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Abstract
We present a clear and practical way to characterize the parabolicity of a complete
immersed surface that is invariant with respect to a Killing vector field of the ambient
space.
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1 Introduction

The intrinsic or extrinsic geometric conditions which guarantees that a surface is a
parabolic surface has been largely studied from the beginning of the twentieth cen-
tury. See for example [1, 7, 9, 10, 17]. This interplay between geometry and analytical
properties of functions defined on surfaces is used to classify the surfaces in confor-
mal types. Recall that a Riemannian manifold is said to be parabolic if every upper
bounded subharmonic function is constant. A canonical reference on the parabolicity
of manifolds is provided by [9]. In dimension 2, parabolicity is a conformal prop-
erty. Specifically, if the surface (M, g) is parabolic, then the surface (M, eug) is also
parabolic for any smooth function u : M → R. Parabolic manifolds satisfy a specific
maximum principle, as demonstrated in [2], for example. Given a non-constant C2

function u : M → R with supM u = u∗ < ∞, if M is a parabolic manifold, there
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exists a divergent sequence {xk}k∈N ⊂ M such that

u(xk) > u∗ − 1

k
, and, �u(xk) < 0.

Parabolicity can also be defined for manifolds M with a non-empty boundary ∂M , as
shown in [15]. A manifold with a boundary is parabolic if and only if every bounded
harmonic function is determined by its values on the boundary. In other words, if
f1, f2 : M → R are two bounded harmonic functions with f1(x) = f2(x) for any
x ∈ ∂M , then f1(y) = f2(y) for every y ∈ M . Given a complete Riemannian
manifold (M, g) and a precompact domain � ⊂ M , every non-bounded connected
component of M − � is called an end of M with respect to �. In this setting, M is
parabolic if and only if all the ends of M with respect to � are parabolic.

In this article, we are interested in studying surfaces that are invariant with respect to
a one-parameter group of isometries of the ambient space. For this purpose, we make
use ofKilling vector fields. AKilling vector field ξ is defined such thatLξ g = 0,where
g represents the metric tensor. We will say that a surface is invariant with respect to a
Killing field when it is invariant with respect to the one-parameter group of isometries
of the ambient manifold associated with ξ .

The main result of this paper is the following Theorem:

Main Theorem Let E be a n-dimensional Riemannian manifold which admits a com-
plete Killing vector field ξ ∈ X(E). Assume that an immersed complete non-compact
regular surface S ⊂ E is invariant with respect to the one-parameter group of isome-
tries of E associated to ξ . Assume that there exists q ∈ S such that ‖ξ(q)‖ �= 0 and
denote by γ (t) ⊂ S a complete curve parameterized by arc length satisfying

〈γ̇ (t), ξ〉 = 0.

Then, S is parabolic if and only if

1. the curve γ is compact, or
2. the integral curves of ξ are compact and there exists a, b ∈ R, with a < b, such

that
∫ a
−∞

1
‖ξ(γ (s))‖ds = ∞ and

∫ ∞
b

1
‖ξ(γ (s))‖ds = ∞, or

3. the integral curves of ξ are non-compact and
∫ 0
−∞

1
‖ξ(γ (s))‖ds = ∞ and

∫ ∞
0

1
‖ξ(γ (s))‖ds = ∞.

Remark 1 We will see in Proposition 1 that the existence of a point p ∈ S, where
ξ(p) �= 0 allows us to prove that there exist at most two points, where the Killing
vector field ξ vanishes. In particular, we will prove that, if ξ|S vanishes at exactly
two points, then S is diffeomorphic to a sphere and hence it is parabolic and, if ξ|S
vanishes at only one point, then the integral curves of ξ must be compact and since γ̇

is perpendicular to ξ , there exist a, b ∈ R, with a < b, such that ‖ξ(γ (s))‖ �= 0 in
s ∈ (−∞, a) ∪ (b,∞) and

∫ a
−∞

1
‖ξ(γ (s))‖ds = ∫ ∞

b
1

‖ξ(γ (s))‖ds.
Observe that if ξ vanishes on all S, we cannot find a curve γ ⊂ S which generates

S, since every curve � ⊂ S satisfies the condition
〈
�̇(t), ξ

〉 = 0. However, this
situation does not append in low dimensions. Indeed, [11, Theorem 5.3] assures that
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each connected component of the set of zeros of ξ , Zero(ξ), is a closed totally geodesic
submanifold of even codimension. In particular, if n = 3, then ξ vanishes at isolated
geodesics of E. If n = 4, there could exist a surface S, where ξ vanishes and its
geometric properties does not depend on ξ but only on the geometry ofE; for example,
we can obtain a Killing vector field in R

4 such that it vanishes identically at the totally
geodesic submanifold R

2 ⊂ R
4, and similarly we can find a Killing vector field in H

4

such that it vanishes at the totally geodesic submanifold H
2 ⊂ H

4 but R
2 is parabolic

and H
2 is hyperbolic. If n > 4, if ξ vanishes on a surface S ⊂ E, then S can be

immersed isometrically in a manifold that does not admit any Killing field a priori.

