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ABSTRACT

Understanding plant immune responses is complex because of the high interdependence among biological

processes in homeostatic networks. Hence, the integration of environmental cues causes network rewiring

that interferes with defense responses. Similarly, plants retain molecular signatures configured under

abiotic stress periods to rapidly respond to recurrent stress, and these can alter immunity. Metabolome

changes imposed by abiotic stressors are persistent, although their impact on defense remains to be clar-

ified. In this study, we profiled metabolomes of Arabidopsis plants under several abiotic stress treatments

applied individually or simultaneously to capture temporal trajectories in metabolite composition during

adverse conditions and recovery. Further systemic analysis was performed to address the relevance ofme-

tabolomechanges and extract central features to be tested in planta. Our results demonstrate irreversibility

in major fractions of metabolome changes as a general pattern in response to abiotic stress periods. Func-

tional analysis ofmetabolomesandco-abundancenetworkspoints toconvergence in the reconfigurationof

organic acid and secondary metabolite metabolism. Arabidopsis mutant lines for components related to

these metabolic pathways showed altered defense capacities against different pathogens. Collectively,

our data suggest that sustainedmetabolome changes configured in adverse environments can act asmod-

ulators of immune responses and provide evidence for a new layer of regulation in plant defense.
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INTRODUCTION

Plant immunity relies on sophisticated interplays amongmultiple

and diverse features that act coordinately to counteract path-

ogen progression (Hillmer et al., 2017; Delplace et al., 2022;

Ngou et al., 2022; Jia et al., 2023). Defense mechanisms are

well characterized in isolation; however, pathogen infections

frequently occur in combination with other abiotic stressors, a

threat aggravated by climate change, producing responses

that differ from those evoked by individual stressors (Atkinson

et al., 2013; Prasch and Sonnewald, 2013; Suzuki et al., 2014;

Son and Park, 2022). Systemically, components that mediate

defense are entangled with the signaling and regulatory

networks that operate to balance plant homeostasis and,
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moreover, occupy central positions as hubs (Mukhtar et al.,

2011; Weßling et al., 2014). Because of the high connectivity of

immune features, network reconfigurations that activate

signaling pathways, fine-tune transcript and protein expression

levels, or adjust metabolite abundance to mediate acclimation

to environmental perturbations can ultimately interfere with

plants’ capacity to cope with pathogen infection (Saijo and

Loo, 2020; Zarattini et al., 2021). In the model plant

Arabidopsis thaliana (hereafter Arabidopsis), defense
munications 5, 100645, January 8 2024 ª 2023 The Author(s).
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Figure 1. Setup for sequential stress treat-
ments.
Arabidopsis plants were cultivated under 12 h/12 h

day–night cycles (22�C at 120 mmol m�2 s�1 and

18�C in the dark) (green arrows) and treated with

moderate abiotic stress conditions consisting of

high light (HL), humidity, drought, heat, cold, or their

combinations (orange arrows) as described in the

section ‘‘Methods’’ before Pseudomonas syringae

(Psto) or Botrytis cinerea (Bot) challenge (yellow

arrows). For the recovery design, 12-day-old Ara-

bidopsis seedlings exposed to abiotic stressors for

3 days were returned to standard conditions for

three additional days before pathogen challenge.

For the endpoint design, the abiotic stressors were

applied to 15-day-old Arabidopsis plantlets for 3

days immediately before pathogen challenge.

Plants not exposed to abiotic stressors were used

to evaluate the innate immune response (control).

Harvest time points for molecular analysis are

indicated.
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responses to Pseudomonas syringae (hereafter Psto) are

hindered by elevated temperatures (Wang et al., 2009) but

enhanced under water shortage (Gupta et al., 2016). Thus, the

outcome of plant–pathogen interactions depends largely on

the complex interaction between defense mechanisms and

responses to environmental cues.

Combinatorial stress refers to the application of multiple

stressors not only simultaneously but also sequentially. For

instance, drought episodes, temperature shifts, or pathogen

infections occur in transient and uncoordinated waves. In this

case, responses to intermittent stressors do not rely on recurrent

transitions from basal to acclimation states owing to high energy

costs that potentially trade off with plant fitness (Heil, 2002; van

Hulten et al., 2006). Instead, plants retain physiological and

molecular signatures configured under unfavorable conditions

that allow rapid and enhanced responses in the case of

subsequent stress events, a process termed ‘‘priming’’ or

‘‘stress memory’’ (Charng et al., 2023). However, the primed

state of plants after abiotic stress periods may hamper immune

responses, enhancing susceptibility to subsequent pathogen

infection or, conversely, boost defense and confer cross-

tolerance. As an example, adult Arabidopsis that had recovered

from heat shock displayed increased susceptibility to Psto

(Janda et al., 2019), whereas cold pre-treatments led to cross-

tolerance (Griebel et al., 2022). Therefore, deciphering the

molecular mechanisms underlying stress memory is of utmost

importance for identifying features that mediate the cross-talk

between defense and acclimation to abiotic stressors and under-

standing new layers of complexity in immune responses.

In general terms, stress memory consists of either the sustained

activation of responsive components after stressor removal or

the acquired capacity to escalate stress responses in the case

of a second event. However, the operating signatures that confer

plant tolerance to stress recurrence remain far from completely

understood. For priming, the concept of ‘‘transcriptional mem-
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ory’’ has motivated a large number of studies in the field of plant

stress (Hannan Parker et al., 2022; Charng et al., 2023; Wilkinson

et al., 2023). Transcriptional memory consists of epigenetic

modifications at promoters of stress-related genes in the form

of histone modifications and changes in nucleosome occupancy

after stress periods that increase chromatin accessibility (Charng

et al., 2023). Among other strategies for the persistent activation

of stress defense mechanisms, it is well known that, after

exposure to elevated temperatures, plants accumulate

chaperones that assist in protein refolding to prevent recurrent

disruptions in protein homeostasis (Yeh et al., 2012; Fernández-

Bautista et al., 2018). Because abiotic stress conditions

generally cause cellular damage due to oxidative bursts, plants

frequently retain the battery of antioxidant enzymes active upon

stress removal (Foyer et al., 2009; Juszczak et al., 2016).

Another strategy found in plants that have recovered from

conditions that cause cellular disruption, such as cold, drought,

or salinity, is the accumulation of osmoprotectant solutes such

as mannitol, raffinose, or galactinol (Taji et al., 2002).

The necessity of deciphering mechanisms of stress memory has

recently motivated increasing interest in monitoring the recovery

dynamics of the physiological and molecular state of plants after

adverseconditions.System-wideanalysesofde-acclimatedplants

undermoderate stress conditions have consistently shown revers-

ibility of transcriptome changes, whereas metabolomes tend to be

steady over time (Kaplan et al., 2004; Zuther et al., 2015; Coolen

et al., 2016; Pagter et al., 2017; Vyse et al., 2019; Garcia-Molina

et al., 2020). Plant metabolic state can be interpreted as the

consequence of the integration of the functionality of all biological

processes, and metabolites can therefore act as efficient

homeostatic signals. However, the potential role of metabolites in

mediating cross-tolerance has mostly been overlooked. To fill this

gap, we profiled the dynamics of transcriptome and metabolome

changes inArabidopsis under a wide array of single and combined

abiotic stressors: high light intensity, humidity, water availability,

and temperature fluctuations. Under our conditions, metabolome
thor(s).



