ [γmin, γmax].

If there is no specific goal in terms of error due to noise or
settling time, choose a value in the range γ ∈ [10−4, 10−2] to
achieve low estimation errors due to uncertainty.
6) Start EKF with matrices Rk = R, Qk = diag([ γ R

∆V 2
oc
, 0, 0])

and P0 according to (23)-(24).

VI. CONCLUSIONS

In this work we have addressed the problem of estimating
the state of charge of a battery from current and voltage
measurements and using an Extended Kalman Filter algorithm
that requires the knowledge of a dynamical model and its
parameters (electrical parameters of the equivalent circuit and
open circuit voltage vs. SOC curve) as well as some values for

the covariance of the measurement noise, the input disturbance
and initial estimation error.

Under the assumption that is hard for a user to know the last
two matrix values, we propose to use those matrices as tuning
parameters, and we propose to do it in relative terms w.r.t.
to the measurement noise variance (assumed to be known or
measurable) and using the slope of the linear approximation
of the OVC-SOC curve as units conversion. In this work, we
show an initial simple proposal that is reduced to only one
tuning parameter.

In order to help the user to tune that proposed parameter,
we have established three different scenarios to asses the
behaviour at different frequencies: noisy environment, wrong
initial conditions and modeling error in battery capacity. In
each one we have obtained a characteristic metric. We have
applied this procedure in a simulation with several batteries,
sampling periods and noise levels, showing that the metrics
related to noise attenuation and convergence speed can be
expressed in a dimensionless way (independently of battery
and conditions). That allows us to establish a dimensionless
design procedure applicable to any battery.

Future research lines include expanding the proposal to
include more tuning parameters when defining matrix Q (also
in relative dimensionless terms) to include in the model the
disturbances or modelling errors in state equations related to
voltage in capacitors (i.e., positions 2 and 3 of the diagonal).
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