
IEEE VEHICULAR TECHNOLOGY SOCIETY SECTION

Received 14 February 2024, accepted 4 March 2024, date of publication 13 March 2024, date of current version 21 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3377141

A Scalable Server-Side Solution for the Real-Time
Handling of Road Safety Notifications
MIGUEL PEREZ-FRANCISCO 1, PABLO BORONAT 2,
CARLOS T. CALAFATE 3, (Senior Member, IEEE),
JUAN-CARLOS CANO 3, (Senior Member, IEEE),
AND PIETRO MANZONI 3, (Senior Member, IEEE)
1Department of Computer Science and Engineering, Universitat Jaume I (UJI), 12071 Castelló de la Plana, Spain
2Department of Computer Languages and Systems, Universitat Jaume I (UJI), 12071 Castelló de la Plana, Spain
3Department of Computer Engineering (DISCA), Universitat Politècnica de València, 46022 Valencia, Spain

Corresponding author: Miguel Perez-Francisco (mperez@uji.es)

This work was supported by the Research and Development Project funded by MCIN/AEI/10.13039/501100011033 under
Grant PID2021-122580NB-I00, and in part by European Regional Development Fund (ERDF)—A way of making Europe.

ABSTRACT Accidents are the main hurdles for using bicycles to change our transport habits. After many
studies, there is no generally adopted solution. Two (non exclusive) approaches can be applied: one is
based on the direct detection among vehicles, usually requiring additional hardware. The other consists
of communicating through an external server which sends alerts to the concerned vehicles in real-time.
In the latter case, if smartphones are used as the only instrumentation, the adoption of the system could
be straightforward. In a previous work we validated the usage of conventional smartphones to create the
client-side of a warning system. Instead, in the current work we address the server part. Such a server has
to meet several requirements, such as being scalable (a matter not previously addressed), and able to meet
real-time constraints. To achieve our purpose, we first provide the algorithms needed to ensure scalability.
The system is composed by a dynamic pool of region servers, which controls a defined geographic area.
Then, we implemented a functional prototype of such servers; its performance has been tested under realistic
conditions to find the saturation point, after which real-time constraints are no longer guaranteed. Finally,
the saturation point has been tested along with different traffic densities. Results show that the region server
is able to track up to 15,000 simultaneous users, while the best we have found in published results are less
than 1,400 users in simulated scenarios.

INDEX TERMS Location based services, massive real-time applications, road safety, sustainable mobility.

I. INTRODUCTION
In order to reduce the ecological footprint, together with
the search for a healthier life, people are changing transport
habits, and the use of bicycles or other light vehicles
such as scooters is increasing. For instance, a city such as
Copenhagen is expected to reach half of the displacements
with these vehicles, and in general it could be said that we
are living a bicycle renaissance [1]. However, the coexistence
with cars is not always easy. In urban areas, authorities
are making clear efforts to adapt road layouts, but still the
problem exits in crossings and junctions, or parts in which all
type of vehicles share the road [2]. Cycling is a very popular

The associate editor coordinating the review of this manuscript and

approving it for publication was Jie Gao .

sport, but up to this time there aremany accidents with serious
injuries and deceases in secondary roads produced mainly
to the difference of speeds and weight between bicycles and
cars. In [3] it is stated than, in 2020, 47% of the fatalities in
severe accidents correspond to vulnerable road users (VRUs),
and this figure increases up to 70% in urban areas.

Warning or alarm systems could help to alleviate this
problem. Different projects and studies have been proposed
during the past decade, but still a general solution has not been
adopted [4].

In the literature, two different approaches for a traffic alarm
system can be differentiated regarding how vehicles interact.
One set of proposals is based on direct communications
or detection between vehicles. These projects usually need
extra hardware to be installed in vehicles such as sensors

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 40153

https://orcid.org/0000-0003-3831-4075
https://orcid.org/0000-0001-7850-8179
https://orcid.org/0000-0001-5729-3041
https://orcid.org/0000-0002-0038-0539
https://orcid.org/0000-0003-3753-0403
https://orcid.org/0000-0001-6095-2968


M. Perez-Francisco et al.: Scalable Server-Side Solution

or wireless communication equipment, with the addition of
batteries in the case of vehicles without electrical power. This
is a major inconvenient for any technology to be massively
adopted.

The other kind of solutions are based on sending data to
an external server, which can analyze the received data, and
send alarms to the concerned vehicles. Obviously the weak
point of these solutions is the response time. It must be said
that the two types of solutions are non exclusive, and they can
(and even will) be mixed [5].
Some of the projects based on an external server propose

using smartphones as the unique instrumentation, given that
they are almost ubiquitous. Thus, the adoption of such
systems would be straightforward [4]. In fact, smartphones
have several wireless communication devices (Bluetooth,
WiFi, and the cellular phone network), and a GPS interface
providing acceptable accuracy [6].

In a previous work [7] we validated the use of smartphones
communicating to a centralized server over the Internet when
relying on a 4G phone network for our traffic alarm system.
In the system, users send position messages to the server, and
they choose to receive proximity warnings of the different
type of users or vehicles. Typically, cars want to know if
VRUs are close to them, but VRUs just want to warn about
their presence. The distance to raise warnings was fixed to
150 m since, taking into account all times involved in the
system, drivers should still be able to stop their vehicles
before a possible collision.

In that work we tested the communications response time,
the accuracy of the smartphone’s GPS, and the coverage of
the 4G cellular network for urban and inter-urban routes. The
system reacted with success in different traffic scenarios and
speeds, allowing the driver enough time to pay attention to
VRUs. We tested relative speeds until 90 km/h, obtaining
communication response times of about 0.01 seconds. In this
paper we now center our attention on the server part of the
alarm system.

The server part has severe restrictions. In particular, it has
to be able to track the position of a great number of
users, to detect alarms and send them to the appropriate
users, and all tasks, including communications, have to
be performed with response times lower than one second.
To validate this part of the traffic alarm service, we provide
measures of three square regions with sides 170, 17 and
3 kms, and with different traffic densities, increasing up to
20,000 simultaneous synthetic users. Finally, we propose
an algorithm to scale-up the server by taking advantage
of the fact that users are distributed geographically. This
former part, as far as we know, has neither been addressed
in previously published works. Yet, the ability to scale-up the
server system is crucial given that, if saturation occurs, real-
time performance would be compromised. Consequently,
a load balancing technique is ineluctable.

To the best of our knowledge, there are no works that
comprehensively address such extensive areas (tens of square
kilometers) while simultaneously involving thousands of

users. Many studies typically conduct tests with a small
number of users, and only a few manage to work with several
hundreds of users at most.

The rest of the paper is organized as follows: the following
section provides an overview of relevant research works on
this topic. Then, in Section III, we detail the proposed system
architecture. Section IV details the structure and algorithms
for the server system. Afterward, in Section V, we analyze
the capacity of the server. Finally, Section VI is devoted to
present some conclusions and future developments.

II. RELATED WORK
Several projects are dedicated to VRU alarm systems, given
the number and severity of accidents inwhich these road users
are involved. These projects could be classified into those
which are based on the detection and communication between
vehicles, and those which communicate through an external
server, even if both techniques are not exclusive, as pointed
out in [8].
A detailed review of the state-of-the-art technologies

implemented in bicycles to enhance the safety of cyclists can
be found in [9]. They provide a foundation for establishing
a common language to be used in future research, aiming
to prevent confusion among the various capabilities and
levels of smart bicycles. According to the authors, advanced
technologies are rarely employed in bicycles, and most
systems are primarily based on smartphone functionality.

