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Abstract
Let BE be the open unit ball of a complex finite- or infinite-dimensional Hilbert space.
If f belongs to the space B(BE ) of Bloch functions on BE , we prove that the dilation
map given by x �→ (1 − ‖x‖2)R f (x) for x ∈ BE , where R f denotes the radial
derivative of f , is Lipschitz continuous with respect to the pseudohyperbolic distance
ρE in BE , which extends to the finite- and infinite-dimensional setting the result given
for the classical Bloch space B. To provide this result, we will need to prove that
ρE (zx, zy) ≤ |z|ρE (x, y) for x, y ∈ BE under some conditions on z ∈ C. Lipschitz
continuity of x �→ (1 − ‖x‖2)R f (x) will yield some applications on interpolating
sequences for B(BE ) which also extends classical results from B to B(BE ). Indeed,
we show that it is necessary for a sequence in BE to be separated to be interpolating for
B(BE ) and we also prove that any interpolating sequence for B(BE ) can be slightly
perturbed and it remains interpolating.

Keywords Bloch space · Infinite-dimensional holomorphy · Pseudohyperbolic
distance · Interpolating sequence
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1 Introduction and background

Let D be the open unit disk of the complex plane C and ρ the pseudohyperbolic

distance defined by ρ(z, w) =
∣
∣
∣
z−w
1−zw̄

∣
∣
∣. Consider a function f of the classical Bloch

spaceB. The study of the Lipschitz continuity of the dilation map z �→ (1−|z|2) f ′(z)
with respect to ρ was first started by Attele to study conditions for a sequence on D
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to be interpolating for B (see [2]). Ghatage, Yan, and Zheng also discussed a similar
result providing a different proof [8]. Then, Xiong improved this result in [14] and
other authors extended it for high-dimensional holomorphic functions [6] and planar
harmonic mappings [7]. For bounded symmetric domains of Cn , see also [10].

The aim of this paper is to extend the previous result for the infinite-dimensional
setting and give some applications. Other applications on bounded below composition
operators can be found in [12]. Along this work, E will denote a finite- or infinite-
dimensional complex Hilbert space and its open unit ball will be denoted by BE . In
Sect. 2, we will study the boundness of

ρE (zx, zy)

|z|ρE (x, y)
(1.1)

for z ∈ C and x, y ∈ BE , such that zx, zy ∈ BE proving that, in general, this
expression is unbounded. Nevertheless, we will show that if |z| is bounded above by

1 + max{‖x‖, ‖y‖}
2max{‖x‖, ‖y‖} ,

then the expression above is bounded by 2 and this bound is the best possible. We
first prove the case when we deal with E = C and then with any finite- or infinite-
dimensional Hilbert space E . At the end of this section, we will extend this result to
the case when we deal with the Banach space C0(S).

In Sect. 3, we will consider the space B(BE ) of Bloch functions f on BE .
Recall that for f ∈ B(BE ) and x ∈ BE , the radial derivative R f (x) is given by
R f (x) = 〈x, f ′(x)〉. As a consequence of the boundness of (1.1), we show that the
dilation map x �→ (1− ‖x‖2)R f (x) for x ∈ BE is Lipschitz continuous with respect
to the pseudohyperbolic distance ρE in Sect. 3.1, extending to the finite- and infinite-
dimensional setting the results mentioned above. Hence, we derive some results about
interpolating sequences for B(BE ) in Sect. 3.2. Indeed, we supply a proof that these
sequences are separated for the pseudohyperbolic distance. We also prove that inter-
polating sequences can be slightly perturbed and they remain interpolating, which also
extends the result for B given in [2].

1.1 The pseudohyperbolic and hyperbolic distance

Let D be the open unit disk of the complex plane C. As we have mentioned, the
pseudohyperbolic distance for z, w ∈ D is given by

ρ(z, w) =
∣
∣
∣
∣

z − w

1 − z̄w

∣
∣
∣
∣
.
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If we deal with a complex Banach space X with open unit ball BX , recall that
f : BX → C is said to be holomorphic (or analytic) if it is Fréchet differentiable for any
x ∈ BX (see [12] for further information). For any x, y ∈ BX , the pseudohyperbolic
distance ρX (x, y) is given by

ρX (x, y) = sup{ρ( f (x), f (y)) : f ∈ H∞(BX ), ‖ f ‖∞ ≤ 1},

where H∞(BX ) is the space of bounded holomorphic functions on BX which become a
Banach space (a uniform algebra, indeed) endowedwith the sup-norm. The hyperbolic
distance for x, y ∈ BX is given by

βX (x, y) = 1

2
log

(
1 + ρX (x, y)

1 − ρX (x, y)

)

.

