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Abstract: Biomarkers based on DNA methylation are relevant in the field of environmental health
for precision health. Although tobacco smoking is one of the factors with a strong and consistent
impact on DNA methylation, there are very few studies analyzing its methylation signature in
southern European populations and none examining its modulation by the Mediterranean diet at
the epigenome-wide level. We examined blood methylation smoking signatures on the EPIC 850 K
array in this population (n = 414 high cardiovascular risk subjects). Epigenome-wide methylation
studies (EWASs) were performed analyzing differential methylation CpG sites by smoking status
(never, former, and current smokers) and the modulation by adherence to a Mediterranean diet
score was explored. Gene-set enrichment analysis was performed for biological and functional
interpretation. The predictive value of the top differentially methylated CpGs was analyzed using
receiver operative curves. We characterized the DNA methylation signature of smoking in this
Mediterranean population by identifying 46 differentially methylated CpGs at the EWAS level in the
whole population. The strongest association was observed at the cg21566642 (p = 2.2 × 10−32) in the
2q37.1 region. We also detected other CpGs that have been consistently reported in prior research
and discovered some novel differentially methylated CpG sites in subgroup analyses. In addition, we
found distinct methylation profiles based on the adherence to the Mediterranean diet. Particularly, we
obtained a significant interaction between smoking and diet modulating the cg5575921 methylation
in the AHRR gene. In conclusion, we have characterized biomarkers of the methylation signature of
tobacco smoking in this population, and suggest that the Mediterranean diet can increase methylation
of certain hypomethylated sites.
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1. Introduction

In the past twenty years, data from the Human Genome Project and the advent of
omics sciences have revolutionized biomedical sciences, boosting the potential to investi-
gate the molecular mechanisms of diseases [1–3]. This effort impacted the rules of research,
the methodology of biological discovery, and biomedical research computerization [4–7].
Therefore, we currently have new genomic tools to investigate novel biomarkers for mon-
itoring health and risk of disease, as well as a great opportunity to translate genomics
from the research field to clinical care [8,9]. This has accelerated progress toward so-called
“precision medicine” [10–12]. However, additional research is still needed to accomplish its
predictive and personalized promises. Furthermore, the term “precision health” encom-
passes wider approaches that occur outside the clinical setting, such as disease prevention,
health promotion efforts, and the delivery of individualized health interventions to the ap-
propriate individuals at the proper time [13–15]. To achieve precision health, it is necessary
to conduct exhaustive research of an individual’s conditions and biomarkers using a variety
of measurement technologies. Moreover, it is important to bear in mind that a person’s
risk of developing a disease is affected not just by their genome (genetic susceptibility)
but also by the exposure to environmental factors (so-called exposome in a wide-range
definition) [16–18]. In terms of DNA biomarkers, in addition to biomarkers based on
DNA sequence changes, such as single nucleotide polymorphisms (SNPs), epigenomic
biomarkers are currently of great interest [19,20]. They do not involve changes in the DNA
sequence, but rather a series of epigenetic marks of varying types [21,22]. These epigenetic
modifications can also have an important effect on gene expression and several of them
have been associated with a higher risk of disease [23,24]. The epigenetic mark that has
been studied the most is DNA methylation (transfer of a methyl group from S-adenosyl
methionine to cytosine residues at the carbon 5 position (5-methylcytosine [5-mC]), mainly
occurring in the context of cytosine-phosphate-guanine (CpG) dinucleotides [25]. Moreover,
DNA methylation in a number of CpGs is a dynamic epigenetic change [26,27]. Several
studies have shown that these DNA methylation marks are important regulators of relevant
functions and are linked to the risk of disease [28]. Numerous epidemiological studies have
reported associations between various DNA methylation sites and the risk of cardiovascu-
lar disease, diabetes, obesity, cancer, and neurodegenerative diseases, among others [29–35].
In spite of this, the results of the CpG sites found in the various studies continue to be
inconclusive; indicating that more research is necessary.

In addition to the risk of disease, differential DNA methylation has been related to
environmental exposures [36–38]. Currently, it has been estimated that, of all the commonly
investigated environmental exposures, tobacco smoking has the most significant impact on
DNA methylation [39,40]. Multiple studies carried out in different populations have found
that exposure to tobacco smoke is associated with hypomethylation of various CpG sites,
with highly statistically significant differences between smokers and non-smokers [41–55].
In addition, it has been demonstrated repeatedly that ex-smokers are capable of recovering
the demethylation caused by tobacco consumption [41,44,56,57]. Despite differences in
methodology, the results of these investigations have been very consistent in identifying
dozens of genes with hypomethylated CpG sites in smokers [41–57]. The following are
the most prominent of these differentially methylated genes: F2RL3 (F2R like thrombin or
trypsin receptor 3), AHRR (aryl-hydrocarbon receptor repressor), PRSS23 (serine protease
23), RARA (retinoic acid receptor alpha), LRRN3 (leucine rich repeat neuronal 3), GFI1
(growth factor independent 1 transcriptional repressor) and GPR15 (G protein-coupled re-
ceptor 15). The ranking of other significantly methylated genes or differentially methylated
intergenic CpG sites varies between studies based on the characteristics of the population
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and the coverage of the technology employed to assess DNA methylation [58–60]. The
majority of the cited research analyzed the methylome using epigenome-wide DNA methy-
lation microarrays [58,61]. In recent decades, the coverage of these DNA microarrays has
increased dramatically. The initial Illumina Human array measured methylation at about
27,000 CpGs (27 K). Later, the epigenetics community utilized the HumanMethylation450
(450 K) array for the vast majority of published studies on smoking [58]. More recently,
genomic coverage has been increased to over 850,000 CpG sites with the MethylationEPIC
(850 K) array [62]. Despite the consistency in detecting hypomethylation in smokers, there
have been reports of ethnic differences [63] that would be interesting to investigate further
in order to identify more population-specific biomarkers, especially when considering the
underrepresented populations of southern Europe [64,65]. Moreover, although it is known
that diet might affect DNA methylation [66–69], none of the large epidemiological studies
cited have evaluated the effect of dietary patterns on the differences of DNA methylation
between smokers and nonsmokers at the epigenome-wide level [41–45,47–53,55–57]. Our
hypothesis is that the methylome signature of tobacco smoking in a southern European
population will share characteristics with those of other populations for CpGs with more
consistent effects. There will be, however, differences in other methylation sites that can
be influenced by a greater adherence to the Mediterranean diet. Therefore, our aims were:
(1) to investigate the DNA methylation signatures of tobacco smoking in subjects at high
cardiovascular risk from a southern European population including current, former, and
never smokers in an epigenome-wide association study (EWAS) using the high-coverage
Human Methylation Epic (850 K); (2) to conduct a functional enrichment analysis of the
differentially methylated sites associated with tobacco smoking to better understand the
pathways and biological processes; and (3) to explore how the Mediterranean diet’s level
of adherence modulated the DNA methylation effects of smoking in this population.

2. Materials and Methods
2.1. Study Design and Participants

We conducted an EWAS on 414 white southern European participants from Spain, aged
55 to 75 years with metabolic syndrome, comprising never, former, and current smokers.
These high cardiovascular-risk individuals were recruited for the PREDIMED-Plus-Valencia
study, one of the field sites for the ongoing multi-center PREDIMED-Plus trial [70]. These
participants were recruited from the primary health care centers of the Valencia region.
This region is situated on the eastern coast of the Mediterranean in Spain. At baseline,
participants were community-dwelling people (men, 55–75 years; women, 60–75 years)
with a body mass index (BMI) between 27 and 40 kg/m2 and at least three components of
metabolic syndrome [70]. Although the total number of participants recruited at our field
center was 465, only 414 subjects were analyzed in this study because this was the final
number of individuals who agreed to participate in the genomics/epigenomics studies
and whose DNA samples and methylation workflows passed EWAS quality controls. For
the remaining variables, there were no significant differences between these subjects and
the whole sample at baseline. Participants provided written informed consent, and study
protocols and procedures were approved in compliance with the Helsinki Declaration
by the Valencia University’s Human Research Ethics Committee (ethical approval code
H1373255532771, 15 July 2013; and H1509263926814, 6 November 2017).

2.2. Baseline Anthropometric, Clinical and Biochemical Variables

At baseline, anthropometric data and blood pressure were measured by qualified
personnel using the PREDIMED-Plus operating protocol [70]. Using calibrated scales and a
wall-mounted stadiometer, height and weight were measured. The BMI was computed by
dividing weight in kilograms by height in meters squared. Obesity was defined as having a
BMI ≥ 30 kg/m2. Blood pressure was measured using a validated semiautomatic oscillome-
ter (Omron HEM-705CP, Netherlands). After a 12-h overnight fast, blood samples were
collected and fasting plasma glucose, total cholesterol, HDL-C, LDL-C, and triglyceride
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concentrations were determined as previously reported [71]. We also determined complete
blood count (CBC) in venous blood samples. The CBC included total leukocyte counting as
well as the types of white blood cells (neutrophils, eosinophils basophils, monocytes, and
lymphocytes). For these determinations, anticoagulated blood samples were processed
fresh and measured within a few hours after collection in our reference clinical laboratory
at the University Clinic Hospital (Valencia) using automated hematology analyzers [72].
Medication use was assessed at baseline as reported [70]. Type 2 diabetes was defined
as previous clinical diagnosis of diabetes, HbA1c levels ≥ 6.5% or use of anti-diabetic
medication [70].

2.3. Tobacco Smoking and Adherence to the Mediterranean Diet

Self-reported smoking status was obtained by a previously described questionnaire
administered by trained staff [70]. This questionnaire contained a general question re-
garding current and past tobacco usage (never smoker, former smoker of more than five
years, former smokers of five to one years, former smokers of less than one year, and
current smokers). In addition, questions regarding the type of tobacco smoked (cigarettes,
cigars, and pipe), as well as the number of cigarettes/cigars/pipes smoked per day, and the
average number of years the participant had smoked were included. Current smokers were
classified as those who smoked at least one cigarette, cigar, or pipe per day. None of the
participants indicated that they smoked pipes. However, six participants reported smoking
cigars. Taking into account that the nicotine number of cigars is higher than that found in
a cigarette, a conversion factor was employed to consider this weight [73]. Therefore, on
average, we considered that one cigar was equivalent to three cigarettes, and all smokers
were analyzed together. For current smokers, we also analyzed the average number of
cigarettes smoked per day and calculated the number of pack-years smoked as the number
of cigarettes smoked per day divided per 20 and multiplied by the number of years the
participants have smoked [74]. Smoking status was first analyzed as an ordinal variable
including five levels (never, former > 5 years, former 5–1 years, former < 1 year and current
smokers). The second smoking status was defined in three categories: current smokers,
ex-smokers, and non-smokers. Finally, never smokers were compared to current smokers.

Total leisure-time physical activity-related energy expenditure was estimated as the
sum of frequency, duration, and intensity of each activity divided by 30 days/month
(METmin/day) using the validated REGICOR questionnaire [75].

Adherence to the Mediterranean diet was assessed by the validated PREDIMED-Plus
17-item score [76], and updated version of the previously validated PREDIMED 14-item
scale [77]. The 17-item questionnaire included 17 questions related to Mediterranean
diet. The questionnaire was scored with 1 point for each item capturing adherence to the
Mediterranean diet and 0 points for items that did not: use only extra virgin olive oil for
cooking, salad dressings, and spreads; fruits; vegetables; white bread; whole bread; red
meat or meat products; butter, margarine or cream; sugary beverages; legumes; fish or
shellfish; commercial sweets or pastries; nuts; chicken, turkey, or rabbit; sofrito (sauce
made with tomato and onion, garlic and olive oil); add preferentially non-caloric artificial
sweeteners to beverages instead of sugar; non-whole grain pasta or white rice; moderate
red wine consumption. A higher score (from 0 to 17) indicated greater adherence to the
Mediterranean diet. As previously reported [78], the score was then categorized into two
groups reflecting low (from 0 to 8 points) and high adherence (from 9 to 17 points) to the
Mediterranean diet.

2.4. DNA Isolation and DNA-Methylation Analysis

Genomic DNA was isolated from blood at baseline as previously reported [78]. The
quantity of double-stranded DNA was measured using PicoGreen (Invitrogen Corporation,
Carlsbad, CA, USA). Only samples providing 500 ng of high-quality DNA were processed
further for epigenome-wide methylation analysis. For methylation profiling, we used the
Infinium HumanMethylationEPIC BeadChip (850 K) array (Illumina, San Diego, CA, USA),
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which interrogates over 850,000 CpG sites for DNA methylation profiling, including more
than 90% of the probes on the 450 K array and additional CpG-sites [79]. The positions
(sample wells) of the DNA samples were randomized on the microchips to minimize batch
effects [80,81]. We created a random list of sample numbers and placed the samples on
the chip based on the random list. Further processing of the arrays was performed at the
Human Genomics Facility, Erasmus MC, Rotterdam.

Bisulfite conversion of DNA was performed using the Zymo EZ-96 DNA Methylation
Kit (Zymo Research, Irvine, CA, USA) and samples were hybridized to the Illumina
EPIC array, according to the manufacturer’s protocol. Microarrays were scanned with
an Illumina HiScan system and “.idat” files were generated. Quality control procedures
were implemented at Human Genomics facility to assess the quality and reliability of
the generated DNA methylation data, involving the use of Minfi, Meffil and ewastools
R packages [82–84]. Briefly, this quality control identified samples that failed or had sub-
optimal control metrics regarding poor bisulfite conversion, all types of poor hybridization,
and samples with a low call rate. A total of 414 samples passed this quality control and
were further analyzed for the EWAS. Moreover, in this pre-processing quality control, a
subset of probes in these samples were identified as suboptimal, and we created a list for
further filtering.

Additional DNA quality checks, data normalization, and filtering were performed
with the Partek® Genomics Suite® [85]. Probes from the X and Y chromosomes (due to the
analytical complexities associated with sex chromosome dosage differences between XX
and XY individuals), as well as low-quality probes were filtered and excluded. Functional
normalization, a method that used the internal control probes present on the array to infer
between array-technical variation and that extends quantile normalization and outperforms
other types of normalization previously used [86] was carried out. Also, dye correction and
normal-exponential out-of-band (NOOB) background correction were applied [87]. Beta-
values (ranging from 0 to 1 and) were obtained as metrics to measure methylation levels
and are based on the measured intensities of the pair of probes (a methylated probe and
an unmethylated probe) at each CpG site [88]. Subsequently, beta-values were converted
to M-values as follows: M-value = log2 (beta/(1 − beta)). The advantage of the M-values
is the higher homoscedasticity compared with beta-values [89]. Therefore, we followed
the methodological recommendations and employed M-values for statistical analysis and
beta-values for direct biological interpretation (corresponding to the percentage of a CpG
site that is methylated) [88,89].