Many works which are based on direct detection use
Dedicated Short Range Communication (DSRC) for collision
warning systems (e.g. [10] developed an interface to connect
bicycles to the vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) systems to deliver warning messages in
hazardous situations). In [11] a platoon-based cyclists coop-
erative system is proposed, where the bikes communicate
with each other using Xbee wireless connectivity modules.
This allows cyclists to respond to a Cooperative Adaptive
Cruise Control delivered through dedicated human-machine
interfaces.

Other examples of direct interaction among vehicles and
VRU are [12], [13], and [14]. However, these approaches
usually need extra instrumentation, and they are too depen-
dent on the detection and communication conditions, such as
good line of sight, absence of obstacles for wireless beacons,
or the time to establish a wireless connection. On the other
hand, these solutions can scale-up easily thanks to their
distributed nature, and they could have a reduced response
time, conditioned to the margin of time since the conflict
detection took place.

Other projects, including ours, propose to use smartphones
as the basic instrumentation for both vehicles and VRUs, with
the benefit of the massive usage of these devices. In this
group of solutions, smartphones are used to determine and
send the position to an external server, which then detects
possible conflicts, and sends warnings to the concerned users
[4], [6], [15]. In [16] a mere explanation of what the server

40154 VOLUME 12, 2024



M. Perez-Francisco et al.: Scalable Server-Side Solution

should do is presented. Other authors like [17], [18], [19],
[20], [21], and [22] perform experiments with one or two cars,
and one or two pedestrians/bikers. In [23], simulations using
ns2 are presented where a maximum of 400 cars are used with
a maximum of 1000 pedestrians; yet, the authors have not
conducted tests using a real implementation of the server.

The shared goal of all these studies is to validate the
communications and the user part of the system, aswe already
did in [7]. Nevertheless, all of them fail to study the scalability
of the system, which would be a main bottleneck in a real
implementation, where thousands, or even tens of thousands
of requests per second are potentially received.

Regarding the related work devoted to traffic warnings
based on an external server, Table 1 summarizes the
communication technology, the type of server, the number
of users, and the type of implementation used in the tests
made by different authors. It can be seen that most works
provide a proof of concept with less than ten of user,
but they do not address the problem of scalability. In our
work, we provide algorithms to scale the system in order to
cope with dynamic load. In addition, we have developed a
functional implementation of the server, and it has been tested
to detect the saturation load (which depends on the traffic
density), arriving to serve up to 15.000 simultaneous users,
respecting the real-time constraints.

TABLE 1. Summary of related works based on cooperative safety systems
using external servers. Ref stands for reference, Communications is the
type of communications system, Server is the type of server, Users is the
number of users in their tests, and Implementation is the type of
development.

In [7] we proved that such a solution is feasible for a
non-critical warning system communicating through the 4G
cellular network. In the present paper we prove that an
implementation of the server part of the traffic alarm system
can be devised so as to support thousands of users whereas
respecting the required real-time constraints. In addition, the
required algorithms to scale-up the system according to the
amount of users are provided. Even though there are several

similar projects, we have not found references focusing
on this essential part. Consequently, we have extended our
research to real-time massive applications, and we found two
scopes which could be of interest: the Internet of Things and
Massive Multiplayer Online Games.

In general, the lack of studies focused on the server
side for real-time applications in the field of the Internet
of things (IoT) is a known issue [24]. In that paper, the
authors analyse the state-of-art of data center networks and
existing platforms. These platforms, for the time being, are
devoted to web analysis, which have different requirements
than real-time IoT applications. In our case, the analysis
network will be of interest when implementing the system
as a global service, in which the load is dynamically shared
among a cloud of region servers, each one taking care of a
geographic region, and having to cooperate with immediate
neighbors.

Works such as [25], and [26] propose the reduction,
filtering or pre-processing of data generated by sensors
in order to further treat them in databases, also in the
context of IoT. In the case of real-time applications, a cloud
of edge computing nodes between the sensor cloud and
the computing cloud could react faster whereas processing
sensing data, and taking into account predictive information
sent by the computing cloud. The case of our traffic warning
system is different, as individual messages from vehicles
cannot be accumulated or reduced; notice that we do not
consider direct communication between vehicles given the
requirements and cost to establish these links.

As mentioned previously, another related field could
be that of Massive Multiplayer Online Games (MMOGs).
MMOGs usually have millions of registered players, and they
have to deal with several thousands of them concurrently.

Most of MMOGs servers achieve scalability by splitting
their virtual world into smaller worlds, which are then
managed by different servers. The main problem is that there
are overlapped areas as the players move around the world.
Different approaches have been developed to address this
issue by balancing the load among servers. Reference [27]
summarizes the two main solutions, where one of them
consists of using shards. The idea is having several copies of
the same world (called shards or instances), where each one
hosts just a subset of the players. Shards do not communicate
and, therefore, users on one instance cannot interact with
users on another instance. This workaround is only useful
for games or services that can integrate these constraints of
limited interaction. This is the solution used in thewell known
World of Warcraft game [27].
The other solution, explained in [27], consists in the

partitioning of the territory in contiguous non-overlapping
zones, where each zone server receives the position updates
of the objects within its zone, and informs players about the
modifications occurring in their proximity. The partitioning
can be done statically, which is easy to implement, although
it is inefficient because several zone servers may be
underloaded most of the time just waiting for players to

VOLUME 12, 2024 40155



M. Perez-Francisco et al.: Scalable Server-Side Solution

join. For example, in the Second Life game, most regions are
empty, 30% are never visited in a six day period, and only 1%
are overloaded [28].

To mitigate this load imbalance, some works like [29]
use dynamic space partitioning to adapt the allocation
of resources according to player distribution and density
fluctuations. The space is partitioned into a large amount
of smaller parts called microcells. A computer node of the
system may take care of one or several at a time, dynamically
redistributing these microcells on the processing nodes. This
approach has the drawback of a high cost for migrating entire
zones between server nodes. In fact, what is actually made
dynamically is the load balance among server nodes, and not
the partition of space. In our proposal we apply dynamic load
balance at two levels: region servers could be divided or fused
depending on the load of the region server, and new server
regions can be created (on demand) in the underloaded server
nodes. A mixed solution is explained in [30], where also the
behavior and distribution of players over time is depicted.

In [31] a technique to integrate dynamic partitioning into
the OpenSimulator framework is presented. The system can
take dynamic decisions to add additional resources, and
reallocate regions as load (players in regions) increases.
They presented the implementation of a scalable method
comprising both an expansion and a contraction model.

For most of the cited works about MMOGs, the number
of players is used as the server load index, and the players
distribution decision is based on this index. In [32] a load
balancing scheme for distributed MMOG servers is proposed
taking into account not the number of players in a region, but
the use of the upload bandwidth of the server nodes. The goal
is to reduce the inter-server communications overhead. They
also considered issues such as the quadratic growth of the
traffic when the players are close, and the overhead due to
the interaction of players allocated in different servers.

As a conclusion, considering MMOGs, there are similari-
ties with the proposed real-time system. Some load balancing
techniques used in these game servers could be applied in our
case. However, a common practice is to replicate regions with
different sets of gamers, and obviously this is not applicable
in traffic applications, in which users are sharing a same
physical world.

In the case of real-time IoT applications, few works are
devoted to the server (or analysis) part. In this context,
a common proposal consists in pre-processing sensing data
in order to reduce the amount of messages being analyzed in
the server part. This is not applicable in the traffic context,
as all position messages must be treated independently. Also,
some works use Apache Kafka to improve scalability [33].
In our system we have reduced communication overhead to
a minimum, programming the application directly over UDP
protocol, as it is explained in [7].