Figure 2. Overview of plant immune phenotypes under sequential abiotic–biotic stress.
Binarymap summarizing immune phenotypes ofArabidopsis plantlets upon Psto (Pseudomonas) andBot (Botrytis) infection in the recovery and endpoint

designs in Supplemental Figure 2. Color code depicts the average colony titer (Psto) or fungal biomass (Botrytis). Fold change (FC) was calculated in

comparison to standard conditions (standard). Asterisks indicate significant differences relative to control (standard) conditions (adjusted P % 0.05,

Duncan’s post hoc test on linear mixed models, n = 3 independent biological experiments).
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changes tended to be irreversible, whereas transcriptional re-

sponses returned to the basal state. Further integrative analysis re-

vealed metabolites involved in pathways for carbon metabolism

and other pigments as common elements in the sustained

response, and pathogen bioassays with mutant lines proved rele-

vant for defense responses in planta. Thus, our data contribute to-

ward generalizing the durability of metabolome reconfigurations

during recovery from diverse single andmultiple abiotic stress fac-

tors andpropose centralmetabolites accumulated during acclima-

tion asmodulators of immune responses to a wide variety of path-

ogens. These observations are fundamental to establishing

biotechnological strategies to reinforce plant tolerance under real

scenarios.

RESULTS

Arabidopsis immune responses after sequences of
abiotic–biotic stress depend on the lag phase between
stressors and pathogen

Under sequential stress conditions, physiological and molecular

reconfigurations of plants in response to a first stressor can

confer increased susceptibility or tolerance in advance of a sec-

ond stress event. In this regard, we asked how Arabidopsis im-

mune responses were modulated by moderate environmental

fluctuations in light, humidity, and temperature. High-light (HL)

treatments consisted of a 2.5-fold increase in light intensity rela-

tive to standard conditions (300 vs. 120 mmol photons m�2 s�1);

high humidity was achieved by watering plants in excess in

sealed trays; and drought periods were imposed by withholding

water. For heat conditions, the diurnal and nocturnal tempera-

tures were increased by 5�C (27�C day/23�C night), whereas for

cold, they were lowered by 10�C (12�C day/8�C night) and the

diurnal light intensity was set to 80 mmol photons m�2 s�1. Com-

binations of heat and drought (heat-drought), heat and HL (heat-

HL), heat, drought, and HL (heat-drought-HL), and cold and HL

(cold-HL) were also considered in order to evaluate the effects

of multiple simultaneous stressors. Pathogen infections were

performed using two pathogens with distinct lifestyles: the hemi-

biotrophic bacterium Psto and the necrotrophic fungus Botrytis

cinerea (hereafter Bot).
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periods in a comprehensivemanner, two sequential stress setups

were designed. First, 12-day-old seedlings cultivated under stan-

dard conditions were exposed to abiotic stressors for 3 days and

then recovered for an additional 3 days under standard condi-

tions to establish a lag phase before pathogen infection (recovery

setup, Figure 1 and Supplemental Figure 1). Second, another

batch of plants was treated with abiotic stressors at day 15 and

subsequently infected with pathogens (endpoint setup, Figure 1

and Supplemental Figure 1).

The outcome of the pathogen bioassayswas quantified asPsto titer

orBot fungal biomass in leavesat 3dayspost infection (dpi) (Figure 2

and Supplemental Figure 2). Plants in the recovery setup showed

opposite trends in immune phenotype depending on the

pathogen. Plants recovered from abiotic stressors showed an

overall enhanced susceptibility to Psto: bacterial titers were

approximately 1.6 to 7.5 times higher compared with controls,

depending on the treatment. Conversely, a general increase in Bot

tolerance was observed: fungal biomass in leaves was

approximately 35%–60% lower than under standard conditions

(Figure 2 and Supplemental Figure 2). However, the same abiotic

stressors applied in the endpoint setup produced similar immune

responses to both Psto and Bot infection. HL-, high-humidity-,

cold-, and cold-HL-treated plants accumulated approximately 2–

16 times higher Psto titers and approximately 60%–300% more

Bot fungalbiomasscomparedwith thoseunderstandardconditions,

whereas bacterial titers under drought and heat and fungal biomass

under heat and heat-drought were both halved (Figure 2 and

Supplemental Figure 2). Collectively, these observations support

the existence of molecular footprints after abiotic stressors that

affect general features involved in immune defense networks.
Abiotic stressors produce reversible plant
transcriptome responses but persistent metabolome
reconfigurations

Because our results demonstrated that Arabidopsis immune re-

sponses can be modulated by previous exposure to abiotic

stressors, we asked which molecular features might serve as
munications 5, 100645, January 8 2024 ª 2023 The Author(s). 3



Figure 3. Temporal fluctuations in metabolite abundance under abiotic stress periods.
Untargeted LC–MS/MS was used to profile metabolite abundance in plants exposed to multiple abiotic stress conditions in the recovery and endpoint

setups. SAMs detected in each abiotic stress treatment relative to control conditions (adjusted P % 0.05, Dunnett’s test on linear mixed models, n = 5

independent biological experiments) were used to draw heatmaps with hierarchical clustering according to theWardD2method. Metabolite abundances

were Z-score normalized to visualize temporal patterns in metabolome changes from days 11–18 in plants cultivated under standard conditions

(standard) and in the recovery and endpoint setup designs. Horizontal breaks in the heatmaps represent groups of metabolites that displayed similar

patterns according to unsupervised k-means clustering. The directions of the arrows and the blue bars indicate the order of time points (11–18 days) and

the duration of abiotic stress treatments, respectively.
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signatures for stress memory. Metabolites attracted our interest

because previous systemic studies in plants recovered from unfa-

vorable environments revealed the reversibility of transcriptome

changes but the durability of metabolome reconfigurations

(Kaplan et al., 2004; Zuther et al., 2015; Coolen et al., 2016;

Pagter et al., 2017; Vyse et al., 2019; Garcia-Molina et al., 2020).

Thus, to assess the dynamics of metabolome responses to

abiotic stressors under our conditions, the metabolite

composition of Arabidopsis rosettes was monitored daily by

untargeted liquid chromatography–tandem mass spectrometry

(LC–MS/MS) metabolomics. Stringent deconvolution of

chromatograms resulted in a coverage of 10 414 potential

metabolites; those that displayed differential accumulation over

time in each time course compared with standard conditions
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were defined as significantly altered metabolites (SAMs) (adjusted

P % 0.05, Dunnett’s post hoc test on linear mixed models)

(Supplemental Table 1). Accordingly, approximately 400 SAMs

were identified under heat and heat-HL; approximately 500 under

HL, drought, and heat-drought-HL; and approximately 600 under

humidity, heat-drought, cold, and cold-HL (Supplemental

Figure 3). Z means of SAM abundances detected for each abiotic

stressor were used to draw heatmaps with hierarchical clustering

to compare the dynamics of stress-responsive metabolites under

standard conditions and both recovery and endpoint time courses.