2.5. Statistical Analysis and EWAS

To summarize the characteristics of the analyzed sample, descriptive statistical tests
were performed. Chi-square tests were used to compare proportions. Student t-tests and
ANOVA tests were applied to compare crude means of continuous variables. Triglyceride
concentrations were log-transformed for statistical testing. To estimate the association
between smoking and DNA methylation, we performed several analyses adapted to our
specific objectives. As an ordinal variable, we first conducted an EWAS for the smoking phe-
notype with five levels (never, former > 5 years, former 5–1 years, former 1 year, and current
smokers). For statistical testing, genome-wide M-values for methylation at CpG sites were
employed. ANCOVA models with covariate adjustments were used to detect differential
methylation. Several statistical models were fitted to account for potential confounding
variables and ensure consistency. The models were gradually adjusted to account for sex,
age, batch effect, BMI, type 2 diabetes, and leukocyte cell counts. Instead of using estimated
leukocyte cell counts [90], we used directly measured cell counts (neutrophils, eosinophils
basophils, monocytes, and lymphocytes after checking multicollinearity), increasing va-
lidity [91,92]. After verifying each step, we only presented the results corresponding to
the model adjusted for all covariates. p-values and partial regression coefficients for each
CpG site were computed. The p-value cut-off for EWAS statistical significance was set at
p < 9 × 10−8, as proposed by Mansell et al. [93] when using the EPIC methylation array.
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p < 1 × 10−5 was considered as the suggestive level of significance. Manhattan plots of the
adjusted EWAS model were computed in R and depicted. For quality control, quantile-
quantile (Q-Q) plots comparing the expected and observed p-values were performed in
the R-statistical environment. Likewise, the genomic inflation factor (lambda) values were
computed [94]. For top-ranked differentially methylated CpG sites, beta-values were ob-
tained and plotted against the five levels for the smoker phenotype. Second, to confirm
the association between smoking and methylation using the 3-categories variable (never
smokers, former smoker groups and current smokers) and to compare never versus current
smokers and former smokers versus current smokers, another EWAS was fitted. M-values
were used, and multivariate ANOVA models were fitted. Models were adjusted for sex,
age, the batch effect, BMI, type 2 diabetes, and leukocyte cell counts. For each contrast, the
adjusted p-values and the beta differences were generated. Likewise, Manhattan plots for
the categorical analyses were depicted.

Third, gene set enrichment analysis of the differentially methylated CpG sites [95,96]
was performed for biological and functional interpretation using Partek Genomics Suite and
Partek Pathway. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses
and Gene ontology (GO) enrichment [97,98] were conducted for the top differentially
methylated CpG sites obtained in the EWAS for tobacco smoking (5 levels of smoking),
that passed the false discovery rate (FDR) cut-off. Enrichment scores were computed, and
we presented the raw and Bonferroni corrected for multiple comparisons to identify which
KEGG pathways and GO terms were significantly enriched.

Fourth, we focused on current smokers and analyzed the associations of the top-
ranked CpG sites identified in the association between tobacco smoking (5 levels) and
genome-wide methylation with the number of cigarettes smoked per day. Fifth, we tested
in this population the best predictors of smoking status (never smokers versus current
smokers). We selected the five top-ranked CpG sites in the model analyzing smoking
status (5 levels), estimated the sensitivity and specificity of each CpG and explored the
predictive value using receiver operative curve (ROC). The area under the curve (AUC),
its 95% confidence interval (CI) and p-values were computed for each CpG to check the
performance of classification models, using SPSS Statistics for Windows Ver. 26 (IBM Corp.,
Armonk, NY, USA).

Finally, we conducted stratified EWAS by sex on the whole population. The association
between tobacco smoking (5-levels) and genome-wide DNA methylation was examined in
men and women separately, and adjusted p-values and partial correlation coefficients were
computed for each stratum. Moreover, we conducted a stratified EWAS depending on the
level of Mediterranean diet adherence (based on the mean as previously detailed) to exam-
ine the association between tobacco smoking and genome-wide methylation in subjects
with a low level of adherence to the Mediterranean diet in comparison with subjects with a
high level of adherence. Adjusted p-values and correlation coefficients were computed for
each CpG site. Furthermore, we depicted the so-called Miami plot [99], which allows for the
comparison of two Manhattan plots for both Mediterranean diet adherence strata. Later, we
selected the most relevant CpG sites and analyzed the interaction term between smoking
(3 categories) and adherence to the Mediterranean diet (2 levels) on the CpG site methy-
lation levels (beta-values) in a hierarchical multivariate model. For analyses involving
selected CpGs, a p-value < 0.05 (two-sided) was considered statistically significant.

3. Results
3.1. Participants Characteristics

Table 1 shows the demographic, anthropometric, clinical, biochemical and lifestyle
characteristics of the 414 participants analyzed for EWAS. All subjects participated in
the PREDIMED Plus-Valencia study, and baseline measurements were performed on all
parameters. They were elderly men and women with metabolic syndrome (mean age
65 ± 0.2 years). In the whole population, the prevalence of never, former, and current
smokers was 45.4%, 43.0%, and 11.6%, respectively. In addition, we considered three types
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of former smokers based on the length of time since cessation (more than 5 years, between
5 and 1 year and less than 1 year). There were statistically significant differences by sex
(p < 0.001), with men having a greater proportion of current smokers (16.1%) than women
(7.9%); p < 0.001. The quantity of cigarettes smoked per day and the duration of smoking
did not differ significantly by sex (p < 0.05) in current smokers.

Table 1. Demographic, clinical and lifestyle characteristics of the study population according to sex.

Total
(n = 414)

Men
(n = 186)

Women
(n = 228) p

Age (years) 65.1 ± 0.2 63.8 ± 0.4 66.1 ± 0.3 <0.001
BMI (kg/m2) 32.3 ± 0.2 32.2 ± 0.3 32.4 ± 0.2 0.440
SBP (mm Hg) 141.9 ± 0.9 143.7 ± 1.4 140.5 ± 1.2 0.076
DBP (mm Hg) 81.0 ± 0.5 82.6 ± 0.7 79.6 ± 0.6 0.002
Total cholesterol (mg/dL) 195.7 ± 1.8 188.1 ± 2.8 202.0 ± 2.3 <0.001
LDL-C (mg/dL) 124.3 ± 1.5 121.5 ± 2.4 126.6 ± 1.9 0.096
HDL-C (mg/dL) 51.6 ± 0.6 47.3 ± 0.8 55.1 ± 0.7 <0.001
Triglycerides 1 (mg/dL) 141.3 ± 2.9 139.0 ± 4.0 143.1 ± 4.2 0.488
Fasting glucose (mg/dL) 113.4 ± 1.4 113.7 ± 2.2 113.2 ± 1.8 0.875
Physical activity (MET·min/wk) 1708 ± 78 1941 ± 133 1519 ± 89 0.007
Adherence to MedDiet (17-I) 2 8.0 ± 2.8 7.9 ± 2.8 8.1 ± 2.7 0.210
High Adherence MedDiet 3 (≥9) (n, %) 172 (41.5) 75 (40.3) 97 (42.5) 0.648
Type 2 diabetes (n, %) 164 (39.6) 75 (40.3) 89 (39.0) 0.790
Never smokers (n, %) 188 (45.4) 32 (17.2) 156 (68.4) <0.001
Former smokers (>5 years) (n, %) 139 (33.6) 97 (52.2) 42 (18.4) <0.001
Former smokers (1 to 5 years) (n, %) 25 (6.0) 16 (8.6) 9 (3.9) <0.001
Former smokers (<1 year) (n, %) 14 (3.4) 11 (5.9) 3 (1.3) <0.001
Current smokers (n, %) 48 (11.6) 30 (16.1) 18 (7.9) <0.001
Number of cigarettes smoked per day 4 13.2 ± 1.1 14.4 ± 1.6 11.3 ± 1.4 0.186
Number of years smoked 4 38.0 ± 1.6 39.1 ± 2.1 36.3 ± 2.6 0.428
Number of pack-years 4,5 24.9 ± 2.4 27.9 ± 3.4 19.9 ± 2.4 0.105

Values are mean ± SE for continuous variables and number (%) for categorical variables. BMI: body mass index;
SBP: systolic blood pressure; DBP: diastolic blood pressure; LDL-C: low-density lipoprotein cholesterol; HDL-C:
high-density lipoprotein cholesterol; MET: Metabolic Equivalent. 1 MET is equivalent to kcal·kg−1 ·h−1, the
oxygen cost of sitting quietly measured as 3.5 mL/kg/min; min: minute; wk: week; p: p-value for the comparisons
(means or %) between men and women. Student’s t test was used to compare means and Chi squared tests were
used to compare categories. 1 Triglycerides was ln-transformed for statistical testing. 2 Quantitative 17-item
(17-I) questionnaire for adherence to Mediterranean diet. 3 High Adherence to MedDiet (17-I) ≥ 9 points. 4 In
current smokers. 5 Pack-years = (Number of cigarettes smoked per day/20) × number of years the participant
has smoked.

3.2. Association between Tobacco Smoking (5 Levels) and Its Epigenome-Wide
Methylation Signatures

We first considered five levels of tobacco smoking (never, former > 5 years, former
5–1 years, former 1 year, and current smokers) as a quantitative variable and analyzed
the DNA methylation signatures of tobacco smoking in an EWAS using the EPIC 850 K
methylation array. Models were adjusted for sex, age, the batch effect, BMI, type 2 diabetes,
and leukocyte cell counts. Figure 1 shows the Manhattan plot corresponding to the adjusted
p-values for each analyzed CpG site (M-values) in the EWAS. Several differentially methy-
lated CpG sites surpassed the epigenome-wide significance threshold p < 9 × 10−8 [93].
Figure 2 depicts the QQ plot corresponding to this EWAS.
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Figure 1. Manhattan plot of epigenome-wide associations (EWAS) for tobacco smoking (5 lev-
els) adjusted for covariates in the whole sample. Red line represents the EWAS significance level
p = 9 × 10−8. The blue line represents p = 1 × 10−5. The GRCh37/hg19 assembly has been used.
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Figure 2. Quantile-quantile (QQ) plot for CpG-site association in the EWAS for smoking (5 levels)
in Figure 1.

No signal inflation was seen in this study (lambda = 1.099). Table 2 provides infor-
mation on the differentially methylated CpG sites, genes, corrected p-values, and partial
regression coefficients obtained for the statistically significant top-ranked positions (n = 46)
in this EWAS (We have included a glossary with the annotated gene symbols and names in
Table S1).

We observed a linear trend, from never smokers to former and current smokers, of
decreased methylation across the five smoking levels defined for these 46 CpG sites. The
additional information indicating whether or not the CpG site was present in the Illumina
450 K array shows that only 13 CpGs were profiled by the EPIC 850 K array. The strongest
association was observed at cg21566642 (p = 2.2 × 10−32). This CpG site (represented on
both the 450 K array and the EPIC 850 K array) is intergenic and located in the 2q37.1 region
close to the alkaline phosphatase, placental-like 2 (ALPPL2) gene.

The genetic environment where the cg21566642 is located is very relevant (Figure S1).
According to the University of California Santa Cruz (UCSC) browser and using the
GRCh38/hg38 assembly, this site is located in a CpG island (CGI) but also in a promoter-
like signature region according to ENCODE (Encyclopedia of DNA Elements).

Figure 3 shows the box plots of the corresponding methylation beta-values for the
cg21566642 site according to the smoking status (5 levels) revealing the dose–response
association between the smoking phenotype and DNA hypomethylation.
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Table 2. Top differentially methylated CpGs for smoking status (5 levels) 1 ranked by smallest p-value
after multivariate adjustment 2.

CpG Site Gene Symbol Chr Position 3 Included in 450 K 4 p r

cg21566642 2 233284661 Y 2.20 × 10−32 −0.548
cg01940273 2 233284934 Y 1.02 × 10−19 −0.435
cg14391737 PRSS23 11 86513429 N 8.13 × 10−19 −0.425
cg17739917 RARA 17 38477572 N 2.30 × 10−18 −0.420
cg21911711 F2RL3 19 16998668 N 6.15 × 10−17 −0.403
cg18110140 15 75350380 N 2.12 × 10−15 −0.384
cg19572487 RARA 17 38476024 Y 4.26 × 10−15 −0.381
cg24859433 6 30720203 Y 6.33 × 10−15 −0.378
cg17287155 AHRR 5 393347 Y 2.94 × 10−14 −0.370
cg00475490 PRSS23 11 86517110 N 7.08 × 10−14 −0.364
cg09935388 GFI1 1 92947588 Y 8.22 × 10−14 −0.363
cg05575921 AHRR 5 373378 Y 1.00 × 10−13 −0.362
cg15342087 6 30720209 Y 1.78 × 10−12 −0.344
cg04551776 AHRR 5 393366 Y 3.50 × 10−12 −0.340
cg25189904 GNG12 1 68299493 Y 4.27 × 10−12 −0.339
cg03636183 F2RL3 19 17000585 Y 6.36 × 10−12 −0.336
cg26703534 AHRR 5 377358 Y 9.58 × 10−12 −0.334
cg25648203 AHRR 5 395444 Y 1.08 × 10−11 −0.333
cg01901332 ARRB1 11 75031054 Y 3.21 × 10−11 −0.325
cg27241845 2 233250370 Y 5.77 × 10−11 −0.321
cg19859270 GPR15 3 98251294 Y 8.02 × 10−11 −0.319
cg16841366 2 233286192 N 1.04 × 10−10 −0.317
cg23161492 ANPEP 15 90357202 Y 1.17 × 10−10 −0.316
cg02978227 3 98292027 N 1.04 × 10−9 −0.300
cg11660018 PRSS23 11 86510915 Y 1.44 × 10−9 −0.298
cg14580211 C5orf62 5 150161299 Y 1.66 × 10−9 −0.297
cg11556164 LRRN3 7 110738315 Y 2.00 × 10−9 −0.296
cg12806681 AHRR 5 368394 Y 2.96 × 10−9 −0.293
cg05086879 MGAT3 22 39861490 N 4.79 × 10−9 −0.289
cg05284742 ITPK1 14 93552128 Y 6.54 × 10−9 −0.286
cg17738628 15 67155520 N 7.50 × 10−9 −0.285
cg21611682 LRP5 11 68138269 Y 8.72 × 10−9 −0.284
cg07339236 ATP9A 20 50312490 Y 1.35 × 10−8 −0.281
cg24838345 MTSS1 8 125737353 Y 1.54 × 10−8 −0.280
cg19554457 NUDT4 12 93774772 Y 1.61 × 10−8 −0.279
cg25305703 8 128378218 Y 1.87 × 10−8 −0.278
cg04535902 GFI1 1 92947332 Y 2.30 × 10−8 −0.276
cg09945032 3 38871019 N 2.59 × 10−8 −0.275
cg07986378 ETV6 12 11898284 Y 2.79 × 10−8 −0.275
cg08714510 UXS1 2 106755481 N 5.78 × 10−8 −0.268
cg15533935 NUDT4P2 12 93774767 N 6.20 × 10−8 −0.268
cg16794579 XYLT1 16 17562419 Y 6.28 × 10−8 −0.268
cg00310412 SEMA7A 15 74724918 Y 7.04 × 10−8 −0.267
cg05221370 LRRN3 7 110738836 Y 7.13 × 10−8 −0.267
cg15394081 LMO2 11 33893330 N 8.31 × 10−8 −0.265
cg06321596 XYLT1 16 17562960 Y 8.61 × 10−8 −0.265

1 Five levels of smoking status were considered as an ordinal variable: Never smoker, former smoker,
smoker > 5 years, former smoker 1 to 5 years, former smoker < 1 year, and current smoker. 2 Models were
adjusted for sex, age, diabetes, body mass index, batch effect and leukocyte cell-types (n = 414). 3 Position is
expressed in values from the Genome Reference Consortium Human Build 37 (GRCh37)-hg19. 4 Indicates if the
cpg was present (Y) or not (N) in the Illumina 450 K methylation array. Chr: chromosome; p: Multivariate adjusted
p-values; r: partial correlation coefficient. The GRCh37/hg19 assembly has been used for the Position values.
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mosome 2) by smoking status (5 levels). The box plots show the five-number summary of a set of
data: the minimum score, first (lower) quartile, median, third (upper) quartile, and maximum score.

