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Abstract
The Fröbenius method of power series has been applied to several linear random differential
equations. The interest relies on the derivation of a closed-form mean-square solution and on
the possibility of approximating statistical measures at exponential convergence rate. In this
paper, we deal with the hypergeometric differential equation with random coefficients and
initial conditions. On the interval (0, 1), random power series centered at the regular singular
point 0 are employed, which are given in terms of the hypergeometric function. We find
the stochastic basis of mean-square solutions and solve random initial-value problems. The
approximation of the expectation and the variance is studied and illustrated computationally.

Keywords Hypergeometric random differential equation · Fröbenius method · Power
series · Mean-square calculus · Approximation of statistics

Mathematics Subject Classification 34F05 · 34A30 · 33C05

1 Introduction

In a random differential equation, the input parameters of the differential equation (coef-
ficients, initial or boundary conditions, etc.) are considered as random variables, with any
probability distribution. The solution is, then, a stochastic process. There aremany theoretical
studies on this type of models, for example, the investigation of solutions in the mean-square
sense (Syski 1967; Soong 1973; Neckel and Rupp 2013; Villafuerte et al. 2010; Licea et al.
2013; Cortés and Jornet 2020; Jornet 2023a). This means to work under the mean-square
random calculus of second-order random variables and stochastic processes, where limits
are considered in the sense of the expectation and the variance. Random differential equa-
tions constitute natural extensions of the deterministic counterpart, and they are conceptually
distinct to stochastic differential equations of Itô type driven by white noise (Øksendal 2013).
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An important part of research in applied mathematics is concerned with the derivation of
explicit or semi-explicit solutions to models (Area and Nieto 2021; Jornet 2021a). The calcu-
lation of power series-type solutions falls into this category. Many linear random differential
equations have been studied under the context of random mean-square calculus (Airy, Her-
mite, Legendre, Laguerre, Bessel, etc.) (Jornet 2023a; Calatayud et al. 2018; Jornet 2021b;
Cortés et al. 2017; Villafuerte 2023), by extending the Fröbenius method for power series
(Birkhoff and Rota 1989). Even non-linear random models have been addressed with the
use of power series (Villafuerte and Chen-Charpentier 2012; Jornet 2021c). The interest is
not merely theoretical; from a computational standpoint, rapid approximations to the expec-
tation and the variance may be obtained by considering truncated series. The convergence
rate is exponential, like other techniques used in forward uncertainty quantification such as
polynomial chaos or perturbation expansions (Smith 2013; Santonja and Chen-Charpentier
2012; Jornet 2021d, e), to improve the classical Monte Carlo simulation.

In this paper, the aim is to study the hypergeometric random differential equation

t(1 − t)ẍ(t) + [γ − (α + β + 1)t]ẋ(t) − αβx(t) = 0, (1)

on the domain I = (0, 1). It may have initial conditions at t0 ∈ I

x(t0) = y0, ẋ(t0) = y1. (2)

Any linear differential equation with two derivatives and at most three regular singular points
is equivalent to the hypergeometric differential equation. The input parameters y0, y1, γ , α
and β may be random variables, which implies that x is a stochastic process. The goal is to
study when x is a stochastic solution, namely a mean-square solution based on random power
series. This problem was posed in the conclusions of Cortés et al. (2017), which proposed to
investigate other kinds of Bessel differential equations (Weber, Kelvin, Neumann, etc.) and
other equations, such as Jacobi, hypergeometric, etc.

The plan of the paper is the following. In Sect. 2, preliminary results on mean-square
calculus are summarized or established. In Sect. 3, the general mean-square solution to (1) is
obtained. In Sect. 4, the initial-value problem (1) with (2) is solved in a mean-square sense,
and the approach to approximate the expectation and the variance of the solution is described
and illustrated computationally. Finally, Sect. 5 draws the main conclusions.

2 Preliminaries onmean-square calculus

Wesummarize themain definitions aboutmean-square calculus and state the results (lemmas)
that will be required later, with proofs when necessary. The reader may consult the references
(Soong 1973; Neckel and Rupp 2013; Villafuerte et al. 2010; Jornet 2023a).