Unsupervised k-means heatmap partitioning was used to extract

sets of compounds that displayed similar temporal fluctuations

(Figure 3). Overall, SAMs either remained steady under standard

conditions or changed in abundance toward the end of the time
thor(s).



Figure 4. Transcriptome changes after abiotic stress periods.
RNA-seq analysis was performed on Arabidopsis plantlets on day 18 of the recovery and endpoint setups.

(A) Identification of patterns in transcriptome changes. Heatmap with hierarchical clustering according to theWardD2method constructed from zmeans

of normalized counts of samples under standard conditions and abiotic stressors in the recovery and endpoint setups. Normalized counts were filtered (P

% 0.05, one-way ANOVA) to include genes that changed in at least one treatment.

(B) Fraction of differentially expressed genes (DEGs). DEGs compared with standard conditions (FC R 2 and adjusted P % 0.05, Wald test, n = 3 in-

dependent experiments) were only detected in the endpoint setup. Bar plot depicts the total numbers of DEGs under each stressor.
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course, likely owing to developmental and/or growth events

(Figure 3). By contrast, SAM abundances shifted from the

moment of exposure to abiotic stressors in both recovery and

endpoint setups (from day 13 or 16, respectively) (Figure 3).

Interestingly, the trends in SAM composition changes in response

to stress treatments looked identical in both time courses

(Figure 3). Next, correlations between SAM abundances in pre-

treated (days 11 and 12) and stress-treated plants in the recovery

setup (days 13–15) and the corresponding time points in the

endpoint setup (days 11 and 12 and 16–18) were computed for

each treatment to quantify the similarity of metabolome reconfigu-

rations in both cases. Density plots in Supplemental Figure 4

(orange lines) depicted distributions of Pearson correlation

coefficients (PCCs, r) centered on the highest positive values (r =

0.8–1.0) in all treatments, except for heat-drought-HL (r = 0.5–0.8).

These data indicated that SAMs qualified as changing compounds

strictly because of stress responsiveness and, moreover, demon-

strated that our treatments provoked almost identical metabolome

reconfigurations in plants during intermediate developmental

stages.

Heatmaps also revealed that metabolome changes during stress

exposure could either return to the initial state or persist upon stress

removal in the recovery setup, the fraction of metabolites that fol-

lowed each pattern being dependent on the treatment (Figure 3).

Thus, to estimate the degree of reversibility of metabolome

responses to stress treatments, SAM abundances in pre-treated

and recovered plantlets (days 11–12 and 16–18, recovery setup)

were compared to those at the corresponding time points under

control conditions. In addition, comparisons to the same timepoints

in the endpoint setup were considered in order to evaluate irrevers-

ibility, given the conservation ofmetabolome reconfigurationswhen

stressors were applied in both time courses. PCC distributions for

metabolomes of HL, high humidity, heat-drought, and cold-

recovered plantlets and those under control conditions, as well as
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endpoint setups, were centered on the highest positive values (r =

0.8–1.0)with almost thesamedensity, indicating that equal fractions

of reversible and irreversiblemetabolomechanges tookplaceunder

these conditions (Supplemental Figure 4, red vs. blue lines). SAM

abundances in heat-, heat-HL-, heat-drought-HL- and cold-HL-

recovered plantlets were poorly correlated with those under stan-

dard conditions, as PCCs weremore broadly distributed. However,

PCC distribution was more skewed toward the highest positive

values in comparison with endpoint setups (Supplemental

Figure 4, red vs. blue lines), meaning that metabolic changes

under heat, heat-HL, heat-drought-HL, and cold-HL treatments

were predominantly irreversible. Finally, PCC distributions for

drought treatments revealed importantdissimilarities in reconfigura-

tion of metabolome dynamics in recovery from water shortage

compared with both standard conditions and endpoint setups

(Supplemental Figure 4, red and blue lines). Consequently, our

data demonstrate that important fractions of metabolome

changes in response to multiple abiotic stress treatments were

irreversible under our conditions.

Next, we were interested in determining whether the dynamics of

transcriptional responses to abiotic stress followed similar pat-

terns. To that end, normalized counts from RNA sequencing

(RNA-seq) of Arabidopsis rosettes at day 18 (Supplemental

Table 2) were used to draw a heatmap with hierarchical

clustering to visualize the transcriptome under each stressor at

the end of the time courses. Transcriptome profiles of plants

after the recovery design did not exhibit important divergences

compared to standard conditions, whereas the same treatments

applied after the endpoint setup revealed important differences,

mainly due to increases in transcript levels under drought, heat-

drought, heat-drought-HL, cold, and cold-HL conditions

(Figure 4A). To quantitatively assess the effects of stressors on

transcriptomes, differentially expressed genes (DEGs) were

identified based on an absolute fold change (FC) R2 in
munications 5, 100645, January 8 2024 ª 2023 The Author(s). 5
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transcript levels relative to standard conditions (adjusted P %

0.05, Wald test). Fewer than 10 DEGs were detected at the end

of the recovery phase, except under drought conditions

(approximately 500 DEGs) (Supplemental Table 3), and further

transcriptome analysis failed to detect significant differences in

alternative splicing events relative to standard conditions (see

section ‘‘methods’’). However, the endpoint design led to

remarkable changes in transcript abundance, although the

number of DEGs depended on the treatment. The lowest DEG

fractions were detected after HL, heat, heat-HL (fewer than 60

DEGs) (Figure 4B; Supplemental Table 3). Greater changes took

place after high humidity (approximately 250 DEGs), cold, and

heat-drought-HL (approximately 1000 DEGs), whereas the high-

est fractions were found after drought, cold-HL, and heat-

drought (approximately 5000, 6600, and 8000 DEGs) (Figure 4B;

Supplemental Table 3). Apart from the rapid reversibility of

potential early transcriptome events not covered by our

strategy, we attributed the differences in DEG fractions among

treatments to stress intensity, suggesting that a two-fold

increase in light intensity or an overall temperature increase of

5�C, as well as high humidity, were the mildest stressors in our

designs. Furthermore, the disparity in the range of alterations in

metabolites and transcripts by the end of the endpoint setup

(approximately 400–600 SAMs vs. approximately 60–8000

DEGs) indicates additional layers of regulation for metabolic

pathways, especially under less adverse conditions.

Collectively, our high-throughput analyses confirm thatmolecular

mechanisms of acclimation to transient exposure to abiotic treat-

ments consist of a reversible reconfiguration of the transcriptome

but durable changes in the metabolome after stress removal.
Abiotic stress periods mainly affect carbon metabolism
and secondary metabolites independently of late
transcriptome responses

In our attempt to identifymetabolites that carry stressmemory,we

wondered whether acclimation to various abiotic stress treat-

ments could alter commonmetabolic pathways. Therefore, multi-

ple comparisons among SAMs were performed to investigate

commonalities in responses to treatments. As shown in

Supplemental Figure 3, approximately 45% of the humidity

SAMs were condition specific, whereas the specific

percentages of SAMs under HL, drought, heat-drought, heat-

drought-HL, cold, and cold-HLwere less than 20%, and those un-

der heat and heat-HLwere less than 7%.On the other hand, larger

numbers of SAMs were found at the intersection between two

conditions for cold and cold-HL (186 SAMs), HL and cold-HL

(122 SAMs), and heat-drought and heat-drought-HL (72 SAMs).

