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ABSTRACT. 

Solar energy is becoming a pivotal resource in the field of electricity generation as it seeks to create 

clean energy which makes the earth environmentally friendly. Unmanned Aerial Vehicle (UAV) 

on the other hand has become a low-cost data collection technology used for remote sensing in 

Geoscience. With 300 days of sunshine in the Kingdom of Spain and 3,321 hours of annual 

sunshine in Castellon, residents are eager to harness the solar energy at their disposal through the 

mass installation of solar panels. In light of this, there is an urgent need for studies on the accurate 

detection of solar panels with minimal edge loss and energy quantification of these solar panels in 

order to create a spatial data infrastructure that serves as a geospatial tool for urban planning and 

green policy implementation. A case in point is the spatial identification of solar clusters which 

can aid in the location of EV charging stations in urban areas. To this end, this thesis addresses 

these challenges by conducting a UAV photogrammetric survey and developing a deep learning 

model for the accurate detection, mapping, and quantification of solar panels in Castellon, Spain 

using ESRI ArcGIS Pro and Drone2Map. To ensure accurate detection and minimal detection edge 

loss, we make use of instance segmentation which combines the use of object detection and 

semantic segmentation. This method accurately delineates the boundary of each solar panel in the 

study area from a very high-resolution UAV multiband photogrammetry survey while minimising 

false detection through the addition of a normalised digital surface model. The deep learning model 

was trained on a record high 0.03m spatial resolution RGBnDSM UAV imagery with the state-of-

the-art instance segmentation deep learning architecture called Mask RCNN on the ResNet-101 

backbone in diverse weather conditions. This research was tested on real world scenarios, and we 

achieved a mean accuracy of 0.8445, a recall of 0.9162 and an F1 score of 0.8782 where a higher 

intersection over union was set at 0.75. Following these results, the deep learning model was 

applied to an urban planning use case to determine spatial distribution of solar clusters. The 

findings of this research contribute to advancing solar energy integration into urban landscapes 

with a robust and accurate geospatial framework. 
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INTRODUCTION. 

Background. 

With increased public attention on climate change and its effect on the environment, 

countries are beginning to look towards clean and renewable energy. A rise in population and 

industrialisation over the years has also brought with it exacerbating pressure on the need for 

increased energy consumption across cities with a shared cost which has accounted for the 

daunting energy crisis in Europe. The challenges of urban industrialisation have made solar energy 

gain popularity as an alternative to fossil fuels and a means to reduce the cost of energy 

consumption (Kannan & Vakeesan, 2016), especially in areas where no grid is set for electricity 

supply. The cost of energy does not correspond to the growth of the nation's economy as (Nasrallah 

et al., 2022) state that Germany and Hungary have experienced temporary energy tariff deficits in 

European countries with vulnerable economies such as Spain. With climate change in mind and 

cities growing exponentially, and an added city transportation riddled with carbon emissions that 

have not been solved, it only makes sense to adopt a carbon-free energy solution for cities as put 

by (Daus & Yudaev, 2017). With the move towards clean energy, there is a further need for cities 

to keep a global track-record of this adaptation, its database, and its estimated contribution to the 

national electricity grid as this would foster better urban and economic planning in cities. This data 

could prove crucial to urban planners, solar panel sales marketers, solar maintenance engineers 

and government taxation offices, who would like to give tax incentives to citizens who contribute 

renewable energy to their neighbourhoods. Mapping solar panels can also be effective for energy 

estimation and its associated financial incentive programs. For example, Fla. Stat. § 196.012(14) 

allowed citizens in Florida to enjoy a rebate of up to $20,000 for a single household and up to 

$100,000 for commercial installations for citizens who installed solar energy systems in their 

buildings. A further example of a tax incentive took place in August 2008, when North Carolina 

enacted a real estate property tax exemption equal to 80% of the appraised value attributed to the 

addition of a photovoltaic solar energy system to their buildings. Not only can such data be used 

to quantify solar energy, but also the location of solar panels in deep rural areas was used as a 

source of intelligence in 2015 by the defence intelligence community in Africa to determine 

location of terrorist activities in Gamboru Ngala, Nigeria. With these quantifications, mapping and 

location finding of solar panels, geoscientists will spend an ample amount of time manually 
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digitising solar panels in an entire state or country.  The communication from the commission to 

the European Parliament, the Council, the European Economic and Social Committee and the 

Committee of the Regions EU solar energy strategy hold that solar panels provide 5% of total 

electricity in the EU and that the EU intends to increase its 2030 target to 45%. They assert that 

the full potential of solar energy can only be exploited when citizens are provided with the right 

incentives to be prosumers. Hence the committee encouraged EU member states to establish 

appropriate incentives to encourage solar installations. This underscores the need for and value of 

development of effective deep learning algorithms for the detection of solar panels. 

Research Workflow and Objectives. 

This research seeks to conduct an aerial Photogrammetry Survey over the study area located in 

and around the UJI campus, in Castellon, Spain. This survey included capturing high-resolution 

UAV imagery to serve as the foundation for subsequent analysis. Following data acquisition, the 

project focused on training, testing, and assessing an instance segmentation deep learning model 

utilizing the Mask R-CNN deep learning architecture. This phase involves systematically 

developing the model to accurately detect and delineate solar panels within the UAV imagery.  

Subsequently, the trained model was applied to perform detection and mapping of solar panels 

across the study locations, to understand how well an instance segmentation model generalizes 

accurately.  Finally, we determined the spatial distribution and quantification of solar panels 

present within the study area, providing valuable insights towards the improved time and accuracy 

performance of an instance segmentation model if trained in diverse atmospheric conditions. 

Research Questions. 

1. How does low lighting condition in aerial images affect image reconstruction and detection 

of solar panels for homogenous texture in UAV photogrammetry? 

2. To what degree of accuracy can instance segmentation models be employed in the detection 

and mapping of solar panels? 

3. How well can the deep learning model perform in a real-world scenario if trained with data 

from diverse atmospheric condition and tested in real world scenarios? 

4. If solar panels are detected and mapped, how does their spatial distribution inform the 

installation of city furniture like EV charging stations? 
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Study Area. 

The study area for this research is limited to an area covering and just outside the 

Universität Jaume I in Castellón Spain. The choice of the study area is unique to its climatic 

condition where Castellón receives 3,321 hours of annual sunlight which is greater than other 

communities of Spain. Hence the need for the development of a deep learning model to keep track 

of emerging solar panels by the inhabitants. The study area was also chosen due to the availability 

of equipment to carry out the research. Because deep learning models are known to perform better 

in the locations in which they are trained, the study area is also put forth by the unavailability of 

an instance segmentation deep learning models for the accurate detection of solar panels in 

Castellon as this thesis seeks to achieve as a contribution to science in the Kingdom of Spain. 

 
Figure 1 - Map showing areas in Spain with hours of sunshine. 
Source – Quiero Sol Advisor 2023. 
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Significance/Justification. 

This research seeks to adopt the use of a more precise deep learning architecture which 

utilises instance segmentation to accurately delineate the segments of solar panels in aerial 

imagery. Here, image segmentation uses a combination of object detection and image 

segmentation to give a more accurate delineation of the solar panels without losing pixels data. 

This research adopts instance segmentation because instance segmentation combine the principle 

of object detection and image segmentation without quaternization in the ROI pool layer as a more 

accurate and faster means for the detection of solar panels with less training dataset and less 

training time compared to other deep learning architecture which utilises just object detection or 

just semantic segmentation. 

Figure 2 - Figure showing classical explanation of segmentation. 
Source - https://imperialcollegelondon.github.io/recode-perceptions/index.html. 

 

 In previous research, image segmentation models have been known to detect solar panels 

but however losses fractions of the panels thereby making it difficult to compute information like 

electricity generated by each panel. Other research also utilizes object detection algorithm which 

detects solar panels but do not delineate the segmentation. The result of an instance segmentation 

model is an accurate bounding box delineating individual solar panels themselves (instance 

segmentation). In object detection, objects are detected but only from a large region of interest 

where the solar panels are located (object detection) while in image segmentation solar panels are 

detected however pixel information are lost resulting in low intersection over union as seen in 

previous research. The types, variant and associated variant in energy production of the instance 

of the solar panels can be further distinguished by this research. The diverse weather condition of 
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the study area for which the deep learning model is trained on, makes it a valuable model in other 

regions like Germany which has less sunshine and Morocco which can be very sunny. This 

research would address the need for solar panel maintenance companies who seek to know exactly 

where to focus their marketing strategy. The project would also be useful for military intelligence 

community, who would need it to infer terrorist locations. Government agencies would also use 

this project to identify people who contribute to clean energy if tax exemption needs to be given 

to such citizens and, most importantly, to quantify how many solar panels are mounted on these 

roofs and how much energy they contribute to the national grid. The research may be also 

beneficial to urban planners who could as well determine which parking lots could benefit by 

proximity to solar panel clusters. As data for training and testing deep learning models result have 

become scarce, this research contributes very high-resolution UAV dataset to Geoscientist for 

continuous study in geospatial deep learning. 

A further justification of this research is that the deep learning model gives solar marketing 

firms the localized opportunity to define the scope for which they can channel their marketing 

efforts, thereby saving time and money with an assured return on investment. If the government 

decides to help its citizens detect defects in their solar panels, they should know where to look or 

else they would fly photogrammetric missions aimlessly looking in the wrong places. 

Consequently, accurate delineating boundaries of solar installations aids accurate flight planning 

for solar installation inspection projects. The accurate detection of solar panels can help cities 

progress towards the adoption of green building practices, including a better ability to apply for 

EU funding. With the localisation of solar panels, policy makers can optimise power distribution 

and energy storage infrastructural planning. This research might also contribute to an urban green 

zone map or solar friendly urban map. 
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LITERATURE REVIEW. 

UAV Photogrammetry in Geoscience. 

With the advent of technological developments in remote sensing research, (Nex et al., 2022) 

indicates that over the last two decades, UAVs have become the most relevant emerging technology 

in the discipline of Geoscience and Remote Sensing. According to (Nex et al., 2022) this 

technology offers the user the possibility of having economical (Samad et al., 2013), high-defined 

spatial (Samad et al., 2013) and (Yao et al., 2019) temporal resolution imagery. They all opine its 

usefulness for the range of remote sensing problems such as infrastructural improvement, image 

classification (Sunarya et al., 2020) semantic segmentation, and object detection with a focus on 

instance segmentation, upon which this research is based.  

Despite the increase in the usage of UAVs in recent times, the aviation industry and Electronics 

industry have embraced the application of UAVs even more so than geoscientists (Samad et al., 

2013) with (Nex et al., 2022) finding that relatively limited research has been done on the adoption 

of deep learning for semantic scene analysis using UAVs photogrammetry. Although (Samad et 

al., 2013) declares UAV technology to be a revolution in the geoscience industry, it still faces 

complex challenges with regards to its analysis. (Nex et al., 2022) and (Yao et al., 2019) purports 

that due to the high resolution of GSD obtained from UAV photogrammetry, challenges exist over 

the extraction of semantic information. For example, ultra-high-resolution imagery would create 

more unwanted classes during image classification making it difficult to map land use accurately. 

UAV technology has not yet been able to overcome the challenges of motion blur and its inability 

to overlay objects in homogenous scenes accurately like seas, trees, vegetation, and beaches as 

(Samad et al., 2013) asserts.  

