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Abstract
The efficient and economical conversion of low-grade waste heat into electricity has promising potential to combat the greenhouse 
effect and expedite the shift towards sustainable development. This study presents an innovative and appealing approach through 
the utilization of lignin, an abundant waste product derived from the paper and pulp industry, to develop hydrogels as compelling 
and sustainable materials for application in ionic thermoelectricity. Various compositions were evaluated to examine the impacts 
of varying lignin concentrations, types of electrolytes, concentrations of crosslinkers, and electrolyte concentrations on the ionic 
thermoelectric performance of the hydrogels. The optimized lignin-derived hydrogel, infiltrated with a 6 M KOH electrolyte, 
demonstrates high ionic conductivity (226.5 mS/cm) and a superior Seebeck coefficient of 13 mV/K. This results in a remarkable 
power factor (3831 µW/m·K2) that leads to an impressive Figure of merit (ZTi) (3.75), surpassing most of the existing state-of-the-art 
materials and making it the most efficient sustainable ionic thermoelectric material reported until now. These findings underscore 
the exceptional performance of lignin-based hydrogels in the realm of low-grade waste energy harvesting applications. The present 
study contributes to address the challenges posed by waste heat through effectively harnessing low-grade waste heat through the 
utilization of sustainable lignin-based hydrogels while reducing the reliance on fossil fuels and minimizing greenhouse gas emissions.
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1  Introduction

Energy crises continue to be a persistent global issue due to 
the ever-increasing demand for energy and the finite nature 
of fossil fuel reserves. As a result, there is a growing need 
to find alternative and sustainable sources of energy [1–18]. 

Harvesting low-grade thermal energy (LGTE), which con-
stitutes more than 50% of global waste heat, is a promising 
technology that can help to address the energy crisis [19]. 
The conversion of waste heat into useful energy sources con-
tributes toward improved energy efficiency, reduces carbon 
footprint, and cuts dependence on traditional energy sources, 
making it a valuable technology for a sustainable future. 
This harvested energy can be used to power small electronic 
devices, including sensors, wireless communication systems, 
and wearable devices [20]. The most common LGTE har-
vesters are the Organic Rankine cycle, Kalina cycle, and 
thermoelectric generators [21]. Even though these devices 
hold substantial promise, their commercialization remains a  
long way off because of their low energy conversion efficien- 
cies and high operating costs.

Recent research has focused on developing new technolo-
gies to improve the efficiency of LGTE harvesting, and ionic 
thermoelectric materials (i-TEs) have emerged as promising 
solutions [22]. i-TEs utilize ions as charged carriers to con-
vert heat into electrical energy, and they have been found to 
be highly effective at generating large voltages under small 
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temperature differences. The key to the high performance of 
i-TEs lies in the Soret effect, which refers to the production 
of a voltage difference across an electrolyte due to the inho-
mogeneous distribution of cations and anions in response 
to a temperature gradient [23]. This effect is based on the 
movement of charged particles in response to a temperature 
gradient and can be observed in many types of electrolytes, 
including liquids, gels, and solids. One of the major advan-
tages of i-TEs is their ability to produce high voltages under 
small temperature differences, making them ideal for har-
vesting low-grade thermal energy [24, 25].

Synthetic polymers have long been favored for synthe-
sizing i-TEs due to their excellent mechanical properties 
along with processability and tunability of properties [26, 
27]. However, their production process requires the use of 
non-renewable resources and hazardous chemicals, which 
can have significant negative effects on the environment 
[20]. Additionally, the disposal of synthetic polymers poses 
environmental risks since many do not degrade easily and 
can remain a long time in the environment [28]. It is, there-
fore, crucial to consider alternative sustainable materials 
as a building block for i-TEs to reduce the environmental 
impacts of this technology and contribute towards a greener 
and more sustainable future. Moreover, proper waste man-
agement is essential for creating a sustainable society that 
can effectively use its resources without increasing environ-
mental pollution. One such potential alternative source of 
sustainable and environmentally friendly materials for i-TEs 
is lignocellulosic biomass.