Let (Ω,F,P) be a complete probability space. A random variable y : Ω → R is of order
p, 1 ≤ p < ∞, if

E[|y|p] =
∫

Ω

|y|pdP < ∞,

where E denotes the expectation operator. The random Lebesgue space Lp(Ω) is formed by
the set of random variables of order p. With the norm

‖y‖p = (E[|y|p])1/p,
it is a Banach space. For p = 2, it is a Hilbert space, with the inner product E[y1y2],
y1, y2 ∈ L2(Ω). This inner product is related to the covariance. Notice that a random variable
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is of order p = 2 if and only if it has a well-defined expectation and a finite variance, which
are the main statistical measures. On the other hand, for p = ∞, there is a definition of
L∞(Ω). It is the space of random variables that are bounded almost surely. The lowest
bound, called essential supremum, is the norm ‖y‖∞. This space is also Banach. In general,
Lp(Ω) ⊆ Lq(Ω) if p > q ≥ 1 and ‖y‖∞ = lim p→∞ ‖y‖p hold.

Given a sequence {yn}∞n=1 in Lp(Ω), 1 ≤ p ≤ ∞, we say that it converges to y under
‖ · ‖p if

lim
n→∞ ‖yn − y‖p = 0.

For p = 2, this convergence is referred to as mean-square convergence, and it preserves the
convergence of the expectation and the variance

lim
n→∞E[yn] = E[y],
lim
n→∞V[yn] = V[y].

Mean-square convergence then provides a convenient framework, compared to other conver-
gences such as almost surely, in probability or in distribution.

For a stochastic process y(t) on an interval J ⊆ R, it is of order p ∈ [1,∞] ifE[|y(t)|p] <

∞ for all t ∈ J . It is said to be continuous at t ∈ J in Lp(Ω) if

lim
h→0

‖y(t + h) − y(t)‖p = 0.

If there exists a stochastic process ẏ(t) ∈ Lp(Ω), such that

lim
h→0

∥∥∥∥ y(t + h) − y(t)

h
− ẏ(t)

∥∥∥∥
p

= 0, (3)

then y is differentiable at t in Lp(Ω), with derivative ẏ(t). In this setting, differentiability
implies continuity. The stochastic process is analytic at t1 in the Lp(Ω) sense if

y(t) =
∞∑

m=0

ym(t − t1)
m

for every t in a neighborhood of t1, where ym ∈ Lp(Ω) and the sum converges under ‖ · ‖p .

Example 1 Ifa ∈ Lp(Ω) and y(t) = atn is a stochastic process,n ≥ 0, then y is differentiable
in Lp(Ω). Indeed

lim
h→0

∥∥∥∥ y(t + h) − y(t)

h
− antn−1

∥∥∥∥
p

= ‖a‖p lim
h→0

(
(t + h)n − tn

h
− ntn−1

)
= 0.

Notice that atn is the general form of a term of a random power series.

Lemma 1 (Cortés et al. 2017, Proposition 3; Soong 1973, page 96). Fix 1 ≤ p ≤ ∞. If y(t)
and z(t) are L2p(Ω)-differentiable stochastic process at t , then yz is Lp(Ω)-differentiable
at t and

(yz)·(t) = ẏ(t)z(t) + y(t)ż(t).

If z is deterministic, then one only needs y be Lp(Ω)-differentiable at t to ensure that yz is
Lp(Ω)-differentiable at t .
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Lemma 2 Fix 1 ≤ p ≤ ∞. If a is a second-order random variable and z(t) is an L∞(Ω)-
differentiable stochastic process at t , then az is mean-square differentiable at t and

(az)·(t) = aż(t).

Proof We have∥∥∥∥az(t + h) − az(t)

h
− aż(t)

∥∥∥∥
2

≤ ‖a‖2
∥∥∥∥ z(t + h) − z(t)

h
− ż(t)

∥∥∥∥∞
→ 0

as h → 0. 	

Lemma 3 If a is a random variable satisfying ‖a‖∞ < ∞, then ta is L∞(Ω)-differentiable
for t > 0, with derivative (log t)ta .

Proof By the standard mean-value theorem for the trajectories

(t + h)a − ta

h
= (log ξt,h)(ξt,h)

a,

where the random variable ξt,h lies between t and t + h. We want to calculate the limit as
h → 0, under ‖ · ‖∞. By the triangle inequality

‖(log ξt,h)(ξt,h)
a − (log t)ta‖∞ ≤ ‖ log ξt,h − log t‖∞‖ta‖∞

+ ‖ log ξt,h‖∞‖(ξt,h)a − ta‖∞.