One hundred and forty and 40 SAMs were found at the intersec-

tions of three treatments for HL, cold, and cold-HL and HL,

heat-drought, and heat-drought-HL, respectively (Supplemental

Figure 3). Twenty-four SAMs were common to five treatments

(all except heat, drought, heat-drought, heat-HL, heat-drought-

HL), 29 SAMs to six (all except HL, humidity, and cold-HL), 44

SAMs to seven (all except HL and cold-HL), 10 SAMs to all except

HL, and only five to all treatments (Supplemental Figure 3).

Because more than 300 metabolites responded differentially

under at least three abiotic stressors compared with standard

conditions, commonalities in metabolic responses to abiotic

stressors could be expected. Thus, to functionally characterize
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metabolome changes, SAMs were first annotated based on the

Kyoto Encyclopedia of Genes and Genomes (KEGG), BioCyc,

and internal libraries (see section ‘‘methods’’). Despite technical

limitations to the proper identification of metabolites in our

platform, this approach identified 44.07% of all SAMs as

potential markers and annotated 27.16% of them (Supplemental

Table 4). Significantly enriched KEGG pathways were identified

(adjusted P % 0.05, Fisher’s exact test), and the resulting

metabolic pathways were grouped into major categories

(carbon, nitrogen, nitrogen base, lipid metabolism, etc.)

(Figure 5). Biosynthesis of secondary metabolites was the

category that included the highest number of tentatively

annotated metabolites, and those related to flavonoids and

anthocyanins were commonly enriched under all abiotic stress

treatments (Figure 5). Abiotic stressors generally altered carbon

metabolism, because the tricarboxylic acid (TCA) cycle was

enriched under all treatments except HL and cold-HL and the

metabolism of ascorbate, 2-oxocarboxylic acids, and glyoxylate

was enriched under multiple abiotic stressors (Figure 5).

Significant enrichment of pathways involved in the metabolism

of several amino acids was found only under humidity, heat,

heat-drought, and heat-HL and showed no consistent pattern,

suggesting that each stressor provoked a specific reconfiguration

of nitrogen metabolism (Figure 5). Other central pathways, such

as the metabolism of nitrogen bases, fatty acids, hormones, or

glucosinolates, were enriched under a few treatments, and

these metabolic perturbations might therefore be condition

specific (Figure 5). Together, these results suggest that

alterations in secondary metabolites and TCA intermediates are

mainly used by plants as a general response to cope with

detrimental periods, although specific aspects of metabolome

reconfiguration were also found, depending on the nature of the

stressor(s).

Despite the reversibility of transcriptional responses to abiotic

stressors, we questioned whether the alterations observed in

metabolic pathways could potentially have been dictated by

transcriptomes. Given the high similarity of metabolome recon-

figurations in response to abiotic stressors, independent of the

developmental stage of plants under our time courses

(Figure 3 and Supplemental Figure 4), DEGs detected in each

treatment under the endpoint setup were selected as

representative for, at least, late transcriptome responsive

events. Thus, significantly enriched Gene Ontology (GO) terms

and KEGG pathways (adjusted P % 0.05, Fisher’s exact test)

were identified in the DEGs to assess the impact of abiotic

stressors on biological processes and metabolic reactions,

respectively, at the transcriptome level (Supplemental Tables 5

and 6). Enriched GO terms supported the activation of general

responses to abiotic stressors (light intensity, salt, water

deprivation, cold, heat) and only included terms for biotic

stressors (fungus, bacteria) under high humidity (Supplemental

Table 5). Indeed, steady-state levels of representative abiotic

stress markers were consistent with the treatments we applied,

whereas selected immune-responsive transcripts did not

display remarkable induction (Supplemental Figures 5 and 6).

Other significantly enriched GO terms were related to

hormones (auxins, cytokinins, jasmonic acid, abscisic acid,

gibberellins) and the reconfiguration of central biological

processes such as photosynthesis, mitochondrial function, cell

division, ubiquitination, or vesicle sorting, although this
thor(s).



Figure 5. Functional relevance of metabolome changes during abiotic stress conditions.
Significant enrichment in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was determined based on tentative annotations of SAMs under

each abiotic stress treatment (adjustedP% 0.05, Fisher’s exact test). Circle size is proportional to the number ofmetabolites included in the pathway, and

color code indicates the degree of enrichment significance based on adjusted P as�log10(FDR). KEGG pathways significantly enriched in transcriptome

data (adjustedP% 0.05, Fisher’s exact test, Supplemental Table 6) for late-changing events are circled in blue. Pink squares highlight groups of pathways

involved in the metabolism of carbon, amino acids, and secondary metabolites.
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depended on treatment (Supplemental Table 5). KEGG

pathways also reflected changes in fundamental biological

processes and, moreover, retrieved metabolic reactions

similar to those found for metabolome changes, especially

under drought, heat-drought, and cold-HL (Figure 5;

Supplemental Table 6). Transcriptional changes in carbon

metabolic reactions under heat-drought and in secondary meta-

bolism under high humidity, heat-drought-HL, and cold-HL

coincided with SAM enrichments under the same treatments.

However, transcriptional changes related to either the meta-

bolism of carbon, amino acids, and nitrogen bases under

drought and cold-HL or of amino acids, lipids, and glucosino-

lates under heat-drought were not observed at the metabolome

level (Figure 5). Thus, the overall inconsistency between

metabolic reactions enriched in transcriptomes and

metabolomes tempted us to speculate that metabolome

reconfiguration upon exposure to abiotic stressors may not

directly reflect late changes in transcriptional abundance or,

alternatively, might be generally mediated by early-responsive

transcripts that rapidly recover.
Network analysis of metabolome changes during
abiotic stress periods reveals convergent
reconfiguration of metabolic pathways mediated by
different central components

The unique aspects of metabolome rewiring after multiple and

moderate abiotic stressors in terms of irreversibility and partial

independence from transcriptomes motivated us to gain more
Plant Com
insight into systemic responses to treatments. To this end, con-

ditional networks were constructed based on correlations

among temporal fluctuations in changing compounds (see sec-

tion ‘‘methods’’) (Supplemental Figure 7A). Topologically,

metabolome networks were similar in size (approximately

1500–1800 nodes/metabolites) but differed in shape and

community composition (5700–10 700 edges and 9–12

modules, depending on the condition) (Figure 6A). Because

network topology is determined by the connectivity of

metabolites according to co-abundance patterns, we assumed

that conserved responses to treatments would lead to sets of

metabolites (nodes) with similar degrees (numbers of edges

per node) in the networks, whereas functional rewiring would

cause changes in the numbers of node connections. Thus,

(dis)similarities in metabolome response to abiotic stressors

were estimated based on equivalences in node degree distribu-

tion among networks. As expected, node connectivity in the

standard conditions network differed markedly from that in

the abiotic stressor networks (r < 0.63) owing to metabolome

reconfigurations during treatments (Figure 6B). Metabolite

connectivity in the high-humidity network displayed a low

correlation (r < 0.65) with all other treatments except drought

(r = 0.68), suggesting a unique metabolome response to

elevated humidity in plants (Figure 6B). The network

topologies of the remaining treatments presented more

similarities (Figure 6B). Interestingly, the topology of the HL

network was exclusively comparable to those of other

stressors applied simultaneously with HL, i.e., heat-HL, heat--

drought-HL, and cold-HL (r = 0.67–0.74), pointing to partial
munications 5, 100645, January 8 2024 ª 2023 The Author(s). 7



Figure 6. Reconfiguration of metabolomes in Arabidopsis plants in different abiotic stress periods.
Compounds that changed in at least one treatment (P % 0.05, linear mixed model, n = 5 independent experiments) were used to construct conditional

networks (Supplemental Figure 7A).