In what followswe prove theMain Theorem and thenwe show a couple of applications
in some simply connected homogeneous manifold.

2 Proof of theMain Theorem: Parabolicity of Surfaces Admitting a
Killing Submersion

In order to prove the Main Theorem we need to state here that the surface only can
admit finitely many points, where the Killing vector field vanishes. In fact, ξ vanishes
at most on two points of S and in such a case S is diffeomorphic to a sphere. If ξ

only vanishes at one point of S, then S is diffeomorphic to a plane. In both cases the
integral curves of ξ are diffeomorphic to S

1, that is, S is rotationally symmetric. Let
us summarize this in the following proposition:

Proposition 1 Let E be a n-dimensional Riemannian manifold which admits a com-
plete Killing vector field ξ ∈ X(E). Assume that an immersed complete regular surface
S ⊂ E is invariant with respect to the one-parameter group of isometries of E associ-
ated to ξ . Assume that there exists q ∈ S such that ‖ξ(q)‖ �= 0. Then, there are only
three options:

1. The Killing vector field ξ never vanishes on S.
2. The Killing vector field ξ vanishes at only one point p ∈ S. The surface S is

topologically a plane and the integral curves of ξ are compact.
3. The Killing vector field vanishes at only two points p, p′ ∈ S. The surface S is

topologically an sphere and the integral curves of ξ are compact.

Proof Assume that there exists a point p ∈ S such that ξ(p) = 0. First of all, we are
going to prove that there are no other points with vanishing ξ in a geodesic ball of S
centered at p and radius the injectivity radius of p.

Let us start joining p, where ξ(p) = 0, to the point q (where is assumed that
ξ(q) �= 0) with a minimal geodesic segment γ . Assume that there exists a point p′,
see Fig. 1, in γ , where ξ(p′) = 0.

Let us denote by {φt } the one-parametric group of transformations associated to ξ .
Let q2 = φt0(q). Since ξ(q) �= 0, we can take t0 sufficiently small such that q2 �= q.
Moreover as we are assuming ξ(p) = ξ(p′) = 0, we know that φt0(p) = p and
φt0(p

′) = p′. Since ξ is a Killing vector field, φt are isometries and γ1 = φt0γ is a
minimal geodesic segment as well joining p, p′, and q2. By using the uniqueness of
the geodesics, taking into account that q2 �= q we conclude γ1 �= γ and hence we
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Fig. 1 If ξ(p) = 0, ξ(q) �= 0,
and γ is the minimal geodesic
segment joining p to q, then
there is no p′ ∈ γ with
ξ(p′) = 0

have two different minimal geodesic segments joining p and p′, then p′ ∈ cut(p) and
γ does not realize the distance providing a contradiction. Hence there are no points
p′ in γ with ξ(p′) = 0.

Therefore any point p1 inφt (γ ), with 0 < t < t0, at distance less than the injectivity
radius of p satisfies that ξ(p1) �= 0. So, without loss of generality, we can assume that
distance between p and q is smaller than the injectivity radius of p.

Take a point q ′ in the minimal geodesic joining p and q at distance less than the
injectivity radius of p. Then, ξ(q ′) �= 0. The orbit of q ′ by φt ,

Oq ′ = {
φt (q

′) : t ∈ R
}

is the geodesic sphere of radius dist(p, q ′) centered at p. Indeed, observe that the
distance dist(p, q ′) = dist(p, φt (q ′)) since γ and φt (γ ) are minimal geodesics. Thus,
Oq ′ is contained in the geodesic sphere centered at p and radius dist(p, q). Let r0 =
dist(p, q ′) < inj(p) and assume by contradiction that there exists p′′ ∈ ∂Br0(p)\Oq ′ .
This means that the orbit of q ′ stops at p′ ∈ ∂Br0(p) before reaching p′′. In particular,
ξ(p′) = 0 and p′ ∈ cut(p), that is a contradiction sine dist(p, p′) = r0 < inj(p).
Therefore,