Previous research has shown that UAV photogrammetry has been used to conduct research for 

studies in urban development analysis (Iheaturu et al., 2022) quantification of mudflat Morpho 

dynamics (Chen et al., 2022) production of digital base maps (Sunarya et al., 2020), archaeological 

surveying (Saleri et al., 2013) aerial terrain mapping, digital terrain model mapping (Udin et al., 

2012) and, most recently, to study environmental impact assessment (Olivatto et al., 2023). Novel 

research in gravimetry (Luo et al., 2022) has also emerged from the principles of UAV 

photogrammetry. Even given the vast number of studies in UAV photogrammetry, it has thus far 

not been used to survey solar panels on building rooftops as this thesis seeks to achieve. 
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(Anuar et al., 2023) presented the potential of UAV technology for UAV photogrammetry in GIS 

by placing a small format Pentax Option A40 digital camera underneath the wings of the Cropcam 

UAV to collect photographs over their study area. In their research, the images were collected with 

a frontal overlap of 60% and a 30% side lap. To ensure accuracy for the GIS study, they established 

ground control points using the rapid static technique of GPS and check point. The convergent 

configuration of the UAV camera was employed to strengthen the geometry for successful recovery 

of the focal length. They calibrated the camera by taking 10 photographs from 5 different locations 

of the test field. During the flight, they disabled automatic focus and enabled the infinity focus of 

the camera with two images taken in NIDIR and Oblique per location over a retro reflective target. 

To avoid oversaturation on the retro reflective target, the flashlight of the camera was covered with 

a piece of tissue paper to filter the flash such that an adequate amount of light would be transmitted. 

To process their imagery, the ERDAS Imagine processing software was used where an orthophoto, 

Digital terrain model and a digitized vector map were generated. The result of their study showed 

that lens distortion parameters K1, K2 had a significant effect on their photogrammetric result. 

Also, an orthophoto was produced from images that had 60% frontal overlap and 30% side overlap 

alongside a digital elevation model and 3D stereo model. Although this research was successful, 

it experienced certain UAV photogrammetry challenges that are considered worthy to note. Anuar 

reports that due to crabbing - a condition where an aircraft drifts from its flight plan - the 

orthophotos were not promising. They strongly advocate that wind plays a vital role in UAV 

photogrammetry as this could cause crabbing leading to the overall ineffectiveness of the 

application of UAV photogrammetry product for geographical information system studies. Their 

study proved that small format digital cameras can be used in UAV photogrammetry for GIS study 

as it addresses the gap in the use of small format digital cameras in UAV photogrammetry. 

However, they give that small format digital cameras need to be calibrated to achieve high 

geometric results especially if the project area does not require high accuracy and is of low budget. 

(Iheaturu et al., 2022) conducted a simplified approach for mapping and performing urban analysis 

by utilizing structures from motion photogrammetry. In their research, they aimed at developing a 

systematic workflow that could be adopted by geoscientists and urban planners for quantifying 

urban development. Their means of quantification was to assess the heights of buildings to 

determine if the land in the study area was being used parsimoniously. Building upon the work of 
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(Anuar et al., 2023), Iheaturu goes further to justify their reason for the choice of UAV used for 

UAV photogrammetry. (Iheaturu et al., 2022) states that the choice of UAV for the study is justified 

by its ability to generate photogrammetric products useful for their study. These products are 

orthophotos from which digitization can be made to produce a vector map and a digital surface 

model from which building heights can be computed. To collect data for this study, Iheaturu used 

a low-cost DJI Mavic 2 Pro UAV which features a focal length of 35mm, a sensor of 20 megapixel 

(1’’ CMOS), hovering vertical: ± 0.1 m (when vision positioning is active), ±0.5 m (with GPS 

positioning) and horizontal: ± 0.3 m (when vision positioning is active) and ±1.5 m (with GPS 

positioning) which allows the UAV to acquire geolocated images. To produce the model with good 

accuracy, images were acquired with an adequate overlap of 60% front overlap and 75% side 

overlap with nine targets evenly distributed over the study area. The targets were made from PVC 

while the GPS coordinates were measured using a Hi-target V30 GNSS unit in real time kinematic 

mode. For flight planning, Iheaturo used the Drone Deploy flight planning software to plan 

waypoints that aircraft would travel to collect data. Their flight parameters include a flight height 

of 61m which was above that of the highest obstacle of 55m in the study area. At this altitude, the 

UAV captured a total of 470 images covering 22.5 ha under 25min 41s with an overlap of 60% 

forward and 75% side lap. Because their research needed to make spatio-temporal comparisons of 

building growth, they used the ELSHAYAL Smart GIS software to download 2005 imagery of the 

study area. To process their data from the UAV, they used the PIX4D Mapper software to align the 

images, and to produce a sparse 3D point cloud reconstruction of the images they used the inbuilt 

SiftGPU algorithm to identify match feature key points throughout the entire photo. They adopted 

a different method for imagery accuracy by using the rayCloud Editor tool in PIX4D. The 

generated quality report shows they achieved a georeferencing accuracy of < 0.1 m which falls 

within the photogrammetric allowable limit. Since they needed to compare two images, they 

purport that it was essential for the two images to have the same coordinate system. To achieve 

this the UAV imagery was referenced to the local datum of the study area while the Google Earth 

imagery which was collected in WGS 84 was also transformed to the local coordinates of the study 

area using the transformation techniques in ArcGIS Software. Once all the imagery had been 

transformed and was ready, they performed an on-screen digitization to extract building footprints, 

roads, and plot features for urban analysis. They express that due to the size of the study area and 

the level of precision needed for digitization, the automatic and semi-automatic classification 
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method would not be ideal for extracting those features. Upon extraction, they classified the 

extracted features to show development status in terms of tarred and untarred for roads, developed 

and non-developed for plots. With this, they used the building heights to ascertain parsimoniosity 

of land alongside building count ratio and plot status to quantify urban analytical changes that 

occurred between 2005 and 2009. The result of their study shows that all position errors of their 

ground control points fall between 18.73 mm to 49.84mm which is within the Royal institute of 

charted survey acceptable limit of less than 80mm. Conversely, they generated an orthophoto and 

digital surface model with a ground sampling distance of 1.43cm which is largely affected by the 

flying height of the UAV. They inversely opine that UAVs flying at a lower height would generate 

better spatial resolution. Their result showed that there were 8 new buildings per year, 3 plots 

developed per year, an increase of 7m road per year and an overall decrease in underdevelopment 

of land by 11%. Their research proves that UAV photogrammetry again can be successfully used 

in urban analysis towards the study of parsimonious use of land. 

(Chen et al., 2022) took a different approach in UAV photogrammetry for geoscience but this time 

without ground control. This is a move away from the approach chosen by (Iheaturu et al., 2022) 

and (Anuar et al., 2023) who used ground control points for their UAV photogrammetry. The main 

objective of the study by (Chen et al., 2022) was to evaluate the potential of RTK – assisted UAV 

photogrammetry without GCP in quantifying intertidal mudflat morpho dynamics. They state that 

with challenges facing the setup of ground control points in monitoring coastal environments, 

UAVs with onboard RTK-GNSS can also achieve high level of geodetic accuracy like the 

establishing ground control points.  Prior to this study, the potential of this process was not known. 

For this research, Chen used a DJI Phantom 4 RTK drone to collect photographs of the study area. 

The lens of the drone had a focal length of length of 24mm, a CMOS sensor of 1inch and pixel 

size of 20 mega pixels. They performed a rigorous calibration on the drone lens to measure radial 

and tangential distortion. Instead of establishing ground control points, they connected the RTK 

drone to the RTK network base which provided centimetre level positioning accuracy. Although 

ground control points were not installed, wooden squares of 40 x 40cm were established as 

checkpoints for accuracy assessment and measured with a differential GPS. For flight parameters, 

they set their flight height to 120m with 80% frontal overlap, 80% side overlap and a camera angle 

of NADIR from which they collected 3214 images. Chen expressed the importance of flying on a 
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cloudy day to avoid the effect of sunlight reflection on mudflat surface. All images in their research 

were processed using the PIX4Dmapper software and root mean square error was determined from 

the RTK assisted UAV Photogrammetry without ground control points. To determine the spatial 

characteristics of annual erosion and accretion that has occurred in the mudflat between the two 

years under comparison, they used the pixel difference across the pixel location. The result of their 

study shows that the accuracy of their UAV photogrammetry gives a centimetre level accuracy. 

They agree that performing UAV photogrammetry without GCPs falls short of accuracy performed 

by previous studies that achieved millimetre level accuracy, but they express optimism that that an 

RTK assisted UAV can obtain centimetre level topographic data and would save more time when 

collecting data for large topographic data. The result of their research shows that the digital 

elevation of the UAV photogrammetry detected small elevation changes that affect water flow and 

sediment deposition. They assert that UAV photogrammetry can help ecologist map areas where 

salt marshes survive for further restoration of the vegetation colonization. 

At the 2020 International Conference on Computer Engineering, Network, and Intelligent 

Multimedia (CENIM), (Sunarya et al., 2020) presented a study on digital maps based on unmanned 

aerial vehicles to study the performance of photogrammetry software. In their research, they 

expressed worry over the overpriced photogrammetry software available to perform 

photogrammetry and tried to compare them with open-source photogrammetry software. They 

speak firmly of UAV as a medium that has largely helped map making. To begin this research, 

Sunarya made the flight plan by determining the way points and flight region of the study area. 

This differs from (Chen et al., 2022) who collected data in a cloudy atmosphere. (Sunarya et al., 

2020) took a different approach towards the time of the day for their flight by collecting data 

between 6am and 8am during sunny weather. They argue that this was done to keep the lighting 

obtained during flight consistent across the study region. For data collection using UAV, a DJI 

Phantom 4 pro was used with flight speed between 5 to 7km per hour, camera angle at 90 degrees, 

an altitude between 50 to 100 meters considering the building height in the study area and an 

overlap of 70 to 80 percent. This flight parameter resulted in 31 sorties and 3703 aerial photographs 

taking the team 16 days with 2 missions per day. During their research, they expressed challenges 

of insufficient batteries, stating that having enough batteries during flight could have limited the 

number of days spent collecting data. Another challenge they faced was memory overload after 
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the ortho mosaicking ran for 34 hours on an Intel Core i7 9750H GPU NDVIA GEFORCE GTX 

1650 8GB. This made them use only 76 aerial images to perform the photogrammetric process of 

mosaicking. Upon completion of the image processing, they compared the performance of Open 

Structure for Motion and Agisoft PhotoScan. They found out that despite the long processing time 

by Agisoft, the software performed relatively better in terms of image resolution. But in terms of 

the software ability to match homogeneous images as tie points to generate the orthophoto, Agisoft 

PhotoScan performed poorly with 24.53% holes detected in the imagery while Open Structure 

from Motion had 2.0690% detected holes. Again, to compare the distance in error of the 

coordinates, they used the haversine equation which they argue is commonly used to express the 

distance between two points in a spherical object. The result of their experiment shows that there 

was an error of 0.650285m when comparing points taken from the ortho photo and on the field. 

The result of their research also shows that the geotag results on the map have an average error at 

the latitude of 0; 00032%, and an average error on longitude 0; 00024%. Although their research 

gives results, it is not clear what coordinate system was used in making this comparison and what 

coordinate system was used in aerial data collection and field data collection. Neither was it stated 

why an error of 0.6m occurred, especially where (Chen et al., 2022; Iheaturu et al., 2022; Anuar et 

al., 2023) had all established ground control points and achieved centimetre-level accuracy. 

(Zerafa & Azzopardi, 2022) have tried for the first time to use UAV photogrammetry in the study 

of electricity. They argue that with the growing policy of incentives towards PV installations in 

Malta, it is essential for government and financial institutions to have ample information on the 

potential energy a PV system installation can generate before allocating funds and incentives to 

owners of these systems. Their study was aimed at providing a simple method for estimating 

electricity generation potential based on orthophoto generated using Unmanned Aerial Vehicle, 

geospatial algorithm, and photovoltaic data. Spatial data was collected for this research using the 

DJI Matrice V2pro drone and an RGB camera. During multiple flights they collected the data with 

the camera set to NADIR and oblique at 45 degrees. Each image had a size of 4000 x 3000 pixels, 

a ground spatial resolution of 3cm, a flight height of 50 meters from the ground surface which was 

a different approach from (Sunarya et al., 2020) who collected photographs with building height 

in perspective. Sunarya set their overlap to 80%. To estimate how much energy is generated from 

the available roof, they calculate the number of buildings and number of units within each building. 
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Given that they regard each unit as one roof, they used the total collective unit to find the 

cumulative surface area available for PV system installation. A geo-orthophoto tool from PIXAL 

Ltd was used to create the Ortho mosaic. Energy data per meter squared was generated from three 

PV systems in three different locations. This data was logged on to a cloud server daily over a 

period of two years using a software from UNITENERGY Ltd. The data from this PV system was 

used to calculate the average energy generation potential for a square meter. The result of their 

research shows that the UAV photogrammetry demonstrated that the study area had a total 

available area of 64,703m sq to host PV systems. To obtain their result, they divided the total 

energy generated from the PV system by the total surface area of the panels, giving a constant of 

20.56m2. Their research shows that a total of 7.17 GWh of electricity can be generated from the 

study if the buildings in the study area were filled with solar panels over their rooftops. The 

research presented by (Zerafa & Azzopardi, 2022) showed a promising use of UAV 

photogrammetry for energy potential estimation however their research was not concerned with 

the geodetic accuracy of the imagery collected from the drone. 