1.2 Automorphisms and pseudohyperbolic distance on BE

If we deal with a complex Hilbert space E , we will denote by Aut(BE ) the space
of automorphisms of BE , that is, the maps ϕ : BE → BE which are bijective and
bianalytic (see [9]). For any x ∈ BE , the automorphism ϕx : BE −→ BE is defined
according to

ϕx (y) = (sx Qx + Px )(mx (y)), (1.2)

where sx = √

1 − ‖x‖2, mx : BE −→ BE is the analytic self-map

mx (y) = x − y

1 − 〈y, x〉 ,

Px : E −→ E is the orthogonal projection along the one-dimensional subspace
spanned by x , that is

Px (y) = 〈y, x〉
〈x, x〉 x,

and Qx : E −→ E is the orthogonal complement Qx = IdE − Px , where IdE
denotes the identity operator on E . It is clear that ϕx (0) = x and ϕx (x) = 0. The
automorphisms of the unit ball BE turn to be compositions of these ϕx with unitary
transformations U of E .

It is well known (see [9]) that the pseudohyperbolic distance on BE is given by

ρE (x, y) = ‖ϕy(x)‖ for any x, y ∈ BE . (1.3)

and

ρE (x, y)2 = 1 − (1 − ‖x‖2)(1 − ‖y‖2)
|1 − 〈x, y〉|2 . (1.4)
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1.3 The Bloch space

The classical Bloch space B is the set of holomorphic functions f : D → C, such that
‖ f ‖B = supz∈D(1 − |z|2)| f ′(z)| is bounded. This supremum defines a semi-norm
which becomes a norm by adding up a constant: | f (0)| + supz∈D(1 − |z|2)| f ′(z)|.
Hence, B becomes a complex Banach space. The semi-norm ‖ · ‖B is invariant by
automorphisms, that is, ‖ f ◦ ϕ‖B = ‖ f ‖B for any f ∈ B and ϕ : D → D an
automorphism of D.

Timoney extended Bloch functions if we deal with a finite-dimensional Hilbert
space (see [13]). Blasco, Galindo, and Miralles extended them to the infinite-
dimensional setting (see [5]). If we deal with a complex finite- or infinite-dimensional
Hilbert space E , the analytic function f : BE → C is said to belong to the Bloch
space B(BE ) if

‖ f ‖B = sup
x∈BE

(1 − ‖x‖2)‖∇ f (x)‖ < +∞,

where it is clear that ∇ f (x) is the derivative f ′(x) or, equivalently, if

‖ f ‖R = sup
x∈BE

(1 − ‖x‖2)‖R f (x)‖ < +∞,

whereR f (x) is the radial derivative of f at x given byR f (x) = 〈x,∇ f (x)〉. These
semi-norms are equivalent to the following one:

‖ f ‖I = sup
x∈BE

‖∇̃ f (x)‖, (1.5)

where ∇̃ f (x) denotes the invariant gradient of f at x which is given by ∇̃ f (x) =
∇( f ◦ ϕx )(0), where ϕx is the automorphism given in (1.2).

The three semi-norms ‖ · ‖B, ‖ · ‖R and ‖ · ‖I define equivalent Banach space
norms-modulo the constant functions- in B(BE ) (see [5]). In particular, there exists a
constant A0 > 0, such that

‖ f ‖R ≤ ‖ f ‖B ≤ ‖ f ‖I ≤ A0‖ f ‖R . (1.6)

Hence, the space B(BE ) can be endowed with any of the norms ‖ · ‖B−Bloch =
| f (0)| + ‖ · ‖B or ‖ · ‖R−Bloch = | f (0)| + ‖ · ‖R or ‖ · ‖I−Bloch = | f (0)| + ‖ · ‖I
and B(BE ) becomes a Banach space. We will make use of these three semi-norms and
norms along the sequel. We will also make use of this result, which states that Bloch
functions on BE are Lipschitz with respect to the hyperbolic distance (see [3]):

Proposition 1.1 Let E be a complex Hilbert space and let f ∈ B(BE ). Then, for any
x, y ∈ BE

| f (x) − f (y)| ≤ ‖ f ‖IβE (x, y).
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2 Inequalities with the pseudohyperbolic distance

Let X be a complex Banach space. If ϕ : BX → BX is an analytic self-map, it is well
known that ρX (ϕ(x), ϕ(y)) ≤ ρX (x, y) for any x, y ∈ BX and the equality is attained
if and only if ϕ is an automorphism of BX . Hence, if we consider z ∈ C, |z| ≤ 1 and
x, y ∈ BX , it is clear that

ρX (zx, zy)

ρX (x, y)
≤ 1,

since the map ϕ : BX → BX given by ϕ(x) = zx is analytic on BX . However, this
situation changes dramatically if we consider the expression

ρX (zx, zy)

|z|ρX (x, y)
(2.1)

for any z ∈ C, such that zx, zy ∈ BX . We show that, in general, this expression is
unbounded. Anyway, if we deal with X a complex Hilbert space or C0(S) and z ∈ C

satisfies

|z| ≤ 1 + max{‖x‖, ‖y‖}
2max{‖x‖, ‖y‖} ,

then expression (2.1) is bounded by 2 and this will permit us to provide several appli-
cations in Sect. 3.

2.1 Unboundness

In this section, we prove that expression (2.1) is unbounded in general.

Proposition 2.1 Let E be a complex Hilbert space. There exist a sequence (zn) ⊂ C,
x ∈ BE and a sequence (yn) ⊂ BE , such that znx, zn yn ∈ BE but

ρE (znx, zn yn)

|zn|ρE (x, yn)

is unbounded.