(A) Network topological metrics in terms of size (number of nodes/metabolites), shape (number of edges), and detected communities (>20 nodes/me-

tabolites) are shown.

(B) Comparison of global metabolome responses among abiotic stress treatments. Pearson correlations between the normalized node degree in each

network were calculated to estimate (dis)similarities in the topology of the conditional networks.

(C) Commonalities in the local hub composition of networks. The three highest values for connectivity per community were considered to be local hubs

and used for multiple comparisons (Supplemental Figure 7B). Bar plots depict the total number of common local hubs among treatments.
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conservation of the metabolic rewiring that occurred under

HL in these stressor combinations. Likewise, important similar-

ities (r > 0.65) in topology were found among networks derived

from treatments that involved changes in temperature (heat and

cold), and the same held true for drought (Figure 6B). Thus, our

network analysis suggests that exposure to several abiotic

stressors may provoke partially overlapping metabolome

reconfigurations under our conditions. Furthermore, changes

in metabolic pathways operating in response to single

stressors would be expected in combinatorial responses to

stressors applied simultaneously.

Networks were further investigated for community composition

to extract local hubs (i.e., nodes with the highest degree permod-

ule). Because of their central position, local hubs can be selected

to assess the preservation of the most relevant features among

networks. For our purpose, metabolites ranked within the top

three degree values were considered to be local hubs

(Supplemental Table 7). As a general trend, approximately 55%

of all local hubs were specific to each network, approximately

29% were common to two or three networks, and only 7%

were shared among half (5) or more of the networks (Figure 6C

and Supplemental Figure 7B). In consequence, despite network

topologies revealing partial conservation of trends in

metabolome changes under a wide range of abiotic stressor
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periods, differences in local hub composition support the

specialization of central features in each response.
Central features involved in metabolome rewiring under
abiotic stressorsmodulate plant responses to pathogen
infection

To extract the most relevant components of metabolome re-

sponses to abiotic stressors, local hubs were investigated as rep-

resentatives of the functionality of communities. Among all me-

tabolites that qualified as hubs, our platform provided

annotations for 32 of them (Supplemental Table 7). Several

anthocyanidins, such as pelargonidin derivatives, coumarin,

and cyanidin, appeared as local hubs in the networks for

multiple treatments, as did flavonoid derivatives for naringenin

and quercetin in specific cases (Supplemental Table 7). Other

common hubs at the intersection of multiple networks were

fumaric acid, indole-3-acetic acid, 3-butenylglucosinolate, and

the nicotinamide derivatives dimethylmaleic acid and NAD+

(Supplemental Table 7). Complementary to this strategy,

metabolome datasets were used to construct supervised

models to identify orchestrated changes in metabolite

composition related to immune phenotypes for Psto and Bot

(Figure 2). Decision trees indicated an interplay of sets of

unknown compounds with cyanidin derivatives under Psto
thor(s).



Figure 7. Overview of immune phenotypes of selected candidates to pathogen infection.
(A) Binary map summarizing the immune phenotypes of the indicated Arabidopsis mutant lines upon challenge with Psto (Pseudomonas), Bot (Botrytis),

Plectosphaerella cucumerina (Plectosphaerella), and Colletotrichum higginsianum (Colletotrichum) in Supplemental Figure 10. Color code depicts

average colony titer (Psto) or fungal biomass (Botrytis, Plectosphaerella, and Colletotrichum). FC was calculated in comparison to wild-type (WT)

plantlets, and asterisks indicate significant differences from theWT (adjustedP% 0.05, Duncan’s post hoc test on linearmixedmodels, n = 4 independent

biological experiments).

(B) Frequency of immune phenotypes for selected mutants: enhanced susceptibility (susc), enhanced tolerance (tol), or ambiguous (amb).

(C) Pie chart depicting the fraction of mutants that displayed significant immune phenotypes to one or several pathogens.

(D) The number of mutant alleles that produced immune phenotypes to Pseudomonas (Psto), Botrytis (Bot), Plaectosphaerella (Plec), and Colletotrichum

(Col).
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infection and with pelargonidin and coumaroyl acid under Bot

infection to counteract pathogenic infections (Supplemental

Figure 8; Supplemental Table 8). Consistent with KEGG

pathway enrichment results (Figure 5), our metabolome-wide

analysis confirmed the reconfiguration of intermediates in path-

ways for flavonoid biosynthesis and TCA-organic acids as the

most significant changes in response to abiotic stressors.

To evaluate whether central features inmetabolome responses to

abiotic stressors could affect plant defense against pathogens,

mutant lines targeting intermediate steps in candidate metabolic

pathways were used to test plant–pathogen interactions. For

pigment biosynthesis, mutants with increased (pap1-D) or defec-

tive (tt4-2 and tt4-15) anthocyanin content (Borevitz et al., 2000;

Xu et al., 2020) or reduced flavonoid composition (tt15) were

selected. For TCA-organic acids, we used loss-of-function lines

for cytosolic fumarase 2 (fum2-1 and fum2-2), succinate dehy-

drogenase subunit 1 (sdh2.1-1 and sdh2.1-2), and pyruvate ki-

nase (pyr-1 and pyr-2) and the tonoplast dicarboxylate trans-

porter (tDT-1) mutant with altered malate and fumarate

accumulation in leaves (Emmerlich et al., 2003). Because KEGG

pathway enrichment also highlighted other carbon metabolic

pathways as relevant, transfer DNA (T-DNA) lines for

phosphoglucose isomerase 1 (pgi1) as the central enzyme in
Plant Com
starch production, glucose-6-phosphate/phosphate translocator