Oq ′ = {r ∈ S : dist(p, r) = dist(p, q ′)},

which is compact and, as we have seen before, there are no points with ξ = 0 in the
minimal segments joining p with the points ofOq ′ . In particular, we proved that, if R
is smaller than the injectivity radius of p, then ξ �= 0 in BR(p) \ {p}, where BR(p)
is the geodesic ball centered at p with radius R. Furthermore, BR(p) is foliated by
integral curves of ξ . It can be proved that any point p′ with ξ(p′) = 0 then p′ ∈ cut(p),
see [11, Corollary 5.2]. Moreover we can prove that if q ∈ cut(p) then ξ(q) = 0.
Suppose, by contradiction, that ξ(p) = 0 and ξ(q) �= 0 for some q ∈ cut(p). Consider
the minimal segment

t → γ (t) = expp(tu), with ‖u‖ = 1,

such that γ (0) = p, γ (dist(p, q)) = q and γ minimizes distance for t ∈
[0, dist(p, q)] but it is not a minimal geodesic for t > dist(p, q). If we suppose
that ξ(q) �= 0, the orbit Oq is the metric sphere ∂Bdist(p,q)(p), it has positive length
and it is diffeomorphic to S

1. Moreover since φt acts by isometries every point
q ′ ∈ ∂Bdist(p,q)(p) is a cut point of p and there exists u′ ∈ TpM such that the
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Fig. 2 If S has two points p and
p′, where ξ vanish, then the
points p and p′ are antipodals
points of a rotationally
symmetric sphere

geodesic segment

t → γ1(t) = expp(tu
′),

satisfies that γ1(dist(p, q)) = q ′ and γ1 minimizes distance for t ∈ [0, dist(p, q)] but
it is not a minimal geodesic for t > dist(p, q). Thence cut(p) = ∂Bdist(p,q)(p) and,
see for instance [19, Lemma 4.4],

S = Bdist(p,q)(p) ∪ ∂Bdist(p,q)(p).

But this is a contradiction with the completeness of S. Therefore, we can conclude
that if ξ(p) = 0 and q ∈ cut(p), then ξ(q) = 0 and we can state that if ξ(p) = 0,

cut(p) = {q ∈ S − {p} : ξ(q) = 0}.

Hence, if we suppose that ξ(p) = 0 and cut(p) = ∅, p is the only point in S, where
the Killing vector field vanishes and S is rotationally symmetric plane, that is there
exists λ ∈ C∞(R) such that S is isometric to (R2, λ2(x2 + y2)(dx2 + dy2)).

Now suppose again that ξ(p) = 0 and cut(p) �= ∅. Take a point p′ ∈ cut(p), and
hence with ξ(p′) = 0, and such that dist(p, p′) = inj(p). Thence for any point q
between p and p′ such that d(p′, q) is smaller than the injectivity radius of p′, see
Fig. 2, the orbit Oq need to be a geodesic sphere centered at p and simultaneously a
geodesic sphere centered at p′, namely,

Oq = ∂Bdist(p,q)(p) = ∂Bdist(p′,q)(p
′).

This implies that S is the connected sum

S = Bdist(p,q)(p)#Bdist(p′,q)(p′).

In particular, S is a sphere and there exists no other point in S, where ξ vanishes.
Summarizing everything, if we have a point p ∈ S with ξ(p) = 0 there are only

two options: or cut(p) = ∅ and S is a rotationally symmetric plane without other
points with vanishing ξ , or cut(p) contains only one point p′, where ξ(p′) = 0 and S
is a rotationally symmetric sphere. ��
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Using Proposition 1 we can remove a compact set K ⊂ S so that the Killing vector
field never vanishes on S − K . But S is parabolic if and only if S − K is parabolic
(see for instance [9]). Then, in order to simplify the discussion of the proof we are
assuming that ξ never vanishes on S, otherwise we can do the same argument but for
S − K .

Since the surface S is invariant by the one-parameter group of isometriesGξ = {φt }
associated to the Killing vector field ξ , i.e., Gξ (S) = S, we will also assume that Gξ

acts freely and properly on S, otherwise G is not closed in Iso(S) with the compact-
open topology and [14, Proposition] implies that ξ = X1 + X2, where X1 and X2
are two Killing vector fields with compact orbits satisfying [X1, X2] = 0, that is, S
is a torus and hence it is a parabolic surface. Then, S admits a Killing submersion
structure, that is, we can endow S/Gξ with a smooth structure and with a Riemannian
metric tensor in such a way that the projection π2 : S → S/Gξ , whose fibers are the
integral curves of ξ , is a Riemannian submersion. Furthermore, since 〈γ̇ (t), ξ 〉 = 0,
the curve γ is diffeomorphic to the set S/Gξ and because we are using arc-length
parametrization they are indeed isometric manifolds as well.