(Ali & Abed, 2019) focused their research on the impact of flight parameters on UAV 

photogrammetry for something they termed mobile topographic mapping. They achieved this by 

establishing 13 ground control points and observed 4 ground control points while correcting the 

rest using the OPUS website and TOPCON tool office software. A DGPS type TOPCON GR5 was 

used to make these observations in static mode. To collect imagery for their experiment, a DJI 

Phantom 4 Pro with a camera specification of 1 inches CMOS and 20 mega pixels. Utilising the 

autonomous function of the drone, they planned their flight using the Pix4D capture software. Five 

different scenarios were established with altitudes of 40, 60, 80, 100 and 120 metres from which 

only three were selected for the research. Ali and Abed give that PIX4D and Agisoft Photoscan 

are the two most popular software used in photogrammetry. This is supported by the fact that (Chen 

et al., 2022; Iheaturu et al., 2022) also used the same software in their research. They give that the 

software uses the internal meta data of the images to create a reasonable accurate geo rectified 

orthophoto imagery without ground control points. They also affirm that where accuracy in 

geodetic accuracy is a priority, ground control points need to be established. The impact of image 

orientation was also tested in NADIR and 70 degrees oblique.  
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Object Detection Using Deep Learning. 

Research in object detection is a complex computer vision task with evolving science for 

improvement. (Wang et al., 2022) state that the overall aim of object detection from satellite 

imagery or UAV image is to localize the object within an image. Such localization makes image 

detection a core geospatial task to undertake. Various researchers in the field of computer vision 

and remote sensing have studied the use of deep learning architecture in the detection of features 

and objects, whether it is a swimming pool, a crop type, a football field, or a terrorist vehicle, etc. 

A machine learning model trained on virtual laser scanning data was used by (Zahs et al., 2023) in 

the detection of structural building damages. In their research, they simulated pre- and post-event 

point clouds through UAV-borne laser scanning of virtual scenes. Using k-mean clustering, their 

research identified coarseness in changed and unchanged buildings, which helped in the extraction 

of robust object-specific change features. Training and classification of point clouds, object-

specific change features, multi-class building damage was done using the random forest machine 

learning model. The result of their classifier when applied to the real-world evaluation dataset 

yielded high classification accuracies for the target damage grades with overall accuracies of 

92.0%–96.8% and an F1 score of 73.2%–94.6%). 

In the work of (Bazi & Melgani, 2018), they used a novel convolutional support vector machine 

network for the detection of vehicles and solar panels from a 2cm UAV imagery. Here, they built 

the network using the linear support vector machine as the convolutional filter for generating the 

feature maps. They proposed a configuration with five convolutional layers, three reduction layers, 

and a classification layer. To efficiently compute the weights of the SVM filters, they used the 

multicore liblinear software package and a penalty parameter. Instead of backpropagation for 

learning weight, they used forward supervised learning. The result of this method when compared 

to a pretrained convolutional neural network achieved an accuracy of 93% in detecting the location 

on the image where the solar panel is located, but not a bounding box characterizing the panel 

itself. 

Geospatial deep learning for solar panel detection. 

The all-encompassing efforts to recreate statistical models that act like the human brain with an 

ability to make predictions based on historical data have given rise to studies in artificial neural 
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networks. (Wei & Qingna, 2021) and (Topol, 2019) opine that an important element of artificial 

neural networks is data. Given that such data can be geographic, studies in artificial intelligence 

can also be applied to geography. The nexus between artificial intelligence and geospatial 

technology is based on the phenomenon that spatial is special. (Bookstein, 1991) gives that spatial 

is special due to its application in geo-statistics and spatial point patterns. Stating further that since 

every observation or measurement taken on the surface of the earth is done with the knowledge of 

its location, such observations or measurements are spatial data and can be studied using artificial 

neural networks to solve geographic problems. (Gao, 2021) further gives that geospatial artificial 

intelligence is a field of study which concerns itself with mimicking the processes of how the 

human brain perceives things, how it reasons and make discoveries about geographical phenomena 

to solve problems of human interaction with its environment through the development of computer 

programmes. 

In the context of data as a driving force for artificial intelligence and neural networks, (Janowicz 

et al., 2020) affirm that the availability of high-quality imagery as well as software and hardware 

to process them have given rise to the advances in geospatial artificial intelligence. The availability 

of high-resolution imagery, high performance computers and deep learning has fostered advances 

in object detection. This is a core point of study in geospatial science, just as this master’s thesis 

seeks to achieve. The common challenge in geospatial artificial intelligence is a lack of training 

data as stated by (Li et al., 2021). Another challenge put forward by (Gao, 2021) is the exposure 

of field conditions and equipment expenses, limiting the training of geospatial professionals as 

well as the unavailability of high-performance machines for developing, training, and testing of 

geospatial deep learning models (Hu et al., 2022). 

Despite these challenges, previous researchers (Castello et al., 2019; Hu et al., 2022; Kausika et 

al., 2021; Li et al., 2021; Malof et al., 2016; Yuan et al., 2016) have all employed various 

techniques in applying geospatial artificial intelligence toward the detection of solar panels as this 

master’s Thesis focuses on. (S. Wang & Li, 2021) have studied geospatial artificial intelligence in 

terrain analysis for natural feature extraction. (Laxmi 2019) also studies geospatial artificial 

intelligence for detecting ships, (Yue et al., 2022) for earth observation, (Usery et al., 2022) and 

for topographic mapping. Despite the significant number of studies in artificial intelligence, 
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geospatial artificial intelligence and geospatial deep learning has thus far not been vastly explored 

in the detection of solar panels on building rooftops as this thesis seeks to achieve. 

(Malof et al., 2016) carried out a novel study in geospatial artificial intelligence to automatically 

detect solar photovoltaic arrays from high resolution aerial imagery. In their research, they state 

that information about the location of solar panels, their power capacity and energy potential are 

now sought after by government agencies, utility engineers and third-party decision makers. They 

agree that this information can be acquired by means of survey and interconnection filling. 

However, they stress that these methods of obtaining information about solar panels are arduous 

and economically damaging. In their work, they investigated the use of computer algorithms to 

extract solar panel information from high resolution imagery of 0.3m ground spatial resolution. In 

this novel research, they utilised a large data set of orthorectified RGB aerial imagery collected 

within the same month over California with a total coverage of 135 km Sq. The images had a size 

of 5000 by 5000 pixels each and a total of 600 images. Malof explains that due to the high presence 

of solar panels and availability of aerial imagery, the study location of California was used. In their 

research, they manually annotated all the visible solar panels totalling 2,794 solar panels to develop 

an effective computer algorithm. To avoid a positive bias on the algorithm, Malof splitted the 

135km Sq imagery into training and testing at a ratio of 2:1. To carry out the analysis, they 

performed a feature extraction process that takes the 3-channel RGB image as an input and returns 

an M-channel feature image using a window size of 3 x 3 pixels because it roughly corresponds to 

the size of the individual solar panels to extract pixels that characterise the colour, textures and 

other patterns surrounding the pixel. With the supervised machine learning model, they employed 

a random forest classifier model that assigned probability or confidence values to each pixel, 

indicating the likelihood of the presence of a solar panel by training it with roughly 500,000 

annotated solar panels and 5 million pixels. They argue that the random forest classifier has the 

advantage of learning complex nonlinear relations between input and output variables with a high 

computational speed. Solar panels were detected by identifying groups of adjacent or neighbouring 

high confidence pixels as detected objects. Although the classifier performed fairly, they post-

processed by extracting only pixels with high confidence value. 

The results of their research showed that the random forest classifier was effective at 

discriminating non panel pixels from panel pixels. They show that with 0.07% of the pixel in the 
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testing data, the detector achieved a P value of 0.0007. The detector detected 90% of the targets 

with a J value of 0.7 as baseline for future improvements. Their novel work shows that the 

algorithm was highly effective at detecting solar panels on a per pixel basis and object basis. 

However, it performed poorly in mapping the precise shape of the solar panel array. 

Building upon the work of (Malof et al., 2016) who used a supervised learning random classifier 

model, (Malof et al., 2017) presented an improved work at the 2017 IEEE International Geoscience 

and Remote Sensing Symposium (IGARSS). Their improved research was a deep convolutional 

neural network, which leverages on pretraining for detection of solar panels array in aerial imagery. 

Dataset and manual solar panel annotation used in this work were the same as in (Malof et al., 

2016). However, to train the convolutional neural network, they extracted a large number image 

patch that corresponds to each class and designed the image extractor to obtain roughly 2.5 million 

total training patches. They obtained non-PV training images by sampling every fifth pixel in the 

(Malof et al., 2016) imagery and retained only locations that did not intersect with a PV annotation. 

They further sampled every 3rd pixel of the training imagery data set and retained only pixel 

locations that intersected with solar panel annotation. To reduce computational load, they 

randomly sampled only 30% of the images containing solar panels and duplicated it 4 times. Their 

research utilises the convolutional neural network, a deep learning architecture consisting of a 

visual geometry group module and a fully connected neuron module which is followed by a 

rectified linear unit (ReLU) activation. This architecture relied on gradient descent where they 

used a batch size of 64, a learning rate of 0.001, a momentum of 0.9 and a weight decay of 0.0001. 

They trained their model consisting of 16 epochs and used 10% of the total training imagery for 

validation. They trained three different CNN weight initialisations.: a random initialisation 

network and two other networks initialised with pretraining. The result of their experiment was 

scored using the Jaccard index scoring matrix and they found that all three using the convolutional 

neural network performed better than (Malof et al., 2016) on the same data used in (Malof et al., 

2016) suggesting that the CNN architecture chosen for this problem is effective and superior for 

image recognition. Of all three CNN initialisation procedures they report the pretrained weight 

(fixed) network performed the worst while the random initialisation detector achieved a precision 

score of 0.95. 
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(Golovko et al., 2017) studied a deep convolutional neural network for detection of solar panels. 

In their study, they tried to solve the problem of determining the presence of solar panels in the 

image and their detection by obtaining the exact coordinates of the location. In this research, they 

used a low-resolution 200 by 200-pixel photo from Google Maps to train their proposed model 

while the Faster R-CNN deep learning architecture was deployed. They split the research task in 

two by first defining the images which had solar panels using the convolutional neural network 

with six layers. A second task was then to detect the solar panels using the faster R-CNN deep 

neural network based on the ResNet – 50 classifiers. In this research Golovko had a sample of 

3347 photographs. For the detection task, 1000 images containing solar panels were used from 

which 800 were used as training set and 200 images for testing. To determine the images with the 

presence of solar panels they manually sorted the images by assigning them into two groups: 

containing and not containing solar panels. For the second task of panel detection, they manually 

digitised the solar panels rectangularly. They expressed challenges that some images could not be 

digitised because the solar panels were located at the corners of the images. The neural network 

was trained with 70 epochs, a K values of 0, a learning speed of 0.001, momentum parameter of 

0.9, weight decay of 0.0005, a batch size of 20 and a drop out with probability of 0.5. The training 

data achieved an accuracy of 87.46% and ROC curve of 0.92. The trained model was then operated 

on the testing data using the faster R-CNN deep neural network based on the ResNet-50 classifier 

trained on 5000 iterations. The trained model achieved an AP result of 0.929 on the 200 testing 

images, an indication of the model’s high generalisation ability. Despite the success of this 

research, (Golovko et al., 2017) still faced the inability to have their model detect the boundaries 

of the solar panels in the photograph as this thesis seeks to undertake. This is a similar challenge 

to that faced by (Malof et al., 2016). 

