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A B S T R A C T   

Shadow detection is a challenging problem in computer vision due to the high variability in lighting conditions, 
object shapes, and scene layouts. Despite the positive results achieved by some existing technologies, the problem 
becomes particularly challenging with complex and heterogeneous images where shadow-casting objects coexist 
and shadows can have different depths, scales, and morphologies. As a result, more advanced and accurate 
solutions are still needed to deal with this type of complexities. To address these challenges, this paper proposes a 
novel deep learning model, called the Cross-Attentional Dual Decoder Network (CADDN), to improve shadow 
detection by using fine-grained image reconstruction features. Unlike other existing methods, the CADDN uses an 
innovative encoder-decoder architecture with two decoder segments that work together to reconstruct the input 
images and their corresponding shadow masks. In this way, the features used to reconstruct the original input 
image can be used to support the shadow detection process itself. The proposed model also incorporates a cross- 
attention mechanism to weight the most relevant features for detecting shadows and skip connections with noise 
to improve the quality of the transferred features. The experimental results, including several benchmark image 
datasets and state-of-the-art detection methods, demonstrate the suitability of the presented approach for 
detecting shadows in computer vision applications.   

1. Introduction 

Shadow detection is a crucial component in many computer vision 
applications, as shadows cast on areas can greatly influence the accuracy 
of image analysis and machine vision algorithms. Typically, shadows 
form when an object obstructs light rays from a source, a common 
occurrence in both natural and man-made environments. Although 
shadows can provide valuable information on the relationship between 
objects and light sources [1], they often introduce challenges: creating 
false edges and boundaries, diminishing contrast and color information, 
and altering how objects appear. These effects can lead to difficulties in 
accurately identifying and classifying objects and scenes for algorithms 
[2]. Therefore, the role of single-image shadow detection is increasingly 
important. It focuses on automatically distinguishing shadowed areas 
from actual objects within images, aiming to improve the precision of 
tasks such as image segmentation, object detection, and recognition, 
among others [3–5]. 

The evolution of single-image shadow detection algorithms spans 
from traditional techniques based on handcrafted features to the latest 
advances in deep learning-based methods, all of which have been 
thoroughly researched and developed in the field [6–8]. Traditional 
approaches to shadow detection [9,10] typically utilize simple features 
that capitalize on shadow properties such as color, intensity, and 
texture. These methods are known for their computational efficiency 
and effectiveness in controlled settings. However, they often fail to 
handle variations common in real-world scenarios, such as changes in 
camera perspectives, time of day, or weather conditions. In contrast, 
deep learning-based techniques [11–13] demonstrate superior adapt
ability to complex and varied contexts. They achieve this through an 
end-to-end learning process, which makes them more robust and ver
satile compared to traditional methods. Specifically, deep learning 
models employ sophisticated neural network architectures, enabling 
them to extract and analyze image features at multiple levels of detail, 
thus capturing the more nuanced visual characteristics of shadows. 
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In recent years, deep learning has significantly advanced single- 
image shadow detection by utilizing a variety of deep features. For 
example, some methods [12,13] employ multi-scale features to enrich 
contextual understanding of scenes. Others [11,14] integrate attention 
mechanisms to focus on important image areas, thus improving shadow 
detection. In addition, various models improve the robustness of 
detection by incorporating spatial or spectral signals, such as directional 
information [15] or intensity-based indicators [16]. Despite the adapt
ability and breadth of deep learning in shadow detection, most current 
models focus primarily on directly mapping input images to their 
shadow masks. This approach, although effective in many cases, can 
miss out on the advantages of using complementary image features to 
improve detection accuracy and robustness, especially in complex and 
varied data scenarios [12,17]. The widespread use of standard encoder- 
decoder frameworks may result in biased or incomplete deep features, as 
the decoder typically concentrates only on shadow mask reconstruction 
without considering other image features that could provide insight into 
complex interactions within the image [18]. In intricate situations, 
where shadows overlay across various planes and objects of differing 
scales and morphologies, this can lead to a complex mix of shadow 
characteristics, necessitating a more nuanced approach to accurately 
distinguish and understand these diverse shadow features. 

Fig. 1 showcases two distinct scenarios in which shadows interact 
with various materials and structures, demonstrating the complexity of 
shadow morphologies. The first scenario, depicted in Fig. 1(a), high
lights the interaction between the diffuse shadows of trees and the hard 
shadows of buildings. These shadows, which occur at different eleva
tions, merge to form a composite shadow with varied shapes and sizes. 
This mix of shadow types presents a segmentation challenge, necessi
tating a deep understanding of the scene’s structure to accurately 
differentiate between them. The second scenario, shown in Fig. 1(b), 
illustrates how shadows from different materials, such as a car bonnet 
and a tree, combine to create a diverse range of shadow appearances. 
This variety of shadow characteristics, or spectral heterogeneity, adds 
another layer of complexity to shadow detection. It requires a more 
refined approach to capture the intricate interactions of light with 
different structures and materials. Taking into account these complex
ities, it becomes evident that more sophisticated and robust deep 
learning-based methods are needed to effectively process and interpret 
these diverse and heterogeneous visual data in shadow detection. 

To address these challenges, this research introduces the Cross- 
Attentional Dual-Decoder Network (CADDN), a novel model for single- 
image shadow detection. CADDN is specifically engineered to utilize 
detailed image reconstruction features, enhancing its ability to process 
complex data. What sets our model apart is its unique encoder-decoder 
architecture, which features two decoders: one for reconstructing the 
input image and another for generating the shadow mask. This design 
allows the shadow mask decoder to access and utilize the intricate de
tails identified during image reconstruction. To ensure optimal feature 
transfer, CADDN incorporates a cross-attention mechanism. This 

mechanism selectively identifies and transfers only those features that 
are most relevant to shadow detection. Additionally, we improve the 
quality of the feature through noise-injected skip connections between 
the encoder and the image decoder. To effectively train CADDN, we 
have developed a new joint loss formulation. This formulation not only 
assesses the accuracy of the reconstructed images but also evaluates the 
precision of the shadow masks produced. In general, the key contribu
tions of our work include:  

1. We propose a novel deep learning model for shadow detection 
(CADDN) which is able to exploit fine-grained image reconstruction 
features to enhance shadow detection.  

2. We define a joint loss formulation to train the proposed dual-decoder 
architecture.  

3. We conduct a comparative analysis with different state-of-the-art 
detection methods and benchmark collections.  

4. We empirically demonstrate the suitability of the proposed model for 
shadow detection. 

Our shadow detection method goes beyond technical advances in 
computer vision to address practical challenges, aligning with the Sus
tainable Development Goals (SDGs) [19]. It contributes to SDG 9 (In
dustry, Innovation, and Infrastructure) by enhancing decision-making 
and resource use in urban planning, agriculture, and environmental 
monitoring through precise shadow detection. For SDG 11 (Sustainable 
Cities and Communities), it helps manage shadow-related issues in 
urban areas, like optimizing solar energy and cooling needs. In terms of 
SDG 13 (Climate Action), our method provides detailed shadow data for 
climate studies and understanding shadow impacts on local climates. 
Additionally, for SDG 15 (Life on Land), it improves remote sensing for 
tracking land changes, vegetation health, and wildlife habitats. 

The remaining parts of this paper are organized as follows: Section 2 
reviews related works and discusses their primary limitations when 
working with complex data. Section 3 presents the proposed shadow 
detection model, describing its network design and loss formulation. 
Sections 4 and 5 contain the experimental results and discussions. 
Finally, Section 6 concludes the paper and outlines some future research 
directions. 

2. Related work 

Since our work focuses on single-image shadow detection, this sec
tion is primarily dedicated to reviewing relevant studies in the single- 
image field. On the basis of their nature, single-image shadow detec
tion techniques can be broadly classified into the following categories. 