The Main Theorem is therefore equivalent to Theorem 7, where we are proving
the general case on surfaces which admits a Killing submersion. In order to prove
this theorem we will prove Lemmas 2, 3, 4, 5, and 6. In Lemma 2 we will prove
that a conformal change on the metric tensor preserves the parabolicity for surfaces.
Indeed, parabolicity is related to the conformal type in dimension 2. In Lemma 3 we
will prove that given a Killing submersion we can perform a conformal change with
a basic function in the total space and in the base manifold in such a way that with
respect to the new metric tensors the submersion remains a Killing submersion. In
Lemma 4 we will prove that a Killing submersion on a surface with constant norm of
the Killing vector field has non-negative Gaussian curvature. In Lemma (5) we will
prove that a complete surface with non-negative Gaussian curvature is a parabolic
surface. Finally, in Lemma 6 we given an expression of the laplacian of a function of
the base of the submersion. Using these lemmas we can prove Theorem 7 which is
equivalent to the Main theorem.

Lemma 2 In dimension 2, parabolicity is preserved under conformal changes in the
metric tensor.

Proof Let (M, g)be a2-dimensionalRiemannianmanifold and consider the conformal
change of metric g = f 2g given by the positive function f : M → R+, then, the
Laplacian � with respect to the metric tensor g is related with the Laplacian � with
respect to the metric tensor g by (see [5] for instance)

� = �

f 2
.

Then, (M, g) admits non-constant bounded subharmonic functions if and only if
(M, f 2g) admits bounded subharmonic functions. ��
Lemma 3 Let π : M → B be a surjective Killing submersion from to the complete
Riemannian manifold (M, gM ) to (B, gB) with complete Killing vector field ξ ∈
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X(M). Let f : B → R be a smooth and positive function. Then, π : M → B is also
a Killing submersion from (M, ( f ◦ π)2gM ) to (B, f 2gB) with the complete Killing
vector field ξ . Furthermore, (M, ( f ◦ π)2gM ) is complete if (B, f 2gB) is complete.

Proof Since ξ is a Killing vector field of gM , the Lie derivative of the metric tensor
vanishes, i.e.,

Lξ gM = 0.

Then

Lξ (( f ◦ π)gM ) = ξ( f ◦ π) · gM + ( f ◦ π)Lξ gM = 0,

and hence, ξ is also a Killing vector field for ( f ◦ π)gM . Likewise, since π :
(M, gM ) → (B, gB) is a Riemannian submersion, for any v ∈ TpM with gM (v, ξ) =
0,

gM (v, v) = gB(dπ(v), dπ(v)).

Then, for any v ∈ TpM with ( f ◦ π)gM (v, ξ) = 0,

( f ◦ π)gM (v, v) = f (π(p))gB(dπ(v), dπ(v)),

and hence π : (M, ( f ◦ π)gM ) → (B, f gB) is a Riemannian submersion.
To prove that M is complete, we consider an arbitrary Cauchy sequence {pn}n in

M and prove that it is convergent. We consider the sequence {qn = π(pn)}n ⊂ B.

First notice that 〈v, v〉M ≥ 〈dπ(v), dπ(v)〉B for any point p ∈ M and any tangent
vector field v ∈ TpM . Then, LengthM (γ ) ≥ LengthB(π(γ )) for any curve γ ⊂ M .
It follows that {qn}n is a Cauchy sequence in B and, since BM is complete, {qn}n
converges to a point q ∈ B. In particular, we can assume that {qn}n is contained
in a compact and simply connected subset K ⊂ B Let F0 : K → M be a local
section, then, for any n, there exists tn ∈ R such that pn = φtn (qn). Denote by
c = minK μ. Then, for any p ∈ π−1(K ) and any vector field v ∈ TpM , we have
〈v, v〉M ≥ c

〈
dπ⊥(v), dπ⊥(v)

〉
R
. This implies that ‖pi − p j‖M ≥ c|ti − t j | for any

i, j ∈ N, that is, {tn}n is a Cauchy sequence in (R, geuc). Since (R, geuc) is complete,
we can assume that there exist a, b ∈ R such that tn ∈ [a, b] for any n. It follows that
{pn}n is contained in the compact subset of π−1(K ) delimited by φa(F0) and φb(F0).
Hence, {pn}n is a Cauchy sequence in a compact domain, that is convergent and this
completes the proof. ��
Lemma 4 Let π : S → B be a Killing submersion with Killing vector field of constant
norm. Then, if dim(S) = 2, S has non-negative Gaussian curvature.