In Switzerland, (Castello et al., 2019) carried out research on the automatic detection of rooftop 

solar panels using convolutional neural networks. They argue that apart from the United States, no 

country has a comprehensive solar panel database covering the entire country. In a move away 

from the method employed by (Golovko et al., 2017) who used a faster R-CNN and (Malof et al., 

2016, 2017) who used a random forest classifier, (Castello et al., 2019) used the U-Net deep 

learning architecture and assert that it is the most popular CNN architecture used in image 

segmentation problems. Their research was aimed at creating a comprehensive database with 
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location and size of existing solar panel installations in urban areas. To complete this research, 

they used an ortho rectified 8-bit RGB image of Switzerland provided by the Swiss Federal Office 

of Topography in TIF format, with a tile size of 17500 by 12000 pixels and spatial resolution of 

0.25m. This research work is the first-time imagery in geoscience had been used in the study of 

the detection of solar panels. They express however that due to the large tile size of the imagery, 

it became difficult to detect the solar panels hence they further divided the tiles into 250 x 250 

pixels in PGN format. They employed the use of an open cv-based tool over 700 images to 

manually segment and classify the solar panels to create the labelled samples unlike (Golovko et 

al., 2017; Malof et al., 2016) who manually digitised the solar panels to create labelled samples. 

In their work, they stress the importance of choosing a good loss function in image segmentation. 

After experimenting with various loss function pair values ranging from (1, 1.5) up to (1, 9) they 

discovered that the best convergence was a loss function pair of (1,5). Unlike (Malof et al., 2017) 

who starts from a pre-trained algorithm, (Castello et al., 2019) trained their algorithm starting from 

a random set of weights: 80% training data, 20% testing data, a batch size of 32 images, a learning 

rate of 0.1, a discovery optimal epoch of 75, and a dropout rate of 0.2. Their training model 

algorithm achieved a precision recall curve of AP = 0.85 and an F1 score of 0.80, model accuracy 

of 0.93 and model validation of 0.95. Although a few spikes were seen in the graph, they explain 

that increasing the data set or image batch size could resolve this. Upon successful training of the 

algorithm, they applied the trained algorithm to random testing images. It was observed that the 

algorithm localised well and produced boundaries across the solar panels. (Castello et al., 2019) 

opine that intersection over union is a robust matrix for assessing model performance of object 

detection algorithms as against the accuracy matrix. The result of their research shows an IOU 

score of 0.64 and an accuracy of 0.94 when the probability threshold of the prediction array is set 

to 95%. Their result shows optimism in that when a new imagery of Switzerland is released, it can 

be used to track the evolution of solar panels towards the establishment of an updated national 

database. 

(Hu et al., 2022) considered that the unsatisfactory solar panel detection results have led them to 

embark on research where they proposed the combination of residual network and channel 

attention to improve the faster RCNN framework. Although (Hu et al., 2022) used the same faster 

RCNN deep learning architecture as used by (Castello et al., 2019; Golovko et al., 2017), they had 
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a different approach to their research. In their research, they employed the clipping input method 

to replace the down sampling method in faster RCNN. Secondly, they replaced the VGG 16 

backbone for feature extraction with ResNet50 and creatively introduced the channel attention 

mechanism. Unlike other researchers (Hu et al., 2022) expressed a lack of high-resolution imagery 

dataset which had made them create a novel solar panel dataset. This research has however not 

provided information on its novelty in aerial photography. The dataset consists of 150 aerial 

images with a uniform size of 4000 x 3000 pixels. They split them randomly into 120 images for 

training and 30 images for testing. They pre-processed the images by clipping areas that were not 

solar panels out of the images and retaining only images containing solar panels. The resulting 

operation gave rise to a larger training dataset of 1493. To train the network, they set the number 

of anchor boxes to 400, an ROI box of 550, an input box of 440, an aspect ratio of (4,8,16,32), a 

sliding window of 1000 x 1000, learning rate of 0.0001, a batch size of 1, a momentum of 0.09 

and a weight decay of 0.0005 implemented in pytorch on an Nvidia GTX1050 Ti. i7-7820X CPU, 

32 GB of RAM computer. The algorithm was trained across VGG16, ResNet50 and ResNet101as 

backbone.  The results of this training showed that the ResNet50 achieved an accuracy of 0.8709 

which is reported to be 1.09% and 1.67% more than the VGG16 and ResNet101. But when the SE 

module was introduced, the ResNet50 and ResNet101 achieved a higher accuracy result by 0.44% 

and 1.05% higher respectively. They assert that upon comparison with the SSD, the faster RCNN 

algorithm performed better than the SSD while the improved faster RCNN used in the paper 

outperformed both. For the first time in the detection of solar panels, this research quantified solar 

panels. The result of their analysis gives a count of 228 panels. The trained algorithm was tested 

on six random aerial images. The detection probability reached 88% at the lowest and 100% at the 

highest indicating that their proposed method is superior. With the excellent success of this 

research, (Hu et al., 2022) did not demonstrate how they performed an accuracy assessment on the 

test imagery. Neither was the method for data collection addressed in this paper. Again, their 

research proves a high accuracy rate., It would be interesting to see the spatial distribution of these 

panels as no other researcher has yet done this.  

In (Malof et al., 2019) they proposed a general framework for the mapping of solar panels and the 

attributes such as size and power generation capacity. In this research they developed a deep 

learning model packaged in a software called SolarMapper which for the first time focuses on 
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actual spatial mapping of solar panels geographically. They show that SolarMapper generates a 

pixel-wise labelling of the solar arrays in overhead imagery alongside its attribute data and they 

also demonstrate its ability to map solar arrays over the entire US state of Connecticut stretching 

14,000km2. In training a deep learning model, (Malof et al., 2019) assert the importance using a 

large and diverse dataset. In their research, they trained their SolarMapper over 400km2 of imagery 

across three cities in California with a hand labelled annotation of 16,000 solar arrays. They argue 

that as at the year of the research, their dataset holds the largest hand labelled solar panel data. To 

assess the performance of SolarMapper, they employed the use of cross validation and intersection 

over union. They report that SolarMapper achieved an intersection over union of 0.67, a precision 

score of 0.76, a Recall of 0.077 and an F1 score of 0.76. In this research, the SolarMapper was 

deployed in a new environment in Connecticut. The researcher suggests that deploying 

SolarMapper was not a trivial endeavour. They further explain that such triviality can be caused 

by the differences in characteristics of the imagery deep learning algorithms are trained in versus 

the imagery they are deployed on. These characteristics may include a change in landscape, 

different urban structures, changes in lighting conditions or more often changes in camera 

perspective. To solve this common supervised machine learning problem, they leverage the use of 

transfer learning by fine tuning the training parameters of SolarMapper such that it generalises 

properly in the new environment where it is deployed.  Upon transfer learning, they deployed 

SolarMapper in the new location. Its accuracy assessment was assessed by the human inspectors 

looking over each prediction one after the other. The researcher gives that this method is faster 

than the intersection over union. Their results show that SolarMapper gives a very good overall 

performance with precision score of 0.88, a Recall score of 0.83, and an F1 score of 0.85. From 

the detected solar panels, this researcher went further to estimate and map the energy generation 

capacity in Connecticut over 168 cities. They argue the inference that the power generation 

capacity of a solar array is proportional to its surface area. With this, a linear regression model was 

formulated to predict the capacity of solar array.  In addition, they used the electricity generation 

constant and surface area. The result of their model upon assessment using the person correlation 

coefficient give a value of 0.88 and a p-value of 0.01. The estimated energy per city was then 

produced in a map to show the spatial distribution of solar energy production in Connecticut. For 

the first time solar panels and their estimations have been mapped spatially across geographical 

areas denoting energy capacity across the state.  
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In the works of (Yuan et al., 2016), they trained a convolutional neural network with the aim of 

mapping solar panels from aerial images. They trained the algorithm on the San Francisco CA and 

Boston, MA orthorectified RGB aerial imagery with a spatial resolution of 0.3 meters. The imagery 

data set was reported to have been collected over a period of three years by different sensors at 

different times, making the images of distinct characteristics. To collect training samples, three 

analysts manually digitised a total of 4000 solar panels from the imagery and cropped images 

around labelled solar panels. They realised that creating an image tile size of 500 x 500 made the 

network convergence very slow. They explain that this has occurred because the solar panel pixel 

was too small to generate sufficient back propagation error at a certain training period hence the 

need for a higher resolution. With a higher resolution, they trained their model based on the 

stochastic gradient descent with a batch size of 5 images, a learning rate of 0.02, a momentum of 

0.6 and weight decay of 5 and an epoch of 140 using a single NVIDIA Tesla 12GB GPU.  Upon 

completion, they visually inspected the result. They experienced a lot of false alarms resulting 

from cropping the images. They explain that cropping images gives the network the inability to 

learn other patterns that are not solar panels but look like solar panels. For example, the model 

detected shadows on the roof top and, surprisingly, a zebra crossing. This was improved by 

retraining the network by adding 110 new images and labelling the false alarms in them with a 

different label.  This yielded an improved result that took 4 days to complete. The result of their 

analysis showed that when the trained network was applied on the testing data set which covers 18 

times the size of the training image, it was reported that the network took 3 seconds to process a 

1000 x 1000 tile and one hour to complete the entire detection. The network detected a total of 

4500 solar panels in San Francisco and 1500 in Boston. To compute the accuracy of their model, 

they used the completeness and correctness method which is different from other researchers in 

this review. Their model achieved a completeness of 0.873 in San Francisco and 0.840 in Boston. 

For correctness, they achieved 0.855 in San Francisco and 0.812 in Boston. The success of this 

research proves that convolutional neural networks (CNN) perform well with high resolution 

imagery. It is important to note that shadows in imagery are a very important factor that could 

cause false alarms in computer vision research for solar panel detection. Hence, they should be 

avoided.  
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In (Kausika et al., 2021), they stress that the misguided information about solar panels can give 

rise to ineffective policy formulation and monitoring as the Netherland government seeks this 

information for the realisation of its climate agreement. To this end they carried out a study on 

GEOAI for the detection of solar photovoltaic installations in the Netherlands. In this research, 

they utilise a semantic segmentation method that can detect the location of the solar panel and 

estimate its shape from high resolution imagery. Given that data is an important aspect of GEOAi, 

they leveraged a repository of aerial photographs from the Netherlands’ Cadastre, Land Registry 

and Mapping Agency captured twice a year. The repository used here contains orthophotos and 

true orthophotos with a resolution of 10cm in winter months and 25cm in summer months. 