2.1. Traditional methods 

Traditional approaches mainly involve hand-crafted features and 
localization methods for detecting shadows from images [7]. In this 

Fig. 1. Visual representation of shadow complexities. The figure on the left illustrates the interplay between diffuse tree shadows and hard shadows cast by buildings 
at varying heights, resulting in a composite of shadows with varied morphologies and scales. On the right, different materials, such as a car bonnet and a tree, 
contribute to a challenging spectrum of shadow types, showcasing the wide-ranging nature of shadow appearances and complexities. 
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way, it is possible to find in the literature different works investigating 
geometrical properties [20,21], color [9], edges [2], or even textures 
[10] to recognize shadows from static images. Despite their effectiveness 
in certain cases, most traditional methods tend to rely on explicit and 
distinguishable visual features that make them suffer from several lim
itations in natural scenes, for example, with soft or blurry shadows. 

2.2. Deep learning methods 

In contrast to traditional techniques, deep learning-based methods 
have recently shown significant improvements in shadow detection 
using large amounts of training data and powerful end-to-end con
volutional neural networks (CNNs) [22]. One of the first studies in this 
area was conducted by Khan et al. [23], who developed a 3-layer CNN to 
learn the most relevant characteristics for shadow detection. Extending 
this idea, Vicente et al. [24] took advantage of noisy annotations to 
further improve the training process. Hosseinzadeh et al. [25] also 
incorporated a shadow prior, based on a support vector machine (SVM) 
classification of super-pixels, into the network input. 

After all these seminal works, numerous other techniques have 
emerged in the literature. In general, the rationale behind deep learning- 
based shadow detection methods consists in learning a mapping func
tion that transforms input images into their corresponding shadow 
masks. Hence, it is possible to identify some relevant deep learning 
technologies that can be instrumental in categorizing shadow detection 
networks:  

• Encoder-Decoder Networks: These types of architecture (e.g. 
[26–28]) function through a two-step process: (i) the encoder, which 
compresses the input data into a condensed latent representation, 
and (ii) the decoder, which reconstructs the data from this compact 
form into the desired target. Using this network topology, deep 
learning-based shadow detection methods can learn complex trans
formations by encoding and then decoding the most relevant infor
mation through a trainable end-to-end process.  

• Attention Networks: These techniques (e.g., [29–32]) dynamically 
adjust their focus, allocating increased attention to the salient fea
tures or image regions that are most relevant to the objective task. By 
weighting different parts of the input differently, attention mecha
nisms enhance the ability of shadow detection methods to recognize 
shadow patterns among other image components.  

• Feature Fusion Networks: These networks (e.g., [33–36]) are 
designed to integrate and optimize information from different layers 
or inputs to capture a richer representation of the data. Therefore, 
shadow detection can be improved by exploiting a wide range of low- 
level details and high-level semantic features.  

• Contextual Information Networks: These methods (e.g., [37–40]) 
integrate contextual information using global or local context ag
gregation modules. In the context of single-image shadow detection, 
this information certainly helps to better understand the relation
ships between shadows and their surroundings.  

• Multi-Task Networks: These models (e.g., [41–46]) adopt a learning 
paradigm in which a single network is trained to perform multiple 
synergistic tasks simultaneously, such as shadow detection and 
removal or the interpretation of additional spatial cues. This 
approach leverages shared representations that can improve the ef
ficiency and performance of each individual task. In shadow detec
tion, some Generative Adversarial Networks (GANs) are clear 
examples, since they work to identify and remove shadows through a 
competitive process between the generator and discriminator 
networks. 

Despite this broad categorization, it is important to note that almost 
all deep learning-based shadow detection methods, particularly the 
most recent ones, exhibit characteristics of several groups. This 
convergence of techniques within single frameworks demonstrates the 

trend of the field towards versatile models capable of nuanced 
discrimination and interpretation of shadows, as well as their relation
ship with the surrounding environment. Since the delineation of 
shadows from illuminated areas inherently divides images into seman
tically distinct segments, shadow detection aligns closely with semantic 
segmentation [47]. Therefore, the subsequent sections explore in detail 
relevant segmentation models and specialized deep learning models 
designed exclusively for single-image shadow detection. 

2.2.1. General semantic segmentation networks 
Being a very popular model, U-Net [48] was one of the most used 

encoder-decoder architectures for semantic segmentation, including 
shadow detection tasks [49]. In more detail, this network consists of a 
contracting path that captures context information and a symmetric 
expanding path that refines the localization of objects and regions from 
the input data. Due to the high effectiveness and versatility of this ar
chitecture, different extensions can be found in the literature. In [50], 
the authors proposed U-Net++, which employs a nested design with 
multiple skip pathways at different resolutions to provide better seg
mentation results. Liu et al. [51] also developed the pyramid attention 
network (PAN) which extends the U-Net with a novel pyramid attention 
module. More specifically, the defined attention module has a pyramidal 
structure that covers multiple spatial resolution scales. In addition, 
standard skip connections are modified with such attention blocks to 
reduce the semantic gap between the encoder and decoder paths. 
Similarly, Fan et al. [52] presented MaNet, which introduced different 
attention modules to focus on the most important features at each scale 
level, with the objective of enhancing the accuracy and robustness of the 
model. Chaurasia et al. [53] also developed LinkNet which mainly 
replaced standard U-Net skip connections by residual ones in order to 
improve gradient flow and make training more stable. 

Despite the success of these variants, other authors decided to 
explore alternative designs. For example, it is the case of Seferbekov 
et al. [54] who created the feature pyramid network (FPN) to exploit 
features from different scales. Specifically, the FPN consists of a bottom- 
up pathway that generates features at different resolutions, and a top- 
down pathway that works at the same resolution as the input image 
and combines features from different scales using lateral connections. 
Zhao et al. [55] also formulated the pyramid scene parsing network 
(PSPNet) which uses a pyramid pooling module that divides feature 
maps into different regions and applies pooling operations at multiple 
scales, allowing the network to capture global and local contextual in
formation. Similarly, other studies [56,57] suggested the use of dilated 
convolutions to increase receptive fields while effectively capturing 
multi-scale contextual information. More recently, some other works 
have taken advantage of the so-called visual transformer networks [58]. 
It is the case of Xie et al. [59] who defined a transformer network for 
semantic segmentation (SegFormer) by exploiting long-range de
pendencies and spatial relationships with the so-called multi-head self- 
attention mechanism. The authors in [60] also proposed a hierarchical 
extension (HiFormer) that hierarchically aggregates features across 
multiple levels of the encoder with an FPN-based architecture to further 
refine feature maps. 

2.2.2. Specialized shadow detection networks 
In addition to the methods mentioned above, the literature also in

cludes specialized deep learning models exclusively designed for single- 
image shadow detection. These approaches focus on tailoring architec
tures and learning mechanisms specifically for shadow detection, with 
the aim of achieving improved accuracy and robustness in the process. 
For example, it is the case of Zhu et al. [11] who presented the bidi
rectional feature pyramid network with recurrent attention residual 
modules (BDRAR) for single-image shadow detection. In particular, this 
specialized network leverages two key elements: an attention module to 
refine context features from adjacent CNN layers, and a bidirectional 
feature pyramid network to aggregate shadow contexts from different 
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CNN layers. By refining the context features in both directions, the 
BDRAR method demonstrated the ability to reduce false predictions 
while improving shadow details. Following a similar motivation, Hu 
et al. [15] developed the direction-aware spatial context network (DSC), 
which learns attention weights when aggregating spatial context fea
tures to recover direction-aware contexts for detecting shadows. In [13], 
Fang et al. proposed a shadow detection network based on effective 
shadow contexts (ECA). Specifically, the ECA method was designed to 
capture global and local contexts of shadows using a multi-scale 
encoder-decoder structure with attention modules. In addition, it em
ploys a shadow refinement module to enhance the boundaries of the 
predicted shadows. 