Proof Weprove it for E = C. Take for instance x = 1/2, yn = 1/2− 1
n and zn = 2− 1

n .
It is clear that |znx | < 1 and |zn yn| < 1. However

ρ(znx, zn yn) =
1
n

(

2 − 1
n

)

1 − 1
2

( 1
2 − 1

n

) (

2 − 1
n

)2 =
2n−1
n2

2−9n+12n2
4n3

= 4n(2n − 1)

12n2 − 9n + 2

and

|zn|ρ(x, yn) =
(

2 − 1

n

) 1
n

1 − 1
2

( 1
2 − 1

n

) =
2n−1
n2

3n+2
4n

= 4(2n − 1)

3n2 + 2n
.
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Hence

ρ(znx, zn yn)

|zn|ρ(x, yn)
=

4n(2n−1)
12n2−9n+2
4(2n−1)
3n2+2n

= 3n3 + 2n2

12n2 − 9n + 2
,

which is clearly unbounded, since it tends to ∞ when n → ∞. The result remains
true if we deal with any complex Hilbert space E , since we can take x0 ∈ E , such that
‖x0‖ = 1 and take u = 1

2 x0, vn = ynx0. We have that

ρE (znu, znvn)
2 = 1 − (1 − ‖un‖2)(1 − ‖vn‖2)

|1 − 〈un, vn〉|2

= 1 − (1 − ‖znx‖2)(1 − ‖zn yn‖2)
|1 − 〈znx, zn yn〉|2 = ρE (znx, zn yn)

2,

and similarly, we have ρE (u, vn) = ρE (x, yn), so we apply the case E = C and we
are done. ��

An easy consequence is a well-known result: the pseudohyperbolic distance cannot
be extended to a norm on E , since

ρE (zx, zy)

|z|ρE (x, y)

is unbounded, so ρE (zx, zy) �= |z|ρE (x, y).

2.2 Boundness

The main result of this section is Theorem 2.7 which states that under condition (2.1),
then the expression (1.1) is bounded and the best bound possible is given by 2. The
following lemma will be used to prove this result.

Lemma 2.2 Let E be a finite- or infinite-dimensional Hilbert space, z ∈ C and x, y ∈
BE , such that

|z| ≤ 1 + max{‖x‖, ‖y‖}
2max{‖x‖, ‖y‖} .

Then, |1 − p| ≤ 2|1 − |z|2 p| where p denotes the scalar product 〈x, y〉.
Proof Suppose without loss of generality that ‖x‖ ≥ ‖y‖ and x �= 0. Otherwise, the
inequality is clearly true for any z ∈ C. Notice that

|1 − p| = |1 − |z|2 p + |z|2 p − p| ≤ |1 − |z|2 p| + ||z|2 − 1||p|,

so it is sufficient to prove that |1 − |z|2 p| + ||z|2 − 1||p| ≤ 2|1 − |z|2 p|, which is
equivalent to |1 − |z|2 p| ≥ ||z|2 − 1||p|. We consider two cases:
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i) if |z|2 ≤ 1, then 1 − |z|2 ≥ 0, so we need to prove |1 − |z|2 p| ≥ (1 − |z|2)|p|
which is clearly satisfied, since

|1 − |z|2 p| ≥ 1 − |z|2|p| ≥ |p| − |z|2|p| = (1 − |z|2)|p|,

where second inequality is true, because |p| ≤ ‖x‖‖y‖ < 1.
ii) On the other hand, suppose that |z|2 > 1: we need to prove that |1 − |z|2 p| ≥

(|z|2 − 1)|p|. Since |1 − |z|2 p| ≥ 1 − |z|2|p|, it is sufficient to prove that

1 − |z|2|p| ≥ (|z|2 − 1)|p|. (2.2)

Notice that 1 − |z|2|p| > 0, since |z|2|p| ≤ ‖zx‖‖zy‖ < 1, because zx, zy ∈ BE .
Inequality (2.2) is equivalent to 2|z|2|p| < 1 + |p| which is true, since

2|z|2|p| ≤ 2

(
1 + ‖x‖
2‖x‖

)2

|p|,

so we need to prove that

2

(
1 + ‖x‖
2‖x‖

)2

|p| ≤ 1 + |p| ↔
(

(1 + ‖x‖)2
2‖x‖2 − 1

)

|p| ≤ 1.

However
(

(1 + ‖x‖)2
2‖x‖2 − 1

)

|p| = 1 + (2 − ‖x‖)‖x‖
2‖x‖2 |p| ≤ 1 + 1

2‖x‖2 ‖x‖2 = 1,

where last inequality is true because of the arithmeticmean-geometricmean inequality
and since |p| ≤ ‖x‖‖y‖ ≤ ‖x‖2. ��
2.2.1 The case E = C

If we deal with E = C, it is easy to prove that (2.1) is bounded:

Proposition 2.3 Let x, y ∈ D and z ∈ C, such that

|z| ≤ 1 + max{|x |, |y|}
2max{|x |, |y|} .

Then, zx, zy ∈ D and

ρ(zx, zy) ≤ 2|z|ρ(x, y).