However, imagery with a spatial resolution of 10cm was used throughout the research. In addition 

to the imagery, ancillary building footprints were collected to match the aerial imagery for post 

processing. In this research, a different modified version of convolutional neural networks called 

TernausNet was used. This deep learning architecture incorporates U-Net architecture with 

VGG16 as encoder.  In this research they utilised a pretrained model with an image size of 1024 x 

1024 pixels. They manually collected 5,000 ground truthing data by manually digitising the panels 

on the images and then using the vector feature class as feature layer input data to mask the raster 

image tiles. The result of this operation was an imagery set of solar panels alone. A total of 800 

image tiles were used to train their model. The data was split into training and validation at a ratio 

of 80% to 20%. Upon training their model, they operated it in a different scenario. The result of 

their model shows that TernausNet had false positives on greenhouses and tanks. The model was 

also reported to have performed better on residential buildings than on industrial buildings. To 

ensure the algorithm was valid for the entire country, they incorporated more training data to 

expose the algorithm to diverse panel types, spatial background, and image type from different 

providers. Although they trained 16 models on different parameters, the final model was trained 

using a learning rate of 0.0001, batch size of 8 and RGB layer. The result of this research shows 

that orthophotos had better accuracy in detecting the shapes of the panel correctly while True 

Orthophoto had poor accuracy due to its image quality but had better location accuracy. They 

observe that false positives occurred mostly on greenhouses and large commercial buildings with 

glass domes or roofs. Also, a recurring false positive on rooftop dormers was largely seen as well 

as wet patches. They give that to access the performance of the model, classification accuracy does 

not give the right metric to evaluate the robustness of their model. Using the accuracy matrix in 
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three locations where they tested their model, their model achieved an average precision score of 

0.933, an average Recall of 0.92 and an average F1 score of 0.93. At the height of this high 

performance of the model, they experienced a high discrepancy when comparing their result to the 

CBD database of the Netherlands, they give that time of acquisition, level of detail, and quality of 

source data is an attributing factor to the discrepancy. Hence, they call for a regional level 

investigation of methodology into solar panel detection. They stress that training a deep learning 

model with varying quality, spatial resolution, different sensors, and processing techniques makes 

the task of detection of solar panels difficult in deep learning. Again, they admit their difficulty in 

determining beforehand, imagery quality. Since they used orthophotos and true orthophotos in this 

research, post processing was indeed important to correct anomalies. This research paper is an 

excellent work of science that integrates geospatial imagery in deep learning while taking into 

consideration geodetic features. It is important to note that for the first time in solar panel research, 

displacement in geodetic solar panels was witnessed because of using non ortho rectified imagery. 

To generate statistics for solar panels (Lindahl et al., 2023) mapped decentralised photovoltaic and 

solar thermal systems using remotely sensed data and deep machine learning. They tried to address 

the challenge of being able to identify small, decentralised grid-connected and off-grid PV along 

with ST system by assess the real-world accuracy of identifying small, decentralised PV and ST 

systems using a convolutional neural network aerial image classification algorithm called Deep 

solar developed by (Yu et al., 2018). They assert that there is a need to create a database of solar 

thermal systems differently from solar panel PV systems as this does not exist.  Just as (Castello 

et al., 2019; Kausika et al., 2021; Malof et al., 2017; Yuan et al., 2016) who used orthophotos as 

geospatial data in their research, (Lindahl et al., 2023) also used orthophoto provided from the 

Swedish Land Survey. Each image in the repository covers a tile of 2.5 x 2.5 km with a spatial 

resolution of 0.016m and pixel size of 115 x 115. However, since the deep solar algorithm used in 

this research was trained using an image tile size of 299 x 299, (Lindahl et al., 2023) up sampled 

their image tiles to 299 x 299. To carry out their research, they trained the Seep Solar using two 

different data sets combined. One from the openNRW_train_16 containing1814 positive and 

36790 negative image tiles. Secondly was the Swedish set of images for fine tuning the deep solar 

algorithm to fit to the Swedish conditions. All images were down scaled to 299 x 299 pixels and 

the deep solar algorithm was trained with 100 epoch and an imbalance rate of 5. They created 
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ground truth by applying the deep solar algorithm over the test data set. The result was a set of 

vector feature classes. In their study, Python was used as the programming language while QGIS 

was used as the program for analysing the gathered and created geodata. They used the accuracy 

analysis to determine the performance of the trained deep solar algorithm after it had been retained 

by them. The result of their research showed that the deep solar algorithm achieved a precision of 

93.4, recall of 81.3, and an F1 of 86.9 when operated over the openNRW_train_16 data. In the 

same vein, the deep solar algorithms when operated over Sweden achieved a precision of 63.9%, 

a recall of 81.8%, and an F1 of 71.1%. This research is a clear methodology of transfer learning 

and again proves that convolutional neural networks can again be used in the detection of solar 

panels. 

In (Tan et al., 2022) they pose that segmentation edge lose has been a prevailing challenge in the 

detection of solar panels. Also, they give that due to the poor colour contrast of remote sensing 

images, it is important to have knowledge of solar panel colour. Their work proposes that; rather 

than using a single layer manually digitized solar panels, they use different layers of shape target 

which reduces loss on the edge of the PV plate. From an imagery dataset of low-resolution satellite 

imagery, they cropped each image to a tile size of 512 * 512 pixel. A total of 19,863 images was 

used to train their model while they tested on 8,262 image tiles. To this end their work uses pyTorch 

to build a semantic segmentation model using MMSegmentation. They use a constraint refine 

module based on the prior knowledge of the colour of the solar panel to increase colour perception. 

Their research show that colour constrain refinement yields a significant improvement in the 

colour perception of solar panel. With an intersect over union of 73.46% they achieve a recall of 

82.30%. 

For the first time in the research of solar panel detection and mapping, (Sizhouhi et al., 2020) uses 

a mask RCNN deep learning architecture with a modified VGG16 backbone. They use the AMIR 

Dataset which consist of 3,580 aerial images of large-scale solar PV plants located in 12 countries 

and six continents. To train their deep learning model, they utilize the sigmoid activation for the 

last layer of the deep learning architecture, ReLU was used for the inner layer activation function, 

binary cross entropy for loss entropy, ImageNet was used for the initial weight transfer learning 

and a batch size of 1 trained on 150 epoch.  To achieve highest accuracy and lowest losses, they 

adopt the deep learning transfer learning method. Here, ImageNet pretrained weight was used and 
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the model’s weight was initialized to prevent random initialization. Their training accuracy reaches 

a high score of 97.61% while their testing accuracy gives an accuracy of 96.63%.                                                

Deep learning architecture. 

The seemingly magical functionality of written text recognition, speech recognition and image 

recognition has fascinated humans for years. That the computer could tell what animal was 

contained in a picture or what number is written in a text is amazing. What is more amazing is that 

the computer could somehow tell what species of animal it had identified in the image by merely 

looking at it, is even more fascinating. This act mimics closely human capability to reason and 

accurately identify anything. (Elazami Elhassani et al., 2022) explains that the ability of a deep 

learning architecture to automatically extrapolate knowledge from a training data set and predict 

unseen samples in record has made its adoption widely acceptable. The importance and efficacy 

of deep learning was further brought to light by (Feki et al., 2021) who explained that in the 

COVID 19 pandemic, deep learning architecture had shown an unprecedented performance 

towards screening COVID 19 from chest X ray images without undermining privacy of patients. 

The outburst of deep learning has been characterized by its ability to save time and do more work 

at a speed unaccomplished by human energy. (Liao et al., 2021) further assert in their study that 

deep reinforcement learning approach (DRLA) effectively rescheduled train timetables under 

disturbances, resulting in significant energy savings compared to traditional methods, saving an 

average of energy by 5.11% and 7.29% with an average reaction time of only 0.0013 and 0.0019 

seconds against disturbances, respectively. This again demonstrates that deep learning can better 

the time taken by humans to perform tasks, give improved accuracy and reduce the cost of 

achieving this task. This does not support the notion that machines would take over human jobs, 

however deep learning would improve the way humans achieve everyday results. 

Convolutional Neural Network 

In the work of (LeCun et al., 2015), they describe deep learning architecture as a multilayer stack 

of simple modules, which are subject to learning, and many of which compute non-linear input–

output mappings.   They explain that deep learning methods are representation learning methods 

with multiple levels of representation transformed from one level to another. They give that this 

representation learning is a set of methods that allows a machine to accept raw data automatically 

and find the best representation for detection or classification. This representation is learnt from 
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the data they take in as input using widely known learning procedures. They also explain that the 

common form of deep learning is supervised learning. Here the machine is shown an image of an 

object. It then produces a vector score however the scores are most likely not to be the desired 

score therefore an objective function measures the error between the output and desired score. It 

then modifies its internal adjustable parameters to reduce this error. These are called weights or 

Knobs. To adjust these weights, deep learning algorithm computes gradient vector using a popular 

procedure called the stochastic gradient descent. They further give that the stochastic gradient 

descent slope uses a small set of computed examples to adjust the entire weights accordingly across 

the network. The output of the vector scores is moved to another layer that takes this score as input 

through the most popular nonlinear function called the rectified linear unit ReLU. They give that 

this process happens across the layers of the deep learning until the network has the lowest possible 

error rate between its calculated vector score and desired scored. They affirm that upon training a 

deep learning network, it is best practice to test deep learning models on a different set of examples 

called the data set, to ascertain its generalization ability. They also give that, challenges of deep 

learnings ability to solve images problem gave rise to a type of deep learning architecture called 

the convolutional neural Network which can process data that come in form of multidimensional 

arrays like RGB images. They describe the convolutional neural network to have local 

connections, shared weights, pooling and makes use of multiple layers as the distinct ideas behind 

the architecture. According to (LeCun et al., 2015) recent convolutional network architectures have 

10 to 20 layers of ReLu, hundreds of millions of weights and a billion of connections between 

units.  

Recurrent Neural Network 

(Elazami Elhassani et al., 2022) describes deep learning as a subset of machine learning that uses 

artificial neurons that serve as the building blocks for the different neural network architectures. 

They give that those artificial neurons which comprise of a single output layer and one output node 

are the backbone of the deep learning technology as an interconnection of these neurons have the 

capability to learn more complex pattern. The fact that a neural network has several hidden layers 

makes it a deep neural network (Elazami Elhassani et al., 2022). They assert that the need for 

solving problems with sequential data such as genomics or text gave rise to the development of 

the Recurrent Neural Network and its ability to model spatiotemporal data makes it outstanding. 
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An example is its outstanding performance speech recognition and handwriting recognition. They 

give that the drawback of the RNN is it exploding and vanishing gradient however variants of 

RNN like the ‘‘Long Short-Term Memory’’(LSTM) and ‘‘Gated Recurrent Unit’’(GRU) have been 

introduced. 

Fast Region Based Convolutional Neural Network 

With the improvement of object detection by the convolutional neural network, the need arises for 

localization of object in images. (Girshick, 2015) states that although the region based 

convolutional neural network excellently achieves object detection, the RCNN has the 

disadvantage of a multistage pipeline training, expensive training, and slow object detection. 

(Girshick, 2015) proposed a new algorithm Fast Recurrent Neural Network that solves the draw 

backs of RCNN. They opine that the Fast RCNN is fast to train and test and has the advantage of 

a higher detection quality, single stage training and less need disk storage for feature caching. The 

fast RCNN takes an image as an input the network process the whole image with several 

convolution and then for each object proposal, a region of interest pooling layer extracts a fixed 

length feature vector from the feature map. (Girshick, 2015) further explains that each feature 

vector is fed into a sequence of fully connected (fc) layers that finally branch into two sibling 

output layers: one that produces softmax probability estimates over K object classes plus a catch-

all “background” class and another layer that outputs four real-valued numbers for each of the K 

object classes. That is a soft probability and per class bounding regression offset. Each set of 4 

values encodes refined bounding-box positions for one of the K classes. (Girshick, 2015). 

According to (Girshick, 2015) the FRCNN has reduced training time and can perform 9 times 

faster than the RCNN. The fast region based convolutional neural network performs well at object 

detection and real time object detection in motion pictures. 
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Figure 3 - Illustration of the fast region based convolutional neural network. 
Source - (Girshick, 2015) 

Mask Region Based Convolutional Neural Network (Proposed) 

state 

(He et al., 2018) opines that Mask RCNN can train the COCO dataset under one to two days on a 

single 8 GPU machine and outperforms the winner of the 2016 COCO key point competition. They 

purport that the Mask RCNN is a flexible framework, for instance level recognition.  

 

 Figure 4 - Figure showing Mask RCNN deep learning architecture. 

(He et al., 2018) explains that the Mask RCNN has third output of the object mask in addition to 

a class label and a bounding box offset which already exist in the Faster RCNN. All of which 
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makes for a finer spatial layout. This architecture performs great at task dealing with instance 

segmentation, fine grained object understanding as well as precise object localization. 