Proof Given a point p ∈ S and an horizontal vector v ∈ ξ⊥(p)with unit-length, ‖v‖ =
1, in order to obtain the Gaussian curvature, i.e., the sectional curvature sec(v, ξ) of
the plane spanned by v and ξ , let us consider a vector field X ∈ X(B) defined in a
neighborhood U � π(p), such that X(π(p)) = dπ(v) and with vanishing covariant
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derivative ∇B
X
X = 0 in B, i.e., a geodesic vector field. Then, the lift X ∈ X(S) of X

defined in π−1(U ) � p satisfies

∇X X = (∇X X)H + 〈∇X X , ξ 〉ξ = −〈X ,∇X ξ 〉 = 0. (1)

Here, the superscript H denotes the horizontal part of a vector and we have used that
since ξ is a Killing vector field 〈X ,∇X ξ 〉 = 0. Then,

sec(v, ξ) =〈R(X , ξ)X , ξ 〉 = 〈∇ξ∇X X − ∇X∇ξ X + ∇[X ,ξ ]X , ξ 〉
=〈−∇X∇ξ X + ∇[X ,ξ ]X , ξ 〉 = 〈−∇X ([ξ, X ] + ∇Xξ) + ∇[X ,ξ ]X , ξ 〉
=〈∇X ([X , ξ ] − ∇Xξ) + ∇[X ,ξ ]X , ξ 〉

In order to simplify the expression let us define the following vector fields Y := ∇Xξ

and Z := [X , ξ ]. Observe that both X ,Y are horizontal vector fields because ξ has
constant norm and thence 〈∇Xξ, ξ 〉 = 1

2 X‖ξ‖ = 0. Moreover

〈Z , ξ 〉 = 〈∇Xξ − ∇ξ X , ξ 〉 = 〈∇X ξ, ξ 〉 − 〈∇ξ X , ξ 〉 = 1

2
X〈ξ, ξ 〉 = 0

Therefore,

sec(v, ξ) =〈∇X (Z − Y ) + ∇Z X , ξ 〉 = 〈∇X Z + ∇Z X , ξ 〉 − 〈∇XY , ξ 〉
=‖Y‖2 ≥ 0,

where we have used

〈∇X Z , ξ 〉 = −〈Z ,∇X ξ 〉 = 〈X ,∇Z ξ 〉 = −〈∇Z X , ξ 〉

and 〈∇XY , ξ 〉 = −〈Y ,∇X ξ 〉 = −‖Y‖2. ��
Lemma 5 Let S be a complete surface with non-negative Gaussian curvature. Then,
S is a parabolic manifold.

Proof This lemma is a direct consequence of a well-known theorem due to Huber [10]
which states that if the negative part of the curvature K− = max{−K , 0} has finite
integral, namely,

∫

S
K− d A < ∞, (2)

then,
∫
M K dA ≤ χ(M) and M is conformally equivalent to a compact Riemann

surface with finitely many punctures and hence it is a parabolic surface. ��
Lemma 6 Let π : S → R be a Killing submersion with never vanishing Killing vector
field ξ ∈ X(M). Let f : R → R be a smooth function. Then

�S( f ◦ π)(q) = 1

μ(x)

d

dx

(

μ(x)
d f

dx

)

x=π(q)

,
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where μ(x) is the norm of the Killing vector field ‖ξ(p)‖ for any p ∈ π−1(x).

Proof Let π : (M, 〈, 〉M ) → (B, 〈, 〉B) be a Riemannian submersion. The Laplacian
of a basic function ( f̃ = f ◦ π, f : B → R) is given by (see [3, Lemma 3.1] for
instance or the computations that are made in [4])

(�M f̃ )q = (�B f )x − 〈∇B f p, dπq(Hq)〉B, (3)

where x = π(q), and H is the mean curvature vector field of the fiber π−1(p). In our
case taking B = R and M = S this implies

(�S f̃ )q = d2 f

dx2

∣
∣
∣
∣
x=π(q)

− d f

dx

∣
∣
∣
∣
x=π(q)

〈
∂

∂x
, dπq(Hq)

〉

R

, (4)

where ∂
∂x is the unit vector tangent to R. Taking into account that the mean curvature

vector field is given by

H = ∇ ξ
μ

ξ

μ
= 1

μ2∇ξ ξ.