We bound each one of the right-hand side terms. By the mean-value theorem for trajectories
again

‖ log ξt,h − log t‖∞ ≤
∥∥∥∥ 1

ηt,h

∥∥∥∥∞
‖ξt,h − t‖∞ ≤ 1

t − |h| |h|,

where the random variable ηt,h lies between ξt,h and t . Also

‖ log ξt,h‖∞ ≤
∥∥∥∥ 1

ηt,h

∥∥∥∥∞
‖ξt,h − 1‖∞ ≤ min

{
1,

1

t − |h|
}

(t + |h| + 1),

where the new random variable ηt,h lies between ξt,h and 1. Another bound is

‖(ξt,h)a − ta‖∞ ≤ ‖(log ηt,h)(ηt,h)
a‖∞‖ξt,h − t‖∞

≤ log(t + |h|)max{1, (t + |h|)‖a‖∞}|h|.
Finally

‖ta‖∞ ≤ max{1, t‖a‖∞}.
As a consequence

lim
h→0

‖(log ξt,h)(ξt,h)
a − (log t)ta‖∞ = 0,

and we are done. 	

Lemma 4 (Calatayud et al. 2018, Theorem 3.1) Fix p ∈ [1,∞]. Let y(t) = ∑∞

m=0 ym(t −
t1)m be a random power series, convergent under ‖ · ‖p on (t1 − δ, t1 + δ), δ > 0. Then, the
random power series

∑∞
m=0 mym(t − t1)m−1 converges under ‖ · ‖p on (t1 − δ, t1 + δ), and

it is equal to the Lp(Ω)-derivative ẏ(t). That is, random power series can be differentiated
term by term.
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A random differential equation, with initial condition, is a problem of the form

ẋ = f (t, x, ζ ), t ∈ I ⊆ R; x(t0) = x0(ζ ),

where ζ is a vector of input random parameters, x0 is the initial condition at t0 ∈ I , and x
is the mean-square solution. The derivative ẋ is interpreted under the limit (3) for p = 2.
Mean-square limits may be useful to approximate the mean value and the standard deviation
of the response (Cortés and Jornet 2020; Jornet 2021b); this is one of the main goals of
uncertainty quantification. Notice that, when x and f have vector form, we are including the
case of two, three, or any number of derivatives in the equation.

3 Stochastic basis for the space of mean-square solutions

Let us fix the interval I = (0, 1), because t = 0 and t = 1 do not belong to the domain of the
differential equation (1). We say that {φ1, φ2} is a basis for the set of mean-square solutions
to (1) on I (i.e., a fundamental set) if any mean-square solution φ : I → R to (1) is uniquely
expressed as φ(t) = aφ1(t)+bφ2(t), where a and b are time-independent random variables.
The goal of this section is to build such a stochastic basis.

If P[γ ∈ Z] = 0, for example, if γ has a density, then γ /∈ Z almost surely. Essentially,
this means that γ has a continuous random variation. In such a case, fixed any arbitrary
outcome from the sample space, the path-wise solution to our problem (1) is

x(t) = aφ1(t) + bφ2(t),

where a and b are real numbers,

φ1(t) = F(α, β, γ, t), φ2(t) = t1−γ F(α − γ + 1, β − γ + 1, 2 − γ, t), (4)

and F = 2F1 is the hypergeometric series

F(α, β, γ, t) = 1 +
∞∑
n=1

(
α+n−1

n

)(
β+n−1

n

)
(
γ+n−1

n

) tn . (5)

This is known from the classical, deterministic theory on Fröbenius solutions for regular
singular points (Mubeen et al. 2014). When one runs over all trajectories of x , one has that
a and b are random variables.

The main question is when φ1 and φ2 defined by (4) are mean-square solutions on I .
In fact, to later solve initial-value problems, we need a stronger type of solution, under the
supremum random norm ‖ · ‖∞ of the random Lebesgue space L∞(Ω). Indeed, there are
difficulties with the mean-square operational calculus of the product, that result from the fact
that the mean-square norm is not multiplicative.