Similarly, other researchers have explored alternative ways of 
exploiting spatial contexts and attention mechanisms in their methods. 
For example, Liu et al. [14] designed the multi-scale spatial attention 
network (MSASDNet) which focuses on extracting features at different 
spatial scales while applying spatial attention to each scale in order to 
reduce the interference of non-shadow regions at each spatial level. In 
[12], the authors presented the fast shadow detection network (FSDNet) 
based on three different modules: inverted residual bottlenecks to 
extract multi-scale features, a direction-aware spatial context module to 
provide global context information, and a detail enhancement module to 
refine low-level featured details based on the distance between low-level 
and high-level feature maps. Another relevant approach can be found in 
[61], where Xie et al. proposed the omni-scale global–local aware 
network (OglaNet). In more detail, the OglaNet method consists of two 
main components: a global–local network to extract global and local 
convolutional features, and a pyramid pooling module for capturing 
multi-scale contextual information with different pooling sizes. In this 
way, the outputs of both modules are concatenated and fed into a final 
convolutional layer to generate the final shadow predictions. 

Certainly, spatial contexts and attention mechanisms have proven to 
be important elements in shadow detection networks. However, other 
researchers have considered and explored additional shadow cues in 
their approaches. In the case of [16], Zhu et al. introduced a feature 
decomposition and reweighting network (FDRN) specifically designed 
to address the intensity bias problem in shadow detection. Since deep 
features are generally sensitive to intensity values, the authors proposed 
decomposing the uncovered features into intensity-variant and 
intensity-invariant components and reweighting each part to control 
such intensity effect. Following a similar motivation, Zhu et al. [62] 
developed a complementary mechanism for jointly exploiting the in
formation extracted from shadowed and non-shadowed regions. Spe
cifically, the proposed method makes use of two interactive branches: 
one for predicting shadow masks, and another for their complementary 
masks (representing non-shadows). In this way, the deactivated inter
mediate features of one branch can be delivered to the other through a 
negative activation technique. Other researchers have also explored 
different types of complementary information. In [63], Wu et al. took 
advantage of the inherent noise of shadow image collections to develop 
a robust detection scheme, which identifies the most reliable samples 
and propagates this information using graph convolutional networks. 
Jie et al. [64] also demonstrated the benefits of incorporating a ran
domized feature sampling strategy into their transformer-based shadow 
detection network. 

Building on these explorations, further advancements in the field 
continue to emerge. Jie et al. assessed the Segment-Anything Model 
(SAM) for shadow detection, revealing its limitations compared to 
specialized models [26]. Jiao et al. proposed the Refined UNet-v4 for 
edge-refined cloud and shadow detection in remote sensing images [27]. 
A paper by [28] introduced an encoder-decoder network with a channel- 
attention module for remote sensing images, focusing on shadow char
acteristics. Kumar et al. developed SEAT-YOLO, a YOLO-based archi
tecture with squeeze-excite and spatial attention modules for shadow 
detection [29]. Zhou et al. presented an improved method to detect face 
shadows using channel and spatial attention [30]. Liu et al. introduced 

SCOTCH and SODA, a transformer-based framework for video shadow 
detection, addressing shadow deformations and contrastive learning 
[31]. Yucel et al. proposed LRA and LDRA for efficient shadow detection 
and removal, focusing on shadow region reconstruction [32]. 

Moving forward with other very recent advancements, the shadow 
detection field continues to evolve. Cong et al. developed a shadow 
detection network with a style-guided dual-layer disentanglement ar
chitecture [33]. Zhang et al. introduced CIFNet, a multi-supervised 
feature fusion attention network for cloud and shadow detection [34]. 
Another study by Zhang et al. proposed CRSNet, employing multiple 
modules for cloud and shadow detection in remote sensing imagery 
[35]. Feng et al. designed OAMSFNet, an orientation-aware network 
using pseudo-shadow information for remote sensing images [36]. Chen 
et al. presented a boundary-aware network for enhanced shadow 
detection [37]. Wu et al. combined uncertainty analysis with a GCN- 
based strategy for single-image shadow detection [38]. Zhang et al. 
proposed a method combining neighborhood similarity and intensity 
information for shadow detection in video SAR [40]. Valanarasu et al. 
introduced a method leveraging shadow removal for fine-context 
shadow detection [41]. Zhang et al. explored residual and illumina
tion with GANs for shadow detection and removal [42]. Another study 
by Zhang et al. proposed SpA-Former, a transformer-based network for 
shadow removal [43]. Guo et al. introduced ShadowDiffusion, a diffu
sion framework for shadow removal [44]. Ahn et al. combined a shadow 
transformer network with GANs for domain adaptation in shadow 
removal [45]. Lastly, Xu et al. proposed a dynamic convolution module 
for shadow detection and removal [46]. 

All of these studies represent a diverse range of approaches and in
novations in the field of shadow detection, highlighting the ongoing 
advances and varied methodologies employed to tackle this complex 
challenge. 

2.3. Novelty of the work 

Undoubtedly, deep learning models have revolutionized shadow 
detection, enabling efficient and effective solutions. However, accu
rately segmenting shadows from highly heterogeneous and complex 
data still poses significant challenges to the scientific community 
[12,17]. While some methods exploit low intensity as a strong indicator 
of shadows [16], others try to enhance the process by using additional 
shadow cues, such as shadow/non-shadow correspondences or region 
connectivity [14,61,62]. However, existing architectures are generally 
unable to prioritize fine-grained image reconstruction features that, 
without being directly related to shadow masks, may help to improve 
the detection process. Deep learning-based shadow detection models 
commonly use a standard encoder-decoder network to predict shadow 
masks from input images, e.g. [11,12]. However, this approach may 
neglect some fine-detailed image features that are not directly related to 
shadows but could still influence their accurate estimation by providing 
a better understanding of the scene. In other words, the standard 
decoder path for predicting shadow masks may fail to consider some 
image features that could help to understand complex interactions 
among light, structures, and materials, helping to detect some complex 
cases. Note that complex scenarios require different abstraction levels to 
handle different planes, scales, and morphologies of objects that 
generate different shadow characteristics, which can be mixed in the 
scene and need to be identified with fine-grained image features. 

In response to these challenges, this paper presents a novel encoder- 
decoder network for shadow detection that takes advantage of image 
reconstruction features using a dual image-shadow decoder topology. 
Our methodology deviates from the standard singular focus on shadow 
masks by incorporating a secondary pathway dedicated to reconstruct
ing the non-shadow portions of the image. In addition, it also deviates 
from other existing dual-path or multitask networks (e.g. [41,62]) by 
selectively transferring and exploiting image reconstruction features 
without the need of using any other additional data, such as in the case 
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of joint shadow detection/removal methods that also require clean im
ages. The use of skips connections with noise and cross-attention enable 
our network to improve the quality of the transferred features to better 
grasp the nuances of both shadowed and illuminated regions, posi
tioning our work as an advancement over other existing approaches. 
Experimentally, our model demonstrates improved robustness in scenes 
with intricate interplays of light and texture. Furthermore, ablation 
studies underline the effectiveness of each architectural component, 
particularly the reconstruction features, which prove pivotal in 
discerning subtle shadow details. 

3. Methodology 

This section presents the proposed shadow detection model. First, let 
us introduce the considered notation. Let IIN ∈ ℝ(H×W×B) represent an 
input image with B spectral bands and a (H × W) spatial size. The cor
responding ground-truth shadow mask is identified by IGT ∈ B(H×W×1), 
while ISH ∈ B(H×W×1) denotes the shadow mask predicted by the 
network. Finally, the reconstructed output image is represented by 
IOUT ∈ ℝ(H×W×B). Under this framework, the proposed network aims to 
approximate a mapping function F (Eq. (1)), using a supervised 
learning approach that relies on ground-truth data for loss 
computations. 

F (IIN) = (ISH, IOUT) (1)  

3.1. CADDN: Cross-attentional dual-decoder network for shadow 
detection 

Fig. 2 illustrates our newly developed CADDN model. This archi
tecture stands out with a dual-decoder design, integrating an encoder 
backbone (ℰ) with two specialized decoder segments: the Shadow- 
Decoder (D S) and the Image-Decoder (D I). These segments work in 
tandem, with D S dedicated to estimating shadow masks and D I focused 
on reconstructing the input data. The core concept of this configuration 
is to harness the power of image reconstruction features to enhance the 
shadow detection process. 