Proof Suppose without loss of generality that |x | ≥ |y| and take z �= 0 (otherwise, it
is clear). Notice that zx, zy ∈ D, since

|zy| ≤ |zx | ≤ 1 + |x |
2|x | |x | = 1 + |x |

2
< 1.
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We have

ρ(zx, zy) =
∣
∣
∣
∣

zx − zy

1 − zxzy

∣
∣
∣
∣
= |z|

∣
∣
∣
∣

x − y

1 − |z|2x y
∣
∣
∣
∣
= |z| |x − y|

|1 − |z|2x y|
and

|z|ρ(x, y) = |z|
∣
∣
∣
∣

x − y

1 − x y

∣
∣
∣
∣
= |z| |x − y|

|1 − x y| ,

so the inequality is equivalent to

|z| |x − y|
|1 − |z|2x y| ≤ 2|z| |x − y|

|1 − x y| ↔ |1 − x y| ≤ 2|1 − |z|2x y|.

Calling p = x y, we have to prove that |1 − p| ≤ 2|1 − |z|2 p|. Apply Lemma 2.2
for E = C and we are done. ��
Remark 2.4 Notice that the bound 2 is the best possible. Indeed, take xn, yn ∈ D, such
that xn → 1 and yn → −1. It is clear that for zn → 0, the expression |1 − xn yn|
tends to 2 when n → ∞ and the expression 2|1 − |zn|2xn yn| also tends to 2, so the
inequality above is sharp. ��

2.2.2 The case when E is any complex Hilbert space

We will deal with x, y ∈ BE and z ∈ C, such that zx, zy ∈ BE , we will denote by
r = ‖x‖, s = ‖y‖ and u = ‖x‖2 + ‖y‖2 = r2 + s2. We will also denote by p
the scalar product 〈x, y〉 and m = �p. This notation will be used in Lemma 2.5 and
Theorem 2.7.

Lemma 2.5 Let E be a complex Hilbert space and x, y ∈ BE . Then

‖x − y‖2|1 − p|2
‖x − y‖2 − (‖x‖2‖y‖2 − |p|2) ≤ 4.

Proof The inequality is equivalent to

(1 − 2�p + |p|2)‖x − y‖2 ≤ 4‖x − y‖2 − 4r2s2 + 4|p|2 if and only if:

(1 − 2�p + |p|2)(r2 + s2 − 2�p) ≤ 4(r2 + s2) − 8�p − 4r2s2 + 4|p|2.

Bearing in mind that m = �p and u = r2 + s2, we need to prove

(1 − 2m + |p|2)(u − 2m) ≤ 4u − 8m − 4r2s2 + 4|p|2
↔ u − 2um + u|p|2 − 2m + 4m2 − 2m|p|2 ≤ 4u − 8m − 4r2s2 + 4|p|2
↔ 4u − 8m − 4r2s2 + 4|p|2 − u + 2um − u|p|2 + 2m − 4m2 + 2m|p|2 ≥ 0.
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Notice that |p| ≥ |m| so (4+2m−u)|p|2 ≥ (4+m−u)m2 since 4+2m−u ≥ 0.
Hence, it is sufficient to prove

4u − 8m − 4r2s2 + (4 + 2m − u)m2 − u + 2um + 2m − 4m2 ≥ 0.

It is also clear that u2 ≥ 4r2s2, so last inequality is equivalent to

4u − 8m − u2 + (4 + 2m − u)m2 − u + 2um + 2m − 4m2 ≥ 0

↔ 2m3 − um2 + 2(u − 3)m + 3u − u2 ≥ 0.

The expression at left can be easily factorized and is equal to

(u − 2m)(3 − u − m2),

where both factors are clearly greater or equal to 0 and we are done. ��
This lemma will be used at the end of the proof of Theorem 2.7:

Lemma 2.6 Let f (a, b, c) = (3−b2)(a−c)− (a2 −b2)(2−c). Then, f (a, b, c) ≥ 0
for any 0 ≤ c ≤ b ≤ a ≤ 1.

Proof Notice that f (a, b, c) = (3−b2)a−2(a2 −b2)− (3−a2)c, so f is affine with
respect to c. Hence, it is enough to prove the inequality for c = b. The function becomes
f (a, b, b) = (3−b2)(a−b)− (a2−b2)(2−b) = (a−b)((3−b2)− (a+b)(2−b)),
and since a − b ≥ 0, it is enough to prove that (3 − b2) − (a + b)(2 − b) ≥ 0. The
expression g(a, b) = (3 − b2) − (a + b)(2 − b) is affine with respect to a, so it is
enough to prove it for a = 1. Notice that g(1, b) = (3−b2)− (1+b)(2−b) = 1−b
which is clearly greater or equal to 0, so we are done. ��
Theorem 2.7 Let E be a finite- or infinite-dimensional complex Hilbert space, z ∈ C

and x, y ∈ BE . If

|z| ≤ 1 + max{‖x‖, ‖y‖}
2max{‖x‖, ‖y‖} ,

then zx, zy ∈ BE and

ρE (zx, zy)

|z|ρE (x, y)
≤ 2.