Proposition 1 If the random coefficientsα, β, γ belong toL∞(Ω), then the series that defines
F(α, β, γ, t) in (5) converges in L∞(Ω), for t ∈ (−1, 1). As a consequence, the series that
define φ1 and φ2 in (4) are solutions of (1) in L∞(Ω), on I = (0, 1).

Proof To simplify the notation, let x0 = 1,

xn =
(
α+n−1

n

)(
β+n−1

n

)
(
γ+n−1

n

) , n ≥ 1,

123



79 Page 6 of 12 J. Calatayud

be the coefficients of the hypergeometric series (5). For the moment, we know that pointwise
convergence holds, but not convergence under ‖ · ‖∞. We then check that

∞∑
n=0

‖xn‖∞rn < ∞,

for 0 < r < 1. To control the decay of xn , the coefficients are rewritten as

xn = Γ (α + n)Γ (β + n)Γ (γ )

Γ (α)Γ (n + 1)Γ (β)Γ (γ + n)
,

where Γ is the gamma function. By the well-known recursive property Γ (u + 1) = uΓ (u),
we obtain

xn
xn−1

= (α + n − 1)(β + n − 1)

n(γ + n − 1)
.

Then, applying absolute values and the triangle inequality, we have

|xn | =
∣∣∣∣ (α + n − 1)(β + n − 1)

n(γ + n − 1)

∣∣∣∣ |xn−1|

≤ (|α| + n + 1)(|β| + n + 1)

n(n − 1 − |γ |) |xn−1|

≤ (|α| + n + 1)(|β| + n + 1)

n(n − 1 − ‖γ ‖∞)
|xn−1|

≤ (‖α‖∞ + n + 1)(‖β‖∞ + n + 1)

n(n − 1 − ‖γ ‖∞)
|xn−1|.

Notice that n − 1 > ‖γ ‖∞, that is, n is large enough, to ensure that the denominator is
positive. This yields an inequality for ‖ · ‖∞

‖xn‖∞ ≤ (‖α‖∞ + n + 1)(‖β‖∞ + n + 1)

n(n − 1 − ‖γ ‖∞)
‖xn−1‖∞.

In consequence, for 0 < r < 1

‖xn‖∞rn

‖xn−1‖∞rn−1 ≤ r
(‖α‖∞ + n + 1)(‖β‖∞ + n + 1)

n(n − 1 − ‖γ ‖∞)

n→∞−→ r < 1.

Finally, by the ratio or D’Alembert test,
∑∞

n=0 ‖xn‖∞rn < ∞. This convergence implies
that F is C∞(−1, 1) in the sense of ‖ · ‖∞, by Lemma 4. Hence, the same occurs for φ1.
On the other hand, φ2 has the factor t1−γ multiplied by the hypergeometric function. By
combining Lemmas 1 and 3, we deduce that φ2 is C∞(0, 1) in L∞(Ω). 	


Remark 1 Given a random variable z, it is equivalent z ∈ L∞(Ω) and E[|z|m] ≤ CHm ,
m ≥ m0, for certain C, H ,m0 > 0 (Calatayud et al. 2018, Section 3.3). Indeed, it is
well known that ‖z‖∞ = limm→∞ ‖z‖m , where ‖z‖m = (E[|z|m])1/m is the mth norm in
the random Lebesgue space Lm(Ω). Thus, our work on L∞(Ω) is related to the growth
conditions imposed in previous contributions. Dealing with ‖ · ‖∞ is, however, easier than
dealing with moments when developing inequalities.
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4 Mean-square solutions of random initial-value problems and
applications

In this part, we use the stochastic basis {φ1, φ2} built in the previous section to obtain the
mean-square solution to initial-value problems (1), (2). The initial states y0 and y1 in (2)
are random variables too. To solve an initial-value problem, we need to specify the random
variables from the linear combination of φ1 and φ2. Recall that we work on I = (0, 1).

Theorem 1 If the initial conditions y0, y1 belong to L2(Ω), the coefficients α, β, γ belong to
L∞(Ω), ∃ δ > 0, such thatP[γ ∈ (1−δ, 1+δ)] = 0, and t0 ∈ I , then x(t) = aφ1(t)+bφ2(t)
solves (1) on I in the mean-square sense, where

a = y0φ̇2(t0) − y1φ2(t0)

W (φ1, φ2)(t0)
, b = y1φ1(t0) − y0φ̇1(t0)

W (φ1, φ2)(t0)

are random variables in the linear combination and

W (φ1, φ2)(t0) = φ1(t0)φ̇2(t0) − φ2(t0)φ̇1(t0)

is the wronskian.