This result is highly consistent and has been observed previously in several
studies [43,48,55,61]. Likewise, the second hit was cg1940273 (p = 1.2 × 10−19), also
located in the 2q37.1 region, and reported in previous studies [43,48,55,61]. cg14391737
was the third-most outstanding CpG site in terms of significance. This CpG site was only
profiled by the EPIC array, hence prior studies that utilized the 450 K array were unable to
discover it. Nevertheless, the PRSS23 gene, in which cg14391737 is annotated, is one of the
genes most consistently associated with differential DNA methylation in tobacco smokers,
as revealed by different kinds of arrays. Similarly, all the other genes listed in Table 2
(except the NUDT4P2: nudix hydrolase homolog 4 pseudogene 2) have been consistently
reported in other studies conducted in other populations, thus the methylation signature of
tobacco smoking in this Spanish Mediterranean population was, in general, quite similar.
In addition to PRSS23, we detected: RARA, F2RL3, AHRR, GFI1,GNG12 (G protein subunit
gamma 12), ARRB1 (arrestin, beta 1), GPR15, ANPEP (alanyl aminopeptidase), C5orf62
(small integral membrane protein 3), LRRN3 (leucine rich repeat neuronal 3), MGAT3
(beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase), ITPK1 (Inosi-
tol 1,3,4-trisphosphate 5/6-kinase family protein), LRP5 (LDL receptor related protein 5),
ATP9A (ATPase phospholipid transporting 9A putative), MTSS1 (MTSS I-BAR domain
containing 1), NUDT4 (nudix hydrolase homolog 4), ETV6 (ETS variant transcription factor
6), UXS1 (UDP-glucuronic acid decarboxylase 1), XYLT1 (xylosyltransferase 1); SEMA7A
(semaphorin 7A-John Milton Hagen blood group) and LMO2 (LIM domain only 2). Also,
the intergenic CpG sites have been linked to differential methylation in several previous
studies. Nonetheless, the order of statistical significance of each CpG differs the most from
study to study. In this Mediterranean population, for example, cg05575921 in the AHRR
gene did not rank as significantly as in other studies.

3.3. Association between Tobacco Smoking (Comparing Categories) and Its Epigenome-Wide
Methylation Signatures

Further, in a sensitivity analysis, we examined the consistency of the previous results
(which considered 5 levels of tobacco smoking and were analyzed as a linear variable) by
examining tobacco smoking as a categorical variable with three categories (never, former,
and current smokers). In addition, we examined the DNA methylation signature of never
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smokers versus current smokers (Figure 4) using an EWAS that was adjusted for sex, age,
batch effect, BMI, type 2 diabetes, and leukocyte cell counts.
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Figure 4. Manhattan plot of the epigenome-wide association among never smokers relative to current
smokers (multivariate adjusted). Red line represents the EWAS significance level p = 9 × 10−8. The
blue line represents p = 1 × 10−5. The GRCh37/hg19 assembly has been used.

Part A of Table 3 ranks the 15 most differentially methylated CpG sites according to
their p-value for the categorical variable tobacco smoking (3 categories). Table S3 presents
the complete list of statistically significant CpG sites for this association. The results were
highly consistent with those provided for smoking as a five-level quantitative variable.
Likewise, similar but most significant results were obtained when never smokers were
compared with current smokers (Table 3, part B). We detected 43 CpGs that were differently
methylated at EWAS level between never-smokers and smokers. Intergenic cg21566642
(p = 1.68 × 10−30) in the 2q37.1 region was confirmed as the hit. Focusing on beta differences,
never smokers had an average of 14.3% greater methylation levels at this position than
never smokers. All statistically significant methylation sites for this comparison have been
previously reported in other studies, which confirm the consistency of our findings with
those of previous research.

In addition, we examined DNA methylation signatures of former and current smokers
at the EWAS level (Figure 5).
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Table 3. Top-ranked (15) differentially methylated CpGs for smoking status (3 categories) 1:
(A) and for never smokers (N) relative to current smokers (C) 2; (B) ranked by smallest p-value
after multivariate adjustment 3.

A-Smoking (3 Categories) B-Never (N) Versus Current Smokers (C)

CpG Site Gene
Symbol Chr p 4

(3 Categories) CpG Site Gene
Symbol Chr p 5

(N vs. C)
Beta

Difference 6

cg21566642 2 1.39 × 10−29 cg21566642 2 1.68 × 10−30 0.143
cg14391737 PRSS23 11 6.95 × 10−20 cg01940273 2 1.30 × 10−20 0.097
cg01940273 2 1.44 × 10−19 cg14391737 PRSS23 11 1.71 × 10−17 0.107
cg17739917 RARA 17 3.44 × 10−16 cg17739917 RARA 17 5.13 × 10−17 0.112
cg21911711 F2RL3 19 8.14 × 10−16 cg21911711 F2RL3 19 8.76 × 10−17 0.085
cg00475490 PRSS23 11 9.66 × 10−16 cg00475490 PRSS23 11 1.73 × 10−15 0.046
cg24859433 6 1.96 × 10−14 cg24859433 6 2.29 × 10−15 0.048
cg18110140 15 2.36 × 10−13 cg18110140 15 3.04 × 10−14 0.094
cg09935388 GFI1 1 5.94 × 10−13 cg09935388 GFI1 1 6.54 × 10−14 0.105
cg25648203 AHRR 5 9.21 × 10−13 cg19572487 RARA 17 1.78 × 10−13 0.073
cg25189904 GNG12 1 1.46 × 10−12 cg25189904 GNG12 1 1.90 × 10−13 0.110
cg19572487 RARA 17 1.55 × 10−12 cg25648203 AHRR 5 5.67 × 10−13 0.065
cg26703534 AHRR 5 2.44 × 10−11 cg01901332 ARRB1 11 3.61 × 10−12 0.078
cg01901332 ARRB1 11 2.63 × 10−11 cg03636183 F2RL3 19 4.54 × 10−12 0.132
cg03636183 F2RL3 19 3.84 × 10−11 cg17287155 AHRR 5 7.31 × 10−12 0.029

1 Three categories for tobacco smoking were considered: Never smoker, former smoker, and current smoker
(n = 414). 2 Never smokers (n = 188) were compared to current smokers (n = 48). 3 Models were adjusted for
sex, age, diabetes, body mass index, batch effect and leukocyte cell-types. 4 p-value for the categorical variable
(3 categories). Multivariate adjusted p-values. 5 p-value for the comparisons between Never and Current smokers.
Multivariate adjusted p-values. 6 Beta difference for methylation comparing never versus current smokers. Chr:
chromosome; N vs. C: comparisons between Never (N) and Current (C) smokers.

The 15 most differentially methylated CpGs for this comparison are given in Table 4,
along with their respective beta differences (Table S4 presents the complete list). We
identified 24 differently methylated sites between former and current smokers at the
EWAS level.

Table 4. Top-ranked (15) differentially methylated CpGs for former smokers (F) relative to current
smokers (C) ranked by smallest p-value after multivariate adjustment 1.

CpG Site Gene Symbol Chr p 2

(F vs. C)
Beta

Difference 3

cg21566642 2 2.51 × 10−16 0.0935
cg01940273 2 8.57 × 10−13 0.0706
cg25648203 AHRR 5 2.39 × 10−11 0.0563
cg26703534 AHRR 5 1.20 × 10−10 0.0516
cg05086879 MGAT3 22 1.82 × 10−10 0.0452
cg18110140 15 7.19 × 10−10 0.0719
cg21911711 F2RL3 19 1.49 × 10−9 0.0588
cg11556164 LRRN3 7 1.66 × 10−9 0.0355
cg25189904 GNG12 1 2.65 × 10−9 0.0824
cg23161492 ANPEP 15 3.85 × 10−9 0.0631
cg17739917 RARA 17 8.78 × 10−9 0.0714
cg04551776 AHRR 5 1.21 × 10−8 0.0440
cg24859433 6 1.38 × 10−8 0.0332
cg01901332 ARRB1 11 1.67 × 10−8 0.0607
cg05284742 ITPK1 14 1.71 × 10−8 0.0437

1 Models were adjusted for sex, age, diabetes, body mass index, batch effect and leukocyte cell-types. 2 p-value for
the comparisons between former (n = 178) and current smokers (n = 48). Multivariate adjusted p-values. 3 Beta
difference for methylation comparing former versus current smokers. Chr: chromosome; F vs. C: comparisons
between former (F) and current (C) smokers.

Former smokers exhibited greater methylation values than current smokers across
every position. Results were, in general, similar to previous findings, but we discovered
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a novel statistically significant (p = 2.8 × 10−8) differentially methylated CpGs for the
comparison between former and current smokers reported for the first time here. It was
the cg2093781 (only profiled in the EPIC 850 K), located in chromosome 1 and annotated
to the KIP26B (kinesin family member 26 B) gene. Interestingly, we discovered another
novel differentially methylated GpG site that was borderline significant in the comparison
between former and current smokers. It was, cg25094529 (only profiled in the EPIC 850 K),
annotated to the SRP14-AS1 (SRP14 antisense RNA1) gene on chromosome 15.

3.4. Gene Set Enrichment Analysis of the Differentially Methylated CpG Sites Using KEGG
and GO

KEGG pathway analyses and GO functional enrichment were conducted for the
top differentially methylated CpG sites obtained in the EWAS for the tobacco smoking
(5 levels) that passed the FDR cut-off. Table 5 shows the top-ranked pathway names,
the enrichment p-values and the Bonferroni corrected enrichment p-values. We detected
31 KEGG pathways that passed the Bonferroni correction. Among these most-enriched
pathways, 11 related to cancer, including: non-small cell carcinoma, glioma, hepatocellular
carcinoma, transcriptional regulation in cancer, small cell lung cancer, pathways in cancer,
melanoma, pancreatic cancer, chronic myeloid leukemia, Karposi sarcoma, and bladder
cancer. We also detected enrichment in pathways related to osteoporosis, insulin signaling,
cardiovascular health, addiction, and circadian rhythm. Table S5 displays the first 22 GO
enrichment functions, including their type (biological process, cellular component, or
molecular function), enrichment score, raw enrichment p-value, and Bonferroni-corrected
enrichment p-value. Most of the statistically significant findings concerned biological
processes, as the hits “Negative modulation of tau-protein kinase activity” (p = 1.1 × 10−50),
followed by “Positive regulation of interleukin-13 production” (p = 3.1 × 10−42).

Table 5. Pathway enrichment of methylation of top-ranked sites, obtained in the epigenome-wide
methylation analysis of smoking (5 levels), based on the Kyoto Encyclopedia of Genes and Genomes
(KEGG). The pathway names are ranked according to the smallest p-values and corrected for Bonferroni.

Pathway Name Enrichment Score Enrichment p 1 Bonferroni
(Enrichment p) 2

Parathyroid hormone synthesis, secretion and action 26.912 2.05 × 10−12 3.90 × 10−10

VEGF signaling pathway 22.448 1.78 × 10−10 3.39 × 10−8

Morphine addiction 21.911 3.05 × 10−10 5.80 × 10−8

Endocrine resistance 20.622 1.11 × 10−9 2.10 × 10−7

Chemokine signaling pathway 18.663 7.85 × 10−9 1.49 × 10−6

Phospholipase D signaling pathway 18.406 1.01 × 10−8 1.93 × 10−6

Non-small cell lung cancer 18.024 1.49 × 10−8 2.83 × 10−6

Glioma 17.219 3.33 × 10−8 6.32 × 10−6

Cholinergic synapse 17.090 3.78 × 10−8 7.19 × 10−6

Hepatocellular carcinoma 15.770 1.42 × 10−7 2.69 × 10−5

Human cytomegalovirus infection 15.279 2.32 × 10−7 4.40 × 10−5

ErbB signaling pathway 15.148 2.64 × 10−7 5.02 × 10−5

Relaxin signaling pathway 14.613 4.51 × 10−7 8.56 × 10−5

Transcriptional misregulation in cancer 13.791 1.03 × 10−6 1.95 × 10−4

Small cell lung cancer 13.644 1.19 × 10−6 2.26 × 10−4

Apelin signaling pathway 13.353 1.59 × 10−6 3.02 × 10−4

Pathways in cancer 13.329 1.63 × 10−6 3.09 × 10−4

Fc gamma R-mediated phagocytosis 12.986 2.29 × 10−6 4.36 × 10−4

Circadian entrainment 12.829 2.68 × 10−6 5.09 × 10−4

Adrenergic signaling in cardiomyocytes 12.365 4.27 × 10−6 8.11 × 10−4

GnRH secretion 11.470 1.04 × 10−5 1.98 × 10−3

Growth hormone synthesis, secretion and action 10.053 4.31 × 10−5 8.18 × 10−3
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Table 5. Cont.

Pathway Name Enrichment Score Enrichment p 1 Bonferroni
(Enrichment p) 2

Melanoma 10.035 4.38 × 10−5 8.33 × 10−3

Calcium signaling pathway 9.991 4.58 × 10−5 8.70 × 10−3

Platelet activation 9.558 7.06 × 10−5 1.34 × 10−2

Axon guidance 9.510 7.41 × 10−5 1.41 × 10−2

Pancreatic cancer 9.430 8.03 × 10−5 1.53 × 10−2

Chronic myeloid leukemia 9.430 8.03 × 10−5 1.53 × 10−2

Dopaminergic synapse 8.928 1.33 × 10−4 2.52 × 10−2

Kaposi sarcoma-associated herpesvirus infection 8.742 1.60 × 10−4 3.04 × 10−2

Bladder cancer 8.386 2.28 × 10−4 4.33 × 10−2

Chemical carcinogenesis—receptor activation 7.854 3.88 × 10−4 7.38 × 10−2

GABAergic synapse 7.833 3.96 × 10−4 7.53 × 10−2

Human immunodeficiency virus 1 infection 7.803 4.09 × 10−4 7.76 × 10−2

Breast cancer 7.713 4.47 × 10−4 8.49 × 10−2

Gastric cancer 7.580 5.11 × 10−4 9.70 × 10−2

1 p-value for the pathway enrichment based on KEGG. 2 p-value for the Bonferroni correction.

3.5. Dose-Response of DNA Methylation in Current Smokers

We examined dose–response associations in current smokers for significant CpGs
from the EWAS of tobacco smoking (5 levels of smoking status) by correlating methylation
(beta-values) in the top-ranked CpG sites and the number of cigarettes smoked. We used
both daily cigarettes smoked, and number of pack-years smoked. The scatter plots for
the hit cg1566642 site in the 2q37.1 region are depicted in Figure 6. Both the number of
cigarettes smoked per day (panel A) and pack-years smoked (panel B) exhibited a robust
dose–response relationship. Higher cigarette consumption was substantially linked with
decreased methylation at this location. Table S6 shows the correlations of methylation (beta-
values) with cigarettes smoked per day and number of pack-years smoked for the other
CpGs in Table 2. For the most relevant CpG sites, statistically significant dose–responses in
terms of hypomethylation were identified.
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(n = 48).