Lignocellulose biomass represents the most abundant 
and renewable biomass on earth, with agricultural and for-
estry waste alone producing more than 200 billion tons 
annually [29]. Lignocellulosic biomass consists of three 
main components: cellulose, hemicellulose, and lignin. 
Although cellulose has long been considered a high-value 
product due to its many applications, lignin remains an 
underutilized and non-valued waste product [6]. In recent 
years, lignin has attracted significant attention due to its 
unique molecular structure and its abundant phenolic com- 
pounds [30]. This has led to extensive research on the customi- 
zation of lignin to create hydrogels with predefined proper-
ties. Hydrogels, in general, are versatile materials known 
for their tunable mechanical properties and their ability to 
absorb and retain large amounts of water [31–33]. Lignin-
based hydrogels, in particular, offer additional advantages 
due to their unique molecular structure and abundant phe-
nolic compounds. These lignin-derived hydrogels exhibit 
low toxicity, eco-friendliness, biocompatibility, enzymatic 
breakdown, and biodegradability. These properties render 
them particularly attractive for high-value applications, 
such as tissue engineering, drug delivery, energy stor- 
age, composites, and biosensors, setting them apart in the 
world of hydrogel technology [34–43].

Particularly, in the realm of i-TEs applications, hydro-
gels have been attracting attention as they offer highly 
crosslinked matrices, tunable mechanical properties, and 
excellent electrolyte uptake capability. Recent studies 
have demonstrated promising results using a variety of 
polymers, such as polyethylene glycol, polyacrylamide, 
and carboxylated bacterial cellulose [44–46]. However, 
what is particularly intriguing is the limited exploration 
of lignin as a polymer for i-TEs. Given lignin’s unique 
molecular characteristics and sustainability, a more com-
prehensive investigation is imperative to determine its 
feasibility and unlock its potential in the development 
of i-TEs. This represents an exciting opportunity for 
future research in the field of thermoelectric applica-
tions. Additionally, in light of the upcoming 2050 carbon 
neutrality goals, it has become increasingly apparent that 
lignin is poised to undertake a pivotal role in the devel-
opment of future materials and devices, underscoring its 
significant potential and importance [47].

Looking at this scenario, this study focuses on the 
development and optimization of lignin-derived hydrogels 
to produce sustainable i-TE materials for the first time. 
Lignin-derived hydrogels enhance the ionic conductivity 
and Seebeck coefficient due to the selective ionic migra-
tion in synergy with the Soret effect due to the presence 
of ionizable groups on the surface of hydrogels. The i-TE 
performance of synthesized hydrogels was optimized by 
evaluating the effect of different lignin concentrations, 
various electrolytes, various crosslinker concentrations, 
and finally various electrolyte concentrations. Lignin-
derived hydrogel synthesized using 9 wt% lignin, 2.5% 
v/v crosslinker, and infiltrated with 6 M KOH electrolyte 
exhibits high ionic conductivity (226.5 mS/cm), lower 
thermal conductivity (0.29 W/m K), and a superior See-
beck coefficient of 13 mV/K. Subsequently, an excep-
tional power factor of 3831 µW/m·K2 that corresponds to 
an impressive Fig. of merit ZTi = 3.75 is attained, which 
is superior to most of the reported state-of-the-art ionic 
thermoelectric materials until now. These findings rep-
resent a novel contribution to the field of thermoelectric 
energy conversion, paving the way for further explorations 
and inquiries into sustainable ionic conductive hydrogels. 
We envision these lignin-based hydrogels for a range of 
potential applications, including temperature sensing and 
low-grade thermal energy harvesting.

2 � Experimental section

2.1 � Materials

Kraft lignin (TcB) of Mw = 3153 g/mol was supplied by 
Tecnaro (GMbH, Ilsfeld, Germany). Sodium hydroxide 



Advanced Composites and Hybrid Materials            (2024) 7:47 	 Page 3 of 14     47 

(NaOH) pellets with ≥ 98% purity were purchased from 
AppliChem GmbH (Ilsfeld, Germany). Ninety-nine per-
cent hydrolyzed Poly (vinyl alcohol) (PVA), with a Mw of 
85,000–124,000 g/mol, and epichlorohydrin (ECH) having 
purum grade and purity ≥ 99% was purchased from Sigma-
Aldrich (Spain).

2.2 � Synthesis of lignin‑based hydrogels

A 0.8 g of PVA were initially added to 5 mL of deion-
ized water under stirring at room temperature to avoid 
PVA clumps. Afterwards, the solution was vigorously 
stirred for 30 min at 90 °C until the complete dissolution 
of PVA. The obtained PVA solution was cooled down to 
room temperature and ultrasonicated for 5 min to remove 
the entrapped air. Then, 5 mL of 2.5 M NaOH was added 
to the solution under mixing followed by the addition 
of various amounts of lignin. A homogenous mixture of 
lignin/PVA was obtained after 5 h of magnetic stirring at 
room temperature. Afterwards, the ECH crosslinker with 
a predefined quantity (%v/v) was added to the solution. A 
homogeneous mixture was formed by stirring vigorously 
for 30 min before pouring it into molds. These moulds 
were then placed overnight at room temperature for 
complete crosslinking to form lignin-derived hydrogels. 
Crosslinked hydrogels were thoroughly washed to remove 
uncross-linked lignin and NaOH before electrolyte infiltra-
tion. The prepared hydrogels were denoted as TcBx – y% 
CL, where x indicates the weight of added lignin (g) and y 
represents the %v/v concentration of the ECH crosslinker. 
All the formulations of lignin hydrogel have been sum-
marized in Table S1.