Proof We know that φ1 and φ2 solve (1) and (2) by samples (deterministic theory), so Liou-
ville’s identity (Chicone 2006, Proposition 2.15) gives

W (φ1, φ2)(t) = CI e
∫ (α+β+1)t−γ

t(1−t) dt = CI
(1 − t)γ−α−β−1

tγ
, t > 0,

where CI is independent of t andW (φ1, φ2)(t) = φ1(t)φ̇2(t)−φ2(t)φ̇1(t) is the wronskian.
Then, if F ≡ F(·, ·, ·, t) and ∂t F ≡ ∂t F(·, ·, ·, t)

CI = W (φ1, φ2)(t)
tγ

(1 − t)γ−α−β−1

= tγ

(1 − t)γ−α−β−1

(
φ1(t)φ̇2(t) − φ2(t)φ̇1(t)

)

= tγ

(1 − t)γ−α−β−1

(
F

[
t1−γ ∂t F + (1 − γ )t−γ F

] − t1−γ F∂t F
)

= 1

(1 − t)γ−α−β−1

(
F

[
t∂t F + (1 − γ )F

] − t F∂t F
)

t→0−→ 1 − γ

almost surely, because

lim
t→0

F(α, β, γ, t) = 1

and

lim
t→0

∂t F(α, β, γ, t) = x1 = Γ (α + 1)Γ (β + 1)Γ (γ )

Γ (α)Γ (β)Γ (γ + 1)
= αβ

γ
.

In consequence, CI = 1 − γ and

W (φ1, φ2)(t) = (1 − γ )
(1 − t)γ−α−β−1

tγ
.
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From this equality for the wronskian, we can bound

|W (φ1, φ2)(t0)| ≥ δ(1 − t0)
‖γ ‖∞+‖α‖∞+‖β‖∞+1 =: Δ(t0) > 0

almost surely, where Δ(t0) is non-random. Thus

‖a‖2 ≤ 1

Δ(t0)

(‖y0‖2‖φ̇2(t0)‖∞ + ‖y1‖2‖φ2(t0)‖∞
)

< ∞,

‖b‖2 ≤ 1

Δ(t0)

(‖y1‖2‖φ1(t0)‖∞ + ‖y0‖2‖φ̇1(t0)‖∞
)

< ∞.

By Proposition 1, the series φ1(t) and φ2(t) are solutions under ‖ · ‖∞. Since a, b ∈ L2(Ω),
we conclude that aφ1(t) + bφ2(t) is the solution in L2(Ω) by Lemma 2, as wanted.

For the uniqueness of mean-square solution, we notice that the Lipschitz condition stated
in Soong (1973, Theorem 5.1.2) (Picard’s theorem) holds on any interval [a, b] ⊆ (0, 1), due
to the boundedness of α, β and γ . Indeed, rewrite (1) as

z(t) =
(
x(t)
ẋ(t)

)
, B(t) =

(
0 1
αβ

t(1−t)
α+β+1−γ
t(1−t)

)
,

ż(t) = B(t)z(t).

We say that z = (z1, z2) belongs to L2(Ω) if

‖z‖2 = max{‖z1‖2, ‖z2‖2} < ∞.

Consider also the random matrix norm

‖B‖ = max
i

∑
j

‖bi j‖∞.

If z, z′ are 2D vectors in L2(Ω), then the Lipschitz condition

‖B(t)z − B(t)z′‖2 ≤ ‖B(t)‖‖z − z′‖2
holds, where

∫ b

a
‖B(t)‖dt ≤ ‖α‖∞‖β‖∞

∫ b

a

1

t(1 − t)
dt + (b − a)

+ (‖α‖∞ + ‖β‖∞ + 1 + ‖γ ‖∞)

∫ b

a

1

t(1 − t)
dt < ∞.

This proves uniqueness. 	