III. SYSTEM ARCHITECTURE
In this section we provide an overview of the entire system
architecture. Our proposed solution is composed by vehicles

FIGURE 1. System architecture overview. Vehicles and VRUs are connected
to the cloud of region servers through smartphones and the 4G cellular
phone infrastructure. Global servers are in charge of the distribution of
users among the region servers depending on their location.

and pedestrians carrying smartphones, the cellular network
such as 3G, 4G or 5G, and a cloud service accessible via the
Internet, as shown in Fig. 1.
The system has been designed for areas with mobile phone

coverage given that the users send their position to a server
on Internet. This is the case of most of the urban areas and
main roads. The possibility of lacking phone infrastructure
has not been considered. Yet, any alternative communications
system could be adopted. In this regard, the size of the UDP
messages used, 128 bytes, should not constitute any problem.
Nevertheless, the network response time has to be tested in
order to estimate the real-time conditions as in [7].

The cloud service is composed by servers which can
take two roles: global servers and region servers. Global
servers are in charge of system coordination, in particular they
maintain the data structure of the set of region servers. They
have to know in advance the address of all region servers, and
the geographic region they cover. Users initially send their
position to one of these servers, and they eventually obtain
the region server they should work with.

Region servers provide the traffic warning system for
all vehicles which are in the geographic region under their
control. These servers will have to interact with other region
servers for vehicles close the frontier of their region. Also
they will have to interact with global servers for load balance
matters, as overloaded region servers could not guarantee the
real-time restriction of the system.

In the system, smartphones send UDP messages to the
assigned region server. In response, region servers can answer
with alarmmessages, or they can answer to positionmessages
if the smartphone asks for a connectivity confirmation.

Fig. 2 represents the different times involved in the
communications between the clients and the server. The
vehicles asking for warnings should receive an answer from
the server before sending a new position message. This
time is the position sending period, which is the GPS

40156 VOLUME 12, 2024



M. Perez-Francisco et al.: Scalable Server-Side Solution

FIGURE 2. Worst case situation to receive a proximity warning: the server
receives the bike’s position update while already processing the car’s
position. The time used by the server to calculate possible alarms, tcomp,
has been highlighted in red..

period (T = 1s), and it includes sending the position, the
server’s computing time, and the response from the server.
Experimentally, we obtained response times of about 0.1 s
corresponding mostly to the communication times, as in the
experiments in [7] only two vehicles were being served.

The worst case to receive a warning happens when the
message of one of the vehicles arrives just after the message
of another close-by vehicle, for which the server is already
searching for its alarm state. Then, we can assume a worse
case scenario of 2 s (two GPS periods). Consequently,
we assume that, during 2 s, the vehicles are approaching at
a maximum of 100 km/h (for instance, a car at 80 km/h, and
a bicycle in the opposite direction at 20 km/h), which results
in a traveled distance of 55.5 m. In Fig. 2 tmes represents
the communication time for messages (to/from the vehicle),
and tcomp is the server’s computation time; such a time
involves updating the database and checking if the sender
vehicle has proximity alerts. Note that the response time
(2tmes + tcomp) has to be less than T . If the vehicles travel
faster, and given that the communication time can not be
tuned, the computation time should decrease (or alternatively
increase the alarm distance to more than 150 m).

IV. THE SERVER SYSTEM
The server system we envision is composed of two parts in
order to geographically distribute the workload: a redundant
global service and region servers.

The pool of global servers implementing the global service
is in charge of receiving the initial position message from
vehicles, and then to retrieve the region server currently
covering their location. In addition, they have to initiate
region servers, and to coordinate the load balancing strategy
of region servers.

Region servers cover a specific geographic region. They
are the base of the system, as they receive position messages
from vehicles which are traveling in their region. These
servers support most of the load, as position messages
are sent each second, as well as eventual alarms, which

FIGURE 3. Schema detailing how a part of the Earth’s surface is covered
by region servers. The structure is a quadtree where blue regions are not
covered, yellow regions are covered by servers with a reasonable load
level, green regions are covered by servers with a low load, and red
regions are covered by overloaded servers.

should be sent with a real-time restriction of also one
second.

A. THE GLOBAL SERVICE
As stated above, a pool of replicated global servers offers
the global service. Basically, these servers have two tasks:
receiving initial messages when vehicles start travelling, and
coordinating region servers.

The replicated global servers have a copy of the data
structure with all existing region servers. The set of region
servers is initially empty, and they are created when a vehicle
visits a region not yet covered by any server.

When a vehicle starts using the application, it first sends
its location to one of the pre-configured global servers. Then,
this server answers with the address of the region server
covering the client’s position.

As region servers have real-time constraints (they have to
be able to send alarms to vehicles in less than one second as
a response to position messages), a load balancing strategy
has to be implemented given the unpredictable fluctuations
of the number of connected vehicles in a region. The idea is
that region servers could be splitted or fused depending on
their load. This produces a recursive quadtree data structure.
Fig. 3 shows the evolution of geographic regions regarding
the state of the respective region server. Blue regions are not
yet covered (no region server was assigned), yellow regions
are covered by servers with reasonable load levels, and finally
green and red regions are covered with under or overloaded
servers, respectively.

The procedure which global servers will apply when
they receive an initial position message can be seen in

VOLUME 12, 2024 40157



M. Perez-Francisco et al.: Scalable Server-Side Solution

Algorithm 1. This algorithm is recursive, as it enquires in the
quadtree data structure. The dimension arguments (dimLat
and dimLon) are the dimension of regions in degrees at a given
recursion level. In each recursion, these dimensions are half
of the precedent level. Initially, the maximum pre-defined
dimensions are used. The first level in the data structure is
a bidimensional array, which is supposed to cover the whole
earth surface. Many elements of this data structure will be
empty, as they are never visited by vehicles. For visited
regions, the corresponding element of the array will have a
region server or a quadtree. In this algorithm, it is assumed
that vehicles are able to determine the element of the initial
bidimensional array to which the query starts. The interac-
tions between a vehicle and both type of servers are shown in
Fig. 4.

The mentioned maximum dimensions used in the first
level of the region servers’ data structure depend on the
error, which can be assumed when calculating distance
in degrees, as explained further in Section V-A. It must
be noted that the maximum dimensions are scaled for
different ranges of latitudes, given that the same lon-
gitude degrees represent different distances for different
latitudes.

Algorithm 1 Determining the Region Server Covering a
Location
Input node A node in the quadtree data structure

storing the region servers
(lat, lon) A location on Earth in the geographic

coordinate system
dimLat Latitude dimension of the region in

degrees
dimLon Longitude dimension of the region in

degrees
Output node The node in the quadtree data structure

serving the location (lat, lon)
1: algorithm GetRegionServer(node, (lat, lon),

dimLat, dimLon)
2: y = ⌊(lat − node.lowLat)/dimLat⌋
3: x = ⌊(lon− node.lowLon)/dimLon⌋
4: if node[y][x].type is SERVER then
5: return node[y][x]
6: else if node[y][x].type is Null then
7: lat1 = node.lowLat
8: lon1 = node.lowLon
9: lat2 = lat1 + dimLat/2EndOutput

10: lon2 = lon1 + dimLon/2
11: node[y][x] = CreateRegServ((lat1, lon1),

(lat2, lon2))
12: return node[y][x]
13: else
14: return GetRegionServer(node[y][x], (lat, lon),

dimLat/2, dimLon/2)
15: end if
16: end algorithm

FIGURE 4. Message exchange sequence between a vehicle’s smartphone
and the two types of servers to start using the alarm system.

For the coordination of region servers, a load balancing
system is needed because, as mentioned, overloaded region
servers could loose real-time constraints. Thus, under region
servers demand, they can be divided (or fused) to serve
smaller (or bigger) regions. The process to split a server
(and its region) in four child nodes is shown in Algorithm 2.
Fig. 5 depicts the split-up process in four new region servers
(following the quadtree structure).