Then,

〈
∂

∂x
, dπq(Hq)

〉

R

= 1

μ2

〈
∂

∂x
, dπ(∇ξ ξ)

〉

R

= 1

μ2

〈
X , ∇ξ ξ

〉

=−1

μ2
〈ξ, ∇Xξ 〉 = −1

2μ2 X‖ξ‖2 = −1

2μ2

d

dx
μ2

(5)

where X is an horizontal lift of ∂
∂x and we have used that ξ is a Killing vector field.

Finally equation (4) becomes

(�S f̃ )q = d2 f

dx2

∣
∣
∣
∣
x=π(q)

+ d f

dx

∣
∣
∣
∣
x=π(q)

1

μ(x)

dμ

dx

∣
∣
∣
∣
x=π(q)

, (6)

and the proposition is proved. ��

By using the previous lemmas, instead of studying the parabolicity of a complete
surface (S, g) which admits a Killing submersion π : S → M1 to the connected
1-dimensional Riemannian manifold (M, gcan), we will study the parabolicity of the
conformally equivalent Riemannian manifold (S, 1

μ2 g), whereμ(x) is the norm of the

never vanishingKilling vector field ‖ξ(p)‖ for any p ∈ π−1(x). By the lemma 2 (S, g)
is parabolic if and only if (S, 1

μ2 g) is parabolic. Observe that since S is complete π

needs to be a surjective map. Moreover by Lemma 3, the map π induces a Riemannian
submersion from (S, 1

μ2 g) to (M, 1
μ2 gcan). Since this submersion has a Killing vector
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field of constant norm, (S, 1
μ2 g) is a surface with non-negative Gaussian curvature by

Lemma 4. When M = S
1(R) or M = R

1 and

∫ 0

−∞
dx

μ(x)
= ∞ and

∫ ∞

0

dx

μ(x)
= ∞.

we have that (M, 1
μ2 gcan) is complete. Hence by using lemma 3 S is a complete

surface with non-negative Gaussian curvature and thus by Lemma 5, the surface S is
a parabolic manifold. On the other hand, if we assume that

∫ 0

−∞
dx

μ(x)
< ∞

(

or
∫ ∞

0

dx

μ(x)
< ∞

)

.

By Lemma 6 the function F : M → R

F(p) :=
∫ 0

π(p)

dx

μ(x)

is a bounded and harmonic function (which implies that S is a non-parabolicmanifold).
This can be summarized in the following theorem, which implies the Main theorem
of the paper:

Theorem 7 Let π : S → M1 be a Killing Submersion from a complete and 2-
dimensional Riemannian manifold (S, g) to the connected 1-dimensional Riemannian
manifold (M, gcan). Let us denote by μ(x) the norm of the Killing vector field ‖ξ(p)‖
for any p ∈ π−1(x). Then,

1. If M = S
1(R) endowed with the canonical metric tensor, S is parabolic.

2. If M = R with its canonical metric tensor, S is a parabolic manifold iff

∫ 0

−∞
dx

μ(x)
= ∞ and

∫ ∞

0

dx

μ(x)
= ∞.

3 Application of theMain Theorem: Parabolicity of Invariant Surfaces
in Homogeneous 3-Manifolds

In this section we use Main Theorem to study the parabolicity of invariant surfaces
with some geometric properties in 3-dimensional homogeneous Riemannian manifold
studied in different works by many authors.

3.1 Parabolicity of Invariant Surfaces with Constant Mean Curvature in Sol3

In [13], Lopez and Munteanu give a description of invariant surfaces with either
constant curvature in the Thurston geometry Sol3. Recall that Sol3 is isometric to R

3
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endowed with the metric

e2zdx2 + e−2zdy2 + dz2

and the component of the identity its isometry group is generated by the following
families of isometries:

T c
1 (x, y, z) = (x + c, y, z), T c

2 (x, y, z) = (x, y + c, z), T c
3 (x, y, z) = (e−cx, ec y, z + c).