Corollary 1 Let φN

1 and φN
2 be the truncated sums of the series of φ1 and φ2 at the order N,

respectively, with

FN (α, β, γ, t) = 1 +
N∑

n=1

(
α+n−1

n

)(
β+n−1

n

)
(
γ+n−1

n

) tn .

Consider

aN = y0φ̇N
2 (t0) − y1φN

2 (t0)

W (φN
1 , φN

2 )(t0)
, bN = y1φN

1 (t0) − y0φ̇N
1 (t0)

W (φN
1 , φN

2 )(t0)
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and

W (φN
1 , φN

2 )(t0) = φN
1 (t0)φ̇

N
2 (t0) − φN

2 (t0)φ̇
N
1 (t0).

Let x N (t) = aNφN
1 (t) + bNφN

2 (t). Under the conditions of Theorem 1, we have

lim
n→∞ xN (t) = x(t) in L2(Ω),

lim
n→∞E[xN (t)] = E[x(t)],
lim
n→∞V[xN (t)] = V[x(t)],

where E and V denote the expectation and the variance, respectively.

Proof The proof is a consequence of a probability result: If a sequence of random variables
is mean-square convergent, then the expectation and the variance converge (Villafuerte et al.
2010) (other types of convergence, such as almost surely, in probability or in distribution,
are not sufficient to guarantee the convergence of statistics). Indeed, if {yN }∞N=1 satisfies
‖yN − y‖2 → 0 as N → ∞, then, by Jensen and Cauchy–Schwarz inequalities

|E[yN ] − E[y]| = |E[yN − y]| ≤ E[|yN − y|] ≤ ‖yN − y‖2 → 0,

|E[y2N ] − E[y2]| = |E[y2N − y2]| ≤ E[|y2N − y2|] ≤ ‖yN + y‖2‖yN − y‖2 → 0,

and the proof is finished. 	

The expectation and the variance are the most important statistics, since they capture the

mean value and the dispersion and are necessary for any statistical analysis. They are related
to the norm of the Hilbert space L2(Ω). For our problem, the approximations E[x(t)] ≈
E[xN (t)] and V[x(t)] ≈ V[xN (t)] can be used. The finite-term series xN (t), which is a
polynomial of t , can be implemented in the computer. Since E[xN (t)] and E[xN (t)2] are
given by

∫
Θ
xN (t |θ) fθ (θ)dθ and

∫
Θ
xN (t |θ)2 fθ (θ)dθ , respectively, where θ denotes the set

of random parameters in {y0, y1, α, β, γ }with compact supportΘ ⊆ R
d (d ≤ 5) and density

function fθ , then these statistics are approximated by quadrature integration with respect to
the weight function fθ (Smith 2013, Chapter 11)∫

Θ

xN (t |θ) fθ (θ)dθ ≈
∑

k1,...,kd

x N (t |θk1) · · · xN (t |θkd )wk1 · · · wkd . (6)

For other linear random differential equations, such as Legendre Jornet (2021b), quadra-
ture integration is not necessary by linearity and by the multivariate-polynomial form of the
truncated sumwith respect to the random parameters. This is, of course, an advantage in com-
putations. For our hypergeometric random differential equation, xN (t) is not a polynomial
with respect to α, β, and γ .

The convergence rate of xN (t) toward x(t) as N → ∞ is exponential in a mean-square
sense, for each t ∈ I = (0, 1). Indeed, if

∑
n anr

n is a convergent real power series at r > 0,
then limn→∞ anrn = 0, so there exists C > 0, such that |an |rn ≤ C for all n. If 0 < s < r ,
then

∞∑
n=N+1

|an |sn ≤ C
∞∑

n=N+1

( s
r

)n = C
( s
r

)N = CeN log(s/r),

andwe are done. This implies that the convergence rate ofE[xN (t)] andV[xN (t)] as N → ∞
is exponential, as well. However, the convergence rate is not uniformwith t . Exponential con-
vergence may be an advantage compared to usual techniques for uncertainty quantification,
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such as Monte Carlo simulation, which converges at rate 1/
√
M approximately, where M

is the number of realizations. Indeed, exponential convergence may give several significant
digits of accuracy of the statistics for small truncation order N , whereas Monte Carlo sam-
pling may need 106 realizations for three digits or 108 for four digits. Nonetheless, Monte
Carlo simulation is robust (i.e., it does not need to fulfill conditions), while this power-series
method depends on t and on the accuracy of the quadrature integration with the dimension
d .