Algorithm 2 Splitting a Region Server

Input node A node to be divided in the quadtree
data structure

Output Null
1: algorithm SplitRegionServer(node)
2: dimLat = (node.upperLat − node.lowLat)
3: dimLon = (node.upperLon− node.lowLon)
4: newDimLat = dimLat/2
5: newDimLon = dimLon/2
6: serverA =

CreateRegServ((node.lowLat, node.lowLon),
(node.lowLat + newDimLat, node.lowLon+

newDimLon))
7: serverB = CreateRegServ((node.lowLat +

newDimLat, node.lowLon),
(node.upperLat, node.lowLon+ newDimLon))

8: serverC =
CreateRegServ((node.lowLat, node.lowLon+

newDimLon),
(node.lowLat + newDimLat, node.upperLon))

9: serverD = CreateRegServ((node.lowLat +

newDimLat, node.lowLon+ newDimLon),
(node.upperLat, node.upperLon))

10: node.CreateChildren(serverA, serverB, serverC ,
serverD)

11: node.DeleteServer()
12: end algorithm

To merge the four child nodes of a quadtree node it is
necessary to know the cumulative load of the respective
region servers in order to be sure that the new server will

40158 VOLUME 12, 2024



M. Perez-Francisco et al.: Scalable Server-Side Solution

FIGURE 5. Messages and steps to split an overloaded region server.
In message 5 the smartphone receives the address of the new region
server if its last location belongs to the region of the new server (Region
server B).

be able to cope with the resulting load. To do this the nodes
are consulted, as it is shown in Algorithm 3. For the sake
of simplicity, a maximum load for servers is considered
(constant MERGE_THRESHOLD). Moreover, it is possible
that any of the child nodes is also a parent node itself. In that
case, a recursive call is done to check if they can also be
merged. Finally, if the merge process is feasible, the new
server in charge of the region is created (or assigned), and
its children are deleted. Fig. 6 illustrates the process to merge
four region servers.

The load definition, upon which the balancing system is
based on, could be a function of the UDP buffer used for the
application and other variables, such as the evolution of CPU
usage. In our experiments we have observed a regular growth
of this buffer when servers start being saturated. In addition,
the load function should perform an exponential moving
average (EMA), which will be continuously updated taking
care of the history of the variable to prevent an excess of
reconfigurations triggered by punctual load pics.

FIGURE 6. Messages involved in the fusion of four region servers. The
process is started by demand of Region server B based on its load. The
Global server asks region servers A to D about their load because they
are siblings nodes of B. Server A is chosen to be the new server of the
fused region. Servers B, C, and D are informed about the new server.
These servers will answer their clients for a few more seconds to notify
them about new server, and then vanish.

B. REGION SERVERS
Region servers support the heaviest part of all the system,
handling all client messages having real-time restrictions,
reason why we will focus on them in more depth.

Algorithm 3Merging the Nodes of a Quadtree Node

Input node A node in the quadtree data structure to
be merged with its other sibling region
servers.

Output load If the merge is feasible, the load sup-
ported by the newmerged region server.

1: algorithmMergeRegionServers(node)
2: dimLat = (node.upperLat − node.lowLat)
3: dimLon = (node.upperLon− node.lowLon)
4: newDimLat = dimLat · 2
5: newDimLon = dimLon · 2
6: parentNode = node.Parent()
7: load = 0
8: for n ∈ parentNode.children do
9: if n.type is SERVER then

10: load = load + n.GetLoad()
11: else
12: if n.type is not Null then
13: firstChild = n.children[0][0]
14: load = load + MergeRegionServers(firstChild)
15: end if
16: end if
17: if load >= MERGE_THRESHOLD then
18: return
19: end if
20: end for
21: newServer = CreateRegServ(

(parentNode.lowLat, parentNode.lowLon),
(parentNode.upperLat, parentNode.upperLon) )

22: parentNode.AddNewServer(newServer)
23: parentNode.DeleteChildren()
24: return load
25: end algorithm

Region servers cover a geographical area defined by
two geo-locations (the opposite left-lower and upper-right
corners). They can ask the global service for a division or
fusion depending on their workload given that, at a certain
load level, its response time could be compromised or, in the
opposite case, there is an undesirable atomization of region
servers. Toomany region servers are harmful because looking
for alarms of vehicles near the region frontiers is amore costly
procedure.

The creation of region servers and their coverage area could
be decided by a mechanic division of the region, based on
socioeconomic aspects such as the population of the area,
or it could be decided by the entities which cooperate with the
project. In the algorithms presented previously we propose a
global coverage.

To provide an idea about the amount of simultaneous
clients that a region server can reasonably take care of,
we have compared two algorithms. In the first one we
use a simple approach. In this case, all clients are stocked
in a single list. We call it list-algorithm. The algorithm

VOLUME 12, 2024 40159



M. Perez-Francisco et al.: Scalable Server-Side Solution

to process a position message from a vehicle is shown
in Algorithm 4. In this algorithm we suppose that client
messages are composed by the identity of the vehicle, its
position, and a boolean value indicating if it requires alarm
notifications. The vehicleList argument is the list with all
vehicles in the region and their positions.

Algorithm 4 List-Algorithm

Input vehicleList A list of all vehicles in the server
region.

message A position message from a vehi-
cle, which includes the intention to
receive alarms.

Output alarm A boolean indicating if another vehi-
cle is within the security distance.

1: algorithm ProcessMessageList(vehicleList ,
message)

2: alarm = False
3: inserted = False
4: for v ∈ vehicleList do
5: if v == message.vehicle then
6: v.position = message.position
7: inserted = True
8: if ¬message.asksAlarm then
9: return

10: end if
11: else if message.asksAlarm &

Distance(v.position,message.position) <

securityDistance then
12: alarm = True
13: end if
14: end for
15: if ¬inserted then
16: vehicleList .Append(

(message.vehicle,message.position))
17: end if
18: return alarm
19: end algorithm

In the list-algorithm, as shown in Algorithm 4, when a
client sends its position, the list is sequentially traversed until
the vehicle is found or (if demanded) an alarm is detected.
In fact, in our implementation, for each vehicle in the list,
the distance with the current vehicle is computed only if it
asks for alarms, and if their locations are closer than the
pre-defined security distance.1

The cost of this algorithm is quadratic with the amount
of simultaneous vehicles because the list has to be passed
through for every single message of every vehicle (2(n2)).
In this algorithm, outdated information is purged for the
selected elements when looking for alarms, but also, period-
ically, a complete purge should take place as the list could

1150 meters is the security distance we determined in the communications
part of the system.

contain zombie vehicles (i.e. vehicles that are no longer
active/connected).

Algorithm 5 Cells-Algorithm

Input grid A matrix containing all cells in the
region. Each cell has a list of vehicles
visiting the cell.

message A position message from a vehicle,
including the intention to receive
alarms.

Output alarm A boolean indicating if another vehicle
is within the security distance.

1: algorithm ProcessMessageCells(grid , message)
2: celly = (message.position.lat −

grid .base_lat)/grid .step_lat
3: cellx = (message.position.lon−

grid .base_lon)/grid .step_lon
4: grid[cellx][celly].Append(

message.vehicle,message.position)
5: if message.askAlarm then
6: for x ∈ (cellx − 1, . . . , cellx + 1) do
7: for y ∈ (celly − 1, . . . , celly + 1) do
8: for v in grid[x][y] do
9: if Outdated(v.date) then
10: grid[x][y].delete(v)
11: else if v.vehicle == message.vehicle &

Distance(v.position,message.position) <

securityDistance then
12: return True
13: end if
14: end for
15: end for
16: end for
17: return False
18: else
19: return
20: end if
21: end algorithm

In the other algorithm, which we call cells-algorithm, the
region handled by the server is divided into square cells.
Each cell has a list of vehicles which are visiting its area.
As it can be seen in Algorithm 5, when a position message
arrives from a client, it is quite easy to find the respective cell
(representing a cost of 2(1)). For each dimension (latitudes
and longitudes), the coordinates in the bidimensional array
of cells are obtained by the integer division (position −

base_position)/step, where position is the position of the
vehicle, base_position is the left lower corner of the region
covered by the server, and step is the fixed width of the cells
in both dimensions, latitudes and longitudes (all these values
are in degrees).