Proof Suppose without loss of generality that ‖x‖ ≥ ‖y‖ and z �= 0. We will denote
ρ = ρE (x, y) and ρz = ρE (zx, zy). If 1

2 ≤ |z| < 1, then the result is clear, since

ρE (zx, zy) ≤ ρE (x, y) ≤ 2|z|ρE (x, y),

where first inequality is true because of the contractivity of the pseudohyperbolic
distance for the function g : BE → BE given by g(x) = zx .
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Therefore, let us prove it for |z| < 1/2 or |z| ≥ 1. Taking squares, the inequality is
equivalent to prove

ρ2
z

|z|2ρ2 ≤ 4. (2.3)

Bear inmind the expression (1.4) for the pseudohyperbolic distance and call t = |z|2
which is different from 0, since z �= 0. We have

ρ2
z

|z|2ρ2 =
|1−tp|2−(1−tr2)(1−ts2)

|1−tp|2
t(|1−p|2−(1−r2)(1−s2))

|1−p|2
= (|1 − tp|2 − (1 − tr2)(1 − ts2))|1 − p|2

t(|1 − p|2 − (1 − r2)(1 − s2))|1 − tp|2

= (1 + t2|p|2 − 2t�p − 1 − t2r2s2 + t(r2 + s2))|1 − p|2
t(1 + |p|2 − 2�p − 1 − r2s2 + r2 + s2)|1 − tp|2

= (t2|p|2 − 2t�p − t2r2s2 + t(r2 + s2))|1 − p|2
t(|p|2 − 2�p − r2s2 + r2 + s2)|1 − tp|2

= (‖x − y‖2 − t(r2s2 − |p|2))|1 − p|2
(‖x − y‖2 − (r2s2 − |p|2))|1 − tp|2 .

We will introduce the following notation:

A := ‖x − y‖2 = r2 + s2 − 2�p = u − 2m (2.4)

B := r2s2 − |p|2. (2.5)

Notice that A − B ≥ 0, since

A − B = r2 + s2 − 2m − r2s2 + |p|2 = |1 − p|2 − (1 − r2)(1 − s2) ≥ 0

↔ |1 − p|2 ≥ (1 − r2)(1 − s2) ↔ 1 − (1 − r2)(1 − s2)

|1 − p|2 = ρ(x, y)2 ≥ 0.

Using this notation, inequality (2.3) is equivalent to

(A − t B)|1 − p|2
(A − B)|1 − tp|2 ≤ 4, (2.6)

so bearing in mind that t = |z|2, we only need to prove (2.6) for t ≥ 1 and t ≤ 1/4.
If t ≥ 1, the result is clear, since

(A − t B)|1 − p|2
(A − B)|1 − tp|2 ≤

(
A − B

A − B

) |1 − p|2
|1 − tp|2 = |1 − p|2

|1 − tp|2 ≤ 4,
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where last inequality is true by Lemma 2.2. Therefore, it remains to prove it for
0 ≤ t ≤ 1/4. Inequality 2.6 is equivalent to

4(A − B)|1 − tp|2 ≥ (A − t B)|1 − p|2
↔ 4(A − B)(1 − 2mt + t2|p|2) ≥ (A − t B)|1 − p|2
↔ 4(A − B)|p|2t2 + (B|1 − p|2 − 8m(A − B))t + 4(A − B) − A|1 − p|2 ≥ 0.

Since B, t ≥ 0 and 4(A − B) − A|1 − p|2 ≥ 0 by Lemma 2.5, this inequality
is clearly true if m < 0. Therefore, we can suppose without loss of generality that
m ≥ 0. The inequality is equivalent to

4(A − B)|1 − tp|2 − (A − t B)|1 − p|2 ≥ 0,

so we will prove last inequality. Notice that

4(A − B)|1 − tp|2 − (A − t B)|1 − p|2
= 4(A − B)(1 − 2mt + t2|p|2) − (A − B)(1 − 2m + |p|2) − B(1 − t)|1 − p|2
= 4(A − B)(1 − 2m + |p|2 + 2m(1 − t) − (1 − t2)|p|2)

−(A − B)(1 − 2m + |p|2) − B(1 − t)|1 − p|2
= 3(A − B)(1 − 2m + |p|2) + 8m(1 − t)(A − B)

−4(1 − t2)|p|2(A − B) − B(1 − t)|1 − p|2.

Since 0 ≤ t ≤ 1/4, we have that 3/4 ≤ 1 − t ≤ 1, so

4(A − B)|1 − tp|2 − (A − t B)|1 − p|2
≥ 3(A − B)(1 − 2m + |p|2) + 8m(1 − t)(A − B)

−4(1 − t2)|p|2(A − B) − B(1 − t)|1 − p|2

≥ 3(A − B) − 6m(A − B) + 3|p|2(A − B) + 8m · 3
4
(A − B)

−4|p|2(A − B) − B|1 − p|2
= 3(A − B) − 6m(A − B) + 6m(A − B) − |p|2(A − B) − B|1 − p|2
= (3 − |p|2)(A − B) − B|1 − p|2.