The process begins with the encoder backbone ℰ, which compresses 
the input images into a condensed feature space. This embedded rep
resentation then feeds into the two decoders. The Image-Decoder (D I) 
takes on the task of reconstructing the input images from this feature 
space, while the Shadow-Decoder (D S) focuses on generating the cor
responding shadow masks. A key feature of our model is its ability to 
transfer crucial features from D I to D S. This transfer is instrumental in 
enhancing shadow detection capabilities. 

The designed dual-decoder approach goes beyond mere parallel 
processing, focusing instead on creating a synergistic interaction be
tween the decoders. By training these decoders simultaneously in an 
end-to-end manner, CADDN effectively leverages detailed image 
reconstruction features to improve shadow detection. This aspect is 
particularly beneficial in complex scenarios where shadows display 
varied morphologies, scales, and spectral characteristics. The subse
quent sections will dive deeper into each component of CADDN, spe
cifically focusing on the Encoder (ℰ), Shadow-Decoder (D S), and 
Image-Decoder (D I) as marked in Fig. 2. 

3.1.1. Encoder network (ℰ) 
The encoder backbone, denoted ℰ, aims to transform the input image 

into a more compact and representative characterization that can pre
serve the most meaningful features from a shadow detection perspec
tive. Specifically, we built ℰ on top of the popular ResNet-34 [65] 
architecture due to its excellent balance between model complexity and 
computational efficiency in shadow detection and other analogous 
segmentation applications [39,66]. A graphical representation of the 
encoder network is provided in Fig. 3, where the following abbreviations 
are used: Conv2D (convolutional layer), BN (batch norm), ReLU (recti
fied lineal unit), MaxPool (max pooling), Add (residual layer), EH (head 
features), ES1 (stage-1 features), ES2 (stage-2 features), ES3 (stage-3 
features), and ES4 (encoding space features). Like in ResNet-34, the 
defined encoder begins with a convolutional layer containing 64 filters 
with a kernel size of 7× 7, followed by a max-pooling that halves the 
spatial dimensions. After this, there are four stages of residual blocks, 
each one consisting of two convolutional layers with a kernel size of 3 ×

3 and a residual connection. The first stage contains three residual 

Fig. 2. Overview of the proposed Cross-Attentional Dual-Decoder Network (CADDN). The figure illustrates how the input images (IIN) are encoded by means of ℰ 
into an embedding space. Then, two connected decoder segments (image-decoder D I and shadow-decoder D S) are used to produce a reconstructed version of the 
inputs (IOUT) and estimate the corresponding shadow masks (ISH). Note that skip connections with noise are integrated between ℰ and D I to improve the robustness 
of the decoded image features. Additionally, transfer blocks are used between D I and D S to adapt the multi-modal nature of both decoder streams. Finally, D S 

incorporates a cross-attention module to allow attending to different feature sequences regardless of whether they come from the encoder, image-decoder or shadow- 
decoder paths. 
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blocks with 64 convolutional filters each. In the second stage, there are 
four residual blocks, each with 128 filters. The third stage comprises six 
residual blocks with 256 filters each. Finally, the last stage consists of 
three residual blocks with 512 filters, each one of them. Note that strided 
convolutions are used in the transition between stages to reduce the 
spatial dimensions of the feature maps. In this way, the encoder is able to 
produce a set of feature maps, as shown in Eq. (2), with reduced spatial 
dimensions and progressively complex representations that can be fed 
into the two decoder segments. 

ℰ(IIN) = (EH ,ES1,ES2,ES3,ES4) (2)  

3.1.2. Image-decoder network (D I) 
The proposed image-decoder segment (D I) seeks to reconstruct the 

original input image from the features generated by the encoder back
bone. Therefore, the projection learned by D I should capture fine- 
grained visual details necessary to produce an accurate reconstruction 
of the input image from the compressed embedding space. To enable the 
use of multi-resolution information [14,61], we adopt a U-Net decoder 
shape that considers the set of previously encoded features. However, it 
is important to note that the use of standard U-Net skip connections may 
not be optimal, since simply bypassing initial high-resolution features 
from the encoder could compromise the relevance of lower-resolution 
features. To address this issue, we introduce a dropout noise rate of η 
to the encoder feature maps used in the shortcut connections. Fig. 4 
shows the architecture of the proposed image-decoder, where the 
following abbreviations can be found: UP (up-sampling layer), Cat 
(concatenation layer), TanH (hyperbolic tangent function), DH (head 
image-decoder features), DS1 (stage-1 image-decoder features), DS2 
(stage-2 image decoder features), and DS3 (stage-3 image-decoder fea
tures). As can be seen, the expansive path consists of five up-sampling 

blocks (i.e. Stage-3i, Stage-2i, Stage-1i, Head-i, and Tail-i), each con
taining two 3 × 3 convolutions with a decreasing number of filters (i.e., 
256, 128, 64, 32, and 16, respectively) to gradually rearrange the fea
tures from a channel-wise representation to a spatial representation. 
This design enables the generation of image-decoder features that are 
symmetric to the encoder ones, and thus, they can be jointly exploited by 
the shadow-decoder segment. Finally, an image reconstruction block 
with four more convolutions is used to re-project the obtained features 
onto the original image domain. The whole process of the defined 
image-decoder can be represented by Eq. (3). 

D I(ℰ(IIN) , η) = (DS3,DS2,DS1,DH , IOUT) (3)  

3.1.3. Shadow-decoder network (D S) 
Regarding the shadow-decoder, D S is a critical component of the 

proposed architecture, as its objective is to generate the final prediction 
of shadows by using the features extracted by the encoder and image- 
decoder networks. By incorporating the high-level semantics of the 
encoder features (i.e., EH, ES1, ES2 and ES3) and the fine-grained visual 
details of the image-decoder features (i.e., DH, DS1, DS2 and DS3), the 
shadow-decoder can be boosted to handle more complex and diverse 
conditions for shadow detection. To achieve this, we employed a U-Net 
shape with dual-skip connections, allowing access to both feature paths 
(encoder and image-decoder features) when identifying shadows. 
Furthermore, transfer and attention modules are incorporated to further 
enhance the robustness of the shadow predictions. 

The architecture of the proposed shadow-decoder is shown in Fig. 5, 
where the same abbreviations as above are used. As can be observed, it 
consists of five up-sampling stages (i.e., Stage-3 s, Stage-2 s, Stage-1 s, 
Head-s, and Tail-s), each comprising two 3 × 3 convolutions and a 
progressively reduced number of filters (i.e., 256, 128, 64, 32, and 16, 

Fig. 3. Encoder network (ℰ). This diagram illustrates the encoder component of the proposed architecture. Based on the ResNet-34 [65], the defined encoder 
employs successive stages of convolutional layers (Conv2D), batch normalization (BN), rectified linear units (ReLU), max pooling (MaxPool) and residual connections 
(Add) to progressively build a hierarchy of features from the head (EH) to the deepest encoding space (ES4). This progression through stages utilizes increasing filter 
sizes to refine feature maps, facilitating the feature transfer to subsequent decoder segments dedicated to shadow mask prediction and image reconstruction. 