2 (gpt2), cytosolic fructose-1,6-bisphosphatase (cybf), and

L-galactose-1-phosphate phosphatase (vtc4), which is involved

in ascorbate biosynthesis, were also included. Besides Psto

and Bot, bioassays were extended to include the necrotrophic

pathogen Plectosphaerella cucumerina and the hemibiotrophic

pathogen Colletotrichum higginsianum (hereafter Plec and Col)

to address the consequences of mutations in response to a

broader pathogen repertoire. Despite the different steady-state

levels of target genes in mutant lines (Supplemental Figure 9),

significant differences from the WT in defense against

pathogens (adjusted P % 0.05, Duncan’s post hoc test on

linear mixed models) were found for all alleles except pap1-D

and tt14-15 (Figure 7A and Supplemental Figure 10). Immune

phenotypes were largely mutant and pathogen dependent, as

Psto and Plec infections tended to show enhanced

susceptibility in comparison with the WT, whereas Bot and Col

showed heterogeneous patterns (Figure 7A and Supplemental

Figure 10). However, the most relevant phenotypes caused by

mutations consisted of enhanced susceptibility (nine cases),

although ambiguous responses depending on the pathogen

were found for three alleles, and only one allele (sdh2.1-2)

conferred tolerance (Figure 7B). In terms of convergence, three

alleles produced marked phenotypic changes under three
munications 5, 100645, January 8 2024 ª 2023 The Author(s). 9
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pathogens, six under two pathogens, and four under one,

causing Bot and Plec challenge in twice as many cases of

defense alteration in mutants compared with Psto and Col

(Figures 7C and 7D). Remarkably, mutant lines that exhibited an

immune phenotype to at least two pathogens showed

significant differences from control lines in organic acid

composition and secondary metabolites, even for mutants in

which steady-state transcript levels of target genes were

minimally altered, such as pyr-1 and pig1 (Supplemental

Figures 9 and 11). None of these lines displayed noticeable

physiological constraints under abiotic stress treatments in our

setup (Supplemental Figures 12 and 13). Per group, tt15 was

the pigment-production mutant that induced the most

significant immune phenotypes, showing an approximately two-

fold loss or increase in fungal biomass compared with the WT

upon Bot and Plec infection, respectively (adjusted P % 0.05,

Duncan’s post hoc test on linear mixed models) (Figure 7A).

The mutations selected for TCA-organic acids significantly

enhanced susceptibility to at least two pathogens, and the de-

fense response of fum2mutants was significantly impaired under

all four pathogens for at least one allele (Figure 7A). Interestingly,

pgi1, gpt2, and cybf alleles significantly enhanced Plec

susceptibility phenotypes, revealing that balanced carbon

metabolism is a particular requisite for counteracting Plec

infections (Figure 7A). Finally, the ascorbate deficiency of vtc4

produced different phenotypes depending on the pathogen:

enhanced susceptibility to Plec (three-fold increase in fungal

biomass vs. WT) but enhanced tolerance to Bot and Col (30%–

50% less fungal biomass vs. WT) (Figure 7A). In summary, our

results demonstrate that perturbations in central metabolic

pathways to cope with multiple abiotic stressors significantly

alter the plant’s capacity to defend against pathogens with

different lifestyles, revealing them as crucial features that

modulate Arabidopsis immunity during sequential stresses.

DISCUSSION

The extreme complexity of plant immunity networks hampers the

isolation of new components with pivotal roles in modulating de-

fense responses. In this work, we addressed the configuration of

stressmemory states after abiotic stressors to identify newmodu-

lators of plant defense.Our pathogenbioassaysdemonstrated that

plants that had recovered from single and combinatorial fluctua-

tions in light intensity, humidity, water availability, and temperature

showedoverall greater susceptibility toPstobut cross-tolerance to

Bot (Figure 2). Such an antagonistic pattern can be attributed to

differences in pathogen lifestyles, because reinforcement of

certain aspects of plant homeostasis in terms of primary

metabolism or antioxidant barriers after the primary stressor

would be beneficial for colonization by the hemibiotrophic Psto

but would constrain progression of the necrotrophic Bot.

Despite most attention to priming and stress memory being paid

to epigenetic mechanisms (Oberkofler et al., 2021; Hannan

Parker et al., 2022; Charng et al., 2023), we wanted to explore

the potential contribution of metabolites in detail. Accumulation

of osmoprotectants and antioxidants such as raffinose,

galactinol,myo-inositol, or ascorbic acid is a well-known strategy

for extending responses to counteract recurrent stress (Taji et al.,

2002; Foyer et al., 2009; Juszczak et al., 2016). However, our

understanding of the impact of abiotic stress on plant
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metabolomes is limited. Nevertheless, previous studies on

plants during recovery from heat, cold, or HL reported

sustained changes in primary metabolites (Kaplan et al., 2004;

Caldana et al., 2011; Pagter et al., 2017; Garcia-Molina et al.,

2020), which could be envisaged as a signature to maintain

active stress responses. Here, non-targeted metabolomic

profiling of plants under nine abiotic stress factors applied indi-

vidually or simultaneously was used to obtain a broader coverage

of metabolome composition in response to a wide range of

stressors. The temporal trajectories of metabolite abundance in

our recovery setup confirmed the irreversibility of major metabo-

lite fractions after exposure to stressors (Figure 3). In addition,

metabolome changes showed similar patterns regardless of the

timing of treatment application, whereas transcriptome

responses evoked by abiotic stressor periods were completely

absent in recovered plants (Figures 3 and 4). Consequently, our

work provides important evidence for the irreversibility of

metabolome changes as a general strategy in plant responses

to abiotic stress, at least in the short term.

The Arabidopsis metabolome displayed remarkable plasticity in

response to environmental cues, even for moderate treatments

that did not markedly disturb late transcriptome changes under

our experimental conditions (e.g., HL, humidity, heat, and heat-

HL; Figures 3 and 4 and Supplemental Figure 4). Systemic

comparisons between networks of co-abundant metabolites un-

der each treatment revealed similarities in topology but differ-

ences in local hub composition (Figure 6). Thus, abiotic

stressors are expected to affect different metabolites with a

high hierarchy, and these perturbations might cause

subsequent reconfigurations that ultimately converge on similar

metabolic pathways. Indeed, despite the residual overlap in

SAMs among treatments, functional enrichments of annotated

metabolites were consistent with intermediates in the TCA

cycle, metabolism of 2-oxocarboxylic acids and ascorbic acid,

and secondary metabolites such as flavonoids and anthocyanins

(Figure 5). Limitations to the bona fide identification of

metabolites detected by untargeted LC–MS/MS metabolomics

precluded a more in-depth interpretation of changes in

metabolite composition. However, the function of local hubs

can be extended to other co-abundant metabolites according

to the ‘‘guilt-by-association’’ principle, as network communities

were configured based on interconnectivity among metabolites

with identical behavior. Interestingly, fumaric acid and

flavonoid and anthocyanin derivatives such as quercetins, pelar-

gonidin, or cyanidin were identified as central metabolites in the

network communities of several treatments (Supplemental

Table 7). Therefore, our results are consistent with the eventual

effect of abiotic stress conditions on TCA cycle–derived organic

acids and pigment composition in Arabidopsis.

The TCA cycle operates as a versatile metabolic crossroads that

integrates energy production and cellular respiration with amino

acid metabolism, nitrogen assimilation, and biosynthesis of sec-

ondary metabolites, among other processes (Sweetlove et al.,

2010). In Brassicaceae, fumaric acid constitutes a major

fraction of photosynthate and therefore plays a pivotal role in

the partitioning and distribution of carbon skeletons (Chia et al.,

2000; Dyson et al., 2016). As stress responses are accompanied

by important energy demands, plant acclimation to HL and cold

conditions depends largely on a balanced fumaric acid content
thor(s).
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(Dyson et al., 2016), although we did not observe such

dependency under moderate abiotic stress treatments

(Supplemental Figures 12 and 13). Furthermore, fumaric acid, as

well as other TCA cycle–derived organic acids, has been

credited with signaling capacity to induce defense responses

against Psto, although at high physiological levels (Less et al.,

2011; Finkemeier et al., 2013; Balmer et al., 2018). Similarly,

naringenin and other anthocyanins accumulate in adult leaves of

Arabidopsis plants under several stressors to promote tolerance

as antioxidant barriers and can also trigger defense-related

genes (An et al., 2021; Kaur et al., 2023). However, the

contribution of such metabolites to defense against multiple

pathogens has not been explored in detail.