Bearing in mind (2.4) and (2.5), notice that

(3 − |p|2)(A − B) − B|1 − p|2 = (3 − |p|2)A − B(3 − |p|2 + 1 − 2m + |p|2)
= (3 − |p|2)A − B(4 − 2m) = (3 − |p|2)(r2 + s2 − 2m) − (4 − 2m)(r2s2 − |p|2)
≥ (3 − |p|2)(2rs − 2m) − (4 − 2m)(r2s2 − |p|2)
= 2(3 − |p|2)(rs − m) − 2(2 − m)(r2s2 − |p|2) = 2 f (rs, |p|,m),
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where f is the function defined in Lemma 2.6 and since 0 ≤ m ≤ |p| ≤ rs ≤ 1,
using the lemma, we are done, since

(3 − |p|2)(A − B) − B|1 − p|2 ≥ 2 f (rs, |p|,m) ≥ 0.

��

2.2.3 Results for X = C0(S)

Let S be a locally compact topological space and consider X = C0(S) given by the
space of continuous functions f : S → C, such that for any ε > 0, there exists a
closed compact subset K ⊂ S, such that | f (x)| < ε for any x ∈ S\K . Endowed with
the sup-norm, C0(S) becomes a Banach space and the pseudohyperbolic distance for
x, y ∈ C0(S) is well known (see [1]) and it is given by

ρX (x, y) = sup
t∈S

ρ(x(t), y(t)). (2.7)

We prove that expression (2.1) is also bounded by 2 when we deal with the space
X = C0(S):

Proposition 2.8 Let X = C0(S) and x, y ∈ X. If z ∈ C satisfies

|z| ≤ 1 + max{‖x‖, ‖y‖}
2max{‖x‖, ‖y‖} ,

then

ρX (zx, zy)

|z|ρX (x, y)
≤ 2.

Proof Suppose without loss of generality that ‖x‖ ≥ ‖y‖. For any t ∈ S, we have
that x(t), y(t) ∈ D, since ‖x‖ = supt∈S |x(t)| < 1 and ‖y‖ = supt∈S |y(t)| < 1. The
result is clear, since

ρX (zx, zy) = sup
t∈S

ρ(zx(t), zy(t)) ≤ sup
t∈S

2|z|ρ(x(t), y(t))

= 2|z| sup
t∈S

ρ(x(t), y(t)) = 2|z|ρX (x, y),

where first inequality is clear because of Proposition 2.3 and because for any t ∈ X ,
we have that

|z| ≤ 1 + ‖x‖
2‖x‖ =

1
‖x‖ + 1

2
≤ inf

t∈X

{
1 + |x(t)|
2|x(t)|

}

≤ 1 + |x(t)|
2|x(t)| ,

and we are done. ��
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3 Applications

Theorem 2.7 yields several applications. As we have mentioned, we first show that
for a Bloch function f : BE → C, the function x �→ (1− ‖x‖2)|R f (x)| for x ∈ BE

is Lipschitz continuous with respect to the pseudohyperbolic distance ρE . Hence, we
derive some results about interpolating sequences for B(BE ) in Sect. 3.2. Indeed,
we provide a new proof that these sequences are separated for the pseudohyperbolic
distance.We also prove that these sequences can be slightly perturbed and they remain
interpolating.

3.1 The Lipschitz continuity of (1 − ‖x‖2)|Rf(x)|

We will denote by � the unit circle of the complex planeC, that is, the set of complex
numbers u, such that |u| = 1.

Lemma 3.1 Let f ∈ B(BE ). Fix ε > 0 and x, y ∈ BE . If (1 + εu)x and (1 + εu)y
belongs to BE for any u ∈ �, then there exists u0 ∈ �, such that

|R f (x) − R f (y)| ≤ 1

ε
‖ f ‖Iβ((1 + εu0)x, (1 + εu0)y). (3.1)

Proof Fix x, y ∈ BE and ε > 0. Notice that the function f (x + εux) − f (y + εuy)
defined for u ∈ � is continuous. Since � is a compact set, there exists u0 ∈ �, such
that

f (x + εu0x) − f (y + εu0y) = max{ f (x + εux) − f (y + εuy) : u ∈ �}.

Consider g(u) = f (x + εux) for u defined on an open disk of the complex plane
C which contains �. It is clear that

g′(u) = ∇ f (x + εux)(εx),

so g′(0) = εR f (x). Similarly, if h(u) = f (y + εuy), then h′(0) = εR f (y). By the
Cauchy’s integral formula, we have

|R f (x) − R f (y)| = |〈x,∇ f (x)〉 − 〈y,∇ f (y)〉|
=

∣
∣
∣
∣

1

ε

1

2π i

∫

|u|=1
f (x + εux) − f (y + εuy)

du

u2

∣
∣
∣
∣

≤ 2π

2πε
| f (x + εu0x) − f (y + εu0y)|

≤ 1

ε
‖ f ‖Iβ((1 + εu0)x, (1 + εu0)y),

where last inequality is true by Proposition 1.1. ��
The proof of the following lemma is an easy calculation. It will be used in

Lemma 3.3.
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Lemma 3.2 For any 0 ≤ t < 1, we have

1

2
log

(
1 + t

1 − t

)

≤ t

1 − t
.