Once the cell is found, the vehicle is added to its vehicle
list. Then, if the vehicle intends to receive alarms, the list of
that cell, and those of its eight immediate neighbor cells, are

40160 VOLUME 12, 2024



M. Perez-Francisco et al.: Scalable Server-Side Solution

sequentially traversed, and the process stops when an alarm
is found.

In the cells-algorithm, the purging process is done while
looking for alarms. When outdated vehicles are found in
the lists, they are removed. It should also be emphasized
that zombie vehicles in non-visited cells do not affect the
performance.

The cost of this algorithm is quadratic with the amount
of simultaneous vehicles in a cell. If we consider a
uniform distribution of the vehicles in a square region,
the computational complexity will be 2(k2) where k =

n/c2, being c the number of cells in each dimension. This
version represents a significant improvement with respect to
the list-algorithm: however a considerable data structure is
needed. For instance, for cells of side 150 meters (i.e. the
security distance), a region of 250 × 250 km2 would need
a two-dimensional array of 1667 × 1667 items.

V. EXPERIMENTS
In this section a description of the test environment we
have used and the results we have obtained is presented.
The experiments have been conducted to compare the two
presented server algorithms, the amount of vehicles that can
be assisted, and the influence of different aspects such as the
amount of vehicles demanding alarms or the size of cells in
the cells-algorithm.

A. IMPLEMENTATION OF REGION SERVERS AND THE
TEST ENVIRONMENT
Both versions of the server have been implemented in Python
3.7.3 to simplify prototyping. Messages are received in a
main thread, and then they are processed in a different thread.
However, all is executed in only one processor at a time due to
the Python’s GIL (Global Lock Interpreter). Even if Python
is not the best choice for a high performance application, it is
enough to study the main hints of these parts of the system.

We have instrumented the code of the server to generate
an execution trace at the end of each experiment with the
parameters of our interest.

All the tests have been executed in a server with
twelve Intel Core(TM) i7-8700 CPU 3.20GHz with a RAM
of 24 Gbytes running Debian GNU/Linux 10.10. To avoid
an early overflow of the UDP buffer, we have increased it
from 208 Kbytes, which is the default value, to 64 MBytes.

IMPROVING DISTANCE COMPUTING
Calculating the distance in kilometers between two
geo-positions with latitudes and longitudes needs costly
trigonometric operations. A common method to address
this is to use the haversine formula (shown in (1) where
r = 6371 km is the mean radius of the Earth).

H ((lat1, lon1), (lat2, lon2))

= 2r sin−1
((

sin2
(
lat2 − lat1

2

)

+ cos(lat1) cos(lat2) sin2
(
lon2 − lon1

2

))1/2)
(1)

We reduce the computation time of this part by calculating
the distance in both dimensions in degrees, and then con-
verting these distances to meters given that, for rectangular
regions of the earth that are not excessively large (what we
call a cell), we can approximate the correspondence between
degrees and meters.

This procedure introduces an error, specially for longitudes
because the same degrees in longitude represents a different
distance inmeters depending on the latitude. For instance, in a
region at latitude 39.5 degrees, we have an horizontal step of
0.001744 degrees for 150 meters, and at latitude 41 degrees,
the same horizontal step in degrees represents 146.72 meters.
To distribute this error we calculate the step in degrees for
the cells’ side in the middle of the region and, in addition,
the algorithm to create region servers should limit the error
to a maximum of 5 meters. This means that the total error
between the border latitudes of the region should be less
than 10 meters. In latitudes close to 40 degrees, this makes
it possible to work with regions of about 500 km of side.
In case of a massive use of the system, regions will probably
be much smaller to support the real-time requirements. Also,
it must be noted that this error is additional to the GPS error,
which is accepted to be usually lower than 5 meters [6].
Finally, it must be noted that the calculated distances of our
interest are limited to 424meters (the worst case in which two
vehicles are in the diagonal of two cells with 150 meters of
side).

Given the lower left and upper right corners in degrees,
(Lat1,Lon1) and (Lat2,Lon2), and being side the cells’ side
in meters, the steps in degrees are initially calculated as
follows, when the region server is configured. First of all, the
dimension in meters of both sides of the region are computed,
as shown in (2) and (3) (where H () is the haversine formula).

dimlat = 1000 · H
((

Lat1,Lon1 +
Lon2 − Lon1

2

)
,(

Lat2,Lon1 +
Lon2 − Lon1

2

))
(2)

dimlon = 1000 · H
((

Lat1 +
Lat2 − Lat1

2
,Lon1

)
,(

Lat1 +
Lat2 − Lat1

2
,Lon2

))
(3)

Then the number of degrees equivalent to a meter, both in
latitude and longitude, is computed (see (4) and (5)).

steplat =
regLat2 − regLat1

dimlat
(4)

steplon =
regLon2 − regLon1

dimlon
(5)

Thus, to compute the distance in meters between two
geo-positions, (lat1, lon1) and (lat2, lon2) using the region
approximations steplat and steplon, we use the pythagoras

VOLUME 12, 2024 40161



M. Perez-Francisco et al.: Scalable Server-Side Solution

formula shown in (6).

distance((lat1, lon1), (lat2, lon2))

=

√(
lat1 − lat2
steplat

)2

+

(
lon1 − lon2
steplon

)2

(6)

We have used a profiler to check the benefit of calculating
the distance between vehicles applying pythagoras in degrees
rather than using the haversine formula (through Geopy
Python module) in the cells-algorithm. In a test with
2000 clients for 300 seconds, the time to compute the
distances (around 670,000 calls) accumulated 2.341 and
109.961 execution seconds, respectively, being that our
approach represents an improvement of about 47 times.
Consequently, in the rest of the tests performed in the
paper, the pythagoras method has been used for distance
computing.

Fig. 10 (explained further in SectionV-C) shows the impact
of using both distance computing methods on the server load.

B. SYNTHETIC WORKLOAD
For the experiments, a synthetic load has been developed
in which vehicles are emulated with a random movement
inside the geographic area covered by the server. These
simulated vehicles start their motion at different random
points, and send a position message every second. After
sending its simulated position, each vehicle chooses an
increment or decrement of their next direction and speed,
and then calculate what will be its future position in the next
second. Speeds are chosen uniformly from 0 to 80 km/h.
Fig. 7 shows the starting and arrival locations (red and blue
dots respectively) of a hundred of synthetic vehicles in a
17 × 17 km2 area. They were moving for 600 seconds
covering an average distance of 6.4 km with a standard
deviation of 2.2 km.

FIGURE 7. Origin (red dots) and destination (blue dots) of 100 synthetic
vehicles traveling for 600 seconds in an area of 17 × 17 km2.

In the results presented below, except in Section V-F, all
vehicles ask for proximity alarms of all other vehicles. This is

not the expected use of the application, as probably cars want
to be alerted of the presence of VRUs, but not of other cars,
and cyclists want to communicate their position, but do not
ask for any alarm.We havemade this simplification assuming
that it represents a heavier load (worst-case scenario).

To execute the synthetic load, 28 computers have
been used, each one with four Intel Core(TM) i5-7400
CPU 3.00GHz with 15 Gbytes of RAM running Ubuntu
20.04.1. Each of these computers is able to execute up to
950 simultaneous virtual clients.

The set of computers executing the clients is connected
to the server through our university campus network,
which at the endpoints is a Fast Ethernet network (100Mbps).