2.3 � Material characterizations

The structural morphology of lignin-based hydrogels was 
studied by scanning electron microscopy (SEM) using a 
Hitachi SU-4800 (Hitachi High-Technologies Corpora-
tion, Tokyo, Japan). FTIR was performed using an Agi-
lent Cary 630 FTIR spectrophotometer (Agilent Tech-
nologies) in transmittance mode. Swelling tests of all the 
hydrogel samples were conducted at room temperature in 
water and KOH electrolyte. The % swelling of the gels is 
calculated using Eq. (1) as follows:

where Ws is the weight of the sample at a given time while 
Wd is the dry weight of the sample.

(1)% swelling =
Ws −Wd

Wd

× 100

2.3.1 � Electrolyte infiltration and i‑TE testing

The Seebeck coefficient of the infiltrated lignin-derived 
hydrogels was measured using a laboratory-made appara-
tus. The samples with known geometry were placed on the 
apparatus with either end contacting a Peltier cell, a thermo-
couple, and a voltage contact. The Seebeck coefficient (S) 
of the samples is calculated using Eq. (2):

where ΔT is the temperature difference and ΔV is the open-
circuit voltage difference.

Electrochemical AC impedance spectroscopy was used to 
characterize the ionic resistance of the hydrogels by applying 
10 mV AC voltage while sweeping the frequency from 1 Hz 
to 100 kHz. The ionic resistance R was obtained from the 
intercept of the impedance response on the abscissa, and the 
ionic conductivity ( �i) can be obtained using Eq. (3):

where A is the contact area between the sample and the elec-
trodes and d is the sample thickness.

The thermal conductivity of the hydrogels was meas-
ured in a homemade set-up. The heat flux, Q, is determined 
according to the Eq. (4) provided by Hukseflux for the par-
ticular sensor [48]:

where V  is the output voltage obtained by the heat flux sen-
sor, s is the sensor sensitivity, and T  the absolute tempera-
ture. The thermal conductivity, � , of the hydrogels is calcu-
lated from the Fourier law (Eq. (5)):

where Q is the previously obtained heat flux value, ΔT  is 
the temperature difference across the sample, and Δx is the 
distance of heat transfer (the thickness of the sample).

The thermoelectric performance of an iTEs is measured 
by the dimensionless figure of merit (ZTi) using Eq. (6):

where σi is the ionic conductivity, S is ionic Seebeck coef-
ficient, σiS2 is known as Power Factor (P.F.), � is the ther-
mal conductivity, and T is absolute temperature. All samples 

(2)S = ΔV∕ΔT

(3)�i =
d

A ∙ R

(4)Q =
V

s(1 + 0.002(T − 20))

(5)Q = −�
ΔT

Δx

(6)ZTi =
�iS

2

�

× T
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were tested at a pressure of 10 kPa. A detailed description of 
the methodology can be found in the supporting information.

3 � Results and discussion

Figure 1a illustrates the facile methodology employed for 
synthesizing lignin-derived hydrogels. Kraft lignin and 
NaOH were added to PVA solution and stirred overnight to 
ensure through mixing. In order to crosslink the polymeric 
molecules, ECH was utilized as a crosslinking agent. The 
inclusion of NaOH in the reaction mixture deprotonates the 
lignin and enhances its reactivity with PVA and ECH, facili-
tating the chemical reaction and allowing for the creation 
of chemical crosslinks. An ether bond is formed between 
a hydroxyl group of PVA or lignin and the epoxy group of 
ECH (Fig. 1b). Simultaneously, the epoxy group is formed 
by removing HCl from the other end of ECH, while the 
aforementioned reaction proceeds [49]. This method was 
selected to achieve the long-term stability of lignin-derived 
hydrogels for i-TE applications.

Morphological analysis of lignin-derived hydrogels with 
varying lignin concentration was performed using SEM; the 
results are presented in Fig. 2a. All the hydrogels exhibit 
porous morphology with no significant differences in their 
physical structures with the lignin concentration. This is 
because the concentration of the chemical crosslinker is the 
main contributor that affects the formation of the crosslinked 
hydrogel network and, thus, its physical properties [41]. In 
this case, since the concentration of crosslinker remains 
constant, varying the lignin concentrations does not lead to 
noticeable differences in the morphology of the hydrogels. 