Fig. 4. Image-decoder network (D I). This figure delineates the image-decoder segment of our architecture, responsible for reconstructing the input image from the 
encoded features. It mirrors the U-Net decoder structure and advances from the deepest encoding space (ES4) through up-sampling layers (UP) and concatenations 
(Cat) with the encoder features, which have been selectively perturbed with dropout noise to enhance feature quality. The process incorporates repeated sequences of 
convolution (Conv2D), batch normalization (BN), and rectified linear activation (ReLU), systematically restoring the resolution of feature maps. The final output 
passes through a hyperbolic tangent activation (TanH) to produce the final reconstructed image. The symmetry with the encoder allows a comprehensive multi-level 
feature exploitation, crucial for the accurate image reconstruction. 
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respectively). Additionally, a final convolution, identified as the shadow 
reconstruction block, is included to generate the corresponding output 
shadow masks. Essentially, the architecture of the proposed shadow- 
decoder resembles that of the previously described image-decoder, but 
with three main differences. First, the features learned by the image- 
decoder are fed into the concatenation layer (Cat), after being pro
cessed by a transfer block. Second, a cross-attention module is incor
porated to allow the shadow-decoder to attend to different feature 
sequences regardless of whether they come from the encoder, image, or 
shadow paths. Third, the final reconstruction block is simplified to a 
single convolution due to the simplicity of the output, which is a shadow 
mask. Eq. (4) formulates the shadow-decoder process and Fig. 6 provides 
a visual description of the transfer blocks and cross-attention modules 
considered. 

D S(ℰ(IIN) ,D I(ℰ(IIN) , η) ) = (ISH) (4) 

In more detail, each transfer block (Fig. 6(a)) is made up of two 3 × 3 
convolutions with a number of filters equal to the input channels. This 
configuration is used to allow for better adaptation of the image-decoder 
features that come from a multi-modal stream. The considered cross- 
attention module (Fig. 6(b)) is based on the so-called multi-head 
attention mechanism of transformer networks, which has been suc
cessfully applied in several semantic segmentation applications 
[59,60,67]. Assuming a generic input feature map M ∈ ℝ(s1×s2×s3), the 
cross-attention module begins with two 1 × 1 convolutions to create a 

lower-dimensional embedding for queries (Q) and keys (K), where 
(Q,K) ∈ ℝ(s1×s2×⌊s3/8⌋ ). Next, the affinity matrix between Q and K is 
computed by iterating the spatial dimensions as follows. At each spatial 
position p, query features are extracted in depth as Qp ∈ ℝ(⌊s3/8⌋). Simi
larly, all the feature vectors in K that are in the same row or column with 
p are extracted as Ki,p ∈ ℝ(s1+s2 − 1×⌊s3/8⌋ ). Then, the corresponding affinity 
degrees are computed as: 

di,p = QpKT
i,p (5)  

where di,p ∈ D is the correlation between the query features in the spatial 
position p and the key features in the same row/column as p, such that 
D ∈ ℝ(s1+s2 − 1×s1×s2). After this operation, a soft-max layer is used to 
transform D into a normalized attention map A, which will be aggre
gated to the input features. To achieve this, the input (M) is processed by 
a 1 × 1 convolution to generate the corresponding value embedding V ∈

ℝ(s1×s2×s3) for feature adaptation. Then, at each spatial position p, feature 
vectors belonging to the same row/column as p are extracted in 
Vi,p ∈ ℝ(s1+s2 − 1×s3). With this, the aggregation step can be formulated as 
Eq. (6) shows, being Mp′ the feature vector at position p on the output 
feature map M’ ∈ ℝ(s1×s2×s3). 

Mp′ =
∑s1+s2 − 1

i=1
Ai,pVi,p +Mp (6)  

3.2. Proposed joint loss formulation 

In this section, we present the loss formulation used for training the 
proposed model. It should be noted that, as a supervised method, paired 
data volumes (IIN, IGT) are required for the training process. As illus
trated in Fig. 2, the proposed approach adopts a dual-decoder archi
tecture that requires joint optimization. Therefore, we consider the 
following loss terms for training: image reconstruction (L I) and shadow 
matching (L S). We will now provide a detailed description of them: 

(L I) The first loss is dedicated to optimizing the image-decoder 
segment (D I) to ensure a high-quality reconstruction of the input 
image (IOUT). When it comes to full-reference image quality metrics, the 
structural similarity index (SSIM) [68] is one of the most popular choices 
for image reconstruction because it provides a measure of structural 
similarity between two images based on patches, rather than simply 
measuring the difference in the values of the pixels [69]. Eq. (7) shows 
its mathematical formulation, where x and y are overlapped image 
patches, μ(⋅) represents their corresponding means, σ(⋅) the standard 
deviations, σ(⋅⋅) the cross-covariance, and c(⋅) constants for numerical 
stability. Since the averaged result incorporates both local and global 

Fig. 5. Shadow-decoder network (D S). This scheme depicts the shadow-decoder component of our architecture, designed to predict shadow masks from features 
refined by both the encoder and the image-decoder. It follows a U-Net-inspired structure, leveraging up-sampling stages with transfer blocks and cross-attention to 
integrate multi-level encoder features (EH , ES1, ES2 and ES3) with detailed image-decoder features (DH, DS1, DS2 and DS3). This strategic assembly facilitates the ability 
to handle a wider variety of complex shadow conditions. The defined stages utilize up-sampling (UP) and concatenation layers (Cat) together with dual convolutional 
sequences (Conv2D) followed by batch normalization (BN) and ReLU activation to progressively shape shadow features. 

(a) (b)

Fig. 6. Transfer and Cross-Attention modules in CADDN. The image on the left 
shows the proposed transfer block, which employs a sequence of convolution 
(Conv2D), batch normalization (BN), and rectified linear activation (ReLU) 
layers to refine the image-decoder features, ensuring their compatibility for 
precise shadow detection. The second image depicts the cross-attention mech
anism, a module that utilizes transformer network principles with queries (Q), 
keys (K) and values (V), to selectively concentrate on features with high affinity 
across multiple data streams. 
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information, the SSIM metric becomes particularly robust for managing 
variations in illumination, contrast, and other features that certainly 
play a key role in shadow detection. In addition, its bounded nature [70] 
also makes this index a suitable election for a multi-loss optimization 
scenario. Therefore, we adopt the SSIM as the figure of merit of our 
image reconstruction loss. Eq. (8) details the considered expression, 
where Ω represents the window grid, ∣Ω∣ is the total number of patches 
in the image domain, and Ip

(⋅) the patches extracted from the corre
sponding images. 

SSIM(x, y) =
(
2μxμy + c1

)(
2σxy + c2

)

(
μ2

x + μ2
y + c1

)(
σ2

x + σ2
y + c2

) (7)  

L I(IOUT, IIN) =

1 −

(

1
|Ω|

∑

p∈Ω
SSIM(Ip

OUT, I
p
IN)

)

2
(8) 

(L S) The objective of the second loss consists in fitting the pre
dictions made by the shadow-decoder (ISH) to their corresponding 
ground-truth shadow masks (IGT). In the context of deep learning-based 
semantic segmentation [71], the Dice loss [72] is a widely used function 
because it deals with the class imbalance problem, which is a common 
issue in shadow detection [73]. More specifically, this loss is based on 
the Dice coefficient, which measures the similarity between two sets by 
computing the ratio of their intersection to their union. Eq. (9) shows its 
mathematical formulation, where X and Y are two binary masks, ∣⋅∣ 
denotes the cardinality operator, and c is a small constant for numerical 
stability. As is possible to see, this coefficient is a bounded score, with 
values ranging from 0 (no overlap) to 1 (perfect overlap), that penalizes 
false negatives and false positives equally. Accordingly, we use the Dice 
loss presented in Eq. (10) for training our shadow-decoder. 

Dice(X,Y) =
2|X ∩ Y| + c
|X| + |Y| + c

(9)  

L S(ISH, IGT) = 1 − Dice(ISH, IGT) (10) 

By combining these two terms, we define a joint loss formulation for 
the proposed CADDN model that works for simultaneously optimizing 
the reconstruction of the input image and the prediction of its shadow 
mask. To allow fine-tuning the balance between both aspects, we use a 
hyper-parameter β that controls the relative importance of the image 
reconstruction loss. Eq. (11) shows the expression of the proposed joint 
loss, which provides a unified framework for optimizing the proposed 
decoder segments and encourages the model to learn representations 
that capture both fine-grained image structure and shadow information. 