3.6. Methylation at Selected CpG as Predictors of Smoking Status

We assessed the performance of the five top-ranked CpG sites in Table 2 as classifiers
of smoking status. The DNA methylation level (beta-values) at these sites were very good
classifiers between current smokers and never smoker. Figure S2 shows the ROC curves
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for the five top-ranked CpGs and the corresponding AUCs, 95% CI and p-values. The
cg1566642 site at 2q37.1 was the strongest classifier between smokers and never smokers
with an AUC of 0.97; 95%CI: 0.94–0.99; p = 1.4 × 10−23.

3.7. Association between Tobacco Smoking (5 Levels) and Its Epigenome-Wide Methylation
Signatures by Sex

We examined sex-specific DNA methylation signatures for tobacco smoking in two
separate EWAS carried out in men and women. Analyzed as a five-level variable, tobacco
smoking was adjusted for age, batch effect, BMI, type 2 diabetes, and leukocyte counts.

Table 6 displays the top differentially methylated CpGs for each EWAS in both men
and women. In general, men and women had similar results on the most relevant CpGs.
Thus, cg1566642 in the 2q37.1 region was the hit in both sexes (p = 2.2 × 10−15; r = −0.561
in men and p = 4.1 × 10−16; r = −0.522 in women).

Table 6. Top differentially methylated CpGs for the epigenome-wide methylation analysis of tobacco
smoking status (5 levels) 1, in men and women, after multivariate adjustment 2.

Men (n = 186) Women (n = 228)

CpG Site Gene
Symbol Chr p r CpG Site Gene

Symbol Chr p r

cg21566642 2 2.20 × 10−15 −0.561 cg21566642 2 4.07 × 10−16 −0.522
cg03636183 F2RL3 19 1.92 × 10−11 −0.487 cg14391737 PRSS23 11 2.51 × 10−12 −0.458
cg01940273 2 3.73 × 10−10 −0.458 cg05575921 AHRR 5 1.55 × 10−11 −0.443
cg17287155 AHRR 5 8.37 × 10−9 −0.425 cg09935388 GFI1 1 5.80 × 10−11 −0.431
cg17739917 RARA 17 1.28 × 10−8 −0.420 cg17739917 RARA 17 1.32 × 10−10 −0.424
cg14391737 PRSS23 11 3.89 × 10−8 −0.407 cg00475490 PRSS23 11 2.57 × 10−10 −0.418
cg19572487 RARA 17 9.96 × 10−8 −0.396 cg01940273 2 8.28 × 10−10 −0.407
cg04551776 AHRR 5 1.37 × 10−7 −0.392 cg21911711 F2RL3 19 9.46 × 10−10 −0.405
cg15342087 6 1.48 × 10−7 −0.391 cg24859433 6 1.94 × 10−9 −0.398
cg27241845 2 1.56 × 10−7 −0.390 cg25966498 SPATA17 1 9.11 × 10−9 −0.383
cg21911711 F2RL3 19 2.96 × 10−7 −0.382 cg18110140 15 1.08 × 10−8 −0.381
cg18110140 15 1.25 × 10−6 −0.363 cg11556164 LRRN3 7 1.65 × 10−8 −0.376
cg23161492 ANPEP 15 1.28 × 10−6 −0.362 cg19572487 RARA 17 2.51 × 10−8 −0.372
cg24090911 AHRR 5 1.32 × 10−6 −0.362 cg25648203 AHRR 5 6.15 × 10−8 −0.362
cg24859433 6 2.12 × 10−6 −0.355 cg25189904 GNG12 1 7.29 × 10−8 −0.360
cg01901332 ARRB1 11 3.67 × 10−6 −0.348 cg21929649 EFTUD2 17 2.90 × 10−7 −0.344

1 Five levels of smoking status were considered as an ordinal variable: Never smoker, former smoker,
smoker > 5 years, former smoker 1 to 5 years, former smoker < 1 year, and current smoker. 2 Models were
adjusted for age, diabetes, body mass index, batch effect, leukocyte cell-types and stratified by sex (n = 186 in men
and n = 228 in women). Chr: chromosome; p: Multivariate adjusted p-values; r: partial correlation coefficient.

Similarly, hypomethylation was identified in the most relevant GpGs for PRSS23,
F2RL3, RARA, and AHRR in both men and women. However, additional sex-specific
differences can be observed at certain sites. In this population, we discovered a novel CpG
site associated (p = 9.1 × 10−9) with cigarette smoking in women. It corresponds to the
SPATA17 (Spermatogenesis Associated 17) gene and is only profiled by the EPIC 850 K
array. This association is being reported for the first time at this stage.

Moreover, despite the fact that chromosomes X and Y were excluded from all other
analyses, we investigated the effect of tobacco smoking (5 levels) on CpG sites located
on chromosomes X and Y in the sex-specific results. Table S7 shows the most signifi-
cant CpG sites on chromosome X associated with tobacco smoking in women. Likewise,
Table S8 shows the most significant CpG sites on chromosomes X and Y associated with
tobacco smoking in men. Several differences between the sexes were identified; however,
the comparison is difficult due to the XX women and the methodological limitations of
X-chromosome inactivation. In terms of differences, we would like to mention that the
ACE2 (Angiotensin-converting enzymes 2) gene was in the list of the top-ranked differen-
tially methylated genes associated with tobacco smoking in women. This gene was not
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significant in men. However, we detected several CpG sites significantly associated with
tobacco smoking in both men and women, WWC3 (WWC Family Member 3) being the
most consistent.

3.8. Modulation of Tobacco Smoking’s Epigenome-Wide Methylation Signature by Adherence to the
Mediterranean Diet

We conducted a stratified EWAS for tobacco smoking (5 levels) depending on the level
of Mediterranean diet adherence (low and high) to explore the potential modulation of
the Mediterranean diet on the tobacco smoking’s epigenome-wide methylation signature.
Figure 7 displays the corresponding Miami plot for both EWAS adjusted for sex, age, batch
effect, BMI, type 2 diabetes, and leukocyte counts. We detected an apparent different profile.
Only cg1566642 in the 2q37.1 and cg4391737 in the PRSS23 gene presented statistically
significant EWAS differences in methylation at both the low and high levels of adherence.
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Figure 7. Miami plot for the epigenome-wide methylation analysis for smoking (5 levels), depending
on the adherence to the Mediterranean diet: Low adherence (above x-axis) and High adherence
(below x-axis). The top 11 most significant CpGs for the low-adherence level are highlighted. For the
High adherence level, the 3 most significant CpGs are highlighted. Red line represents the EWAS
significance level p = 9 × 10−8. The blue line represents p = 1 × 10−5. The GRCh37/hg19 assembly
has been used.

Table 7 shows the more information regarding the top differentially methylated CpGs
depending on the adherence to the Mediterranean diet, the annotated genes, the p-values,
and the correlation coefficients.

When adherence to the Mediterranean diet was low, we observed a methylation
profile typical of tobacco smoking, with the top-ranked genes consistently reported in
other populations. Despite the limited sample size, 38 differentially methylated CpGs were
identified at the EWAS level in subjects with a low adherence to the Mediterranean diet.
However, fewer significant differences in methylation were detected in individuals with
high levels of adherence. This stratum’s relatively small sample size may have an influence
on the findings. Nonetheless, the extent of the observed differences in statistical significance
and in a subset of the ranked genes revealed a possible effect of the Mediterranean diet
on the methylation level of certain CpGs. One of these CpGs additional modulated by
the Mediterranean diet could be cg5575921 in the AHRR gene. This site is one among
the CpGs most strongly linked to tobacco smoking in previous research. However, when
examining its influence on this Mediterranean population as a whole, this CpG did not
occupy the top differential methylation levels. After the analysis stratified by adherence
to the Mediterranean diet, this CpG was among the top four hits in the low-adherence
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group but lacked statistical significance in the high-adherence group. In order to assess
whether there is a statistical interaction between adherence to the Mediterranean diet
and tobacco use in the methylation of specific CpGs, we selected the two most relevant
CpGs (cg1566642 in the 2q37.1 region and cg5575931 in the AHRR gene) and examined the
statistical significance of the interaction term diet*smoking in a hierarchical model. These
findings are shown in Figure S3. Panel A shows that there was no smoking*Mediterranean
diet interaction for the cg1566642 site (p = 0.808). However, there was a statistically
significant interaction (Panel B) for the cg5575921 in the AHRR gene (p = 0.013). Figure S3
also shows the statistically significant interaction between smoking and Mediterranean
diet adherence on DNA methylation for another two selected CpGs (panels C and D). This
is an exploratory study, and additional research is needed to better characterize how the
Mediterranean diet modulates methylation by smoking status.

Table 7. Top differentially methylated CpGs for the epigenome-wide methylation analysis of tobacco
smoking status (5 levels) 1, depending on the level of adherence to the Mediterranean diet 2, after
multivariate adjustment 3.

Low Adherence to Mediterranean Diet (n = 242) High Adherence to Mediterranean Diet (n = 172)

CpG Site Gene
Symbol Chr p r CpG Site Gene

Symbol Chr p r

cg21566642 2 1.34 × 10−22 −0.592 cg21566642 2 5.27 × 10−10 −0.474
cg03636183 F2RL3 19 1.15 × 10−16 −0.516 cg14391737 PRSS23 11 6.21 × 10−8 −0.419
cg01940273 2 3.72 × 10−15 −0.494 cg02330394 C6orf52 6 3.96 × 10−7 −0.395
cg05575921 AHRR 5 4.31 × 10−15 −0.493 cg04569608 PLCB3 11 6.31 × 10−7 −0.389
cg24859433 6 5.52 × 10−15 −0.491 cg00475490 PRSS23 11 8.17 × 10−7 −0.385
cg15342087 6 7.71 × 10−15 −0.489 cg14175932 14 1.81 × 10−6 −0.374
cg17739917 RARA 17 1.41 × 10−14 −0.484 cg26742440 RAB6A 11 1.98 × 10−6 −0.372
cg09935388 GFI1 1 4.39 × 10−13 −0.459 cg22024876 KBTBD3 11 2.37 × 10−6 −0.370
cg19859270 GPR15 3 4.79 × 10−13 −0.459 cg02286229 11 2.93 × 10−6 −0.367
cg21911711 F2RL3 19 7.56 × 10−13 −0.455 cg21619351 SCAF1 19 4.83 × 10−6 −0.359
cg27241845 2 5.28 × 10−12 −0.440 cg13496340 TIGD7 16 5.06 × 10−6 −0.358
cg18110140 15 6.71 × 10−12 −0.438 cg26815336 6 7.03 × 10−6 −0.353
cg14391737 PRSS23 11 9.53 × 10−12 −0.435 cg21911711 F2RL3 19 8.06 × 10−6 −0.351
cg19572487 RARA 17 1.34 × 10−11 −0.432 cg01697541 TMEM97 17 8.57 × 10−6 −0.350
cg25648203 AHRR 5 1.43 × 10−11 −0.431 cg08376211 MAP7D1 1 9.11 × 10−6 0.349
cg26703534 AHRR 5 1.80 × 10−11 −0.430 cg22078572 KDSR 18 9.73 × 10−6 −0.348
cg18316974 GFI1 1 7.05 × 10−11 −0.418 cg22488975 EDEM3 1 1.11 × 10−5 −0.346
cg12806681 AHRR 5 9.23 × 10−11 −0.415 cg22692169 LINS1 15 1.11 × 10−5 −0.346
cg02978227 3 1.41 × 10−10 −0.412 cg01207684 ADCY9 16 1.37 × 10−5 −0.343
cg18146737 GFI1 1 1.46 × 10−10 −0.411 cg17739917 RARA 17 1.64 × 10−5 −0.340
cg25189904 GNG12 1 3.59 × 10−10 −0.403 cg16552945 ARHGDIG 16 1.78 × 10−5 −0.338
cg17287155 AHRR 5 3.74 × 10−10 −0.403 cg00502002 ANAPC16 10 2.03 × 10−5 0.336
cg23576855 AHRR 5 7.03 × 10−10 −0.397 cg18149653 12 2.23 × 10−5 −0.335
cg04551776 AHRR 5 8.71 × 10−10 −0.395 cg08870961 12 2.37 × 10−5 0.334
cg24838345 MTSS1 8 2.35 × 10−9 −0.386 cg19355087 NKX6-2 10 2.38 × 10−5 −0.333
cg12876356 GFI1 1 5.04 × 10−9 −0.378 cg01940273 2 2.42 × 10−5 −0.333
cg07986378 ETV6 12 5.25 × 10−9 −0.378 cg16915863 LOC400043 12 2.43 × 10−5 0.333
cg11660018 PRSS23 11 5.69 × 10−9 −0.377 cg21897843 GAB2 11 2.63 × 10−5 0.332
cg09945032 3 1.36 × 10−8 −0.368 cg18866308 G3BP1 5 2.82 × 10−5 −0.331
cg04535902 GFI1 1 1.44 × 10−8 −0.367 cg02048416 DOK1 2 2.89 × 10−5 −0.330
cg01901332 ARRB1 11 1.71 × 10−8 −0.366 cg10352046 12 2.99 × 10−5 −0.330
cg24090911 AHRR 5 2.02 × 10−8 −0.364 cg16487464 8 3.10 × 10−5 0.329
cg16841366 2 2.60 × 10−8 −0.361 cg27072224 DNAJC15 13 3.12 × 10−5 0.329
cg19554457 NUDT4 12 3.29 × 10−8 −0.359 cg21038620 LAT 16 3.31 × 10−5 −0.328
cg14372879 1 5.72 × 10−8 −0.353 cg02882774 NDUFA6 22 3.57 × 10−5 −0.327
cg25305703 8 6.03 × 10−8 −0.352 cg09061824 FLOT1 6 3.60 × 10−5 −0.326
cg13681954 2 6.48 × 10−8 −0.352 cg08445320 14 3.86 × 10−5 0.325
cg17738628 15 7.22 × 10−8 −0.350 cg27228559 CASC2 10 4.13 × 10−5 −0.324

1 Five levels of smoking status were considered as an ordinal variable: Never smoker, former smoker,
smoker > 5 years, former smoker 1 to 5 years, former smoker < 1 year, and current smoker. 2 Low adherence
(<9 points in the P-17 Mediterranean diet score); High adherence (≥9 points in the P-17 Mediterranean diet score).
3 Models were adjusted for sex, age, diabetes, body mass index, batch effect and leukocyte cell-types (n = 414).
Chr: chromosome; p: Multivariate adjusted p-values; r: partial correlation coefficient.
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4. Discussion