C. SATURATION LOAD
We have made tests to detect the saturation load for region
servers. As the service time depends on traffic density and
the amount of vehicles, so does the saturation point. To detect
the load level which saturates the server, we have regis-
tered the time between themoment at which clients send posi-
tion messages, and the time when the server software receives
themessages (it takes themessages from the operating system
UDP buffer). When the capacity of the server is exceeded,
the percentage of messages that are older than one second
raises abruptly. It must be noted that, when the server handles
messages older than one second, the real-time restriction
fails.

The time elapsed between the instant at which a client
sends a message and the server receives it, is approximate,
as we compare the server clock when it takes a message
against the timestamp defined by the client, and the clocks
of both computers can not be exactly synchronized. This can
happen even if all computers periodically adjust their clocks
using an external time server, for instance using the Network
Time Protocol [34]. As a consequence, it is possible to obtain
negative values for this variable. However, this variable is
accurate enough to give us an idea about the saturation point
of the system.

As we have said previously, in these tests we have
incremented the UDP buffer to detect the saturation point
when messages start to be outdated, rather than when
messages are discarded due to UDP buffer overflow. It must
be noted that the tests have been done on the wired campus
network, and the number of lost messages is negligible.

Fig. 8 shows the saturation point of the list-algorithm
version of the server for square regions of sides 160, 17, and
3 km. In these tests, the regions of side 160 and 17 km saturate
with 1750 clients. The region of 3 km of side saturates
later, with 2500 clients. This latter region has a higher
traffic density and, when walking through the list, alarms are
detected with less iterations. For the amount of clients in these
tests, this time is close to zero for the cells-algorithm version.

Tests with a greater number of clients have been done
to saturate the cells-algorithm version of the server. For
the three mentioned regions (squares of sides 160, 17, and

40162 VOLUME 12, 2024



M. Perez-Francisco et al.: Scalable Server-Side Solution

FIGURE 8. Communication plus UDP buffer time for square regions of 3,
17 and 160 km of side for the list-algorithm as function of the number of
clients.

3 km), the saturation point can be seen in Fig. 9. The
saturation for the three regions takes place at 13,000 clients
with 2,88% of outdated messages, 13,500 clients with 7,2%
of outdated messages, and 15,000 clients with 3,02% of
outdated messages, respectively. Up to a certain limit of
traffic density, in which the time to serve the messages
stabilizes, increasing traffic density actually reduces the
service time, meaning that the saturation takes place at a
threshold higher than expected, hence allowing the system to
support more vehicles.

Fig. 9 shows a step where the communications time
suddenly increases by about 1 second. For a range of load, the
server can deal with a percentage of non-outdated messages
because outdated messages are just discarded. Notice that,
beyond a certain load level, the server is no longer able to
process messages, and it can just receive outdated messages.
After this point, the time in the UDP buffer starts growing
until a buffer overflow occurs.

FIGURE 9. Communication plus UDP buffer time for square regions of 3,
17 and 160 km of side for the cells-algorithm.

Fig. 10 shows the impact of using both methods (pythago-
ras and Geopy library) to compute the distance between
vehicles, as explained in Section V-A. It can be seen that,
using the haversine formula, the saturation of the server starts
even before the 3000 client threshold is reached. These tests
have been done with the cells-algorithm version of the server

with a region of 17 × 17 km2. However, when using our
proposed pythagoras formulation, the server is able to serve
up to 13,000 clients for the same region, as it can be seen in
Fig. 9.

FIGURE 10. Communication plus UDP buffer time to show the effect of
distance computing method on the saturation of the cells-algorithm
version of the server in a region of 17 × 17 km2.

In the experiments three different traffic densities have
been tested, showing that, for highers densities, slightly more
load is supported. In any case, saturation detection must be
checked independently of the traffic density. This applies for
regions in which there are unbalanced densities, as it can be
the case of a region including several urban agglomerations.
The number of users saturating the servers may change,
but the proximity of saturation events have to be detected in
any case.

D. SERVICE TIME
The service time we have measured is the time between
the start and end of the thread to process a client position
message. That is, to update the position of the client in
the data structure of the server, and to look for and notify
alarms. To check the dependence of this time and the traffic
density we have tested the service time of both algorithms
as function of the amount of clients in three square areas,
with sides of about 160, 17, and 3 km. The results of the
average service time are shown in Fig. 11, 12, and 13.
These figures show, as expected, the benefits of dividing the
region in cells and working with many reduced lists. The
list-algorithm curve (in blue) in these figures is interrupted
for the number of clients which saturates this version of the
server, given that beyond this amount of clients, there are
many outdated messages and they are not processed by the
server.

The server based on the list-algorithm is saturated around
2000 clients. When saturation is reached, each second
the server receives more messages than it can process.
Consequently, UDP buffer starts growing, and there is
more and more messages older than one second; when this
happens, real-time restrictions cannot be guaranteed. On the
other hand, the cells-algorithm version of the server largely

VOLUME 12, 2024 40163



M. Perez-Francisco et al.: Scalable Server-Side Solution

FIGURE 11. Service time as function of the number of clients for a square
region of 160 km of side for both versions of the region server. The times
for the list-algorithm (in blue) are shown until saturation is reached. The
cells-algorithm is not saturated for the amount of clients in the figure.

FIGURE 12. Service time as function of the number of clients for a square
region of 17 km of side. The times for the list-algorithm (in blue) are
shown until saturation is reached. The cells-algorithm is not saturated for
the amount of clients in the figure.

FIGURE 13. Service time as function of the number of clients for a square
region of 3 km of side. The times for the list-algorithm (in blue) are
shown until saturation is reached. The cells-algorithm is not saturated for
the amount of clients in the figure.

outperforms the list-algorithm one as the list is distributed
among the cells.

Fig. 14 shows the average service time as function of
the number of clients for the cells-algorithm server, and

FIGURE 14. Service time for the cells-algorithm server as function of the
number of clients for square regions of 3, 17 and 160 km of side.

FIGURE 15. Service time for a region of 17 km of side as function of the
size of cells in the cells-algorithm. There is a line for each number of
clients, ranging from 1,000 to 9,000 clients.

for the three considered regions. For each region, only
the values before the saturation of the server are shown.
It can be seen that the service time of the cells-algorithm
version reduces progressively with the increment of vehicles,
stabilizing at around 0.05 milliseconds. This is a consequence
of the increment of traffic density, given that alarms are found
early.

E. EFFECT OF CELLS SIZE
In the cells-algorithm we have chosen the alarm distance,
150 meters, as the cells’ side. The idea was that if a cell
has more than one vehicle, it could be possible to activate
the alarm without computing the distance for the sake of
efficiency, even if it is not exact as vehicles could be on the
extremes of the diagonal of the cell. In the tests, this capability
has not been used, and it can be of interest to compare the
service time of the algorithm with different cell’s size.

Fig. 15 shows a comparison of the service time for different
sizes of cells and for different numbers of clients. The region
used in these tests is a square of 17 km of side. It can be seen
that, independently of the number of clients, the best choice
is to use the security distance for the cells’ side, even if the
previously mentioned acceleration is not applied.

40164 VOLUME 12, 2024



M. Perez-Francisco et al.: Scalable Server-Side Solution

FIGURE 16. Service time as a function of the percentage of clients
demanding alarms in a square region of 160 km of side. There is a line for
each number of clients, ranging from 1,000 to 15,000 clients.

FIGURE 17. Service time as function of the percentage of clients
demanding alarms for a square region of 17 km of side. There is a line for
each number of clients, ranging from 1,000 to 15,000 clients.

FIGURE 18. Service time as function of the percentage of clients
demanding alarms for a square region of 3 km of side. There is a line for
each number of clients, ranging from 1,000 to 15,000 clients.