The architecture starts off with the first two stages of the Faster RCNN. The first stage is the region 

proposed network which proposes candidate object bounding box. The second stage extracts 

features using ROIPool from each candidate box and performs classification and bounding box 

regression. In faster RCNN quantization of images are done in the ROI Pool however this 

introduces misalignments between the ROI and the extracted feature. (He et al., 2018) assert that 

this has a negative impact in pixel accurate mask. They solved this by removing the quantization 

of ROI Pool instead they use binary interpolation to compute the exact values of the features at 

four regular sampled location in each ROI bin and aggregate the result. They state that when Mask 

RCNN is used in combination with the ResNet 101 feature pyramid network, it achieves greater 

results. 

 

Conclusion 

This literature review covers various studies for which deep learning has been used for the study 

of solar panel detection and mapping but to what degree of delineation. From this review, it can 

be concluded that transfer learning can improve the performance of a deep learning model. As data 

becomes an important role for geospatial artificial intelligence, true orthophotos are best used for 

deep learning studies in geosciences. Moreover, it can be noted that various deep learning 

architectures have been used in previous research but only one of these researchers have used Mask 

RCNN deep learning architecture towards the identification of solar panels which calls for further 

studies toward the study of accurate solar panel detection. Again, most challenges of solar panel 

research have been treated as an image segmentation problem however this thesis employs an 

instance segmentation method which combine object detection and image segmentation to detect 

and delineate solar panels. Even though Spain has over 300 days of sun and has an abundance of 

solar panels, it lacks research on a deep learning algorithm for the detection of solar panels to the 

best of our knowledge. UAV technology in these literatures showed that photogrammetry has been 

applied to a range of studies in geoscience however to the best of our knowledge, very high-

resolution multiband UAV photogrammetry has not been used in the study of solar panel detection 

neither have previous researchers leverages the use of very high-resolution imagery. The question 
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of establishing ground control point to improve geodetic accuracy in UAV photogrammetry is 

becoming less of a priority as modern UAV now comes with centimetre-grade accuracy in RTK. 

Again, it can be deduced that geodetic implication of UAV photogrammetry is subject to its use 

and application in geoscience. Where the geodetic characteristics of the features being detected in 

a photograph are not important, setting up ground control points might be considered a waste of 

time and resources. Like in the development of a deep learning model such as this. It is not to say 

that geodetic accuracy is not important especially when mapping small features such as solar 

panels. It can be concluded that 60% - 80% overlaps have been reviewed to be successfully used 

to carry out UAV photogrammetry as this ensures that the Ortho mosaicking algorithm has enough 

imagery to identify tie point features for reconstruction. Although Ortho mosaicking software is 

yet to find solutions to homogenous environments and blur correction from moving objects while 

in flight. Weather conditions like cloud cover and time of the day for collection of data with UAV 

plays a critical role in forming the characteristics and quality of the imagery. Again, in UAV 

photogrammetry, geoscientists must ensure that images are calibrated to eradicate inherent 

distortion inherited during flight. Since deep learning models do not require geodetic attributes to 

perform computer vision operations, this research seeks to apply UAV photogrammetry without 

ground control points to develop a deep learning model for the detection of solar panels with the 

aim of quantifying solar panels in urban areas.  
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DATA, METHODOLOGY AND RESOURCES. 

This chapter describes the study area used where the research was conducted, the type of data that 

was used to carry out this research and why such data was used as well as its source. This section 

also describes the various methods applied in the precise collection of data and the various 

resources used in carrying out the research analysis. This includes the various hardware and 

software used. 

Study Area 

In order to collect aerial imagery for the detection of solar panels, Universität Jaume I in Castellón 

was used as the study area. This study area was chosen due to its flight operational accessibility. 

The university also has fewer high-rise buildings as compared to other residential areas which 

could impede flight operation. The study location flown below 100m is not in conflict with manned 

flight operations within the vicinity. The study gave the researcher the advantage of utilising high 

radio frequency gain due to less high buildings which could lead to image and aircraft transmission 

failure. Lastly the study location had no vertical obstacle above 100m in the flight path of the UAV. 

 

Figure 5 - Image of the study area showing bounding area for flight data collection. 
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Description of Data 

To detect solar panels using deep learning, the deep learning models and computer vision 

technology utilise digital values from images which are used to detect solar panels. To show the 

computer vision models the solar panels, those solar panels need to be represented in the form of 

an image or photograph. To this end, this research makes use of aerial imagery, and the scope of 

this research is limited to solar panels installed horizontally on rooftops. Therefore, aerial images 

or photographs would capture the surface area and extent of the solar panels hence the use of aerial 

imagery. The use of high resolution UAV imagery is in not in consonance with previous studies on 

solar panel detection such as (Castello et al., 2019; Hu et al., 2022; Lindahl et al., 2023; Malof et 

al., 2016, 2017; Puttemans et al., n.d.; M. Wang et al., 2018; S. Wang & Li, 2021; Zhuang et al., 

2020) all used a mix of satellite imagery and other imagery of a resolution lower than what was 

used in this research. Again, to the best of our knowledge, no previous research has used very high-

resolution imagery from UAV photogrammetry as used in this research. The data set used for this 

research contains a total of 1,486 aerial images collected in JPEG file format with a horizontal 

orientation. Each image has an exposure time of 1/1250 and an ISO of 240 with the image having 

a width of 5280 and a height of 3956. The aerial images are all of barrel distortion, 8 bit per sample, 

20 megapixels and sized between 10mb and 12 mb. The aerial imagery collected for this study is 

a 3 channel RGB image. These images were divided into 1078 aerial images as a training data set 

and 417 aerial images as a testing data set. Although these individual images were not used 

singularly, this research used a true orthophoto processed from the training dataset and testing data 

set. The true orthophoto training dataset has a tile size of 46,000 x 42,000 pixels, a ground sampling 

distance of 0.03m, an uncompressed size of 28.79gb in 32-bit FGDBR file format and a multiband 

of 4 channels. Band 1 is red, band 2 is green, band 3 is blue while band 4 is a normalised digital 

surface model composited. The true orthophoto training dataset has a projected coordinate system 

of WGS 1984 UTM Zone 30N projected on the universal transverse Mercator, a false easting of 

500000, a false Northing of 0.0 and a vertical coordinate system on the EGM96 Geoid. All 

orthophoto bands have a raster value from 1 – 254 except band 4 (normalised digital surface model) 

whose raster values are from -41.225 - 44.291 covering 1.7km Sq. The true orthophoto testing 

dataset covers an expanse of 0.9km Sq with a tile size of 32,000 X 30,000 pixels and a ground 

sampling distance of 0.03m. The true orthophoto testing dataset has an uncompressed size of 

2.68gb in 8-bit TIFF file format and a 3 channel RGB band. All bands have a raster value from 1 
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– 254, a projected coordinate system of WGS 1984 UTM Zone 30N projected on the universal 

transverse Mercator, a false easting of 500000, a false Northing of 0.0 and a vertical coordinate 

system on the EGM96 Geoid. 

Resources And Description of Resources Used 

Unmanned Aerial Vehicle. 

This research utilised a DJI Mavic 3 enterprise unmanned aerial vehicle. The UAV is a multirotor 

quadcopter fitted with a digital RGB sensor whose sensor is a wide-angle of 4/3 CMOS, 20MP, a 

focus of 1m to infinity, an aperture value of f/2.8-f/11 without a flash and a field of view of 84 

degrees. The sensor features a mechanical shutter that prevents motion blur, a prominent challenge 

in photogrammetry as expressed by (Samad et al., 2013), supporting rapid shooting up to 0.7 sec 

and a general flight time of 45 minutes. The sensor also has a telecamera of ½ inch CMO sensor 

capable of shooting 12MP photos with an aperture of f/4.4 which shoots at 3m to infinity. The 

aircraft is fitted with GPS, Galileo, BEIDOU and GLONASS global navigation satellite systems. 

Its GNSS has a vertical geodetic accuracy of 0.1m with vision system, 0.5m with GNSS and 0.1m 

with real time kinematics. Horizontally, the UAV has a geodetic accuracy of 0.3m with a vision.  

 

 

 

 

 

 

 

 

Figure 6 - Image of aircraft used for the research – A DJI Mavic 3 Enterprise 
Source – Elchapuzas Informatico. 
 

system, 0.5m GNSS and 0.1m when connected to a real time kinematic GNSS receiver. For this 

research, the researcher relied upon the geodetic accuracy of the UAVs GNSS. 



Page | 34 
Detection and mapping of solar panels based on deep learning, instance segmentation and VHR multiband UAV photogrammetric survey. 

 

Computer 

The computational resources needed for most deep learning research are usually high. ESRI 

recommends using a computer with 4 cores, 32GB free storage space on the solid-state drive, a 

RAM of 32GB, a 4GB dedicated graphics card, OpenGL 4.5 with the 

ARB_shader_draw_parameters, EXT_swap_control, EXT_texture_compression_s3tc, and 

EXT_texture_filter_anisotropic extensions and a screen resolution of 1080p. This research 

however used a computer with Intel Core i7, NDVIA GeForce GTX 1660Ti 6GB dedicated graphic 

card with a 32GB RAM and dual storage of 500GB solid state drive and a 1TB hard disk drive. 

Software 

This research declares that no programming codes were implemented during the study. However, 

to perform the various analyses in this research, this research utilised the DJI Map Pilot 2 for flight 

operation while the DJI flight planner was used for office flight planning. All spatial analysis 

including deep learning training and testing was done using ESRI ArcGIS PRO version 3.2 while 

the photogrammetric process was achieved using the ESRI Drone2Map version 2.0. 

 Data Collection 

Unlike other researchers who used available secondary, open geospatial data for the detection of 

solar panels, the primary data used in this research was originally developed through a UAV 

photogrammetric process. The data collection process was divided into three data collection phases 

covering a total study area of 2.6km Sq. During data collection, training data sets were collected 

separately from the testing data under different atmospheric conditions. 
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Figure 7 - Researcher on the field setting up Unmanned Aerial Vehicle for data collection. 

Training Data 

The area used for collecting testing data was divided into two sections. This was done to solve the 

problem of deep learning models being trained only in restricted atmospheric weather conditions 

which could have resulted in negative performance by the model when faced with a real-world 

scenario. To solve this challenge encountered by previous researchers, this thesis proposes the 

collection of training data in two different weather conditions.  

Using the DJI Pilot 2 flight planning application embedded in the flight controller system of the 

UAV, a feature polygon was created over section 1 of the study area. The flight planning 
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application automatically produces 11 waypoints with nadir camera angle and one diagonal way 

point with its camera at 60 degrees oblique across the flight area to improve orthorectification.  

 

Figure 8 - Flight planning for aircraft way point. 

Aerial images were collected using a high overlap of 70% forward overlap while the side overlap 

was set at 80%. This was done because (Iheaturu et al., 2022) asserts that an overlap of at least 

60% front overlap and 75% side overlap is required to achieve a good model for structure from 

motion. A higher overlap was used to ensure high multiple tie points across successive images. 

This is drawn from the well-known fact that photogrammetry software is still unable to solve the 

problem of reconstructing homogeneous image texture. This is a common problem in mapping 

water bodies as well due to the homogeneous nature of water. Since solar installations are slightly 

homogenous, a high overlap was used. In the same vein, (Zhang et al., 2023) state that low 

overlapping images result in large matching error.  
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Figure 9 – Point location where Images was taken across study area. 

 

Figure 10 - Way point flight distribution of the study area including optimized flight path. 
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Figure 11 - Flight planning distribution across study area for data collection in diverse weather conditions. 