We examined tobacco smoking DNA methylation signatures in blood (including never,
former, and current smokers) in an older Spanish-Mediterranean population with metabolic
syndrome. This is the first study in this population using the high density EPIC 850 K
methylation array. In comparison to other European populations, this population has
received relatively little attention in the analysis of epigenomics markers. Therefore, it is
informative to obtain data on the characteristics of this population to better understand
the external validity of biomarkers reported in other countries [64,65,100]. A previous
study conducted in a Mediterranean cohort recruited in Girona profiled DNA methylation
associated with tobacco smoking using the 450 K array and differed from the present study
in a number of aspects [48]. In the present study, the sample was enriched with former
smokers, allowing us to analyze three distinct levels of former smokers based on the length
of time since smoking cessation. Similarly, the average number of years that smokers had
smoked was very high (38 years). The main EWAS in the whole population considered
five levels of smoker status and revealed quantitative effects on DNA methylation of the
top-ranked differentially methylated CpG sites. In this EWAS, we detected 46 differentially
methylated CpGs at the epigenome-wide level of significance [93]. The strongest association
(hypomethylated in smokers) was observed at the intergenic cg21566642 (represented on
both the 450 K and the EPIC 850 K methylation arrays) located in the 2q37.1 region, close to
the ALPPL2 gene. The genomic “environment” where this CpG site is located in locus with
functional relevance (in a CGI but also in a promoter-like signature region). The second hit
was cg1940273, also located in the same region. Likewise, the cg21566642 methylation site
was previously reported as the top hit by Christiansen et al. [61] analyzing subjects from
the United Kingdom using the EPIC 850 K array. Other studies also reported this CpG site
as one of the most significant hits [43,48,55,101]. In addition to the ALPPL2 gene, other
two genes coding for closely related alkaline phosphatase genes, placental (ALPP) and
intestinal (ALPI) are located within the 2q37.1 region. Alkaline phosphatases are known
as plasma membrane-bound glycoproteins that have been involved in several diseases
including cancer, cardiovascular and inflammatory diseases, among others [102,103]. The
mechanisms by which tobacco smoking can lead to hypomethylation of the cg21566642
and other CpGs in this region are not yet well understood. A complex relationship between
smoking, immunoglobulin G glycosylation, and DNA methylation at the cg21566642 site
has been postulated [104]. However, additional research on these pathways and how
hypomethylation at this site is associated with disease risk is required. In addition to the
statistically significant hit (cg21566642) in our primary EWAS, we detected as statistically
significant another additional 45 differentially methylated CpGs profiled with either the
450 K or EPIC methylation arrays. We used the recently updated “The EWAS Catalog: a
database of epigenome-wide association studies” to verify the novelty of these CpGs [105].
All the CpGs discovered in our EWAS as statistically significant in the whole sample had
previously been reported in other studies [40–57,61,101,105–107], except for the cg15533935
in the NUDT4P2 gene (only present in the EPIC 850 K array), which is described for the first
time here. Even though the CpGs only found in the EPIC 850 K array are more recent, they
have also been reported in previous studies that have used this array [51,55,61,107]. This
result confirms the high consistency of the effect of tobacco smoking on DNA methylation
in diverse populations and the relevance of genes related to inflammation and immunity
pathways (AHRR, F2RL3 and PRSS23, among others) [108,109]. However, it is worth noting
that, despite the consistency in detecting various CpGs as statistically significant, the con-
tribution of each of them may differ and be more specific to each population. Consequently,
despite obtaining statistically significant results for the previously reported PRSS23, RARA,
F2RL3, AHRR, GFI1, GNG12, ARRB1, GPR15, ANPEP, LRRN3, MGAT3, ITPK1, LRP5,
ATP9A, MTSS1, NUDT4, ETV6, UXS1, XYLT1, SEMA7A, and LMO2 [105], the rank in this
Mediterranean population was distinct and more related to population characteristics (sex,
age, smoking status and diverse environmental factors, among others). In the majority
of previous studies [105], the cg05575921 site in the AHRR gene has been found to be
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the first site of differential methylation associated with tobacco smoking. Nevertheless, it
rated eleventh in the EWAS for our whole population. This can be explained by taking
into account what we discovered when we examined the modulation of methylation in
smoking-CpG sites due to Mediterranean diet adherence. The cg05575921 site in the AHRR
gene ranked high when adherence to the Mediterranean diet was low in the stratified EWAS
considering two adherence strata (low and high). In a hierarchical model adjusted for
covariates, we found a statistically significant interaction term between tobacco-smoking
status and adherence to the Mediterranean diet in determining DNA-methylation at the
cg05575921 site.

A higher adherence to the Mediterranean diet increased the level of methylation
in the cg05575921 site in current smokers, helping to counteract the hypomethylation
induced by smoking. It is known that diet can have an effect on DNA methylation [66–69],
although this is not well understood. Although this is the first study to focus on the effect
of Mediterranean diet on DNA methylation at the genome-wide level, other studies have
examined the impact of specific foods/nutrients on the methylation at the CpGs in the
AHRR gene depending on the smoking status [110,111]. Thus, Tsuboi et al. [110] reported
in a Japanese population that dietary intake of vegetables and fruits rich in provitamin
A increased the percentage of AHRR DNA methylation in current smokers. Similarly,
Shorey-Kendrick et al. [111], in a clinical trial, reported that supplements of vitamin C
during pregnancy prevented offspring DNA hypomethylation in the AHRR gene and
other genes associated with maternal smoking. Although our study in the Mediterranean
population was exploratory, and more detailed analysis of the effects of the Mediterranean
diet in modulating the methylation profile of tobacco smoking is required, the findings are
very interesting and may explain the differences found between populations, as well as the
varying risks of disease among smokers based on diet. In our exploratory analysis, we also
detected that the modulatory effect of the Mediterranean diet was more specific for certain
CpGs, such as the mentioned cg05575921 in the AHRR gene, for the cg9936388 in the GFI1
gene or for the cg01901332 in the ARRB1 gene. No significant interaction between adherence
to the Mediterranean diet and tobacco smoking was found for the top hit cg21566642 in
the 2q37.1 region. This contributes towards explaining the strong association between
smoking and methylation at this site in the present study. Likewise, in this population, the
cg21566642 site had a very high discriminative capacity to identify current smokers versus
never smokers (ROC-AUC = 0.97; 95% CI: 0.94–0.99). In the subgroup analysis comparing
the EWAS effects of never smokers versus current smokers, we also found the cg2156664
site as the top hit for statistical significance. For this comparison, we found a similar list of
CpGs as statistically significant as when analyzing the entire population, but with some
differences in ranking and sites.

Two more CpGs (in the MYH6 and NOS1AP genes) achieved genome-wide statistical
significance. All 43 differentially methylated sites in the comparison of never smokers
versus current smokers were hypomethylated in current smokers and had previously
been reported in other populations. However, the overall signature is specific for this
Mediterranean population considering that, in this population, we did not observe as
statistically significant several of the 25 CpG sites (in HIVEP3 as the hit or in SGIP1, SKI,
CUGBP1, SFRS13A, FAM102A, THAP11, SNORD58A, SLC20A1, CYTH4, EDC3, TRAF7,
SORBS1 and CTTNl), listed as the 25 most significant genes in the meta-analysis carried out
by Joehanes et al. [104] in 16 international cohorts, and detecting 2623 CpGs (annotated to
1405 genes) as statistically significantly differentially methylated in the comparison between
current and never smokers. In this meta-analysis, the cg05575921 in the AHRR gene ranked
36th. We observed 24 differentially methylated CpGs in the subgroup analysis comparing
former smokers versus current smokers, confirming the reversal of the hypomethylation
linked to current smokers [56,104]. In this comparison we reported for the first time
a novel association reaching the statistical significance at the EWAS level. It was the
cg12093781 site annotated to the KIF26B gene. This CpG site was not included in the
updated EWAS Catalog [105]. KIF26B has been identified as an oncogene in several
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tumors [112] and there is a study examining the relationship between early-life tobacco
smoke exposure and genetic variants in this gene on bronchial hyper-responsiveness
in asthma [113]. In the subgroup analysis in women, we also discovered a novel CpG
associated with tobacco smoking (5 levels). This is the first time that the cg25966498 in the
SPATA17 gene has been reported to be involved in such an association. In previous studies,
the SPATA17 gene has been linked to germ cell apoptosis in transgenic mice [114], anorexia
nervosa [115] and to degenerative diseases [116]. More studies are needed to replicate
and to characterize these novel findings in this and other populations. Furthermore,
in the sex-specific analysis for tobacco smoking, we explored the association between
smoking status and methylation of CpG sites on chromosomes X and Y. In the current
EWAS, analysis is typically limited to autosomal chromosomes, and sex chromosomes are
frequently overlooked. This is primarily due to the analytical complexities associated with
sex chromosome dosage differences between XX and XY individuals, as well as the effect
of X-chromosome inactivation on the epigenome [117,118]. However, there is an increasing
interest in these chromosomes, and we have obtained some preliminary results in this
population. A common finding among the most differentially methylated CpG sites located
on chromosome X in the stratified analysis for men and women was for the cg06398113 in
the WWC3 gene. The WWC3 gene (cg04224247 site) was previously reported as a novel
and top-ranked gene for tobacco smoking in the EPIC study [119]. However more studies
are needed to focus on the X and Y chromosomes. Understanding the relationship between
the differential methylation at the major CpG sites associated with tobacco smoking and the
risk of disease is another important issue. Some studies have examined several associations
with cancer, cardiovascular diseases or mortality obtaining mixed results [46,101,120–123].
A limitation of our study is that we do not have these disease outcomes to analyze the
association. Another limitation is the low number of current smokers that does not permit
stratifying results according to the number of cigarettes. Likewise, sample size is another
limitation to better characterize the modulation by the Mediterranean diet. However, our
study has several strengths, including the well-characterized population that we have
studied, as well as the homogenous methylation analysis for all the samples, quality control
and the use of the 850 K array instead of the 450 K. In addition, we conducted functional
enrichment analyses of the differentially methylated CpGs and found strong associations
with pathways associated with various cancers, inflammation, insulin metabolism, and
cardiovascular diseases, in accordance with previous studies [61,106].

5. Conclusions

In this study conducted in a Spanish-Mediterranean population, we characterized
the methylation signatures of tobacco smoking at the epigenome-wide level, considering
several categories of tobacco smoking and strata. We identified the differentially methylated
CpG sites (hypomethylated in current smokers) that are most strongly associated with
tobacco smoking in the whole sample and confirmed that, with the exception of one, all
have been identified in other populations. As there are dozens of CpGs associated with
tobacco use, what distinguishes the methylomic signature of each population is not the
identification of new markers, but the significance of each association. In this Mediterranean
population, the most strongly associated CpG was the cg21566642 in the 2q37.1 region. In
addition, this CpG had the highest discriminative capacity to identify current smokers from
never smokers in this population, suggesting its potential use as an exposure biomarker.
In subgroup analysis, we discovered some novel differentially methylated CpGs that
need to be validated further. Moreover, our exploratory analysis of the modulation of the
methylomic effects of tobacco smoking depending on the adherence to the Mediterranean
diet revealed that greater adherence to the Mediterranean diet can increase the level of
methylation at certain hypomethylated CpG sites in smokers, which is a highly relevant
finding and requires additional research and a more in-depth prospective analysis. In light
of the fact that previous epidemiological studies leveraging EWAS for tobacco smoking
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did not analyze dietary modulation, our results encourage further research into such
modulations in diverse populations.
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Figure S3: Interactions between Mediterranean diet (analyzed as low and high adherence) and smok-
ing status in determining DNA-methylation in selected CpG sites: (A) cg21566642; (B) cg05575921;
(C) cg09936388; and (D) cg01901332.

Author Contributions: Conceptualization, R.F.-C. and D.C.; Formal analysis, R.F.-C., O.C. and D.C.;
Funding acquisition, R.F.-C., F.J.T., R.E., J.M.O. and D.C.; Investigation, R.F.-C., J.V.S., E.M.A., E.C.P.,
O.P., A.A.-S., F.F., J.B.R.-S., A.P.-F., L.V.V. and R.E.; Methodology, R.F.-C., O.C. and D.C.; Software,
O.C.; Writing—original draft, R.F.-C., O.C. and D.C.; Writing—review & editing, all the authors. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was partially funded, by the Conselleria de Innovación, Universidades, Ciencia
y Sociedad Digital, Generalitat Valenciana (grants PROMETEO 17/2017, PROMETEO/2021/021, and
APOSTD/2020/164); the Spanish Ministry of Health (Instituto de Salud Carlos III); the Ministerio
de Economía y Competitividad-Fondo Europeo de Desarrollo Regional (FEDER) (grants CIBER
06/03, PI06/1326, PI13/00728, PI16/00366, PI19/00781 and SAF2016–80532-R); and Grant PID2019-
108858RB-I00 funded by AEI 10.13039/501100011033 and by “ERDF A way of making Europe”.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Human Research Ethics Committee of Valencia
University, Valencia (ethical approval code H1373255532771, 15 July 2013; and H1509263926814,
6 November 2017).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Neither the participants’ consent forms nor ethics approval included
permission for open access. However, we follow a controlled data-sharing collaboration model, and
data for collaborations will be available upon request pending application and approval. Investigators
who are interested in this study can contact the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gibbs, R.A. The Human Genome Project Changed Everything. Nat. Rev. Genet. 2020, 21, 575–576. [CrossRef]
2. Lee, C.; Antonarakis, S.E.; Hamosh, A.; Burn, J. Three Decades of the Human Genome Organization. Am. J. Med. Genet. A 2021,

185, 3314–3321. [CrossRef] [PubMed]
3. Lappalainen, T.; Scott, A.J.; Brandt, M.; Hall, I.M. Genomic Analysis in the Age of Human Genome Sequencing. Cell 2019, 177,

70–84. [CrossRef]

https://www.mdpi.com/article/10.3390/ijerph20043635/s1
https://www.mdpi.com/article/10.3390/ijerph20043635/s1
http://doi.org/10.1038/s41576-020-0275-3
http://doi.org/10.1002/ajmg.a.62512
http://www.ncbi.nlm.nih.gov/pubmed/34581472
http://doi.org/10.1016/j.cell.2019.02.032


Int. J. Environ. Res. Public Health 2023, 20, 3635 22 of 26

4. November, J. More than Moore’s Mores: Computers, Genomics, and the Embrace of Innovation. J. Hist. Biol. 2018, 51, 807–840.
[CrossRef]

5. Tanjo, T.; Kawai, Y.; Tokunaga, K.; Ogasawara, O.; Nagasaki, M. Practical Guide for Managing Large-Scale Human Genome Data
in Research. J. Hum. Genet. 2021, 66, 39–52. [CrossRef]

6. Tong, L.; Wu, H.; Wang, M.D.; Wang, G. Introduction of Medical Genomics and Clinical Informatics Integration for P-Health Care.
Prog. Mol. Biol. Transl. Sci. 2022, 190, 1–37. [CrossRef]

7. Bravo-Merodio, L.; Acharjee, A.; Russ, D.; Bisht, V.; Williams, J.A.; Tsaprouni, L.G.; Gkoutos, G.V. Translational Biomarkers in the
Era of Precision Medicine. Adv. Clin. Chem. 2021, 102, 191–232. [CrossRef]

8. Manolio, T.A. Implementing Genomics and Pharmacogenomics in the Clinic: The National Human Genome Research Institute’s
Genomic Medicine Portfolio. Atherosclerosis 2016, 253, 225–236. [CrossRef]

9. Goddard, K.A.B.; Lee, K.; Buchanan, A.H.; Powell, B.C.; Hunter, J.E. Establishing the Medical Actionability of Genomic Variants.
Annu. Rev. Genom. Hum. Genet. 2022, 23, 173–192. [CrossRef]

10. Ashley, E.A. Towards Precision Medicine. Nat. Rev. Genet. 2016, 17, 507–522. [CrossRef]
11. Cutler, D.M. Early Returns From the Era of Precision Medicine. JAMA 2020, 323, 109–110. [CrossRef]
12. Schaffhausen, J. What Precisely Is Precision Medicine? Trends Pharmacol. Sci. 2017, 38, 1–2. [CrossRef] [PubMed]
13. Feero, W.G. Introducing “Genomics and Precision Health”. JAMA 2017, 317, 1842–1843. [CrossRef]
14. Meagher, K.M.; McGowan, M.L.; Settersten, R.A.; Fishman, J.R.; Juengst, E.T. Precisely Where Are We Going? Charting the New

Terrain of Precision Prevention. Annu. Rev. Genom. Hum. Genet. 2017, 18, 369–387. [CrossRef] [PubMed]
15. Viana, J.N.; Edney, S.; Gondalia, S.; Mauch, C.; Sellak, H.; O’Callaghan, N.; Ryan, J.C. Trends and Gaps in Precision Health

Research: A Scoping Review. BMJ Open 2021, 11, e056938. [CrossRef]
16. Corella, D.; Ordovas, J.M. Integration of Environment and Disease into “omics” Analysis. Curr. Opin. Mol. Ther. 2005, 7, 569–576.
17. Barouki, R.; Audouze, K.; Coumoul, X.; Demenais, F.; Gauguier, D. Integration of the Human Exposome with the Human

Genomeo Advance Medicine. Biochimie 2018, 152, 155–158. [CrossRef]
18. Vineis, P.; Robinson, O.; Chadeau-Hyam, M.; Dehghan, A.; Mudway, I.; Dagnino, S. What Is New in the Exposome? Environ. Int.