Let us see three simple examples, where the improvement over Monte Carlo simulation
is illustrated. We fix probability distributions for the input parameters and conduct forward
uncertainty quantification. The focus is not put on inverse parameter estimation from data or
measurements (Jornet 2023a; Dogan 2007; Corberán-Vallet et al. 2018).

Example 2 Let y0, y1, γ ∼ Uniform(0, 1/2) be independent random variables, α = 0.3,
β = 0.5 and t0 = 0.2. We approximate the second-order moment E[x(0.3)2]. We use
partial sums xN (0.3) and apply Gauss–Legendre quadrature for (6), on Θ = [0, 1/2]3 with
θ = (y0, y1, γ ). For quadrature degree 7 (i.e., 7 nodes per dimension) and truncation order
N = 15 for the series, the result stabilizes at six significant digits, in 0.91 s: E[x(0.3)2] ≈
0.0981873 . . .. Monte Carlo simulation with 100, 000 realizations and numerical resolution
of the problem only gives an accuracy of two significant figures: E[x(0.3)2] ≈ 0.098 . . ., in
161 s.

Example 3 In the previous example, if β ∼ Uniform(0, 1/2) is also random, then (6) is
conducted on Θ = [0, 1/2]4 with θ = (y0, y1, γ, β). For quadrature degree 7 and truncation
order N = 15 for the series, the result stabilizes at six significant digits, in 6.2 s:E[x(0.3)2] ≈
0.0975334 . . .. Monte Carlo simulation with 100, 000 realizations and numerical resolution
of the problem only gives an accuracy of two significant figures: E[x(0.3)2] ≈ 0.097 . . ., in
194 s.

Example 4 Finally, in the previous example, if α ∼ Exponential(2)|[0,3/2] is random too
(rate parameter 2 and truncation in [0, 3/2]), then (6) is calculated on Θ = [0, 1/2]4 ×
[0, 3/2] with θ = (y0, y1, γ, β, α), based on Gauss-Legendre quadrature for xN (t |θ) fθ (θ).
For degree 7 and truncation order N = 15, the result stabilizes at six significant digits,
in 49 s: E[x(0.3)2] ≈ 0.0978347 . . .. Monte Carlo simulation with 100, 000 realizations
and numerical resolution of the problem only gives an accuracy of two significant figures:
E[x(0.3)2] ≈ 0.09790 . . ., in 630 s.

If, for example, ‖γ ‖∞ = ∞, one could consider a truncated random variable

γ̃ =
{

γ, if |γ | ≤ R,

0, if |γ | > R,

where R > 0 is any number, such that P[|γ | > R] ≈ 0. Then, both γ̃ and γ are very similar
and ‖γ̃ ‖∞ ≤ R < ∞. A similar approach is followed if P[γ ∈ (1− δ, 1+ δ)] > 0 for every
δ > 0. One could consider

γ̃ =
{

γ, if |γ − 1| > δ,

0, if |γ − 1| ≤ δ,

where δ > 0 is any number such that P[γ ∈ (1 − δ, 1 + δ)] ≈ 0. Therefore, the hypotheses
of the theorem are not restrictive in practice. Boundedness of the random coefficients is a
technical assumption that is often set in random systems; see Strand (1970, example, pages
4–5) or Jornet (2023b).
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5 Conclusions

For the hypergeometric random differential equation, mean-square solutions have been con-
structed by taking advantage of the random calculus and the Fröbenius method of power
series. The results obtained extend the deterministic counterpart. The paper solves one of the
problems posed in Cortés et al. (2017).

In Proposition 1, a stochastic basis has been built by proving the convergence of the
hypergeometric series in a stochastic sense. Boundedness of the random coefficients has been
needed, due to the limitations involved when dealing with 2-norms and the multiplicative
property. In Theorem 1, initial-value problems have been solved in mean square. The series
forms have been of use to approximate the expectation and the variance of the solution,
with improvements over Monte Carlo simulation. Three computational examples have been
provided.

Our approach may be useful to continue studying other randomized linear differential
equations encountered in mathematical physics, with ordinary or regular singular points.
The study of approximations of density functions, beyond moments and statistics, is also of
interest.
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