However, altering the lignin concentration does affect other 
properties of the hydrogels, such as their chemical composi-
tions, mechanical properties, and swelling capacities.

Figures 2b and S1 illustrate the FTIR spectra of these 
lignin-derived hydrogels, providing valuable insights into 
their chemical compositions and chemically crosslinked 
structure. All the hydrogels exhibit similar FTIR spectra 
with slight variations in peak intensities. The broad peak 
around 3550–3200 cm−1 is related to the presence of bonded 
-OH stretching vibrations associated with the hydroxyl 
groups in lignin-derived hydrogels. Interestingly, the band-
width of the -OH stretching appears to shift from 3260 to 
3301 cm−1 as lignin concentration increases (Fig. S2). This 
band shift corresponds to the formation of new hydrogen 
bonds between PVA and lignin in response to the variations 
in lignin concentrations [50]. The -CH3, -CH2 stretching at 
3150–2840 cm−1 is attributed to the aromatic structure and 
the carbonyl functional groups available at the surface of 
the lignin-derived hydrogels and their peak intensity (avail-
ability) increases with the increase in lignin content in the 
hydrogels [51]. The crosslinked hydrogels also have aro-
matic skeleton vibrations of lignin around 1586 cm−1 and 
1451 cm−1, corresponding to the stretching and the band 
at 823 cm−1 attributed to bending vibrations of C = C. The 
slight shift of the 1586 cm−1 peak is an indication of suc-
cessful cross-linking of lignin and PVA [49]. It is important 
to mention that as the lignin content increases, the degree of 
chemical crosslinking also varies which is depicted by the 
etheric C–O–C asymmetrical vibrations peak around 1284 
cm−1. Another characteristic peak of hydrogels is noticed 
at 1034 cm−1, which depicts the alcoholic/phenolic -CO 
stretching vibrations. The intensity of these characteristics 

Fig. 1    a Schematic representation of lignin-derived ionic thermoelectric hydrogels synthesis process. b Chemical crosslinking mechanism
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increases with increasing lignin content, indicating that 
alcoholic and phenolic functional groups are becoming 
more abundant. Additionally, the offset of the peak around 
1088 cm−1 indicates that the degree of interaction between 
polymer chains within the hydrogel has changed with the 
increase of the lignin content [52]. These observations sug-
gests the successful incorporation of lignin and PVA to form 

the lignin-derived hydrogels [53]. The increase in the lignin 
content of the hydrogel results in a greater number of func-
tional sites on their surface, which can contribute to selective 
ionic migration and improved i-TE performance.

The swelling capacity of the synthesized hydrogels was 
examined in deionized (DI) water at room temperature and 
the results are plotted in Fig. 2c. All the lignin-derived 

Fig. 2    a SEM images of lignin-derived hydrogels with different lignin concentration, their b FTIR spectra, and c swelling capacity in water
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hydrogels demonstrate excellent swelling capacity. The 
maximum swelling capacity of 817.9% was attained by 
the hydrogel with the lowest lignin content (TcB3). As the 
concentration of lignin increases in the hydrogels, swelling  
capacity reduces to 439.4% and 252.1% for TcB6 and TcB9, 
respectively. This reduction is associated with the hydropho-
bic character of the kraft lignin molecules which reduces 
water imbibition in the hydrogel network and results in lower 
swelling capacities [54]. Nevertheless, these results indi-
cate that all the synthesized hydrogels have sufficient water 
uptake capacity to be suitable for electrolyte infiltration and 
i-TE applications.

The i-TE testing was carried out to investigate the perfor-
mance of lignin-derived hydrogels. Initially, TcB3 – 5.0% 
CL hydrogels were infiltrated with various electrolytes with 
1 M concentrations. This analysis aimed to identify the most 
suitable electrolyte based on the Seebeck coefficient val-
ues and ionic conductivity results, as presented in Fig. 3a. 
Hydroxide-based electrolytes, specifically KOH and NaOH, 
exhibited significantly higher ionic thermoelectric responses 

compared to other electrolytes. The recorded Seebeck coef-
ficients were 2.32 ± 0.13 mV/K and 1.70 ± 0.04 mV/K for 
the hydrogels infiltrated with KOH and NaOH electrolytes, 
respectively. Furthermore, the ionic conductivity values of 
55.9 mS/cm and 98.5 mS/cm for KOH and NaOH electro-
lytes, respectively, were also significantly higher. The result-
ing power factor for KOH and NaOH electrolytes was 30.3 
µW/m K2 and 29.1 µW/m K2, respectively (Fig. 3b).