2020, 143, 105887. [CrossRef]
19. Wang, K.C.; Chang, H.Y. Epigenomics: Technologies and Applications. Circ. Res. 2018, 122, 1191–1199. [CrossRef]
20. Mehrmohamadi, M.; Sepehri, M.H.; Nazer, N.; Norouzi, M.R. A Comparative Overview of Epigenomic Profiling Methods. Front.

Cell. Dev. Biol. 2021, 9, 714687. [CrossRef]
21. Kronfol, M.M.; Dozmorov, M.G.; Huang, R.; Slattum, P.W.; McClay, J.L. The Role of Epigenomics in Personalized Medicine. Expert

Rev. Precis. Med. Drug Dev. 2017, 2, 33–45. [CrossRef]
22. Corella, D.; Ordovas, J.M. Basic Concepts in Molecular Biology Related to Genetics and Epigenetics. Rev. Esp. Cardiol. Engl. Ed.

2017, 70, 744–753. [CrossRef]
23. Zhang, W.; Song, M.; Qu, J.; Liu, G.-H. Epigenetic Modifications in Cardiovascular Aging and Diseases. Circ. Res. 2018, 123,

773–786. [CrossRef]
24. Reichard, J.; Zimmer-Bensch, G. The Epigenome in Neurodevelopmental Disorders. Front. Neurosci. 2021, 15, 776809. [CrossRef]
25. Mattei, A.L.; Bailly, N.; Meissner, A. DNA Methylation: A Historical Perspective. Trends Genet. 2022, 38, 676–707. [CrossRef]
26. Luo, C.; Hajkova, P.; Ecker, J.R. Dynamic DNA Methylation: In the Right Place at the Right Time. Science 2018, 361, 1336–1340.

[CrossRef]
27. Xiao, F.-H.; Wang, H.-T.; Kong, Q.-P. Dynamic DNA Methylation During Aging: A “Prophet” of Age-Related Outcomes. Front.

Genet. 2019, 10, 107. [CrossRef]
28. Jin, Z.; Liu, Y. DNA Methylation in Human Diseases. Genes Dis. 2018, 5, 1–8. [CrossRef]
29. Zhong, J.; Agha, G.; Baccarelli, A.A. The Role of DNA Methylation in Cardiovascular Risk and Disease: Methodological Aspects,

Study Design, and Data Analysis for Epidemiological Studies. Circ. Res. 2016, 118, 119–131. [CrossRef]
30. Ahmed, S.A.H.; Ansari, S.A.; Mensah-Brown, E.P.K.; Emerald, B.S. The Role of DNA Methylation in the Pathogenesis of Type 2

Diabetes Mellitus. Clin. Epigenetics 2020, 12, 104. [CrossRef]
31. Mahmoud, A.M. An Overview of Epigenetics in Obesity: The Role of Lifestyle and Therapeutic Interventions. Int. J. Mol. Sci.

2022, 23, 1341. [CrossRef]
32. Nishiyama, A.; Nakanishi, M. Navigating the DNA Methylation Landscape of Cancer. Trends Genet. 2021, 37, 1012–1027.

[CrossRef]
33. Sanchez-Mut, J.V.; Heyn, H.; Vidal, E.; Moran, S.; Sayols, S.; Delgado-Morales, R.; Schultz, M.D.; Ansoleaga, B.; Garcia-Esparcia, P.;

Pons-Espinal, M.; et al. Human DNA Methylomes of Neurodegenerative Diseases Show Common Epigenomic Patterns. Transl.
Psychiatry 2016, 6, e718. [CrossRef] [PubMed]

34. Delgado-Morales, R.; Esteller, M. Opening up the DNA Methylome of Dementia. Mol. Psychiatry 2017, 22, 485–496. [CrossRef]
35. Wielscher, M.; Mandaviya, P.R.; Kuehnel, B.; Joehanes, R.; Mustafa, R.; Robinson, O.; Zhang, Y.; Bodinier, B.; Walton, E.;

Mishra, P.P.; et al. DNA Methylation Signature of Chronic Low-Grade Inflammation and Its Role in Cardio-Respiratory Diseases.
Nat. Commun. 2022, 13, 2408. [CrossRef]

36. Prunicki, M.; Cauwenberghs, N.; Lee, J.; Zhou, X.; Movassagh, H.; Noth, E.; Lurmann, F.; Hammond, S.K.; Balmes, J.R.;
Desai, M.; et al. Air Pollution Exposure Is Linked with Methylation of Immunoregulatory Genes, Altered Immune Cell Profiles,
and Increased Blood Pressure in Children. Sci. Rep. 2021, 11, 4067. [CrossRef]

http://doi.org/10.1007/s10739-018-9539-6
http://doi.org/10.1038/s10038-020-00862-1
http://doi.org/10.1016/bs.pmbts.2022.05.002
http://doi.org/10.1016/bs.acc.2020.08.002
http://doi.org/10.1016/j.atherosclerosis.2016.08.034
http://doi.org/10.1146/annurev-genom-111021-032401
http://doi.org/10.1038/nrg.2016.86
http://doi.org/10.1001/jama.2019.20659
http://doi.org/10.1016/j.tips.2016.11.004
http://www.ncbi.nlm.nih.gov/pubmed/27955860
http://doi.org/10.1001/jama.2016.20625
http://doi.org/10.1146/annurev-genom-091416-035222
http://www.ncbi.nlm.nih.gov/pubmed/28441061
http://doi.org/10.1136/bmjopen-2021-056938
http://doi.org/10.1016/j.biochi.2018.06.023
http://doi.org/10.1016/j.envint.2020.105887
http://doi.org/10.1161/CIRCRESAHA.118.310998
http://doi.org/10.3389/fcell.2021.714687
http://doi.org/10.1080/23808993.2017.1284557
http://doi.org/10.1016/j.recesp.2017.02.034
http://doi.org/10.1161/CIRCRESAHA.118.312497
http://doi.org/10.3389/fnins.2021.776809
http://doi.org/10.1016/j.tig.2022.03.010
http://doi.org/10.1126/science.aat6806
http://doi.org/10.3389/fgene.2019.00107
http://doi.org/10.1016/j.gendis.2018.01.002
http://doi.org/10.1161/CIRCRESAHA.115.305206
http://doi.org/10.1186/s13148-020-00896-4
http://doi.org/10.3390/ijms23031341
http://doi.org/10.1016/j.tig.2021.05.002
http://doi.org/10.1038/tp.2015.214
http://www.ncbi.nlm.nih.gov/pubmed/26784972
http://doi.org/10.1038/mp.2016.242
http://doi.org/10.1038/s41467-022-29792-6
http://doi.org/10.1038/s41598-021-83577-3


Int. J. Environ. Res. Public Health 2023, 20, 3635 23 of 26

37. Schrott, R.; Song, A.; Ladd-Acosta, C. Epigenetics as a Biomarker for Early-Life Environmental Exposure. Curr. Environ. Health
Rep. 2022, 9, 604–624. [CrossRef]

38. Martin, E.M.; Fry, R.C. Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human
Populations. Annu. Rev. Public Health 2018, 39, 309–333. [CrossRef]

39. Smith, I.M.; Mydlarz, W.K.; Mithani, S.K.; Califano, J.A. DNA Global Hypomethylation in Squamous Cell Head and Neck Cancer
Associated with Smoking, Alcohol Consumption and Stage. Int. J. Cancer 2007, 121, 1724–1728. [CrossRef]

40. Breitling, L.P.; Yang, R.; Korn, B.; Burwinkel, B.; Brenner, H. Tobacco-Smoking-Related Differential DNA Methylation: 27K
Discovery and Replication. Am. J. Hum. Genet. 2011, 88, 450–457. [CrossRef]

41. Shenker, N.S.; Polidoro, S.; van Veldhoven, K.; Sacerdote, C.; Ricceri, F.; Birrell, M.A.; Belvisi, M.G.; Brown, R.; Vineis, P.;
Flanagan, J.M. Epigenome-Wide Association Study in the European Prospective Investigation into Cancer and Nutrition (EPIC-
Turin) Identifies Novel Genetic Loci Associated with Smoking. Hum. Mol. Genet. 2013, 22, 843–851. [CrossRef]

42. Philibert, R.A.; Beach, S.R.H.; Lei, M.-K.; Brody, G.H. Changes in DNA Methylation athe Aryl Hydrocarbon Receptor Repressor
May Be a New Biomarker for Smoking. Clin. Epigenetics 2013, 5, 19. [CrossRef] [PubMed]

43. Zeilinger, S.; Kühnel, B.; Klopp, N.; Baurecht, H.; Kleinschmidt, A.; Gieger, C.; Weidinger, S.; Lattka, E.; Adamski, J.;
Peters, A.; et al. Tobacco Smoking Leads to Extensive Genome-Wide Changes in DNA Methylation. PLoS ONE 2013, 8,
e63812. [CrossRef]

44. Tsaprouni, L.G.; Yang, T.-P.; Bell, J.; Dick, K.J.; Kanoni, S.; Nisbet, J.; Viñuela, A.; Grundberg, E.; Nelson, C.P.; Meduri, E.; et al.
Cigarette Smoking Reduces DNA Methylation Levels at Multiple Genomic Loci but the Effect Is Partially Reversible upon
Cessation. Epigenetics 2014, 9, 1382–1396. [CrossRef]

45. Dogan, M.V.; Shields, B.; Cutrona, C.; Gao, L.; Gibbons, F.X.; Simons, R.; Monick, M.; Brody, G.H.; Tan, K.; Beach, S.R.H.; et al. The
Effect of Smoking on DNA Methylation of Peripheral Blood Mononuclear Cells from African American Women. BMC Genom.
2014, 15, 151. [CrossRef]

46. Reynolds, L.M.; Wan, M.; Ding, J.; Taylor, J.R.; Lohman, K.; Su, D.; Bennett, B.D.; Porter, D.K.; Gimple, R.; Pittman, G.S.; et al. DNA
Methylation of the Aryl Hydrocarbon Receptor Repressor Associations with Cigarette Smoking and Subclinical Atherosclerosis.
Circ. Cardiovasc. Genet. 2015, 8, 707–716. [CrossRef]

47. Harlid, S.; Xu, Z.; Panduri, V.; Sandler, D.P.; Taylor, J.A. CpG Sites Associated with Cigarette Smoking: Analysis of Epigenome-
Wide Data from the Sister Study. Environ. Health Perspect. 2014, 122, 673–678. [CrossRef]

48. Sayols-Baixeras, S.; Lluís-Ganella, C.; Subirana, I.; Salas, L.A.; Vilahur, N.; Corella, D.; Muñoz, D.; Segura, A.; Jimenez-Conde, J.;
Moran, S.; et al. Identification of a New Locus and Validation of Previously Reported Loci Showing Differential Methylation
Associated with Smoking. The REGICOR Study. Epigenetics 2015, 10, 1156–1165. [CrossRef]

49. Li, S.; Wong, E.M.; Bui, M.; Nguyen, T.L.; Joo, J.-H.E.; Stone, J.; Dite, G.S.; Giles, G.G.; Saffery, R.; Southey, M.C.; et al. Causal
Effect of Smoking on DNA Methylation in Peripheral Blood: A Twin and Family Study. Clin. Epigenetics 2018, 10, 18. [CrossRef]

50. Hulls, P.M.; de Vocht, F.; Bao, Y.; Relton, C.L.; Martin, R.M.; Richmond, R.C. DNA Methylation Signature of Passive Smoke
Exposure Is Less Pronounced than Active Smoking: The Understanding Society Study. Environ. Res. 2020, 190, 109971. [CrossRef]

51. Sun, Y.-Q.; Richmond, R.C.; Suderman, M.; Min, J.L.; Battram, T.; Flatberg, A.; Beisvag, V.; Nøst, T.H.; Guida, F.; Jiang, L.; et al.
Assessing the Role of Genome-Wide DNA Methylation between Smoking and Risk of Lung Cancer Using Repeated Measurements:
The HUNT Study. Int. J. Epidemiol. 2021, 50, 1482–1497. [CrossRef] [PubMed]

52. Mishra, P.P.; Hänninen, I.; Raitoharju, E.; Marttila, S.; Mishra, B.H.; Mononen, N.; Kähönen, M.; Hurme, M.; Raitakari, O.;
Törönen, P.; et al. Epigenome-450K-Wide Methylation Signatures of Active Cigarette Smoking: The Young Finns Study. Biosci.
Rep. 2020, 40, BSR20200596. [CrossRef] [PubMed]

53. Barcelona, V.; Huang, Y.; Brown, K.; Liu, J.; Zhao, W.; Yu, M.; Kardia, S.L.R.; Smith, J.A.; Taylor, J.Y.; Sun, Y.V. Novel DNA
Methylation Sites Associated with Cigarette Smoking among African Americans. Epigenetics 2019, 14, 383–391. [CrossRef]
[PubMed]

54. Wen, D.; Shi, J.; Liu, Y.; He, W.; Qu, W.; Wang, C.; Xing, H.; Cao, Y.; Li, J.; Zha, L. DNA Methylation Analysis for Smoking Status
Prediction in the Chinese Population Based on the Methylation-Sensitive Single-Nucleotide Primer Extension Method. Forensic
Sci. Int. 2022, 339, 111412. [CrossRef]

55. Cardenas, A.; Ecker, S.; Fadadu, R.P.; Huen, K.; Orozco, A.; McEwen, L.M.; Engelbrecht, H.-R.; Gladish, N.; Kobor, M.S.;
Rosero-Bixby, L.; et al. Epigenome-Wide Association Study and Epigenetic Age Acceleration Associated with Cigarette Smoking
among Costa Rican Adults. Sci. Rep. 2022, 12, 4277. [CrossRef]