Lemma 3.3 Let f ∈ B(BE ) and x, y ∈ BE , such that ‖x‖ ≥ ‖y‖. Then

(1 − ‖x‖2)|R f (x) − R f (y)| ≤ 12‖ f ‖IρE (x, y).

Proof Take

ε = 1 − ‖x‖
2‖x‖ > 0.

Notice that for any u ∈ �, we have that (1 + εu)x and (1 + εu)y belongs to BE ,
since

(1 + ε)‖x‖ ≤
(

1 + 1 − ‖x‖
2‖x‖

)

‖x‖ = 1 + ‖x‖
2‖x‖ ‖x‖ = 1 + ‖x‖

2
< 1,

so clearly ‖(1 + εu)x‖ ≤ (1 + ε)‖x‖ < 1 and since ‖y‖ ≤ ‖x‖

‖(1 + εu)y‖ ≤ (1 + ε)‖y‖ ≤ (1 + ε)‖x‖ < 1.

By Lemma 3.1, there exists u0 ∈ �, such that:

|R f (x) − R f (y)| ≤ 2‖x‖
1 − ‖x‖‖ f ‖IβE ((1 + εu0)x, (1 + εu0)y).

Take z0 = 1 + εu0 which satisfies

|z0| ≤ 1 + ε = 1 + 1 − ‖x‖
2‖x‖ = 1 + ‖x‖

2‖x‖ .

By Theorem 2.7, we have that z0x, z0y ∈ BE and:

ρE (z0x, z0y) ≤ 2|z0|ρE (x, y). (3.2)

Denote

C := (1 − ‖x‖2)|R f (x) − R f (y)|, (3.3)

so we have

C ≤ (1 − ‖x‖2) 2‖x‖
1 − ‖x‖‖ f ‖IβE (z0x, z0y).
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Notice that using Lemma 3.2, we have

βE (z0x, z0y) ≤ ρE (z0x, z0y)

1 − ρE (z0x, z0y)
,

so we obtain

C ≤ (1 + ‖x‖)(1 − ‖x‖) 2‖x‖
1 − ‖x‖‖ f ‖I ρE (z0x, z0y)

1 − ρE (z0x, z0y)

≤ 4‖x‖‖ f ‖I ρE (z0x, z0y)

1 − ρE (z0x, z0y)
= 4‖x‖‖ f ‖I

1
ρE (z0x,z0 y)

− 1
,

so

(
1

ρE (z0x, z0y)
− 1

)

C ≤ 4‖x‖‖ f ‖I ↔ C

ρE (z0x, z0y)
− C ≤ 4‖x‖‖ f ‖I .

Bearing in mind that ‖ f ‖B ≤ ‖ f ‖I (see (1.6)), we have

C ≤ (1 − ‖x‖2)|R f (x)| + (1 − ‖x‖2)|R f (y)|
≤ (1 − ‖x‖2)‖∇ f (x)‖‖x‖ + (1 − ‖y‖2)‖∇ f (y)‖‖y‖ ≤ 2‖ f ‖B‖x‖ ≤ 2‖x‖‖ f ‖I ,

so

C

ρE (z0x, z0y)
≤ 4‖x‖‖ f ‖I + C ≤ 4‖x‖‖ f ‖I + 2‖x‖‖ f ‖I = 6‖x‖‖ f ‖I ,

and we conclude C ≤ 6‖x‖‖ f ‖IρE (z0x, z0y).
Finally, we apply inequality (3.2), and since |z0| ≤ 1+‖x‖

2‖x‖ , we obtain

C ≤ 6‖x‖‖ f ‖I2|z0|ρE (x, y) ≤ 12‖x‖‖ f ‖I 1 + ‖x‖
2‖x‖ ρE (x, y)

= 12‖ f ‖I 1 + ‖x‖
2

ρE (x, y) ≤ 12‖ f ‖IρE (x, y),

and we are done. ��
Theorem 3.4 Let f ∈ B(BE ) and x, y ∈ BE . Then

|(1 − ‖x‖2)R f (x) − (1 − ‖y‖2)R f (y)| ≤ 14‖ f ‖IρE (x, y).

Proof We call

F := |(1 − ‖x‖2)R f (x) − (1 − ‖y‖2)R f (y)|, (3.4)
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and suppose without loss of generality that ‖x‖ ≥ ‖y‖. We have that

F = |(1 − ‖x‖2)(R f (x) − R f (y)) − (‖x‖2 − ‖y‖2)R f (y)|
≤ (1 − ‖x‖2)|R f (x) − R f (y)| + (‖x‖2 − ‖y‖2)|R f (y)|. (3.5)

Since ‖x‖2 − ‖y‖2 = (‖x‖ + ‖y‖)(‖x‖ − ‖y‖) ≤ 2(‖x‖ − ‖y‖) and bearing in
mind that ρE (‖x‖, ‖y‖) ≤ ρE (x, y), we obtain

(‖x‖2 − ‖y‖2)|R f (y)| ≤ 2
‖x‖ − ‖y‖
1 − ‖x‖‖y‖ (1 − ‖x‖‖y‖)|R f (y)|

≤ 2ρE (‖x‖, ‖y‖)(1 − ‖y‖2)|R f (y)|
≤ 2‖y‖‖ f ‖BρE (x, y) ≤ 2‖ f ‖IρE (x, y).