Aerial images were collected with the presence of vignetting because the DJI Mavic 3 has a radial 

lens distortion from its wide-angle camera. Vignetting according to (Bal & Palus, 2023)b is a 

phenomenon in which the image brightness is reduced from the optical centre of an image toward 

its edges. However, according to DJI, the presence of the vignetting provides valuable information 

about the orientation and distortion of the images which can be used to correct the images for 

distortion while processing. The UAV was flown at a heading of 117 degrees to and 243 degrees 

from. The choice of flight heading was obtained from the result of a reconnaissance survey initially 

carried out to determine the direction the solar panels were facing. This was such that during flight, 

the UAV camera sees the surface of the solar panels first and not its sides, especially where these 

solar panels are installed with an inclination.  
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Figure 12 - Barres Distortion in Images   Figure 13 - Non-Barrel Distorted Images 

 

Figure 14 - Lens distortion correction formular. 
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The UAV speed was set at 10m/s to counter the effect of surface wind of the day which measured 

at 3mph gusting 11mph which could cause the UAV to drift in flight and in turn resulting in bad 

aerial imagery as explained by (Zhang et al., 2023). The camera operation mode was set to shutter 

priority at speed of 1/1250 and sensitivity of ISO at 100. This is in sequence with (Samad et al., 

2013) who gives that blurred images error can be caused by shutter speed or UAV flight speed. To 

solve this, they give that surface wind must be checked before selecting UAV speed.   

The UAV was flown at a height of 100m above ground level as (Ali & Abed, 2019) found out that 

geometric accuracy of aerial images changes significantly at higher altitude. Additionally, in 

accordance with EU regulation on UAV, UAVs are to be flown below 120m. According to (Mao 

et al., 2023) strong winds and high temperatures influence UAV flight and the accuracy of its data. 

They also give that cloud cover could also affect the spectral information of the images. Because 

this thesis pays attention to training a deep learning model to recognise solar panels in diverse 

atmospheric conditions, data was collected with an atmospheric temperature of 19 degrees C, 0% 

precipitation, a cloud cover of 1%, visibility of 10 miles and a wind speed of 3mph west. The UAV 

was set to allow the camera to take a photograph every 3 seconds even when turning into the next 

way point. 

In section 2 of the training data collection, all other parameters were the same as section 1 except 

for the atmospheric conditions. Here, data was collected with the temperature at 18 degrees 

Celsius, cloud cover of 100%, 0% precipitation, visibility of 10 miles and a wind speed of 9mph 

west gusting 18mph. The UAV was again set to allow the camera to take a photograph every 3 

seconds even when turning into the next way point. In this section a total of 14-way points were 

created and a total of 626 images in JPG file format were collected between 11.40am to 12.09pm 

Central European Time in December. 

Testing data 

Testing data sets are important when checking for overfitting, which (Safonova et al., 2023) defines 

as a situation where a deep learning model performs poorly on the testing dataset but performs 

well on the training data set. They further give that testing data should be collected independently 

of the training data set just as this thesis has done. 
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Since the deep learning model in this thesis will be trained with images collected from diverse 

weather conditions, it makes sense for the model to be tested on diverse scenarios to ascertain its 

performance. Therefore, the testing data was collected over different locations using flight 

parameters of both section 1 and section 2. A total of 11 waypoints were planned and 417 images 

were collected in JPG file format. 
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DATA ANALYSIS 

Deep Learning Data Preparation 

This thesis declares that no programming codes were written to achieve any of the analysis, instead 

it was accomplished using commercial software. The training of the deep leaning algorithm for 

this thesis relied on the use of the ArcGIS Pro ‘Train deep learning Model’ geoprocessing tool. 

Upon collection of all aerial data, this research commenced data processing. According to (Ali & 

Abed, 2019) they identify Pix4D and Agisoft PhotoScan as the most popular photogrammetric 

software used in orthomosaicking. This thesis used ESRI Drone2Map photogrammetric software 

for the orientation of images, production of true orthophoto, digital surface models and digital 

terrain models. Drone2Map is a desktop software with the ability to create contour lines, True 

Ortho, Multispectral Orthomosaic, Thermal True Ortho, Pansharpened Orthomosaic, 

Panchromatic Orthomosaic, Digital surface model, Digital terrain model, Shaded relief, Inspection 

report and NDVI from overlapping nadir images in natural colour, thermal Infrared, or 

multispectral dataset (ESRI 2024). It is well integrated into the ArcGIS environment which allows 

interoperability and can open completed projects directly in ArcGIS Pro from Drone2Map as well 

as sharing projects to the ArcGIS Online or ArcGIS Enterprise. This is different from (Chen et al., 

2022; Iheaturu et al., 2022; Ismael & Henari, 2019; Starek et al., 2014; Watanabe & Kawahara, 

2016; Zhang et al., 2023) who all used PIX4D photogrammetric software and (Ahmad & Samad, 

2010; Tahar et al., 2011) who used ERDAS Imagine and (Cabo et al., 2021; Gonçalves & 

Henriques, 2015; Jayathunga et al., 2018; Sunarya et al., 2020) who used Agisoft PhotoScan. 

However, (Șandric et al., 2022) also used ESRI Drone2Map software in their own research.  

True Orthophoto Training Data Processing 

In the ESRI Drone2Map software, 1076 images of the training data obtained from the flight 

operations in section and section 2 of the training study were imported into the 2D Orthophoto 

space of the software and inspected to ensure all images were geotagged and free of problems. To 

process these images, processing parameters needed to be set. In the software, the point cloud 

density setting used to derive the level of geometric detail for image reconstruction was set to ultra.  

The project resolution was set to 1x which allows the selection of the Ultra point cloud setting.  

Due to the computational load required to process the images, the hardware setting was set to 

utilize CPU + GPU.  In the block adjustment, tie point matching and point cloud generation 
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process, the ESRI Drone2Map software was set to use the internal orientation data to orient the 

images. Here, the yaw, pitch and roll are used by the software to adjust the image orientation. For 

the tie point options, the initial image scale is set to 1(original image size). The refine adjustment 

setting is checked and set to 1(original size).  A tie point residual error threshold of 5,000 was used 

to such that tie points with a residual greater than the threshold values will not be used in computing 

the adjustment. To determine the number of images to be used to compute image matches, the 

large setting was selected. With this, an image is matched to the 12 closest images for each search 

neighbourhood in the area between each of the four ordinal directions. Because the images have 

radial distortion in them, camera calibration was performed utilising the focal length, principal 

point which is the offset between the focal centre and the principal point of auto collimation. The 

Konrady coefficient was also used to calculate radial distortion while P1 P2, which is the tangential 

coefficient, was used to calculate the distortion between the lens and image plane. To generate the 

orthomosaic, the colour balancing setting was not utilised because this thesis proposes to train the 

deep learning model with data from diverse weather and atmospheric conditions. Seamlines were 

used to sort overlapping imagery and to produce a smoother-looking mosaic. The software was 

also prompted to produce the digital surface model as well as the digital elevation model. The 

images had a coordinate system of GCS WGS 1984 and a z value of EGM96 Geoid and projected 

to WGS 1984 UTM zone 30N with a vertical projection in the EGM96 Geoid.  

The processing took about 6 hours to complete and produced a true ortho photo of 1.744km Sq, a 

digital elevation model and a digital surface model with spatial resolution of 0.027m. The 

processing achieved a tie point reprojection RMS error of 0.422. On the external orientation, the 

processing achieves a minimum standard deviation of 0.009m on the X axis and a maximum of 

0.018m on the X axis. However, this standard deviation is a measure from the vertical and 

horizontal geodetic accuracy of the DJI Mavic 3E GNSS and not from an established ground 

control point. 
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Figure 15 - Fully processed true orthophoto of UAV images. 

True Orthophoto Testing Data processing. 

All parameters used in processing the training data were also used in processing the testing data 

set except for colour balancing. At the same time, a total area of 0.936km Sq of true orthophoto, 

digital surface model and digital terrain model was produced with a ground sampling distance of 

0.027m. The processing achieved a tie point reprojection root mean square of 0.431. On the 

external orientation, the processing achieves a minimum standard deviation of 0.015m on the X 

axis and a maximum of 0.030m on the X axis. Again, this standard deviation is a measure from 

the vertical and horizontal geodetic accuracy of the DJI Mavic 3E GNSS and not from an 

established ground control point. 

Orthophoto Training Data Preparation for deep learning 

In preparation for training the deep learning model, this thesis proposes the addition of the 

normalized digital surface model as a composite band to the true ortho photo. This process has 

been suggested by (Kausika et al., 2021) and (Șandric et al., 2022) to improve results of deep 

learning models. To do this, the normalized digital elevation model had to be obtained using the 

raster calculator function in ESRI ArcGIS Pro geoprocessing tool. In the toolbox, the digital 

surface model of the training study area was subtracted from the digital elevation model of the 
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training study area. The result of this geospatial analysis was a normalised digital surface model 

in grey scale with a minimum raster value of -41.22 and a maximum raster value of 44.29 in 

FGDBR file format. The normalised digital surface model was then added to the RGB true 

orthophoto as a composite using the composite band geoprocessing tool in ArcGIS Pro. This tool 

creates a raster dataset containing a subset of the original raster bands into a new raster dataset. 

The result of this analysis is a multiband true orthophoto containing 4 bands and a file format in 

FGDBR. This was done because of the need for the convolutional neural network to be trained on 

solar panels in not just RGB but also in grayscale thereby eliminating false positive detections 

such as shadows upon deployment in the testing data set. False positive detection of solar panels 

was seen in the work of (Zhuang et al., 2020) whose work expressed mis-segmentation from their 

deep leaning models. 

Annotation 

According to (Wang et al., 2018) supervised classification models rely highly on training samples 

for training deep learning models. In the same vein, (Malof et al., 2016) further stresses its need 

for training a model and testing its accuracy. Those training samples, according to (Yu et al., 2018), 

are expensive to construct as convolutional neural networks require training samples to be massive. 

This thesis collected training samples by manually annotating the solar panels in the entire study 

area of both training and testing dataset. This was done by creating a feature layer in the ESRI 

ArcGIS Pro while using the edit digitisation tool to draw polygons or perform on screen 

digitisation around each solar panel across the entire study area. The digitisation or manual 

annotation of the solar panels from the multiband true ortho photo resulted in a total of 3,273 

manually annotated solar panels with minimum shape area of 0.959 m Sq and 2.485m Sq. Upon 

completion, a new field was created to give the annotated solar panel a new class label of “1”. This 

annotation in this research may not be compared to previous research because previous research 

annotated solar PV installation while this research annotated solar PV and (W. Hu et al., 2022; 

Malof et al., 2016, 2017; Puttemans et al., n.d.; Yuan et al., 2016) had all used human annotations 

during their research. 

Masking 

The processed multiband true orthophoto shows that upon physical inspection, only a few 

buildings have solar panels on them. It would therefore be computationally expensive and time 
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consuming to feed the deep learning network with the entire imagery collection. Therefore, a 

polygon in form of a feature layer was created in ArcGIS Pro around the areas that have solar 

panels. This polygon has total area of 0.108 km sq. which is 5.7% of the entire study area. This 

polygon was used as output extent to clip the multiband true orthophoto just as (Li et al., 2021) 

did. However, in this research, the clip raster geoprocessing tool in ArcGIS Pro was used. The 

result of the clip raster analysis was a multiband true orthophoto of areas that contain solar panels 

in the study area alone. There was no need to perform this spatial operation in the test dataset 

because it would not undergo a convolutional neural network training and real-world data sets do 

not come clipped. Moreover, it would be interesting to see the generalisation of the model as well 

as false positive detection.  

 

Figure 16 - Masked multiband true orthophoto of UAV images. 

Exporting Training Data 

As earlier stated, this research was conducted solely using ArcGIS Pro. Therefore, it follows the 

analytical process of the software. To train the proposed deep learning model, the clipped 
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multiband true orthophoto and labelled vector annotation needs to be converted into a training data 

set. According to ESRI, the deep learning class training samples are based on small sub images 

called image chips that contain the class of interest. (Castello et al., 2019) used an image chip of 

250x250 pixels, (Malof et al., 2017) used a detector which takes an input image of 41x41 pixels. 