In particular, in [13] they studied surfaces with constant mean curvature or con-
stant Gaussian curvature invariant with respect to T1, finding a profile curve γ (s) =
(0, y(s), z(s)) parameterized by arc length. Notice that the Killing vector field ∂x
associated to T1 has norm ‖∂x‖ = ez and it is orthogonal to γ ′, so we can easily apply
our result just studying

∫
e−z(s)ds.

The classification of minimal surfaces [13, Theorem 3.1] assures that the only
T1-invariant minimal surfaces of Sol3 are as follows:

1. a leaf of the foliation {Qt = {(x, t, z) | x, z ∈ R}}t∈R, which are known to be
isometric to the hyperbolic plane;

2. a leaf of the foliation {Rt = {(x, y, t) | x, y ∈ R}}t∈R, which are known to be
isometric to the Euclidean plane;

3. the surfaces Sθ0,a , for θ0 ∈ R\ {kπ : k ∈ Z} and a ∈ R, that are generated by
translating the profile curve

γ (s) =
(
0, a + es sin(θ0), log

(
tan(θ0)e

s sin(θ0)
))

.

Obviously, the surfaces Qt are hyperbolic, while the surfaces Rt are parabolic. It
remains to study the parabolicity of Sθ0,a . Since

∫
e− log

(
tan(θ0)es sin(θ0)

)
ds = e−s sin(θ0) cot(θ0) csc(θ0),

is a bounded function, Main Theorem implies that Sθ0,a are hyperbolic surfaces.
For the constantmean curvature case, [13, Theorem3.2] proves that the z-coordinate

of the profile curve is bounded. In particular,

lim
s→±∞

∫
e−z(s)ds = ±∞

and Main Theorem implies that the respective invariant H -surfaces are parabolic.

3.2 Parabolicity of Vertical Cylinders in Killing Submersion

An easy way to study surfaces immersed in a three-manifold which are invariant with
respect to a Killing vector field of the ambient space is by studying vertical cylinders
in Killing submersions. We recall that a three-dimensional Killing submersion is a
Riemannian submersion π : E → M from a three-dimensional manifold E onto a
surface (M, g), both connected and orientable, such that the fibers of π are integral
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curves of aKilling vector field ξ ∈ X(E).These spaces have been completely classified
in terms of the Riemannian surface (M, g), the length of the Killing vector field
μ = ‖ξ‖ and the so-called bundle curvature τ, defined such that τ(p) = −1

μ(p) 〈∇uξ, v〉,
where {u, v, ξp/μ(p)} is a positively oriented orthonormal basis of TpE (see [12,
Section 2]). In this setting a vertical cylinder is a surface S always tangent to ξ . In
particular, S is invariant with respect to the isometries associated to ξ and it projects
throughπ onto a curve γ ⊂ M . Sinceπ is a Riemannian submersion, to study

∫
�

1
μ(�)

,
where � ⊂ S is a curve parameterized by arc length and orthogonal to ξ , is equivalent
to study

∫
γ

1
(π∗μ)(γ )

, where γ = π(S) is parameterized by arc length in (M, g). In
particular, in this setting, the Main Theorem, read as follows.

Theorem 8 Let π : E → (M, g) be a Killing submersion with Killing length μ. Then,
for any complete curve γ ⊂ M, π−1(γ ) is a parabolic surface if and only if γ is
complete in (M, 1

μ2 g).

Remark 2 It is interesting to notice that, given a curve γ ⊂ M , while the conformal
metric 1

μ2 g gives us information about the parabolicity of S = π−1, the conformal

metric μ2 g gives us information about its mean curvature (see [6, Proposition 2.3]).

The parabolicity of surfaces of revolution (or surfaces with ends of revolution) in
space forms of constant sectional curvature has been studied in [8]. Three-dimensional
simply connected space forms of constant sectional curvature are the only manifolds
with a group of isometries of dimension 6 and can be classified (up to isometries)
by their sectional curvatures. We can label these spaces hence as M

3(κ). The spaces
M

3(κ) includes the Euclidean space for κ = 0, the spheres for κ > 0, and the
Hyperbolic space for κ < 0.

There are no three-dimensional spaces with a group of isometries of dimension 5.
The simply connected 3-dimensional spaces with a group of isometries of dimension
4 are Killing submersions and they can be classified (up to isometries) by the curvature
κ of the base manifold and by the torsion τ of the fibers. We can label these spaces
hence as E

3(κ, τ ) (because they are endowed with the Riemannian submersion π :
E
3(κ, τ ) → M

2(κ) with constant bundle curvature τ ). In what follows we give a
general condition to guarantee the parabolicity of rotational surfaces in the E

3(κ, τ )-
spaces.