56. Dugué, P.-A.; Jung, C.-H.; Joo, J.E.; Wang, X.; Wong, E.M.; Makalic, E.; Schmidt, D.F.; Baglietto, L.; Severi, G.; Southey, M.C.; et al.
Smoking and Blood DNA Methylation: An Epigenome-Wide Association Study and Assessment of Reversibility. Epigenetics 2020,
15, 358–368. [CrossRef]

57. Langdon, R.J.; Yousefi, P.; Relton, C.L.; Suderman, M.J. Epigenetic Modelling of Former, Current and Never Smokers. Clin.
Epigenetics 2021, 13, 206. [CrossRef]

58. Wilhelm-Benartzi, C.S.; Koestler, D.C.; Karagas, M.R.; Flanagan, J.M.; Christensen, B.C.; Kelsey, K.T.; Marsit, C.J.; Houseman, E.A.;
Brown, R. Review of Processing and Analysis Methods for DNA Methylation Array Data. Br. J. Cancer 2013, 109, 1394–1402.
[CrossRef]

59. Chatterjee, A.; Rodger, E.J.; Morison, I.M.; Eccles, M.R.; Stockwell, P.A. Tools and Strategies for Analysis of Genome-Wide and
Gene-Specific DNA Methylation Patterns. Method. Mol. Biol. 2017, 1537, 249–277. [CrossRef]

http://doi.org/10.1007/s40572-022-00373-5
http://doi.org/10.1146/annurev-publhealth-040617-014629
http://doi.org/10.1002/ijc.22889
http://doi.org/10.1016/j.ajhg.2011.03.003
http://doi.org/10.1093/hmg/dds488
http://doi.org/10.1186/1868-7083-5-19
http://www.ncbi.nlm.nih.gov/pubmed/24120260
http://doi.org/10.1371/journal.pone.0063812
http://doi.org/10.4161/15592294.2014.969637
http://doi.org/10.1186/1471-2164-15-151
http://doi.org/10.1161/CIRCGENETICS.115.001097
http://doi.org/10.1289/ehp.1307480
http://doi.org/10.1080/15592294.2015.1115175
http://doi.org/10.1186/s13148-018-0452-9
http://doi.org/10.1016/j.envres.2020.109971
http://doi.org/10.1093/ije/dyab044
http://www.ncbi.nlm.nih.gov/pubmed/33729499
http://doi.org/10.1042/BSR20200596
http://www.ncbi.nlm.nih.gov/pubmed/32583859
http://doi.org/10.1080/15592294.2019.1588683
http://www.ncbi.nlm.nih.gov/pubmed/30915882
http://doi.org/10.1016/j.forsciint.2022.111412
http://doi.org/10.1038/s41598-022-08160-w
http://doi.org/10.1080/15592294.2019.1668739
http://doi.org/10.1186/s13148-021-01191-6
http://doi.org/10.1038/bjc.2013.496
http://doi.org/10.1007/978-1-4939-6685-1_15


Int. J. Environ. Res. Public Health 2023, 20, 3635 24 of 26

60. Rauluseviciute, I.; Drabløs, F.; Rye, M.B. DNA Methylation Data by Sequencing: Experimental Approaches and Recommendations
for Tools and Pipelines for Data Analysis. Clin. Epigenetics 2019, 11, 193. [CrossRef]

61. Christiansen, C.; Castillo-Fernandez, J.E.; Domingo-Relloso, A.; Zhao, W.; El-Sayed Moustafa, J.S.; Tsai, P.-C.; Maddock, J.;
Haack, K.; Cole, S.A.; Kardia, S.L.R.; et al. Novel DNA Methylation Signatures of Tobacco Smoking with Trans-Ethnic Effects.
Clin. Epigenetics 2021, 13, 36. [CrossRef]

62. Moran, S.; Arribas, C.; Esteller, M. Validation of a DNA Methylation Microarray for 850,000 CpG Sites of the Human Genome
Enriched in Enhancer Sequences. Epigenomics 2016, 8, 389–399. [CrossRef] [PubMed]

63. Elliott, H.R.; Burrows, K.; Min, J.L.; Tillin, T.; Mason, D.; Wright, J.; Santorelli, G.; Smith, G.D.; Lawlor, D.A.; Hughes, A.D.; et al.
Characterisation of Ethnic Differences in DNA Methylation between UK-Resident South Asians and Europeans. Clin. Epigenetics
2022, 14, 130. [CrossRef] [PubMed]

64. Fatumo, S.; Chikowore, T.; Choudhury, A.; Ayub, M.; Martin, A.R.; Kuchenbaecker, K. A Roadmap to Increase Diversity in
Genomic Studies. Nat. Med. 2022, 28, 243–250. [CrossRef]

65. Salas, L.A.; Peres, L.C.; Thayer, Z.M.; Smith, R.W.; Guo, Y.; Chung, W.; Si, J.; Liang, L. A Transdisciplinary Approach to Understand
the Epigenetic Basis of Race/Ethnicity Health Disparities. Epigenomics 2021, 13, 1761–1770. [CrossRef]

66. Maugeri, A. The Effects of Dietary Interventions on DNA Methylation: Implications for Obesity Management. Int. J. Mol. Sci.
2020, 21, 8670. [CrossRef]

67. Fareed, M.M.; Ullah, S.; Qasmi, M.; Shityakov, S. The Role of Vitamins in DNA Methylation as Dietary Supplements or
Neutraceuticals: A Systematic Review. Curr. Mol. Med. 2022. [CrossRef]

68. Ungaro, P.; Nettore, I.C.; Franchini, F.; Palatucci, G.; Muscogiuri, G.; Colao, A.; Macchia, P.E. Epigenome Modulation Induced by
Ketogenic Diets. Nutrients 2022, 14, 3245. [CrossRef]

69. Li, X.; Qi, L. Epigenetics in Precision Nutrition. J. Pers. Med. 2022, 12, 533. [CrossRef]
70. Salas-Salvadó, J.; Díaz-López, A.; Ruiz-Canela, M.; Basora, J.; Fitó, M.; Corella, D.; Serra-Majem, L.; Wärnberg, J.; Romaguera, D.;

Estruch, R.; et al. Effect of a Lifestyle Intervention Program With Energy-Restricted Mediterranean Diet and Exercise on Weight
Loss and Cardiovascular Risk Factors: One-Year Results of the PREDIMED-Plus Trial. Diabetes Care 2019, 42, 777–788. [CrossRef]

71. Coltell, O.; Asensio, E.M.; Sorlí, J.V.; Barragán, R.; Fernández-Carrión, R.; Portolés, O.; Ortega-Azorín, C.; Martínez-LaCruz, R.;
González, J.I.; Zanón-Moreno, V.; et al. Genome-Wide Association Study (GWAS) on Bilirubin Concentrations in Subjects with
Metabolic Syndrome: Sex-Specific GWAS Analysis and Gene-Diet Interactions in a Mediterranean Population. Nutrients 2019, 11,
90. [CrossRef]

72. Bruegel, M.; Nagel, D.; Funk, M.; Fuhrmann, P.; Zander, J.; Teupser, D. Comparison of Five Automated Hematology Analyzers in
a University Hospital Setting: Abbott Cell-Dyn Sapphire, Beckman Coulter DxH 800, Siemens Advia 2120i, Sysmex XE-5000, and
Sysmex XN-2000. Clin. Chem. Lab. Med. 2015, 53, 1057–1071. [CrossRef]

73. Malhotra, J.; Borron, C.; Freedman, N.D.; Abnet, C.C.; van den Brandt, P.A.; White, E.; Milne, R.L.; Giles, G.G.; Boffetta, P.
Association between Cigar or Pipe Smoking and Cancer Risk in Men: A Pooled Analysis of Five Cohort Studies. Cancer Prev. Res.
Phila. 2017, 10, 704–709. [CrossRef]

74. Teshima, A.; Laverty, A.A.; Filippidis, F.T. Burden of Current and Past Smoking across 28 European Countries in 2017: A
Cross-Sectional Analysis. Tob. Induc. Dis. 2022, 20, 56. [CrossRef]

75. Molina, L.; Sarmiento, M.; Peñafiel, J.; Donaire, D.; Garcia-Aymerich, J.; Gomez, M.; Ble, M.; Ruiz, S.; Frances, A.; Schröder, H.; et al.
Validation of the Regicor Short Physical Activity Questionnaire for the Adult Population. PLoS ONE 2017, 12, e0168148. [CrossRef]

76. Schröder, H.; Zomeño, M.D.; Martínez-González, M.A.; Salas-Salvadó, J.; Corella, D.; Vioque, J.; Romaguera, D.; Martínez, J.A.;
Tinahones, F.J.; Miranda, J.L.; et al. Validity of the Energy-Restricted Mediterranean Diet Adherence Screener. Clin. Nutr. 2021, 40,
4971–4979. [CrossRef]

77. Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.;
Salaverría, I.; Fiol, M.; et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men
and Women. J. Nutr. 2011, 141, 1140–1145. [CrossRef]

78. Coltell, O.; Sorlí, J.V.; Asensio, E.M.; Barragán, R.; González, J.I.; Giménez-Alba, I.M.; Zanón-Moreno, V.; Estruch, R.;
Ramírez-Sabio, J.B.; Pascual, E.C.; et al. Genome-Wide Association Study for Serum Omega-3 and Omega-6 Polyunsaturated
Fatty Acids: Exploratory Analysis of the Sex-Specific Effects and Dietary Modulation in Mediterranean Subjects with Metabolic
Syndrome. Nutrients 2020, 12, 310. [CrossRef]

79. Pidsley, R.; Zotenko, E.; Peters, T.J.; Lawrence, M.G.; Risbridger, G.P.; Molloy, P.; Van Djik, S.; Muhlhausler, B.; Stirzaker, C.;
Clark, S.J. Critical Evaluation of the Illumina MethylationEPIC BeadChip Microarray for Whole-Genome DNA Methylation
Profiling. Genome Biol. 2016, 17, 208. [CrossRef]

80. Zindler, T.; Frieling, H.; Neyazi, A.; Bleich, S.; Friedel, E. Simulating ComBat: How Batch Correction Can Lead to the Systematic
Introduction of False Positive Results in DNA Methylation Microarray Studies. BMC Bioinform. 2020, 21, 271. [CrossRef]

81. Jiang, Y.; Chen, J.; Chen, W. Controlling Batch Effect in Epigenome-Wide Association Study. Method. Mol. Biol. 2022, 2432, 73–84.
[CrossRef] [PubMed]

82. Min, J.L.; Hemani, G.; Smith, G.D.; Relton, C.; Suderman, M. Meffil: Efficient Normalization and Analysis of Very Large DNA
Methylation Datasets. Bioinformatics 2018, 34, 3983–3989. [CrossRef] [PubMed]

83. Murat, K.; Grüning, B.; Poterlowicz, P.W.; Westgate, G.; Tobin, D.J.; Poterlowicz, K. Ewastools: Infinium Human Methylation
BeadChip Pipeline for Population Epigenetics Integrated into Galaxy. Gigascience 2020, 9, giaa049. [CrossRef] [PubMed]

http://doi.org/10.1186/s13148-019-0795-x
http://doi.org/10.1186/s13148-021-01018-4
http://doi.org/10.2217/epi.15.114
http://www.ncbi.nlm.nih.gov/pubmed/26673039
http://doi.org/10.1186/s13148-022-01351-2
http://www.ncbi.nlm.nih.gov/pubmed/36243740
http://doi.org/10.1038/s41591-021-01672-4
http://doi.org/10.2217/epi-2020-0080
http://doi.org/10.3390/ijms21228670
http://doi.org/10.2174/1566524023666221004140858
http://doi.org/10.3390/nu14153245
http://doi.org/10.3390/jpm12040533
http://doi.org/10.2337/dc18-0836
http://doi.org/10.3390/nu11010090
http://doi.org/10.1515/cclm-2014-0945
http://doi.org/10.1158/1940-6207.CAPR-17-0084
http://doi.org/10.18332/tid/149477
http://doi.org/10.1371/journal.pone.0168148
http://doi.org/10.1016/j.clnu.2021.06.030
http://doi.org/10.3945/jn.110.135566
http://doi.org/10.3390/nu12020310
http://doi.org/10.1186/s13059-016-1066-1
http://doi.org/10.1186/s12859-020-03559-6
http://doi.org/10.1007/978-1-0716-1994-0_6
http://www.ncbi.nlm.nih.gov/pubmed/35505208
http://doi.org/10.1093/bioinformatics/bty476
http://www.ncbi.nlm.nih.gov/pubmed/29931280
http://doi.org/10.1093/gigascience/giaa049
http://www.ncbi.nlm.nih.gov/pubmed/32401319


Int. J. Environ. Res. Public Health 2023, 20, 3635 25 of 26

84. Bhat, B.; Jones, G.T. Data Analysis of DNA Methylation Epigenome-Wide Association Studies (EWAS): A Guide to the Principles
of Best Practice. Methods Mol. Biol. 2022, 2458, 23–45. [CrossRef] [PubMed]

85. Ramirez, K.; Fernández, R.; Collet, S.; Kiyar, M.; Delgado-Zayas, E.; Gómez-Gil, E.; Van Den Eynde, T.; T’Sjoen, G.; Guillamon, A.;
Mueller, S.C.; et al. Epigenetics Is Implicated in the Basis of Gender Incongruence: An Epigenome-Wide Association Analysis.
Front. Neurosci. 2021, 15, 701017. [CrossRef]

86. Fortin, J.-P.; Labbe, A.; Lemire, M.; Zanke, B.W.; Hudson, T.J.; Fertig, E.J.; Greenwood, C.M.; Hansen, K.D. Functional Normaliza-
tion of 450k Methylation Array Data Improves Replication in Large Cancer Studies. Genome Biol. 2014, 15, 503. [CrossRef]

87. Ross, J.P.; van Dijk, S.; Phang, M.; Skilton, M.R.; Molloy, P.L.; Oytam, Y. Batch-Effect Detection, Correction and Characterisation in
Illumina HumanMethylation450 and MethylationEPIC BeadChip Array Data. Clin. Epigenetics 2022, 14, 58. [CrossRef]

88. Du, P.; Zhang, X.; Huang, C.-C.; Jafari, N.; Kibbe, W.A.; Hou, L.; Lin, S.M. Comparison of Beta-Value and M-Value Methods for
Quantifying Methylation Levels by Microarray Analysis. BMC Bioinform. 2010, 11, 587. [CrossRef]

89. Xie, C.; Leung, Y.-K.; Chen, A.; Long, D.-X.; Hoyo, C.; Ho, S.-M. Differential Methylation Values in Differential Methylation
Analysis. Bioinformatics 2019, 35, 1094–1097. [CrossRef]

90. Houseman, E.A.; Accomando, W.P.; Koestler, D.C.; Christensen, B.C.; Marsit, C.J.; Nelson, H.H.; Wiencke, J.K.; Kelsey, K.T. DNA
Methylation Arrays as Surrogate Measures of Cell Mixture Distribution. BMC Bioinform. 2012, 13, 86. [CrossRef]

91. Barton, S.J.; Melton, P.E.; Titcombe, P.; Murray, R.; Rauschert, S.; Lillycrop, K.A.; Huang, R.-C.; Holbrook, J.D.; Godfrey, K.M.
In Epigenomic Studies, Including Cell-Type Adjustments in Regression Models Can Introduce Multicollinearity, Resulting in
Apparent Reversal of Direction of Association. Front. Genet. 2019, 10, 816. [CrossRef]