These promising results suggest a potential correlation 
between the chemical structure of the crosslinked hydrogels 
and the improved performance observed with hydroxide-
based electrolytes. This could be explained by the possible 
mechanism wherein the terminating alcoholic or phenolic 
groups of the crosslinked framework (C–OH) undergo trans-
formation into anionic alkoxide groups (C-O−) upon immer-
sion in hydroxide-based electrolytes [55, 56]. This leads to 
an electrolyte containing free mobile K+ and bonded anions 
shown by the attraction to the hydrogel matrix in Fig. 3c. 
Likewise, the imbalance in mobility of cations and anions 
results in an enhanced concentration difference within the 

Fig. 3   Ionic thermoelectric 
performance of 3 wt% lignin 
hydrogels in terms of a Seebeck 
coefficient and ionic conductiv-
ity, b power factor; c schematic 
representation of selective ion 
migration within hydrogels. 
Effect of lignin concentration 
on d Seebeck coefficient and e 
ionic conductivity of hydrogels



Advanced Composites and Hybrid Materials            (2024) 7:47 	 Page 7 of 14     47 

hydrogel network, facilitating selective ionic migration and 
superior Seebeck coefficients [57].

Subsequently, the effect of varying the lignin content 
on the i-TE performance of hydrogels was investigated by 
assessing their Seebeck coefficient, ionic conductivity, and 
power factor values. When compared to other hydrogels, 
all hydrogels infiltrated with the KOH electrolyte showed 
significantly higher Seebeck coefficients, and the See-
beck coefficients increased as the lignin content increased: 
S(TcB3) = 2.33 mV/K, S(TcB6) = 2.51 mV/K, and S(TcB 
9) = 3.48 mV/K (Fig. 3d). This phenomenon is attributed 
to the fact that the synthesized hydrogels with higher lignin 
content contain more ionizable phenolic groups, which 
results in an improved selective ion migration [58]. Con-
sequently, an increased ion concentration difference is 
achieved, leading to superior Seebeck coefficient values. The  
impedance measurements (Nyquist plots) were utilized to 
determine the hydrogel resistance, which was then utilized to 
measure the ionic conductivity (Fig. S3). The ionic conduc-
tivity values were also higher in the hydroxide-based elec-
trolytes. Interestingly, the ionic conductivity value decreases 
for TcB9 hydrogels. This is associated with the swelling 
capacity of these samples, implying reduced absorption of 
electrolytes, resulting in fewer available ions for conduc-
tion [59]. Furthermore, the interconnectivity of the porous 
structure within the hydrogel may be limited, disrupting 
the continuous pathways that are essential for the efficient 
migration of ions. The limited swelling and disrupted porous 
network impede the free flow of electrolyte ions, hampering 
the hydrogel’s ability to conduct ions effectively. However, 
the trend of ionic conductivity for all electrolytes was com-
parable (Fig. 3e). This is because the ionic conductivity is 
primarily influenced by the concentration/molarity of the 
electrolyte rather than the structure of the polymer matrix 
[60]. Based on the comprehensive analysis of all possible 
combinations, the selection of TcB9 – CL 5% hydrogel infil-
trated with the 1 M KOH electrolyte was deemed favorable 
for subsequent exploration owing to its superior power factor 
(58.3 µW/m K2) and promising prospects for further devel-
opment (Table S3).

After the selection of the most appropriate electrolyte and 
concentration of lignin in the hydrogels, further optimization 
was conducted based on the concentration of the crosslinker. 
Three lignin-derived hydrogels were synthesized with dif-
ferent chemical crosslinker concentrations (TcB9–CL 2.5%, 
TcB9–CL 5.0%, and TcB9–CL 10% v/v). The morpho-
logical analysis of lignin-derived hydrogels with varying 
crosslinker concentrations was carried on using SEM; the 
results are depicted in Fig. 4a. The findings clearly indicate 
that hydrogel porosity decreases as the crosslinker concen-
tration increases. This phenomenon can be attributed to the 
increased number of crosslinks formed between the polymer 
chains, leading to a densely crosslink network with reduced 

porosity. It is clearly visible that the pore size significantly 
changes with varying crosslinker concentrations (≈ 46.53 
µm for TcB9-2.5%, ≈ 25.89 µm for TcB9-5.0%, and ≈ 6.23 
µm for TcB9-10%). The limited porosity of hydrogels with 
higher crosslinker concentrations will ultimately impact 
their swelling capacity and their i-TE performance.