Here, immune responses were investigated in plants at interme-

diate developmental stages to avoid advanced differentiation be-

tween sink and source tissues and interference caused by me-

tabolites that accumulate to high levels as plants grow or signal

for the flowering transition. We observed immune susceptibility

for fum2 mutant lines upon Psto, Bot, Plec, or Col challenge, as

well as for other mutant lines with abrogated expression of en-

zymes catalyzing the production of succinate and pyruvate and

the import of malate and fumarate into vacuoles, depending on

the pathogen (Figure 7A). In line with the apparent dependence

on carbon skeletons to ensure plant defense, potential

constraints to accumulating normal levels of starch in the pgi1

mutant would also cause alterations in fumaric acid

composition and, ultimately, susceptibility to the three fungi,

although the steady-state transcript levels of the target gene

remained unaltered (Figure 7A, Supplemental Figures 9 and 11).

On the other hand, tt4-15 and tt4-2 lines with abrogated anthocy-

anin content tended to display susceptibility to the four patho-

gens, whereas tt15 and the over-accumulator pap1-D showed

tolerance to Bot and Col (Figure 7A). It is notable that mutant

lines that displayed the broadest immune phenotypes exhibited

altered patterns for organic acids and secondary

metabolite concentrations (Supplemental Figure 11). Thus,

manipulation of central metabolites whose accumulation is

naturally disrupted in response to multiple abiotic stressors com-

plicates plant defense responses against several pathogens with

different lifestyles.

Organization of plant immunity networks obeys evolutionary

forces that have fixed defense strategies, as well as regulatory

mechanisms, to ensure optimal and efficient transitions from

basal to defensive states based on frequently encountered path-

ogens (Ngou et al., 2022). Metabolites as modulators of plant

immunity represent a novel, biologically relevant mechanism

that has not been addressed in depth. The resolution of large-

scale plant–pathogen protein interaction maps has revealed

evolutionarily conserved strategies of pathogen infection, which

involve targeting proteins centrally positioned in the network

(Mukhtar et al., 2011; Weßling et al., 2014). However, none of

these protein hubs are strictly related to metabolic pathways,

meaning that pathogens do not prioritize the direct dismantling

of metabolomes to colonize hosts. Moreover, metabolic

reactions that produce compounds capable of modulating

immune responses were not regulated at the transcriptome

level after multiple abiotic stress factors. Therefore, we propose

that the metabolome is the result of the interplay between

multiple biological processes and thus reflects the final
Plant Com
homeostatic state of the plant. As a result, the abundance of

central metabolites could serve as a systemic signal for

Arabidopsis to modulate immunity and adapt defense to the

overall state of the plant.
METHODS

Plant cultivation

Arabidopsis thalianaecotypeCol-0wasusedas theWTcontrol.Mutant lines

for PRODUCTION OF ANTHOCYANIN PIGMENT 1 (pap1-D), TRANS-

PARENT TESTA 14/CHALCONE SYNTHASE (tt14-15), and TONOPLAST

DICARBOXYLATE TRANSPORTER (tDT-1) were described previously

(Borevitz et al., 2000; Emmerlich et al., 2003; Xu et al., 2020). The lines

tt4-2 (CS2111524), TRANSPARENT TESTA 15/UDP-GLUCOSE STEROL

GLUCOSYLTRANSFERASE 15 (tt15; SALK_103581), FUMARASE 2

(fum2-1, SALK_025631; fum2-2, GABI_107E05), SUCCINATE DEHYDROG

ENASE 2.1 (sdh2.1-1, SALK_031100C; sdh2.1-2, SALK_127672C),PYRU-

VATE KINASE FAMILY PROTEIN (pyr-1, SALK_049481C; pyr-2,

SALK_014468C), PHOSPHOGLUCOSE ISOMERASE 1 (pgi1, SALK_

107903C), GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR 2

(gpt2, GK-454H06-018837), CYTOSOLIC FRUCTOSE-1,6-BISPHOSPH

ATASE (cybf, SALK_064456C), and INOSITOL MONOPHOSPHATASE

FAMILY PROTEIN (vtc4, SALK_077222C) were requested from the Notting-

ham Arabidopsis Stock Centre (NASC, https://arabidopsis.info/). Seeds

were stratified at 4�C for 2 days and sown on Jiffy-7 substrate (Jiffy Group

International, Zwijndrecht, the Netherlands) under a 12-h light (22�C and

120 mmol m�2 s�1)/12-h dark (18�C) cycle with a relative humidity of 65%

inFitoClima1200PLHLEDcabinets (Aralab,RiodeMouro,Portugal).Abiotic

stress treatments consisted of raising diurnal light to 350 mmolm�2 s�1 (HL),

sealing trays with excess water to preserve 100% of soil moisture and high

humidity (humidity), water shortage until approximately 30%of soilmoisture

(drought), increasing temperature cycles to 27�C/23�C (heat), lowering tem-

perature cycles to 12�C/8�C and adjusting light intensity to 80 mmolm�2 s�1

(cold) or 200 mmolm�2 s�1 (cold-HL), and combinations of these conditions.

Rosette leaves were harvested 6 h after the onset of light and flash frozen in

liquid nitrogen.
Pathogen infection assays

Psto pv. tomato DC3000 colonies cultivated at 28�C for 2 days on King’s

medium (Condalab, Madrid, Spain) plates supplemented with antibiotics

were resuspended at an optical density 600 (OD600) of 0.05 in 10 mM

MgCl2 and Silwet L77 0.02% (v/v) and used to spray Arabidopsis rosettes.

Bacterial growth curves at 0 and 3 dpi were quantified on the basis of col-

ony forming units (CFU) from serial dilutions of leaf disk extracts on selec-

tion plates.

Fungal material was grown at 25�C in darkness for 15 days. Bot and Plec

were cultivated on full or 1/2 potato dextrose agar medium, respectively,

and fungal spores were prepared on 1/4 potato dextrose broth at 5 3

$105 spores ml�1. Col (O’Connell et al., 2012) was cultivated on oatmeal

plates, and spores were resuspended in water at 5 3$105 spores ml�1.

Fungal biomass was quantified from entire rosette leaves at 3 dpi (Psto,

Bot) or 7 dpi (Plec, Col) by real-time qPCR. Amplification reactions were

performed with approximately 10 ng of gDNA with SYBR Green I dye

using specific fungus primers and the Arabidopsis ACTIN2 (ACT2) gene

as a reference (Supplemental Table 9) in a Roche Light Cycler 480

instrument (Roche, Basel, Switzerland). The two-step protocol

consisted of an initial cycle at 95�C for 10 min and 45 cycles of 95�C for

10 s and 60�C for 20 s. Fungal biomass was determined according to

the 2�D(Ct fungus gene – Ct ACT2) method and normalized to the average

value for controls in each biological replicate. Relative fungal biomass

was determined after outlier imputation, and average values were used

to calculate FC relative to control conditions.
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Metabolome preparation and profiling

Metabolites were extracted from 1–3 mg of lyophilized plant material in 1

ml of 30% methanol (v/v) supplemented with 0.01% formic acid (v/v).