L CADDN = L S(ISH, IGT)+ βL I(IOUT, IIN) (11)  

4. Experiments 

This section presents the experimental part of the work, describing 
the datasets (Section 4.1), settings (Section 4.2), and results (Section 
4.3). To offer a more comprehensive evaluation of the proposed method, 
additional experiments are presented in the appendices. These experi
ments include a parameter sensitivity analysis (Appendix A), an ablation 
study (Appendix B), and a trade-off analysis (Appendix C). 

4.1. Datasets 

The following image collections were considered in the experiments:  

1. AISD [74]: The Aerial Imagery dataset for Shadow Detection (AISD) 
[74] consists of 514 images, extracted from the Inria Aerial Image 
Labeling Dataset [75]. The collection covers a wide range of complex 
scenarios, including dense metropolitan areas, residential neigh
borhoods, industrial regions, and rural resorts, making it a suitable 

dataset for evaluating shadow detection algorithms. The authors 
provide the data partitioned into three sets, training (412 images), 
validation (51 images), and test (51 images), along with their cor
responding ground-truth shadow masks. All the images are RGB 
shots with a size of 512 × 512 and a spatial resolution of 0.3 meters 
per pixel.  

2. CUHKMAP [12]: This dataset is part of the Chinese University of 
Hong Kong (CUHK) archive, which combines images from various 
shadow detection repositories. The CUHKMAP comprises a total of 
1595 complex scenes collected from Google Street View, each 
manually labeled for shadow regions. The dataset includes pano
ramic views captured from different viewpoints and under various 
lighting conditions, making it particularly challenging for shadow 
detection. The data are divided into three partitions: training (1116 
images), validation (160 images), and test (319 images). It is worth 
noting that the images in the dataset are RGB shots and have varying 
sizes, typically around 400 × 600 pixels.  

3. SBU [24]: The Stony Brook University (SBU) is another reference 
shadow detection collection that includes 4723 images collected 
from the MS COCO dataset [76] and the Web. The included scenes 
are highly diverse with different types of environment and objects, 
providing a challenging benchmark for evaluating shadow detection 
algorithms. The dataset is organized into two parts, training (4085 
images) and test (638 images), both with their manually annotated 
shadow masks. Since no validation is available in this case, we use a 
fixed partition with 10% of the training for validation purposes. The 
images in the SBU dataset are RGB shots with different resolutions 
and aspect ratios, having a sample size around 400× 400. 

4.2. Experimental settings 

To validate the proposed shadow detection model, we perform an 
experimental comparison against several popular deep learning-based 
semantic segmentation and shadow detection methods available in the 
literature. In the category of general-purpose semantic segmentation, we 
consider U-Net++ [50], MaNet [52], LinkNet [53] and HiFormer [60]. 
As specialized shadow detection networks, we include FSDNet [12], 
MSASDNet [14], OglaNet [61], BDRAR [11], DSC [15], ECA [13] and 
FDRN [16]. 

In the experimental setup to evaluate the proposed CADDN model 
and the other shadow detection methods, we maintained uniformity 
across all models for a fair comparison. This uniformity included using 
the same datasets and settings as provided by the authors of each 
method. Specifically, for the proposed CADDN model, we opted for a 
default configuration with η = 0.1 and β = 1. To standardize the feature 
extraction and optimization process across different models, the Dice 
loss function and the ResNet-34 backbone were used whenever appli
cable. We intentionally avoided using data augmentation techniques, 
pre-trained weights, or additional post-processing steps. This decision 
was made to ensure that the comparison focused solely on the archi
tectures’ performance without external enhancements. To provide a 
robust statistical analysis, we performed five Monte Carlo runs for each 
model and reported the average results. 

For training details, all datasets were resized to a uniform resolution 
of 224 × 224 pixels. This resizing served two purposes: (i) it made the 
input data compatible with all models, and (ii) it helped manage 
memory requirements. We used the ADAM optimizer for training, 
setting the training duration to 100 epochs with an initial learning rate 
of 1e− 3. To facilitate learning, we implemented a learning rate decay 
strategy, reducing it by 50% every 20 epochs. The batch size was set to 4 
for all models. During the training phase, we continuously monitored 
the model performance in the validation set. The model instance that 
performed the best in the validation set was saved for subsequent 
evaluation in the test set. This approach ensured that we used the most 
effective version of each model for the final testing and comparison. 
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In our evaluation process, we employed four distinct metrics to 
quantitatively assess the performance of the models: Intersection over 
Union (IoU), F1-score (F1), overall accuracy (OA), and Balanced Error 
Rate (BER). These metrics provide a comprehensive analysis of the 
models’ effectiveness in shadow detection from different perspectives. 
Additionally, we complemented our quantitative assessment with 
qualitative analysis, examining several visual results to gain insight into 
the practical performance of the models. For conducting the experi
ments, our computational setup included a system equipped with an 
Intel(R) Core(TM) i5–11,400 processor, NVIDIA GeForce RTX 3060 
graphics card, and 64 GB of DDR4 RAM. The system ran on Ubuntu 
20.04 (64-bit version) and utilized Pytorch 1.6.0 with CUDA 10.1 for 
efficient processing and model training. To facilitate reproducibility and 
further research, the code developed for this study will be made avail
able at https://github.com/rufernan/CADDN. 

4.3. Results 

Tables 1, 2 and 3 present the quantitative evaluation results achieved 
on the three benchmark shadow detection datasets. Each table shows the 
considered methods in rows and the selected evaluation metrics in col
umns, with the best result highlighted in bold. The optimal values for the 
reported metrics are IoU (1), F1 (1), OA (100%), and BER (0%). For 
visual evaluation purposes, Figs. 7 8 and 9 show some examples of the 
shadow detection results obtained on images from the three datasets. 

4.4. Computational complexity 

This section presents the results of three key performance metrics to 
analyze the computational cost of the considered shadow detection 
models. Specifically, we focus on the training time in seconds (Fig. 10), 
test time in seconds (Fig. 11), and the maximum demand for GPU 
memory in megabytes (Fig. 12). Since a uniform experimental setting 
has been consistently employed across all datasets, the results presented 
in this section are specifically for the AISD collection. 

Based on these computational results, the proposed approach, 
CADDN, performs competitively compared to other state-of-the-art 
methods. The training time of CADDN is similar to that of some other 
models, such as MaNet and FSDNet, and is notably faster than several 
others, including HiFormer, MSASDNet, and ECA. Furthermore, the test 
time of CADDN is relatively efficient, falling within the same range as 
that of models like U-Net++, MaNet, and LinkNet. It is worth high
lighting that, despite the complexity and capabilities of CADDN, it does 
not require excessive computational resources. In terms of GPU memory 
usage, CADDN utilizes a moderate amount of memory compared to some 
other models like OglaNet and MSASDNet, which demand more GPU 
resources. These facts indicate that CADDN strikes a good balance 

between computational efficiency and performance. 

5. Discussion 

To conduct a comprehensive analysis of the experiments, it is crucial 
to begin by comparing the quantitative differences among the consid
ered methods across datasets. Therefore, let us start by discussing the 
results of each dataset in detail. In the case of AISD (Table 1), the pro
posed model (CADDN) achieves the best average results in all metrics, 
with an IoU of 0.8422, F1-score of 0.9139, OA of 96.27%, and BER of 
5.57%. Following CADDN, MaNet and U-Net++ are the second and 
third best performing methods, obtaining lower yet still positive results. 
After them, OglaNet, ECA, LinkNet and MSASDNet also yield positive 
results, although with a slight performance decrease. On the other hand, 
the remaining methods are unable to produce satisfactory results in this 
data collection, being particularly negative for FSDNet and BDRAR. In 
CUHKMAP (Table 2), the best performance is also achieved by the 
proposed model, with quantitative values of 0.7622 (IoU), 0.8581 (F1- 
score), 89.64% (OA), and 10.88% (BER). The second and third best re
sults are obtained by LinkNet and MaNet, which are followed by U- 
Net++, OglaNet, DSC and MSASDNet. However, DSC and MSASDNet 
experience a slight decrease in performance. Concerning the other 
methods, they tend to show a rather limited performance, which is 
particularly low for HiFormer. 