Since KOH was shortlisted as the most suitable electro-
lyte for lignin-derived i-TE hydrogels; the swelling capacity 
of these hydrogels was evaluated in 1 M KOH electrolyte 
at room temperature, and the results are plotted in Fig. 4b. 
The swelling results are in excellent agreement with the 
morphological analysis. The maximum swelling capacity 
of 500 ± 80% was achieved for TcB9–2.5% CL hydrogel. All 
the hydrogels demonstrated similar swelling capacity behav-
ior, with the maximum swelling being achieved within 24 h. 
As the concentration of crosslinker increases in the hydro-
gels, the swelling capacity reduces to 272.7% and 98.6% for 
TcB9–5% CL and TcB9–10% CL, respectively. This reduc-
tion in swelling capacity can be explained by the increased 
crosslinking density of hydrogels with increased crosslinker 
concentrations. The increased crosslinking density of the 
hydrogels makes them less permeable and limits their abil-
ity to absorb electrolyte, causing the swelling capacity to 
decrease as the concentration of crosslinker increases.

The FTIR spectra of these lignin-derived hydrogels were 
employed to evaluate the effects of the chemical crosslinker 
concentration on the chemical structure and degree of 
crosslinking of the hydrogels, as shown in Figs. 4c and S4. 
It was found that all the hydrogels had similar FTIR spectra. 
However, the intensity of some noticeable peaks varies with 
the degree of crosslinking. The intensity of the broad peak 
at 3500–3200 cm−1, associated with -OH stretching vibra-
tions in lignin-derived hydrogels, reduces with the increase 
in the crosslinker concentration. This is due to the utilization 
of most of the available hydroxyl groups for covalent bond-
ing at higher crosslinker concentration, resulting in a highly 
crosslinked hydrogel framework with restricted porosity 
(Fig. 4a) and limited availability of -OH functional sites 
[61]. Additionally, etheric symmetrical and asymmetrical 
linkages (C–O–C) at 1038 cm−1 and 1284 cm−1 also become 
prominent at a higher degree of crosslinking. Interestingly, 
the aromatic skeleton vibrations at 1586 cm−1 also vary with 
the concentration of crosslinker.

The i-TE thermoelectric properties of these hydrogels 
were evaluated, and the obtained results are presented in 
Fig. 5a–c and Table S4. The ionic resistance obtained from 
the impedance response (Fig. S5) increases with the con-
centration of the crosslinker, and hence lower ionic con-
ductivity (Fig. 5a). This is associated with the fact that the 
reduction in the pore size and the increase of the crosslink-
ing density with the increase in crosslinker concentration 
result in restricting the movement of ions or molecules 
within the hydrogel, thereby reducing the ionic conductivity. 
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Remarkably, the hydrogel sample with the lowest crosslinker 
concentration displayed the highest levels of ionic conduc-
tivity (62 ± 5 mS/cm) and Seebeck coefficient (5.8 ± 0.9 
mV/K), yielding an outstanding power factor of 207 ± 22 

µW/m K2. This superior performance can be ascribed to the 
more porous structure of the hydrogel network facilitated 
by the reduced crosslinker concentration as illustrated in 
the SEM results (Fig. 4a). The increased porosity enables 

Fig. 4    a SEM images of lignin-derived hydrogels with different crosslinker concentration, their b swelling capacity in 1 M KOH, and c FTIR 
spectra

Fig. 5   Effect of crosslinker concentration on ionic thermoelectric properties of lignin-derived hydrogels in terms of a ionic conductivity, b See-
beck coefficient, and c power factor
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improved absorption and transport of the electrolyte, result-
ing in elevated ionic conductivity and Seebeck coefficient. 
Moreover, the lower crosslinker concentration promotes 
enhanced ionic selectivity by providing more available func-
tional sites on the hydrogel surface, further facilitating rapid 
and unhindered ion migration within the hydrogel matrix 
and leading to superior i-TE properties.

Final optimization of lignin-derived hydrogels was car-
ried out on the basis of electrolyte concentration (Tables S4 
and S5). The TcB9–2.5% CL hydrogels were infiltrated with 
varying molar concentrations (ranging from 0.1 M to 6.0 M) 
of KOH electrolyte, and subsequent testing was conducted 
to evaluate the i-TE properties. Figure 6a–c and e show the 
results obtained for the Seebeck coefficient, ionic conductiv-
ity, thermal conductivity, Fig. of merit, and power factor of 
all the hydrogel samples subjected to an axial thermal gra-
dient (Fig. 6d). Notably, an increase in the electrolyte con-
centration correlated with amplified values of the Seebeck 
coefficient and ionic conductivity. The maximum value of 
thermal voltage was recorded to be 13.0 ± 0.7 mV/K for the 
6 M KOH concentration (Figs. S6 and S7). This enhance-
ment in thermal voltage is attributed to the improved influ-
ence of ionic selectivity within the hydrogel framework 
resulting from the increased ionic concentration [62]. As a 
result, cations (K+) diffuse more rapidly than anions, leading 
to a larger Seebeck coefficient. Likewise, the ionic conduc-
tivity monotonously increases with electrolyte concentration 
in all hydrogels up to 4 M concentration before reaching 
the saturation point (Figs. 6b and S8). Consequently, an 
exceptionally high-power factor of 3831 ± 45 µW/m·K2 was 
registered for the hydrogel infiltrated with 6 M KOH elec-
trolyte, outperforming most of the existing state-of-the-art 
ionic thermoelectric materials (Table S7).