By Lemma 3.3, we know that

(1 − ‖x‖2)|R f (x) − R f (y)| ≤ 12‖ f ‖IρE (x, y),

so from (3.5), we conclude

F ≤ 12‖ f ‖IρE (x, y) + 2‖ f ‖IρE (x, y) = 14‖ f ‖IρE (x, y),

and we are done. ��
Hence, we obtain the result which proves the Lipschitz continuity of the mapping

x �→ (1 − ‖x‖2)|R f (x)| for x ∈ BE .

Corollary 3.5 Let E be a complexHilbert space. The function x �→ (1−‖x‖2)|R f (x)|
for x ∈ BE is Lipschitz with respect to the pseudohyperbolic distance and the following
inequality holds:

|(1 − ‖x‖2)|R f (x)| − (1 − ‖y‖2)|R f (y)|| ≤ 14‖ f ‖IρE (x, y).

Proof Applying Theorem 3.4, it is clear that

|(1 − ‖x‖2)|R f (x)| − (1 − ‖y‖2)|R f (y)||
≤ |(1 − ‖x‖2)R f (x) − (1 − ‖y‖2)R f (y)| ≤ 14‖ f ‖IρE (x, y),

and we are done. ��

3.2 Results on interpolating sequences for the Bloch space

Recall that a sequence (xn) ⊂ BE\{0} is said to be interpolating for the Bloch space
B(BE ) if, for any bounded sequence (an) of complex numbers, there exists f ∈ B(BE )

such that (1−‖xn‖2)R f (xn) = an . Attele studied in [2] this kind of interpolation for
the classical Bloch spaceB and the finite- and infinite-dimensional setting was studied
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in [4]. We provide a new approach to prove that a necessary condition for a sequence
(xn) ⊂ BE to be interpolating for B(BE ) is to be separated for the pseudohyperbolic
distance ρE .

Proposition 3.6 Let E be a complex Hilbert space. If (xn) ⊂ BE\{0} is interpolating
for B(BE ), then there exists C > 0, such that ρ(xk, x j ) ≥ C for any k �= j , k, j ∈ N.

Proof Since (xn) ⊂ BE\{0} is interpolating, there exists a sequence ( fn) ⊂ B(BE ),
such that

(1 − ‖xn‖2)R fn(xn) = 1 and (1 − ‖xk‖2)R fn(xk) = 0 if k �= n.

The operator T : B(BE ) → �∞ given by T ( f ) = ((1 − ‖xn‖2)R f (xn)) is
surjective, so by the Open Mapping Theorem, there exists M > 0, such that ‖ f ‖R ≤
M sup j∈N(1−‖x j‖2)|R f (x j )|, so ‖ fn‖R ≤ M for any n ∈ N. ApplyingTheorem3.4,
we have

|(1 − ‖xn‖2)R fn(xn) − (1 − ‖xk‖2)R fn(xk)| ≤ 14‖ fn‖IρE (xk, x j )

≤ 14A0‖ fn‖RρE (xk, x j ) ≤ 14A0MρE (xk, x j ).

Hence, 1 − 0 ≤ 14A0MρE (xk, x j ), and we conclude that

ρE (xk, x j ) ≥ 1

14A0M
,

so we are done. ��
Attele (see [2]) also proved that any interpolating sequence (zn) ⊂ D for B can be

slightly perturbed and the sequence remains interpolating. By means of Theorem 3.4,
we adapt his proof and generalize the result to the case whenwe deal with any complex
Hilbert space E .

Theorem 3.7 If (xn) ⊂ BE\{0} is an interpolating sequence for B(BE ), then there
exists δ > 0, such that if (yn) ⊂ BE satisfies that supn∈N ρE (xn, yn) < δ, then (yn) is
also an interpolating sequence for B(BE ).

Proof Since (xn) is interpolating, the operator T : B(BE ) → �∞ given by T ( f ) =
((1−‖xn‖2)R f (xn)) is surjective.Hence, its adjointT ∗ : �∗∞ → (B(BE ))∗ is injective
and it has closed range. In particular, T ∗ is left-invertible. The set of left-invertible
elements is open in the Banach algebra of linear operators from �∗∞ to (B(BE ))∗.
Therefore, there exists δ, such that if ‖T ∗ − R‖ < 14A0δ, then R is left-invertible. If
we consider S( f ) = ((1 − ‖yn‖2)R f (yn)), then by Theorem 3.4

‖(T − S)( f )‖∞ = sup
n∈N

|(1 − ‖xn‖2)R f (xn) − (1 − ‖yn‖2)R f (yn)|
≤ 14ρE (xn, yn)‖ f ‖I ≤ 14A0‖ f ‖RρE (xn, yn) < 14A0δ‖ f ‖R,

so ‖T − S‖ < 14A0δ, and hence, ‖T ∗ − S∗‖ = ‖T − S‖ < 14A0δ. We conclude that
S∗ is left-invertible, and hence, S is surjective, as we wanted. ��
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