Regarding the SBU dataset (Table 3), our proposed model is able to 
provide the best results for three of the four considered metrics, with an 
average IoU of 0.7311, F1-score of 0.8154, and OA of 95.27%. In this 
case, DSC and BDRAR exhibit the second and third best quantitative 

Table 1 
Quantitative performance analysis on the AISD dataset. This table presents a 
comprehensive comparison of various shadow detection methods, including our 
proposed CADDN model, evaluated on the AISD dataset. Metrics include Inter
section over Union (IoU), F1 Score, Overall Accuracy (OA), and Balanced Error 
Rate (BER).  

Methods IoU F1 OA (%) BER (%) 

U-Net++ [50] 0.8374 0.9111 96.15 5.83 
MaNet [52] 0.8387 0.9119 96.16 5.64 
LinkNet [53] 0.8343 0.9092 96.05 5.76 
HiFormer [60] 0.8010 0.8889 95.36 8.02 
FSDNet [12] 0.7832 0.8777 94.79 8.15 
MSASDNet [14] 0.8341 0.9091 96.04 5.79 
OglaNet [61] 0.8363 0.9105 96.15 6.07 
BDRAR [11] 0.7888 0.8813 94.82 7.33 
DSC [15] 0.7978 0.8869 95.04 6.49 
ECA [13] 0.8354 0.9098 96.16 6.38 
FDRN [16] 0.7919 0.8830 94.69 5.70 
CADDN (ours) 0.8422 0.9139 96.27 5.57  

Table 2 
Quantitative performance analysis on the CUHKMAP dataset. This table presents 
a comprehensive comparison of various shadow detection methods, including 
our proposed CADDN model, evaluated on the CUHKMAP dataset. Metrics 
include Intersection over Union (IoU), F1 Score, Overall Accuracy (OA), and 
Balanced Error Rate (BER).  

Methods IoU F1 OA (%) BER (%) 

U-Net++ [50] 0.7564 0.8539 89.30 11.07 
MaNet [52] 0.7587 0.8554 89.53 11.19 
LinkNet [53] 0.7598 0.8563 89.51 10.97 
HiFormer [60] 0.6944 0.8104 87.61 15.03 
FSDNet [12] 0.7171 0.8261 87.15 13.39 
MSASDNet [14] 0.7387 0.8421 88.46 12.05 
OglaNet [61] 0.7483 0.8489 89.10 11.45 
BDRAR [11] 0.7291 0.8355 88.15 12.74 
DSC [15] 0.7387 0.8422 88.69 12.06 
ECA [13] 0.7171 0.8273 87.44 12.71 
FDRN [16] 0.7374 0.8410 88.33 12.18 
CADDN (ours) 0.7622 0.8581 89.64 10.88  

Table 3 
Quantitative performance analysis on the SBU dataset. This table presents a 
comprehensive comparison of various shadow detection methods, including our 
proposed CADDN model, evaluated on the SBU dataset. Metrics include Inter
section over Union (IoU), F1 Score, Overall Accuracy (OA), and Balanced Error 
Rate (BER).  

Methods IoU F1 OA (%) BER (%) 

U-Net++ [50] 0.7053 0.7929 94.24 10.55 
MaNet [52] 0.7220 0.8078 94.72 9.87 
LinkNet [53] 0.7167 0.8021 94.56 10.45 
HiFormer [60] 0.6965 0.7869 94.96 13.07 
FSDNet [12] 0.6775 0.7691 94.02 12.66 
MSASDNet [14] 0.6648 0.7574 93.38 12.71 
OglaNet [61] 0.6880 0.7768 94.07 12.18 
BDRAR [11] 0.7264 0.8094 95.24 10.70 
DSC [15] 0.7295 0.8148 94.86 8.70 
ECA [13] 0.6016 0.6983 91.78 16.76 
FDRN [16] 0.6944 0.7862 93.69 8.95 
CADDN (ours) 0.7311 0.8154 95.27 9.75  
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results in these metrics by a small margin. Besides, OglaNet and 
MSASDNet seem to suffer a notable performance decrease with respect 
to other competitors. The remaining methods appear to achieve rela
tively limited performance in this collection, with ECA at the last posi
tion. Regarding the BER metric, it should be mentioned that DSC and 
FDRN obtained the best and second best quantitative results, with the 
proposed approach ranking third. 

In light of these results, several important observations can be made 
on the basis of the nature of the considered methods and data. Overall, 
MaNet, LinkNet, and U-Net++ produce positive results across all the 
datasets, which reveals the robustness of these methods for detecting 
shadows in complex scenes, like those in AISD, CUHKMAP or SBU. 
Essentially, these models utilize symmetric encoder-decoder 

architectures that exploit skip connections to preserve contextual in
formation from input data to output. By doing so, low-level features can 
be used to build higher-level characteristics or simply bypassed to 
directly detect the target. Note that this aspect can be very relevant in 
shadow detection, since shadows typically combine simple black regions 
that can be easily modeled by low-level features, with complex diffuse 
areas that logically require a better understanding of the objects in the 
scene. Although other models, such as MSASDNet or OglaNet, follow a 
similar idea using dense lateral connections, their performance has not 
been as good, particularly in CUHKMAP and SBU. This fact reveals that 
increasing the number of parameters in the decoder may not always lead 
to improved shadow detection, taking into account the experimental 
setup and training scheme considered in this work. Even more complex 

(a) U-Net++ (b) MaNet (c) LinkNet

(d) HiFormer (e) FSDNet (f) MSASDNet

(g) OglaNet (h) BDRAR (i) DSC

(j) ECA (k) FDRN (l) CADDN (ours)

Fig. 7. Qualitative results of a sample test image from the AISD dataset. Note that true-positives are highlighted in green, false-positives in red and false-negatives in 
blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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architectures, such as HiFormer, can exhibit relatively poor results in 
these types of scenario. 

Another factor that appears to have a relevant impact on the results is 
the utilization of attention mechanisms. Although some of the evaluated 
models, such as U-Net++, obtain positive results without attention, 
while others with attention, such as HiFormer, can show limited per
formance, in general, it is possible to see that the models that integrate 
some form of attention demonstrate a greater consistency in perfor
mance across the datasets, as observed in the case of MaNet. Specifically, 
MaNet employs a transformer-based attention mechanism that weights 
the most relevant features after the encoder. The experimental results 
show that this type of configuration can be more effective for shadow 
detection than traditional spatial attentions, as in the case of MSASDNet, 

or applying attention in earlier stages, as in the case of HiFormer. 
The positive results achieved by symmetric encoder-decoder archi

tectures and the enhanced performance from implementing attention 
mechanisms at the decoder stage significantly endorse the design 
choices of our proposed network. CADDN not only employs these sym
metric paths and late-stage attention in the shadow decoder segment, 
but also introduces other methodological advancements for shadow 
detection. Its dual-decoder configuration distinctively enables selective 
use of detailed image reconstruction features for shadow prediction. 
This is achieved through the integration of noisy skip connections, 
which enhance the features extracted by the image-decoder. Moreover, 
transfer blocks efficiently adapt these features for the shadow-decoder, 
accommodating the different types of data processed by each decoder 

Fig. 8. Qualitative results of a sample test image from the CUHKMAP dataset. Note that true-positives are highlighted in green, false-positives in red and false- 
negatives in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(a) U-Net++ (b) MaNet (c) LinkNet

(d) HiFormer (e) FSDNet (f) MSASDNet

(g) OglaNet (h) BDRAR (i) DSC

(j) ECA (k) FDRN (l) CADDN (ours)

Fig. 9. Qualitative results of a sample test image from the SBU dataset. Note that true-positives are highlighted in green, false-positives in red, and false-negatives in 
blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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path. This unique approach of combining image and shadow decoders 
allows CADDN to excel across various datasets and evaluation metrics, 
demonstrating its effectiveness in shadow detection. 