F. NUMBER OF VEHICLES DEMANDING ALARMS
Previous tests have been done assuming that all vehicles ask
for alarms of all other vehicles, as it seems to be the heaviest
workload (worst-case scenario). So, we have made tests with
different percentages of clients asking alarms. Vehicles who

do not ask for alarms just send position messages to warn the
other vehicles.

Fig. 16, 17 and 18 show the service time (time to handle the
messages on the data structure) for the cells-algorithm server
with different percentages of vehicles demanding alarms.
Figures correspond to regions of 160 × 160, 17 × 17 and
3 × 3 km2, respectively. In these figures a light increment of
the service time when increasing the number of vehicles ask-
ing for alarms. Thus, we conclude that in the cells-algorithm,
themain part of thework is due to themanagement of position
messages.

VI. CONCLUSION
This paper builds upon previous research to explore if a
traffic alarm system can rely on 4G cellular infrastructure
and smartphones. The prior study [7] confirmed the viability
of the communication aspect, whereas the present paper
focuses on the server component. Our proposal consists
of a cloud of coordination servers and region servers
which oversee vehicles in specific geographic areas, and
we’ve implemented two algorithms to assess real-time
constraints.

Region servers process vehicle location data, issuing
collision warnings in less than a second for those vehicles
closer than a security distance. Two server versions were
tested: one with a single list of vehicles, and another
one where the target region is divided into cells. The
cell-based version significantly outperforms the single-list
one, achieving service times below 0.1 ms, and supporting
13,000 vehicles for a region up to 25,600 km2, a value that
could be slightly increased to 15,000 vehicles when the region
was limited to 9 km2.

However, the algorithms for implementing a global
service are still to be tested. Our future work involves
evaluating response times when multiple region servers
collaborate in their borders. In that regard, we plan to
study how the load balance system affects the real-time
constraints.

REFERENCES
[1] M. Léo, ‘‘A study on bicycle and public transportation synergy based on

a cross-analysis between Europe and Japan,’’ Ph.D. thesis, Inst. Urban
Innov., Yokohama Nat. Univ., Yokohama, Japan, 2021.

[2] C. Zhao, T. A. Carstensen, T. A. S. Nielsen, and A. S. Olafsson,
‘‘Bicycle-friendly infrastructure planning in Beijing and
copenhagen–between adapting design solutions and learning local
planning cultures,’’ J. Transp. Geography, vol. 68, pp. 149–159,
Apr. 2018.

[3] European Comission. 2019 Road Safety Statistics: What is Behind
the Figures?. Accessed: Jan. 18, 2021. [Online]. Available:
https://ec.europa.eu/commission/presscorner/detail/en/qanda_20_1004

[4] A. Kourtellis, P.-S. Lin, and N. Kharkar, ‘‘Smartphone-based connected
bicycle prototype development for sustainable multimodal transportation
system,’’ Center Urban Transp. Res., Univ. South Florida, Tampa, FL,
USA, Tech. Rep. CUTR-NCTR-RR-2018-03, 2019.

[5] F. Dressler, F. Klingler, M. Segata, and R. L. Cigno, ‘‘Cooperative driving
and the tactile internet,’’ Proc. IEEE, vol. 107, no. 2, pp. 436–446,
Feb. 2019.

[6] M. Liebner, F. Klanner, and C. Stiller, ‘‘Active safety for vulnerable road
users based on smartphone position data,’’ in Proc. IEEE Intell. Vehicles
Symp. (IV), Jun. 2013, pp. 256–261.

VOLUME 12, 2024 40165



M. Perez-Francisco et al.: Scalable Server-Side Solution

[7] P. Boronat, M. Pérez-Francisco, C. T. Calafate, and J.-C. Cano,
‘‘Towards a sustainable city for cyclists: Promoting safety through
a mobile sensing application,’’ Sensors, vol. 21, no. 6, p. 2116,
Mar. 2021.

[8] S. Herrnleben, M. Pfannemüller, C. Krupitzer, S. Kounev, M. Segata,
F. Fastnacht, and M. Nigmann, ‘‘Towards adaptive car-to-cloud communi-
cation,’’ in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops
(PerCom Workshops), Mar. 2019, pp. 119–124.

[9] G. Kapousizis, M. B. Ulak, K. Geurs, and P. J. M. Havinga, ‘‘A review
of state-of-the-art bicycle technologies affecting cycling safety: Level
of smartness and technology readiness,’’ Transp. Rev., vol. 43, no. 3,
pp. 430–452, May 2023.

[10] M. Jenkins, D. Duggan, and A. Negri, ‘‘Towards a connected bicycle
to communicate with vehicles and infrastructure: Multimodel alerting
interface with networked short-range transmissions (MAIN-ST),’’ in Proc.
IEEE Conf. Cognit. Comput. Aspects Situation Manage. (CogSIMA),
Mar. 2017, pp. 2–4.

[11] S. Céspedes, J. Salamanca, A. Yañez, C. Rivera, and J. C. Sacanamboy,
‘‘Platoon-based cyclists cooperative system,’’ in Proc. IEEE Veh. Netw.
Conf. (VNC), Dec. 2015, pp. 112–118.

[12] S. Smaldone, C. Tonde, V. K. Ananthanarayanan, A. Elgammal, and
L. Iftode, ‘‘The cyber-physical bike: A step towards safer green transporta-
tion,’’ in Proc. 12th Workshop Mobile Comput. Syst. Appl., Mar. 2011,
pp. 56–61.

[13] W. Jeon and R. Rajamani, ‘‘Rear vehicle tracking on a bicycle using active
sensor orientation control,’’ IEEE Trans. Intell. Transp. Syst., vol. 19, no. 8,
pp. 2638–2649, Aug. 2018.

[14] Volvo Cars. (2017). Collision Warning System—Detection of
Cyclists. Accessed: Jan. 14, 2021. [Online]. Available: https://www.
volvocars.com/lb/support/manuals/v60-cross-country/2016w17/
driver-support/collision-warning-system/collision-warning-system—
detection-of-cyclists

[15] M. Dozza, P. Gustafsson, L. Lindgren, C.-N. Boda, and
J. C. Muñoz-Cantillo, ‘‘Bikecom—A cooperative safety application
supporting cyclists and drivers at intersections,’’ in Proc. 3rd Conf. Driver
Distraction Inattention, Gothenbrug, Sep. 2013, pp. 4–6.

[16] K. David and A. Flach, ‘‘CAR-2-X and pedestrian safety,’’ IEEE Veh.
Technol. Mag., vol. 5, no. 1, pp. 70–76, Mar. 2010.

[17] C. Sugimoto, Y. Nakamura, and T. Hashimoto, ‘‘Prototype of pedestrian-
to-vehicle communication system for the prevention of pedestrian
accidents using both 3G wireless and WLAN communication,’’
in Proc. 3rd Int. Symp. Wireless Pervasive Comput., May 2008,
pp. 764–767.

[18] R. Bastani Zadeh, M. Ghatee, and H. R. Eftekhari, ‘‘Three-phases
smartphone-based warning system to protect vulnerable road users under
fuzzy conditions,’’ IEEE Trans. Intell. Transp. Syst., vol. 19, no. 7,
pp. 2086–2098, Jul. 2018.

[19] C.-H. Lin, Y.-T. Chen, J.-J. Chen, W.-C. Shih, and W.-T. Chen,
‘‘PSafety: A collision prevention system for pedestrians using smart-
phone,’’ in Proc. IEEE 84th Veh. Technol. Conf. (VTC-Fall), Sep. 2016,
pp. 1–5.