The canonical rotational model describing the E
3(κ, τ )-spaces is given by (� ×

R, ds2), where

� = {
(x, y) ∈ R

2 | λ(x, y) > 0
}
, λ(x, y) = 1

1 + κ
4 (x2 + y2)

,

ds2 = λ2(x, y)(dx2 + dy2) + (λ(x, y)τ (ydx − xdy) + dz)2.

Since the Killing vector field ‖∂z‖ has unitary norm, every surface that is invariant with
respect to ∂z is parabolic. So, we focus on studying the parabolicity rotational surfaces.
First notice that if κ > 0, E(κ, τ ) is a Berger sphere, in particular, since it is compact,
every Killing vector field ξ has bounded norm and from the Main Theorem we deduce
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that every surface that is invariant with respect to ξ is parabolic. When κ ≤ 0, we
consider the Killing vector field ξ(x, y) = −y∂x + x∂y generating the rotation around
the z-axis and to describe E(κ, τ ) as a Killing submersion with respect to ξ , we use
the cylindrical coordinates

x(r , θ) = r cos(θ), y(r , θ) = r sin(θ).

We obtain that the space E(κ, τ ) minus its z-axis is isometric to a quotient of (R2
κ ×

R, ds2rot ), where R
2
κ = {

(r , z) ∈ R
2|r > 0, 4 + κr2 > 0

}
and

ds2rot = 16dr2

(4 + κr2)2
+ dz2

(1 + r2τ 2)
+

(
2r

√
1 + r2τ 2

4 + κr2

)2 (

dθ − (4 + κr2)τ

4(1 + r2τ 2)
dz

)2

.

Here, ξ = ∂θ and the Killing submersion with respect to ξ is such that

(M, g) =
(

R
2
κ ,

16

(4 + κr2)2
dr2 + 1

(1 + r2τ 2)
dz2

)

and μ(r , z) = 2r
√
1 + r2τ 2

4 + κr2

and then the conformal metric tensor g/μ2 is given by

1

μ2 g = 4

r2(1 + r2τ 2)
dr2 + (4 + κr2)2

4r2(1 + r2τ 2)2
dz2. (7)

In particular, every complete curve γ in (M, g) generates a complete parabolic
invariant surface in E

3(κ, τ ) if and only if γ is complete with respect to the metric
(7). For example, using this tool, it is easy to see that the minimal umbrellas of the
Heisenberg group E

3(0, τ ) are hyperbolic, without computing their extrinsic area
growth (see [16]). It is sufficient to consider the curve γ (t) = (t, 0). Its norms is in

the conformal metric is ‖γ (t)‖ = 2
t
√
1+t2τ 2

< t−3/2 for t > 2+√
4−τ 2

τ 2
or τ > 2, that

is, γ is not complete in the conformal metric, thus π−1(γ ) is hyperbolic.
We can also use this tool to study the parabolicity of the rotational surfaces of

constant mean curvature in E
3(−1, τ ) described in [18]. In particular, Peñafiel shows

that a rotational surface of constant mean curvature H ∈ R is parameterized by

γd(t) =
(
tanh

(√
t
2

)
, ud(t)

)
, where

ud(t) =
∫ (2H cosh(r) + d)

√
1 + 4τ 2 tanh2

( r
2

)

√
sinh2(r) − (2H cosh(r) + d)2

,

with d ∈ R. When d = −2H , the rotation of γd(t) generates an entire graph. When
H = 0, the norm of γ ′(t) with respect to (7) is

‖γ ′(t)‖ = 2

√
1

sinh2(t)
(
1 + τ 2 tanh

( t
2

)) � 4

√
1

1 + τ 2
e−t + o(e−2t ).
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In particular, limt→∞
∫ ‖γ ′(t)‖ is convergent and the rotational end generated by the

rotation of γ is hyperbolic. Furthermore, since the difference between ud and u−2H
is bounded, the surface generated by rotating any γd is hyperbolic.

On the contrary, when H = 1/2, we get that

‖γ ′(t)‖ =
(

(5 + 3 cosh(t))2(1 − 4τ2 + cosh(t) + 4τ2 cosh(t))

8(1 − τ2 + (1 + τ2) cosh(t))2
+ 4

sinh2(t)
(
1 + 4τ2 tanh

( t
2
))

) 1
2

which diverges for t → +∞. That is, the entire rotational graph with critical constant
mean curvature is parabolic.
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