The empirical results from our comprehensive analysis consistently 
underscore the superior performance of the proposed network. Across 
different benchmark collections, such as AISD, CUHKMAP and SBU, 
CADDN consistently outperforms other methods in key metrics. This 

performance is a testament to the innovative features of CADDN, 
including its symmetric encoder-decoder paths, advanced attention 
mechanisms, and unique dual-decoder configuration. These novel fea
tures enable CADDN to achieve superior results in accurately detecting 
and differentiating shadows in a range of complex scenarios, as can be 
further validated in the presented visual results. Our qualitative anal
ysis, illustrated in Figs. 7, 8 and 9, shows that CADDN consistently 
produces fewer false positives (marked red) and false negatives (marked 
in blue) compared to other models, especially in complex areas. For 
example, as seen in Fig. 8, CADDN outperforms other models in iden
tifying diffuse shadows, such as those cast by a bare tree, which are 
commonly misclassified as asphalt. This level of precision is consistently 
demonstrated in other examples, as shown in Figs. 7 and 9. 

6. Conclusions and future work 

This paper presented a new deep learning-based shadow detection 
model (CADDN), which has been designed to deal with complex scenes. 
Specifically, the proposed model defines an innovative dual-decoder 
shape that includes two segments that work together to reconstruct 
both the input images and their corresponding shadow masks. In this 
way, fine-grained image reconstruction features can be transferred to 
support the shadow-decoder when necessary. Besides, the CADDN in
corporates noisy skip connections and cross-attention to guarantee the 
quality of the transferred features. A new joint loss formulation is also 
defined to train the proposed shadow detection model based on the 
reconstructed images and the predicted masks. The experimental results, 
considering several benchmark datasets and shadow detection net
works, demonstrate the competitive performance of the proposed 
approach. 

The main conclusion that can be drawn from this research is that 
leveraging image reconstruction features is a viable approach to tackling 
the complexity of shadow detection. Challenges inherent to shadow 
detection are generally magnified in heterogeneous scenes, and hence 
the exploitation of fine-grained image reconstruction features can be a 
very useful tool in these scenarios. Despite the fact that the results ob
tained are certainly promising, there is always room for further im
provements. As future work, we aim to expand this work in the following 
directions that could potentially lead to even better performances: 
exploring imbalanced loss formulations, additional decoder architec
tures, and adopting a semi-supervised scheme. 
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Fig. 10. Training time in seconds (s) for all the considered methods on the 
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Fig. 11. Test time in seconds (s) for all the considered methods on the 
AISD dataset. 

Fig. 12. Maximum GPU memory demand in megabytes (MB) for all the 
considered methods on the AISD dataset. 
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Appendix A. Parameter Sensitivity Analysis 

Within the proposed model formulation, the η hyper-parameter modulates the amount of dropout noise that is injected to the encoder features in 
order to enhance the features uncovered by the image-decoder segment. In this section, we conduct a sensitivity analysis for this hyper-parameter to 
understand how η affects the performance of the proposed shadow detection network. Taking into account the experimental configuration described in 
Section 4.2, we test our CADDN model on the AIDS collection with the following dropout noise ratios η = {0.0,0.1, 0.2, ..., 1.0}. Table A.1 reports the 
corresponding results based on IoU, F1 and OA metrics. As can be observed, introducing a moderate amount of noise into the encoder features tends to 
lead to certain performance improvements. These results can be attributed to the fact that introducing some noise into the encoder features forces the 
image-decoder to reconstruct such perturbations, which in turn enhances the ability of the network to uncover more accurate features along the 
image-decoder segment. However, these advantages seem to have a limit, since the performance of the model tends to decrease as the noise ratio 
increases beyond η = 0.5. In this case, excessive noise can disrupt the underlying patterns in the feature maps, making it harder for the decoder to 
reconstruct the original image and leading to an overall drop in performance. For the sake of generality, we suggest a default dropout noise ratio of η =

0.1.  

Table A.1 
Performance analysis across different noise levels. This table provides a sensitivity analysis of 
the proposed model with respect to different noise levels (η), assessing their impact on the 
Intersection over Union (IoU), F1 Score, and Overall Accuracy (OA) metrics. It illustrates the 
effect of varying degrees of dropout noise on the encoder features affect the shadow detection 
capabilities of our approach.  

Noise Level (η) IoU F1 OA (%) 

0.0 0.8413 0.9134 96.26 
0.1 0.8424 0.9141 96.28 
0.2 0.8413 0.9134 96.24 
0.3 0.8410 0.9132 96.23 
0.4 0.8420 0.9138 96.26 
0.5 0.8420 0.9138 96.25 
0.6 0.8402 0.9127 96.21 
0.7 0.8406 0.9130 96.23 
0.8 0.8409 0.9132 96.22 
0.9 0.8387 0.9118 96.17 
1.0 0.8356 0.9100 96.10  

Appendix B. Ablation Study 

Another important aspect to be analyzed is the contribution of the two components adopted by the proposed architecture, that is, the transfer 
blocks used between decoder segments and the considered cross-attention modules. To investigate this, we conducted an ablation study to compare 
our model with several simplified versions that remove all the transfer blocks (woTR) and the cross-attention modules (woCA). This comparison 
enables us to evaluate the real contribution of the proposed architecture compared to other configurations with the same elemental structure. We 
present the results of the ablation study in Table B.1, which includes the results based on the AISD dataset. The results show that the proposed CADDN 
consistently outperforms all the ablated versions, demonstrating the contribution of our newly designed architecture for shadow detection.  

Table B.1 
Ablation study for the proposed model. This table shows the performance metrics, including Intersection over Union (IoU), F1 Score, and Overall 
Accuracy (OA), for several simplified versions of the proposed architecture (CADDN). Specifically, CADDN-woTR represents CADDN without 
transfer blocks, CADDN-woCA without cross-attention modules and CADDN-none without transfer blocks neither cross-attention.  

Version Tr-Block Cross-Att IoU F1 OA (%) 

CADDN-none No No 0.8334 0.9087 96.02 
CADDN-woCA Yes No 0.8368 0.9108 96.12 
CADDN-woTR No Yes 0.8392 0.9121 96.20 
CADDN Yes Yes 0.8423 0.9140 96.26  

Appendix C. Trade-off analysis 

Since the proposed loss is formulated according to two joint terms, i.e., image reconstruction (L I), and shadow matching (L S), this section analyzes 
the impact of the image reconstruction term on the overall performance of the proposed shadow detection model. Specifically, we vary the β trade-off 
parameter in Eq. (11) from 0.0 (null activation) to 1.0 (full activation) to weight the importance of the loss term L I. Table C.1 reports the analysis 
conducted on the AISD collection, using the experimental settings mentioned above. As is possible to observe, better average results can be achieved 
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when non-zero values of β are considered, which reveals the positive contribution that the image-decoder features may have in the final shadow 
detection predictions. However, the performance differences among the non-null values tend to be small, indicating that once β is activated, the 
proposed model can be effective at different activation levels. Since the proposed joint loss is based on two bounded figures of merit that work in a 
similar value range, we set β = 1.0 as the default trade-off value to train our shadow detection model.  

Table C.1 
Impact of the β hyperparameter on the proposed model performance. This table 
details the sensitivity analysis of the β hyperparameter on the Intersection over 
Union (IoU), the F1 score and the Overall Accuracy (OA) of the proposed shadow 
detection model. The values of β range from 0 to 1, with each increment analyzed 
for its effect on performance metrics.  

β IoU F1 OA (%) 

0.0 0.8406 0.9130 96.23 
0.1 0.8422 0.9139 96.26 
0.2 0.8421 0.9139 96.27 
0.3 0.8422 0.9140 96.26 
0.4 0.8413 0.9134 96.26 
0.5 0.8419 0.9137 96.25 
0.6 0.8414 0.9134 96.24 
0.7 0.8414 0.9134 96.25 
0.8 0.8415 0.9135 96.25 
0.9 0.8415 0.9135 96.25 
1.0 0.8423 0.9140 96.26  
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