92. Kaushal, A.; Zhang, H.; Karmaus, W.J.J.; Ray, M.; Torres, M.A.; Smith, A.K.; Wang, S.-L. Comparison of Different Cell Type
Correction Methods for Genome-Scale Epigenetics Studies. BMC Bioinform. 2017, 18, 216. [CrossRef]

93. Mansell, G.; Gorrie-Stone, T.J.; Bao, Y.; Kumari, M.; Schalkwyk, L.S.; Mill, J.; Hannon, E. Guidance for DNA Methylation Studies:
Statistical Insights from the Illumina EPIC Array. BMC Genom. 2019, 20, 366. [CrossRef]

94. van Iterson, M.; van Zwet, E.W.; BIOS Consortium; Heijmans, B. T. Controlling Bias and Inflation in Epigenome- and
Transcriptome-Wide Association Studies Using the Empirical Null Distribution. Genome Biol. 2017, 18, 19. [CrossRef]

95. Maksimovic, J.; Oshlack, A.; Phipson, B. Gene Set Enrichment Analysis for Genome-Wide DNA Methylation Data. Genome Biol.
2021, 22, 173. [CrossRef]

96. Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a Reference Resource for Gene and Protein Annotation.
Nucleic Acids Res. 2016, 44, D457–D462. [CrossRef]

97. Wijesooriya, K.; Jadaan, S.A.; Perera, K.L.; Kaur, T.; Ziemann, M. Urgent Need for Consistent Standards in Functional Enrichment
Analysis. PLoS Comput. Biol. 2022, 18, e1009935. [CrossRef]

98. Tomczak, A.; Mortensen, J.M.; Winnenburg, R.; Liu, C.; Alessi, D.T.; Swamy, V.; Vallania, F.; Lofgren, S.; Haynes, W.;
Shah, N.H.; et al. Interpretation of Biological Experiments Changes with Evolution of the Gene Ontology and Its Annota-
tions. Sci. Rep. 2018, 8, 5115. [CrossRef]

99. Winkler, T.W.; Kutalik, Z.; Gorski, M.; Lottaz, C.; Kronenberg, F.; Heid, I.M. EasyStrata: Evaluation and Visualization of Stratified
Genome-Wide Association Meta-Analysis Data. Bioinformatics 2015, 31, 259–261. [CrossRef]

100. Fraser, H.B.; Lam, L.L.; Neumann, S.M.; Kobor, M.S. Population-Specificity of Human DNA Methylation. Genome Biol. 2012, 13,
R8. [CrossRef]

101. Baglietto, L.; Ponzi, E.; Haycock, P.; Hodge, A.; Assumma, M.B.; Jung, C.-H.; Chung, J.; Fasanelli, F.; Guida, F.; Campanella, G.; et al.
DNA Methylation Changes Measured in Pre-Diagnostic Peripheral Blood Samples Are Associated with Smoking and Lung
Cancer Risk. Int. J. Cancer 2017, 140, 50–61. [CrossRef] [PubMed]

102. Coleman, J.E. Structure and Mechanism of Alkaline Phosphatase. Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 441–483. [CrossRef]
[PubMed]

103. Nasab, N.H.; Raza, H.; Shim, R.S.; Hassan, M.; Kloczkowski, A.; Kim, S.J. Potent Alkaline Phosphatase Inhibitors, Pyrazolo-
Oxothiazolidines: Synthesis, Biological Evaluation, Molecular Docking, and Kinetic Studies. Int. J. Mol. Sci. 2022, 23, 13262.
[CrossRef] [PubMed]

104. Wahl, A.; Kasela, S.; Carnero-Montoro, E.; van Iterson, M.; Štambuk, J.; Sharma, S.; van den Akker, E.; Klaric, L.; Benedetti, E.;
Razdorov, G.; et al. IgG Glycosylation and DNA Methylation Are Interconnected with Smoking. Biochim. Biophys. Acta Gen. Subj.
2018, 1862, 637–648. [CrossRef]

105. Battram, T.; Yousefi, P.; Crawford, G.; Prince, C.; Babaei, M.S.; Sharp, G.; Hatcher, C.; Vega-Salas, M.J.; Khodabakhsh, S.;
Whitehurst, O.; et al. The EWAS Catalog: A Database of Epigenome-Wide Association Studies. Wellcome Open Res. 2022, 7, 41.
[CrossRef]

106. Joehanes, R.; Just, A.C.; Marioni, R.E.; Pilling, L.C.; Reynolds, L.M.; Mandaviya, P.R.; Guan, W.; Xu, T.; Elks, C.E.; Aslibekyan, S.; et al.
Epigenetic Signatures of Cigarette Smoking. Circ. Cardiovasc. Genet. 2016, 9, 436–447. [CrossRef]

107. Domingo-Relloso, A.; Riffo-Campos, A.L.; Haack, K.; Rentero-Garrido, P.; Ladd-Acosta, C.; Fallin, D.M.; Tang, W.Y.; Herreros-
Martinez, M.; Gonzalez, J.R.; Bozack, A.K.; et al. Cadmium, Smoking, and Human Blood DNA Methylation Profiles in Adults
from the Strong Heart Study. Environ. Health Perspect. 2020, 128, 67005. [CrossRef]

108. Brandstätter, O.; Schanz, O.; Vorac, J.; König, J.; Mori, T.; Maruyama, T.; Korkowski, M.; Haarmann-Stemmann, T.; von Smolinski,
D.; Schultze, J.L.; et al. Balancing Intestinal and Systemic Inflammation through Cell Type-Specific Expression of the Aryl
Hydrocarbon Receptor Repressor. Sci. Rep. 2016, 6, 26091. [CrossRef]

http://doi.org/10.1007/978-1-0716-2140-0_2
http://www.ncbi.nlm.nih.gov/pubmed/35103960
http://doi.org/10.3389/fnins.2021.701017
http://doi.org/10.1186/s13059-014-0503-2
http://doi.org/10.1186/s13148-022-01277-9
http://doi.org/10.1186/1471-2105-11-587
http://doi.org/10.1093/bioinformatics/bty778
http://doi.org/10.1186/1471-2105-13-86
http://doi.org/10.3389/fgene.2019.00816
http://doi.org/10.1186/s12859-017-1611-2
http://doi.org/10.1186/s12864-019-5761-7
http://doi.org/10.1186/s13059-016-1131-9
http://doi.org/10.1186/s13059-021-02388-x
http://doi.org/10.1093/nar/gkv1070
http://doi.org/10.1371/journal.pcbi.1009935
http://doi.org/10.1038/s41598-018-23395-2
http://doi.org/10.1093/bioinformatics/btu621
http://doi.org/10.1186/gb-2012-13-2-r8
http://doi.org/10.1002/ijc.30431
http://www.ncbi.nlm.nih.gov/pubmed/27632354
http://doi.org/10.1146/annurev.bb.21.060192.002301
http://www.ncbi.nlm.nih.gov/pubmed/1525473
http://doi.org/10.3390/ijms232113262
http://www.ncbi.nlm.nih.gov/pubmed/36362051
http://doi.org/10.1016/j.bbagen.2017.10.012
http://doi.org/10.12688/wellcomeopenres.17598.2
http://doi.org/10.1161/CIRCGENETICS.116.001506
http://doi.org/10.1289/EHP6345
http://doi.org/10.1038/srep26091


Int. J. Environ. Res. Public Health 2023, 20, 3635 26 of 26

109. Peach, C.J.; Edgington-Mitchell, L.E.; Bunnett, N.W.; Schmidt, B.L. Protease-Activated Receptors in Health and Disease. Physiol.
Rev. 2023, 103, 717–785. [CrossRef]

110. Tsuboi, Y.; Yamada, H.; Munetsuna, E.; Fujii, R.; Yamazaki, M.; Ando, Y.; Mizuno, G.; Hattori, Y.; Ishikawa, H.; Ohashi, K.; et al.
Intake of Vegetables and Fruits Rich in Provitamin A Is Positively Associated with Aryl Hydrocarbon Receptor Repressor DNA
Methylation in a Japanese Population. Nutr. Res. 2022, 107, 206–217. [CrossRef]

111. Shorey-Kendrick, L.E.; McEvoy, C.T.; Ferguson, B.; Burchard, J.; Park, B.S.; Gao, L.; Vuylsteke, B.H.; Milner, K.F.; Morris, C.D.;
Spindel, E.R. Vitamin C Prevents Offspring DNA Methylation Changes Associated with Maternal Smoking in Pregnancy. Am. J.
Respir. Crit. Care Med. 2017, 196, 745–755. [CrossRef] [PubMed]

112. Sun, F.; Lian, Y.; Wang, J.; Hu, L.; Luo, J.; Yu, J. KIF26B in the Prognosis and Immune Biomarking of Various Cancers: A Pan-Cancer
Study. J. Oncol. 2022, 2022, 4829697. [CrossRef]

113. Dizier, M.-H.; Margaritte-Jeannin, P.; Pain, L.; Sarnowski, C.; Brossard, M.; Mohamdi, H.; Lavielle, N.; Babron, M.-C.C.; Just,
J.; Lathrop, M.; et al. Interactive Effect between ATPase-Related Genes and Early-Life Tobacco Smoke Exposure on Bronchial
Hyper-Responsiveness Detected in Asthma-Ascertained Families. Thorax 2019, 74, 254–260. [CrossRef] [PubMed]

114. Nie, D.-S.; Liu, Y.; Juan, H.; Yang, X. Overexpression of Human SPATA17 Protein Induces Germ Cell Apoptosis in Transgenic
Male Mice. Mol. Biol. Rep. 2013, 40, 1905–1910. [CrossRef]

115. Nakabayashi, K.; Komaki, G.; Tajima, A.; Ando, T.; Ishikawa, M.; Nomoto, J.; Hata, K.; Oka, A.; Inoko, H.; Sasazuki, T.; et al.
Identification of Novel Candidate Loci for Anorexia Nervosa at 1q41 and 11q22 in Japanese by a Genome-Wide Association
Analysis with Microsatellite Markers. J. Hum. Genet. 2009, 54, 531–537. [CrossRef] [PubMed]

116. Haenig, C.; Atias, N.; Taylor, A.K.; Mazza, A.; Schaefer, M.H.; Russ, J.; Riechers, S.-P.; Jain, S.; Coughlin, M.; Fontaine, J.-F.; et al.
Interactome Mapping Provides a Network of Neurodegenerative Disease Proteins and Uncovers Widespread Protein Aggregation
in Affected Brains. Cell Rep. 2020, 32, 108050. [CrossRef] [PubMed]

117. Klebaner, D.; Huang, Y.; Hui, Q.; Taylor, J.Y.; Goldberg, J.; Vaccarino, V.; Sun, Y.V. X Chromosome-Wide Analysis Identifies DNA
Methylation Sites Influenced by Cigarette Smoking. Clin. Epigenetics 2016, 8, 20. [CrossRef]

118. Inkster, A.M.; Wong, M.T.; Matthews, A.M.; Brown, C.J.; Robinson, W.P. Who’s Afraid of the X? Incorporating the X and Y
Chromosomes into the Analysis of DNA Methylation Array Data. Epigenetics Chromatin 2023, 16, 1. [CrossRef]

119. Ambatipudi, S.; Cuenin, C.; Hernandez-Vargas, H.; Ghantous, A.; Le Calvez-Kelm, F.; Kaaks, R.; Barrdahl, M.; Boeing, H.;
Aleksandrova, K.; Trichopoulou, A.; et al. Tobacco Smoking-Associated Genome-Wide DNA Methylation Changes in the EPIC
Study. Epigenomics 2016, 8, 599–618. [CrossRef]

120. Grieshober, L.; Graw, S.; Barnett, M.J.; Thornquist, M.D.; Goodman, G.E.; Chen, C.; Koestler, D.C.; Marsit, C.J.; Doherty, J.A.
AHRR Methylation in Heavy Smokers: Associations with Smoking, Lung Cancer Risk, and Lung Cancer Mortality. BMC Cancer
2020, 20, 905. [CrossRef]

121. Zhang, Y.; Elgizouli, M.; Schöttker, B.; Holleczek, B.; Nieters, A.; Brenner, H. Smoking-Associated DNA Methylation Markers
Predict Lung Cancer Incidence. Clin. Epigenetics 2016, 8, 127. [CrossRef]

122. Cappozzo, A.; McCrory, C.; Robinson, O.; Sterrantino, A.F.; Sacerdote, C.; Krogh, V.; Panico, S.; Tumino, R.; Iacoviello, L.;
Ricceri, F.; et al. A Blood DNA Methylation Biomarker for Predicting Short-Term Risk of Cardiovascular Events. Clin. Epigenetics
2022, 14, 121. [CrossRef] [PubMed]

123. Tsuboi, Y.; Yamada, H.; Munetsuna, E.; Fujii, R.; Yamazaki, M.; Ando, Y.; Mizuno, G.; Hattori, Y.; Ishikawa, H.; Ohashi, K.; et al.
Increased Risk of Cancer Mortality by Smoking-Induced Aryl Hydrocarbon Receptor Repressor DNA Hypomethylation in
Japanese Population: A Long-Term Cohort Study. Cancer Epidemiol. 2022, 78, 102162. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1152/physrev.00044.2021
http://doi.org/10.1016/j.nutres.2022.10.006
http://doi.org/10.1164/rccm.201610-2141OC
http://www.ncbi.nlm.nih.gov/pubmed/28422514
http://doi.org/10.1155/2022/4829697
http://doi.org/10.1136/thoraxjnl-2018-211797
http://www.ncbi.nlm.nih.gov/pubmed/30282721
http://doi.org/10.1007/s11033-012-2246-z
http://doi.org/10.1038/jhg.2009.74
http://www.ncbi.nlm.nih.gov/pubmed/19680270
http://doi.org/10.1016/j.celrep.2020.108050
http://www.ncbi.nlm.nih.gov/pubmed/32814053
http://doi.org/10.1186/s13148-016-0189-2
http://doi.org/10.1186/s13072-022-00477-0
http://doi.org/10.2217/epi-2016-0001
http://doi.org/10.1186/s12885-020-07407-x
http://doi.org/10.1186/s13148-016-0292-4
http://doi.org/10.1186/s13148-022-01341-4
http://www.ncbi.nlm.nih.gov/pubmed/36175966
http://doi.org/10.1016/j.canep.2022.102162

	Introduction 
	Materials and Methods 
	Study Design and Participants 
	Baseline Anthropometric, Clinical and Biochemical Variables 
	Tobacco Smoking and Adherence to the Mediterranean Diet 
	DNA Isolation and DNA-Methylation Analysis 
	Statistical Analysis and EWAS 

	Results 
	Participants Characteristics 
	Association between Tobacco Smoking (5 Levels) and Its Epigenome-WideMethylation Signatures 
	Association between Tobacco Smoking (Comparing Categories) and Its Epigenome-Wide Methylation Signatures 
	Gene Set Enrichment Analysis of the Differentially Methylated CpG Sites Using KEGGand GO 
	Dose-Response of DNA Methylation in Current Smokers 
	Methylation at Selected CpG as Predictors of Smoking Status 
	Association between Tobacco Smoking (5 Levels) and Its Epigenome-Wide Methylation Signatures by Sex 
	Modulation of Tobacco Smoking’s Epigenome-Wide Methylation Signature by Adherence to the Mediterranean Diet 

	Discussion 
	Conclusions 
	References