The thermal conductivity of infiltrated TcB9-2.5% CL 
hydrogels was investigated by measuring the thermal con-
ductivity values at different electrolyte concentrations, as 
shown in Fig. 6c. The observed thermal conductivity values 
ranged from 0.43 to 0.29 W/m K. The highest thermal con-
ductivity value of 0.43 W/m K was obtained for the hydrogel 
infiltrated with 0.1 M KOH electrolyte, while the lowest 
value of 0.29 W/m K was observed for the hydrogel with 6 
M electrolyte. The decrease in thermal conductivity can be 
attributed to the water uptake during the swelling process, as 
distilled water has a thermal conductivity of approximately 
0.6 W/m K [63]. The swelling of hydrogels was observed 
to decrease with increasing KOH concentration (Fig. S9), 
resulting in lower electrolyte uptake and consequently lower 
thermal conductivity values. The thermal conductivity val-
ues tended to approach those of the precursor materials, such 
as pure PVA (0.2–0.3 W/m K) [64] and other lignin-based 
materials (0.3–0.5 W/m K) [65, 66]. The combination of 
the lower thermal conductivity observed in lignin-derived 
hydrogels infiltrated with a highly concentrated KOH 

electrolyte, and their exceptional power factor values yields 
remarkable Figure of merit (ZTi). Specifically, the ZTi val-
ues reach 3.12 and 3.75 for 4 M and 6 M KOH infiltrated 
hydrogels, respectively (Fig. 6e).

It is important to mention here that the significant 
increase in the thermal voltage starts after 1 M KOH con-
centration. Subsequently, the thermal voltage increased by 
40.6% and 52.3% as the concentration of KOH electrolyte 
rose to 2 M (9.8 mV/K) and 4 M (12.2 mV/K), respectively. 
However, beyond the 4 M concentration, the Seebeck coef-
ficient showed no substantial increase, with a mere 3.1% 
rise observed for the 6 M KOH concentration. Addition-
ally, hydrogels immersed in 6 M KOH electrolyte shrink 
significantly, which makes processing difficult. This shrink-
ing is associated with a change in osmotic pressure and ion 
concentration of the external solution, according to Flory 
network theory [67]. At 6 M KOH concentration, the exter-
nal solution has a higher solute concentration than that of 
lignin-derived hydrogel; electrolyte will be drawn out of the 
hydrogel, resulting in shrinkage of the hydrogels [68]. Addi-
tionally, the structural integrity and degree of crosslinking 
of the hydrogel are also at risk at such high concentrations. 
As a result, it is imperative to give special consideration to 
the selection of the electrolyte concentration. Conclusively, 
the chemically crosslinked framework of lignin hydrogels 
promotes ionic transport, resulting in higher ionic conductiv-
ity, superior power factor, and higher ZTi, paving the way for 
sustainable i-TE materials.