Samples were homogenized with glass beads in a mixer mill for 3 min at

30 Hz and centrifuged at 14 000 rpm for 20min. Supernatants were filtered

through 0.22-mm regenerated cellulose (Phenomenex, Torrance, USA)

and frozen at �80�C. Five microliters of metabolite extracts were injected

and separated in a reverse Kinetex C18 analytical column (2.6 mm particle

size, 50 mm3 2.1 m, Phenomenex) using a gradient of methanol and H2O

supplemented with 0.01% formic acid. The flow rate was set to 0.3 ml/

min. Samples were ionized in positive and negative ion modes for electro-

spray ionization (ESI) in a 40–1100 m/z range using an Acquity UPLC

I-Class System interfaced to a hybrid quadrupole time-of-flight mass

spectrometer, SYNAPT G2-S high-definition tandem mass spectrometry

(MS/MS) detector (Waters, Milford, USA).

Raw data were obtained using MassLynx 4.2 software (Waters) and con-

verted to CDF format with the MassLynx DataBridge tool. Peak intensities

of compoundswere retrieved using the xcmspackage integrated intoRStu-

dio, referred to dry weight, and quantile normalized. Linear mixed models

were fitted to temporal fluctuations in metabolite abundances, and signifi-

cant differences relative to controls were computed using a post hoc Dun-

nett’s test (adjusted P % 0.05). Filtered metabolites were loaded into Mar-

Vis-Suite 2.0 software (Kaever et al., 2015) to obtain isotope corrections

and identifications using theMarVis pathway interface with a 0.01 tolerance

for m/z correction. Metabolite annotations and functional enrichment of

metabolicpathways (adjustedP%0.05, Fisher’sexact test)wereperformed

on combined lists of compounds identified in ESI+ and ESI� modes using

KEGG (https://www.genome.jp/kegg/), BioCyc (https://biocyc.org/), and in-

ternal libraries described in Gamir et al. (2014). Metabolome datasets were

deposited at MetaboLights (https://www.ebi.ac.uk/metabolights/) under

accession number MTBLS7018.
Transcriptome profiling and analysis

Total RNA was extracted from 18-day-old rosettes with the Maxwell RSC

Plant RNA kit (Promega,Wisconsin, USA) according to themanufacturer’s

instructions. RNA-seq libraries were prepared and paired-end sequenced

(2 3 150 bp) at Sistemas Genómicos (València, Spain) with standard Illu-

mina protocols. RNA-seq datasets were analyzed on the Galaxy platform

(Afgan et al., 2022). In brief, adaptors were removed from reads using

Trimmomatic (Bolger et al., 2014), and clean reads were mapped to the

Arabidopsis reference genome (TAIR10) with STAR (Dobin et al., 2013).

Read counts were computed with featureCounts (Liao et al., 2014), and

DEGs were identified for pair-wise comparisons between standard

conditions and each treatment under the recovery and endpoint setup

(absolute log2 FC R1, adjusted P % 0.05, Wald test) using DESeq2

(Love et al., 2014). Differences in alternative splicing were evaluated

with ASpli (Mancini et al., 2021). GO term and KEGG pathway

enrichment (adjusted P % 0.05, Fisher’s exact test) were performed in

Panther (http://www.pantherdb.org/) and ShinyGO v.0.77 (http://

bioinformatics.sdstate.edu/go/). Transcriptome datasets have been

deposited at the Gene Expression Omnibus (https://www.ncbi.nlm.nih.

gov/geo/) under accession number GSE226105.
Construction of co-abundance networks

Co-abundance networks were constructed for metabolites that exhibited

significant differences in temporal trends of compound abundance under

at least one condition (P% 0.05, linear mixed model). Randommatrix the-

ory on pair-wise Pearson correlation matrices was used to determine a

cutoff that avoided network saturation with a resolution of 0.01 using

the RMThreshold package in RStudio. Node connectivity and community

composition according to the FastGreedy algorithmwere computed using

the Igraph package in RStudio. Networks were exported to Cytoscape

version 3.9.1 (Shannon et al., 2003) for visualization and manipulation.
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Miscellaneous statistical and bioinformatic analyses

Statistical tests and plotting were performed with the basic interface of

RStudio or implemented packages. Outliers and missing values in infec-

tion assays and metabolome datasets were detected and imputed by

the k-nearest neighbors method (k = 5) using the VIM package. Multiple

comparisons of linear mixed models were computed according to Dun-

can’s multiple range or Dunnett’s post hoc tests (adjusted P % 0.05).

Heatmaps with hierarchical clustering according to the Ward D2 method

were drawn using z-means of normalized data with the pheatmap pack-

age. UpSet plots were constructed with the UpSetR package. Supervised

decision trees were modeled with the rpart package using log10-trans-

formed metabolite abundances of plants during the 3 days of stressor

treatment and tags based on cutoffs of two-fold pathogen infection for

Psto and 30% for Bot relative tostandard conditions.

Analysis of mutant lines

For gene expression analysis, total RNA from 18-day-old Col-0 and

mutant plants grown under standard conditions was prepared as indi-

cated above. RNA was retrotranscribed to cDNA using the NZY First-

Strand cDNA Synthesis kit (NZYTech, Lisboa, Portugal). qPCR was per-

formed using specific primers and normalized with ACT2 as the reference

gene (Supplemental Table 9) using the protocol described above for

fungal biomass.

Organic acid profiling was performed by targeted LC–MS/MS metabolo-

mics as described in Balmer et al. (2018) with modifications. In brief,

metabolites were extracted from 1–2 mg of dry tissue with 0.1% formic

acid (v/v). Five microliters of the extracts were injected into a Xevo TQS

instrument (Waters Micromass, Manchester, UK) equipped with a T-

wave device and coupled to a triple quadrupole through an Acquity

UPLC HSS T3 2.1 column (1.8 mm, 100 mm) (Waters). The ESI was set

to negative for all compounds. All parameters for chromatography and

MS/MS analysis were set as described in Balmer et al. (2018).

Secondary compounds were prepared and analyzed as described

above for untargeted metabolomics. The ChromaLynx function in

MassLynx 4.2 software (Waters) was used to identify secondary

metabolites against internal libraries of compounds based on retention

times and fragments of selected standards.

Photosynthetic measurements were performed on dark-adapted plants

after abiotic stress treatments with an IMAGING-PAM M-Series instru-

ment (Walz, Effeltrich, Germany), and the maximum quantum yield of

photosystem II (PSII) (Fv/Fm) was calculated as (Fm � F0)/Fm).
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assistance in metabolomics. Dr. Núria Sánchez-Coll (CRAG) is acknowl-

edged for critically reading our manuscript. We thank Dr. Vı́ctor Manuel
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