[20] Z. Liu, L. Pu, Z. Meng, X. Yang, K. Zhu, and L. Zhang, ‘‘POFS: A
novel pedestrian-oriented forewarning system for vulnerable pedestrian
safety,’’ in Proc. Int. Conf. Connected Vehicles Expo (ICCVE), Oct. 2015,
pp. 100–105.

[21] C.-Y. Li, G. Salinas, P.-H. Huang, G.-H. Tu, G.-H. Hsu, and T.-Y. Hsieh,
‘‘V2PSense: Enabling cellular-based V2P collision warning service
through mobile sensing,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
May 2018, pp. 1–6.

[22] U. Hernandez-Jayo, I. De-la-Iglesia, and J. Perez, ‘‘V-alert: Descrip-
tion and validation of a vulnerable road user alert system in the
framework of a smart city,’’ Sensors, vol. 15, no. 8, pp. 18480–18505,
Jul. 2015.

[23] H. Artail, K. Khalifeh, and M. Yahfoufi, ‘‘Avoiding car-pedestrian
collisions using a VANET to cellular communication framework,’’ in Proc.
13th Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), Jun. 2017,
pp. 458–465.

[24] S. Verma, Y. Kawamoto, Z. Md. Fadlullah, H. Nishiyama, and N. Kato,
‘‘A survey on network methodologies for real-time analytics of massive
IoT data and open research issues,’’ IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1457–1477, 3rd Quart., 2017.

[25] Y. Elbanoby, M. Aborizka, and F. Maghraby, ‘‘Real-time data management
for IoT in cloud environment,’’ in Proc. IEEE Global Conf. Internet Things
(GCIoT), Dec. 2019, pp. 1–7.

[26] T. Yu and X. Wang, ‘‘Real-time data analytics in Internet of Things
systems,’’ in Handbook of Real-Time Computing. Singapore: Springer,
pp. 541–568.

[27] R. Diaconu, ‘‘Scalability for virtual worlds,’’ Ph.D. thesis, École Doctorale
Informatique, Télécommunications et Électronique, Université Pierre et
Marie Curie-Paris VI, Paris, France, 2015.

[28] A. Yahyavi and B. Kemme, ‘‘Peer-to-peer architectures for massively
multiplayer online games: A survey,’’ACMComput. Surveys, vol. 46, no. 1,
pp. 1–51, Oct. 2013.

[29] B. Van Den Bossche, B. De Vleeschauwer, T. Verdickt, F. De Turck,
B. Dhoedt, and P. Demeester, ‘‘Autonomic microcell assignment in
massively distributed online virtual environments,’’ J. Netw. Comput.
Appl., vol. 32, no. 6, pp. 1242–1256, Nov. 2009.

[30] D. Pittman and C. GauthierDickey, ‘‘A measurement study of virtual
populations in massively multiplayer online games,’’ in Proc. 6th ACM
SIGCOMM workshop Netw. Syst. Support Games. New York, NY, USA:
Association for Computing Machinery, Sep. 2007, pp. 25–30.

[31] U. Farooq and J. Glauert, ‘‘Integrating dynamic scalability into the
OpenSimulator framework,’’ Simul. Model. Pract. Theory, vol. 72,
pp. 118–130, Mar. 2017.

[32] C. E. B. Bezerra and C. F. R. Geyer, ‘‘A load balancing scheme for
massively multiplayer online games,’’ Multimedia Tools Appl., vol. 45,
nos. 1–3, pp. 263–289, Oct. 2009.

[33] A. Akbar, G. Kousiouris, H. Pervaiz, J. Sancho, P. Ta-Shma, F. Carrez,
and K. Moessner, ‘‘Real-time probabilistic data fusion for large-scale IoT
applications,’’ IEEE Access, vol. 6, pp. 10015–10027, 2018.

[34] J. Martin, J. Burbank,W. Kasch, and P. D. L. Mills,Network Time Protocol
Version 4: Protocol and Algorithms Specification, document RFC 5905,
Jun. 2010.

MIGUEL PEREZ-FRANCISCO received the
bachelor’s degree in computer science from Uni-
versitat Politècnica de València (UPV), in 1992,
and the Ph.D. degree in computer science from
Universitat Jaume I (UJI), Spain, in 1998. He is
currently an Associate Professor of computer
science with the Department of Computer Science
and Engineering, UJI. His main research interests
include wireless communications, mobile sensor
networks, and frailty detection in elderly people.

PABLO BORONAT received the bachelor’s degree
in computer science from Universitat Politècnica
de València (UPV), in 1991, and the Ph.D.
degree in computer science from Universitat
Jaume I (UJI), Spain, in 2001. He is currently
an Associate Professor of computer science with
the Department of Computer Languages and
Systems, UJI. His main research interests include
community networks, wireless communications,
mobile sensor networks, and frailty detection in
elderly people.

40166 VOLUME 12, 2024



M. Perez-Francisco et al.: Scalable Server-Side Solution

CARLOS T. CALAFATE (Senior Member, IEEE)
received the Graduate degree (Hons.) in electrical
and computer engineering from the University
of Oporto, Portugal, in 2001, and the Ph.D.
degree (cum laude) in informatics fromUniversitat
Politècnica de València (UPV), Spain, in 2006.
Since 2002, he has been with UPV, where he is
currently a Full Professor with the Department
of Computer Engineering. His research interests
include ad-hoc and vehicular networks, UAVs,

smart cities and the IoT, QoS, network protocols, video streaming, and
network security. To date he has published more than 500 articles, several of
which in journals, including IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,
IEEE TRANSACTIONS ON MOBILE COMPUTING, IEEE/ACM TRANSACTIONS ON

NETWORKING, Ad hoc Networks (Elsevier), and IEEE Communications
Magazine. He is a founding member of the IEEE SIG on Big Data with
Computational Intelligence and the IEEE SIG on Green Internet of Vehicles.
He is an associate editor of several international journals from editorials,
including Elsevier, Hindawi, MDPI, IET, and SAGE, and the Section Editor-
in-Chief of the Drones (MDPI) journal. He has participated in the TPC of
more than 250 international conferences. He is ranked among the World’s
Top 2% Scientists, and also among the top 100 Spanish researchers in the
computer science and electronics field.

JUAN-CARLOS CANO (Senior Member, IEEE)
received the M.Sc. and Ph.D. degrees in computer
science from Universitat Politècnica de València
(UPV), Spain, in 1994 and 2002, respectively.
From 1995 to 1997, he was a Programmer
Analyst with IBM’s Manufacturing Division,
Valencia. He is currently a Full Professor with
the Department of Computer Engineering, UPV.
His current research interests include wireless
communications, vehicular networks, mobile ad

hoc networks, and pervasive computing.

PIETRO MANZONI (Senior Member, IEEE)
received the master’s degree in computer science
from Università degli Studi di Milano, Milan,
Italy, in 1989, and the Ph.D. degree in com-
puter science from Politecnico di Milano, Milan,
in 1995. From November 1992 to February 1993,
he interned at Bellcore Labs, Red Bank, NJ,
USA. From February 1994 to November 1994,
he was a Visiting Researcher with the International
Computer Science Institute (ICSI), Berkeley, CA,

USA. He is currently a Professor of computer engineering with Universitat
Politècnica de València, Spain. He is also developing solutions for the
Internet of Things using LPWAN networks and Pub/Sub systems. These
solutions have various applications, including environmental intelligence
by integrating TinyML-based solutions, sustainable and green IoT, and
smart tourism. In addition, he is interested in exploring different aspects
of network pluralism and finding ways to provide integrated connectivity
in the edge-cloud continuum. His research interest includes mobile wireless
networks to create dynamic systems. He is the Coordinator of the Computer
Networks Research Group (GRC) and a member of the IEEE Technical
Committee onHyper-Intelligence, the IEEE SIG onMetaverse, and theACM
SIGCAS-Computers and Society.

VOLUME 12, 2024 40167