Various mechanical testings were conducted on lignin-
based hydrogels, and the results are presented in Fig. 7. The 
hydrogels were stretched within their elastic limits in order 
to determine the maximum degree of elasticity. The out-
standing elasticity, as indicated by the stretchability results 
ranging from 146.2 ± 14.2% for TcB9-10% to 265.4 ± 31.2% 
for TcB3-5%, stems from the synergistic effects of lignin and 
PVA component (Fig. 7a). These variations in elasticity are 
attributed to differences in polymer composition, crosslinker 
concentration, and crosslinking density within the hydrogel 
formulations. Figure 7b illustrates the stretchability of TcB9-
2.5% lignin hydrogels in laboratory. The compression testing 
of hydrogels was also conducted, and results are plotted in 
Fig. 7c. The stress–strain graphs of lignin-based hydrogels 
depict typical trends for flexible hydrogels with gradual 
increase in stress until a certain strain, after which a sharp 
rise in the stress occurred [69, 70]. This behavior can be 
explained by elastic region of the hydrogels followed by the 
rearrangement of polymer chains and increased resistance 
to deformation beyond a certain strain threshold. This sharp 
rise signifies the hydrogels’ exceptional ductility, allowing 
them to withstand substantial deformation without fractur-
ing. The differences in the points where the sharp rise of 
stress starts can be attributed to the varying compositions 
of your hydrogels. The Young’s modulus values for these 
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Fig. 6   Effect of electrolyte concentration in terms of a Seebeck coefficient, b ionic conductivity, c thermal conductivity, d thermal camera image 
of hydrogel subject to axial temperature difference, and e power factor and Figure of merit of lignin-derived hydrogel
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Fig. 7   Mechanical properties of hydrogels a elasticity; b photographs of TcB9-2.5% before, during, and after stretching, c compressive stress 
strain curves, d Young’s modulus, and e flexibility testing of TcB9-2.5% hydrogel
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hydrogels were comparatively low, with a maximum of 
50.91 kPa recorded for TcB9-5%. Moreover, extensive flex-
ibility testing, including bending to 90 and 180 degrees, roll-
ing around fingers, and twisting around a ballpoint, revealed 
the TcB9-2.5% hydrogel exceptional flexibility and resil-
ience (Fig. 7e). It is noteworthy that despite their distinct 
composition differences, all hydrogels display exceptional 
flexibility. The combination of lignin and PVA in these 
hydrogel formulations results in a material with a balanced 
set of mechanical properties, combining the strength and 
rigidity of lignin with the flexibility and elasticity of PVA 
[32]. Furthermore, we conducted extensive tests to evalu-
ate the ionic thermoelectric performance of TcB9-2.5% C.L 
hydrogels. These assessments included testing the hydrogels 
for ionic conductivity at different temperatures (Fig. S12), 
examining their ionic conductivity during compression 
cycling (Fig. S13), and observing their thermal voltage 
response when deformed (Fig. S14). Across all these tests, 
the hydrogels consistently demonstrated exceptional perfor-
mance, showcasing their reliability and effectiveness under 
various conditions. These findings underscore the potential 
of these highly elastic, stretchable, and resilient hydrogels 
for advance energy harvesting and biomedical applications.

Finally, the ionic thermoelectric supercapacitor was fab-
ricated using TcB9-2.5% CL hydrogel, infiltrated with 4 M 
KOH, and encapsulated between highly capacitive lignin-
based 3D spherical porous carons (LSPCs) electrodes that 
were synthesized in our recent study [71]. CV curve and 
Nyquist plot of the supercapacitor device are presented in 
Fig. S15a and b. The devices exhibited symmetrical boat-
like shape, indicating a combination of electric double layer 
and pseudocapacitive charge storage behavior [35]. EIS 
curve is more inclined toward the vertical axis, indicating 
EDLC behavior and fast ion transport between hydrogel and 
electrodes. Fig. S15c illustrates the four stages involved in 
the working of an ionic thermoelectric supercapacitor. The 
power density and energy density were calculated for 2nd 
stage at 1 KΩ external load and estimated to be 17.12 µW/
m2 and 228 mJ/m2 respectively. Additionally, the current 
density–voltage–power density (I–V–P) curves of the device 
at 20 K temperature difference is shown in Fig. S15d, and 
results are aligned with previous published studies [72, 73].

4 � Conclusions

This study aimed to investigate the ionic thermoelectric 
phenomenon using lignin-derived hydrogels. Lignin-
derived hydrogels enhanced the ionic conductivity and See-
beck coefficient due to the selective ionic migration in syn-
ergy with the Soret effect due to the presence of ionizable 
groups on the surface of hydrogels. Various compositions 
of lignin derived hydrogels were tested for optimizing i-TE 

thermoelectric efficiency. It was found that hydrogels with 
higher lignin concentrations (TcB9) and lower crosslinker 
concentrations (2.5% v/v) have excellent swelling capacity 
(500 ± 80%) and superior thermopower (5.8 ± 0.9 mV/K) 
compared to others. The optimized lignin-derived hydrogel, 
infiltrated with 6 M KOH electrolyte, exhibits high ionic 
conductivity (226.5 mS/cm), low thermal conductivity 
(0.29 W/m K), and a superior Seebeck coefficient of 13 
mV/K, leading to a remarkable ZTi of 3.75. These hydro-
gels possess outstanding ionic thermoelectric properties, 
and, importantly, they are biocompatible, environmentally 
friendly, and biodegradable. These features make them 
suitable for several high-end applications, including tem-
perature sensors for monitoring the environment, healthcare 
applications in biomedical sensors, and wearable electron-
ics designed for sustainable and efficient energy harvesting. 
This innovation not only advances ionic thermoelectricity 
but also has significant potential for addressing environmen- 
tal sustainability and technological progress.
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