(Golovko et al., 2017) used an image chip of 200x200 pixels. (Kausika et al., 2021) used an image 

chip of 1024x1024 pixels while (Lindahl et al., 2023) used 299x299. Of all these image chip sizes, 

(ESRI 2022) gives that image chip size is dependent on the size of the label of interest. In the case 

of this research, a single solar panel has a geometric area between 0.95-meter sq to 2.48-meter sq 

and can be fully seen in an image chip of 256x256 pixels. Hence this research exports the clipped 

multiband true orthophoto to sub images of 256x256 pixels. To do this, the ArcGIS Pro “Export 

Training Data for Deep Learning (Image Analyst)” tool was used.  

The input raster was the clipped multiband true orthophoto, while a designated folder was specified 

to store the image chips and associated metadata. On the input feature class parameter, the 

geoprocessing tool takes the hand-annotated polygon of the training data section as input data. 

TIFF format was specified as output image chip format while a tile size of 256 pixels was specified 

on the X axis and a tile size of 256 pixel was specified on the Y axis with 50% stride of 128 pixels. 

Because this thesis proposes the use of a Mask RCNN, RCNN Mask was specified as the output 

metadata format in the geoprocessing tool. The output chip set according to ESRI will have a mask 

on the area where the sample exists for each instance of an object in the image chip. According to 

ESRI 2022, this format is based on Feature Pyramid Network (FPN) and a ResNet101 backbone 

in the deep learning framework model. (He et al., 2018) explains that the feature pyramid network 

uses a top-down architecture with literal connections to build an in-network feature pyramid from 

a single scale input. They further state that using a ResNet-FPN backbone for feature extraction 

with Mask RCNN gives excellent gain in both accuracy and speed as (Li et al., 2021) recommends 

that FPN can be instrumental in dealing with robustness in multi-resolution situation image. A 

class label of “1” from the annotation feature class was selected as class value field for the 

geoprocessing tool. No buffer radius or mask polygon was used here while rotation angle was left 

at 0 degrees. The local reference system of the map space was used throughout the analysis for 

consistency. To give context for the generalisation of the model, the area surrounding the class 

label of interest was not blackened out. This is such that the model can also learn relatively what 



Page | 48 
Detection and mapping of solar panels based on deep learning, instance segmentation and VHR multiband UAV photogrammetric survey. 

 

is not a solar panel. During the process of creating the image chipset a minimum overlap ration of 

100% was used such that only images chips with 100% of the solar panels visible in them will be 

exported for training. A total of 5977 images chips of 265x256 were created. Out of the 5977 image 

chips, 1599 image chip contained solar panels in them with a total of 6400 solar panel features. 

The result had a minimum of 1 feature per image chip, a mean of 4 features per image chip and a 

maximum of 13 features per image chip. 

Training Deep Learning Model. 

The focus of this thesis is on the detection of the individual solar panels and not solar installations. 

It is important to note that this research seeks to map the individual boundaries of each solar panel. 

To this end, detecting individual solar panels is therefore a problem of instance segmentation which 

according to (Ferreira et al., 2020; Șandric et al., 2022) combines object detection and classical 

segmentation. According to (Șandric et al., 2022) they give that Mask R-CNN is a widely used in 

solving the problem of instance segmentation and has been validated as efficient in object-based 

segmentation and classification. Previous studies on detection of solar panels have used various 

deep learning models such as (Malof et al., 2017) Convolutional Neural Network, (Malof et al., 

2016) Random Forest Classifier, (Golovko et al., 2017) Faster R-CNN, (Malof et al., 2019) Solar 

Mapper, (Castello et al., 2019) U-Net which they assert to be the most popular CNN architecture 

for fast and precise segmentation of images, TernausNet (Kausika et al., 2021), DeepSolar (Lindahl 

et al., 2023), faster R-CNN (J. Hu et al., 2022). To the best of my knowledge, no researcher has 

tried to employ the Mask R-CNN deep learning architecture in the detection of solar panels as this 

research seeks. It is important to state that where the boundaries of objects are not of interest, Mask 

RCNN should be avoided as (Ferreira et al., 2020) puts. 
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Figure 17 - Deep learning Epoch, Training/Accuracy loss and Epoch Time. 

The deep learning model was trained with the proposed Mask R-CNN deep learning architecture 

in ESRI ArcGIS Pro using the “Train Deep Learning Model (Image Analyst)” geoprocessing tool 

in a disconnected environment on GPU. In the geoprocessing tool, the folder containing the image 

chip was loaded as input training data and an output folder was specified. A maximum epoch for 

training the model was set at 100 however it was programmed to stop training once the model 

accuracy no longer improved. In the model type, Mask RCNN was specified with the class value 

as 1. A batch size of 8, chip size of 256 pixels and a learning rate of slice ('1.0965e-05', '1.0965e-

04', None). A backbone of ResNet-101 which was trained on the ImageNet dataset was used as 

backbone. Furthermore, no pretrained model was used in this research as the deep learning model 

was trained from scratch. The “Train Deep Learning Model (Image Analyst)” geoprocessing tool 

was set to use 10% of the data set for validation. The weight of the backbone model was not frozen 

thereby making the weight and biases fit the training samples. The chip size of the images was 

fixed at 256 pixels. A weight initialisation was performed because the dataset is multispectral data, 

and the model needs to accommodate the various bands to reinitialise the first layer of the model 

ESRI 2023. Validation loss was chosen as monitor metric checkpointing and to monitor early 
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stopping. The training of the deep learning model was done on a computer with Intel Core i7, 

NDVIA GeForce GTX 1660Ti 6GB dedicated graphic card with a 32GB RAM and dual storage 

of 500GB solid state drive and 1TB hard disk drive. This training took a total of 33 hours 53 

minutes and 3 seconds. Upon completion, it achieved a training accuracy of 98% accuracy of class 

label “1”: solar panels on 81 epochs. 

 

Figure 18 - Training/Validation loss graph of the trained deep learning model using Mask RCNN. 
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Figure 19 - Image showing deep learning generalisation on the training dataset after training with minimal edge loss. 
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RESULTS AND DISCUSSION. 

Testing Deep Learning Model 

It is a common practice as seen in previous literature to test deep learning models on data sets that 

have not been seen by the deep learning model or else that would amount to bad science. Previous 

studies by (Feki et al., 2021; Li et al., 2021; Malof et al., 2016, 2017; Wang & Li, 2021) report 

their accuracy rate on their testing data set hence this research also reports performance of the deep 

learning model on its testing dataset. Testing data sets are also important for checking for 

overfitting which (Safonova et al., 2023) defines as a situation where a deep learning model 

performs poorly on the testing dataset but performs well on the training data set. They further give 

that test data should be collected independently of the training data set, as this research has done. 

The trained deep learning model was tested on the testing dataset collected independently of the 

training dataset using the “Detect Objects Using Deep Learning (Image Analyst)” geoprocessing 

tool in ArcGIS Pro. This tool produces a bounding box feature class containing the object it finds 

(ESRI 2023).  The multiband true orthophoto of the testing data set was loaded as input raster with 

a specified output folder. The deep learning model which was trained in this research was defined 

here as input for model definition. A non-maximum suppression was performed to remove 

duplicate detected objects. As a result, a new field was created to give a confidence score for 

detected objects. The cell size used here was the same as the multiband true orthophoto of the 

testing dataset. This was processed on the computer GPU.  

Result 

The result of the proposed model shows a promising performance on the test data set. The deep 

learning model detects nearly all the solar panels in the study area. The model also produced a 

feature class boundary polygon around each detected solar panel. The model was observed to 

detect some features that look like solar panels. These false positive detections are dark waffle 

square shaped objects. Prior to this, the deep learning model was trained without the normalized 

digital surface model as a fourth raster band. This yielded very poor accuracy with the detection 

of a lot of false positives and a high degree of false positives. The model was also unable to detect 

lots of solar panels. But the addition of the normalized digital surface model as the fourth raster 

band reduced the detection of false positives, thereby improving the precision accuracy of the deep 

learning model by 10%.  
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Figure 20 - Deep learning architecture accurately detecting solar panels with minimal edge loss. 

This result happens to be different from (Kausika et al., 2021) who affirmed that addition of nDSM 

showed no significant effect in reducing the detection of false positives in their work. 

Table 1 - Accuracy assessment of deep learning model without addition of normalized digital 

surface model. 

IoU >= 

0.75 

Precision Recall F1 

Score 

AP True 

Positive 

False 

Positive 

False 

Negative 

Cloud 

Cover 

Clipped Out 

Homogeneity 

error 

 0.7495 0.7031 0.7256 0.6003 386 129 163 1% No 
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Figure 21 - Image showing performance of the trained deep learning model on the testing dataset with 1% cloud cover in the 
study area. 
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Figure 22 - Image showing performance of the trained deep learning model on the testing dataset with 100% cloud cover in the 
study area. 

 

Accuracy Assessment 

Detecting solar panels by physical assessment is not a true test of the performance of the proposed 

model. For this reason, a standardized deep learning accuracy measurement was used. Previous 

studies in (Castello et al., 2019; Hou et al., 2019; Li et al., 2021; Sharma et al., 2021; Zhuang et 

al., 2020) all used the intersection over union to access the performance of their deep learning 

model. (Castello et al., 2019) particularly puts that the intersect over union is a more suitable metric 

for computing common pixel area between the prediction and the ground-truth and dividing the 

area. In the research, the intersect over union was adopted to assess the performance of the model. 

To do this, the “Compute Accuracy for Object Detection (Image Analyst)” geoprocessing tool in 

ArcGIS Pro was used. The geoprocessing tool calculates the accuracy of the deep learning model 

by comparing the detected object to the ground truth objects. ESRI 2024 holds that the accuracy 

of a model is evaluated using four accuracy metrics: the Average Precision (AP), the F1 score, the 

COCO mean Average Precision (mAP), and the Precision x Recall curve. The “Compute Accuracy 

for Object Detection (Image Analyst)” geoprocessing tool takes the feature class of the detected 

polygon as input for detected features, ground truth hand-annotated feature class as input for 
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ground truth feature class, class value fields were selected from the feature class attribute field and 

an intersect over union of 0.2. The result of the computation is given below: 

Precision – Precision is the ratio of the number of true positives to the total number of positive 

predictions (ESRI 2024). Precision is given as (True Positive)/ (True Positive + False Positive) 

Recall—Recall is the ratio of the number of true positives to the total number of actual (relevant) 

objects (ESRI 2024). This given as Recall = (True Positive)/ (True Positive + False Negative) 

F1 score— According to (ESRI 2024) the F1 score is a weighted average of the precision and 

recall. Values range from 0 to 1, where 1 means highest accuracy given as (Precision × Recall)/ 

[(Precision + Recall)/2] 

In the same manner, precision-recall curve is a plot of precision (y-axis) and recall (x-axis), and it 

serves as an evaluation of the performance of an object detection model. The model is considered 

a good predictive model if the precision stays high as the recall increases. 

In this research, the model with a proposed architecture achieved a precision of 0.8511, a recall of 

0.8775 and an F1 score of 0.8641 on an intersection over union of 0.75. This was achieved on the 

dataset with 1% cloud cover. The precision recall curve was observed to have stayed high as the 

recall increased. The model was observed to detect 480 true positives, 84 false positives and 67 

false negatives. The model was observed to accurately delineate the boundary for each solar panel 

it detected. A percentage of false positives were seen over waffle-like objects with shadow cover 

and objects that take the shape and form of a solar panel. It can be said that if the aerial imagery 

were to be collected off shadow cast, the accuracy of the model would drastically improve. The 

model was also not able to detect some solar panels resulting in false negative. 

To again test the accuracy of the proposed deep learning model in diverse real-world scenarios, 

the model was operated on the dataset with 100% cloud cover. The proposed architecture achieved 

a precision of 0.7594, a recall of 0.4864 and an F1 score of 0.593 on an intersection over union of 

0.75. This was achieved on the dataset with 100 % cloud cover. The precision recall curve was 

observed to have stayed high as the recall increased however it dropped midpoint. The model was 

observed detecting 161 true positives, 51 false positives and 170 false negatives. Here, the model 

was observed to have also accurately delineated the boundary of each solar panel it detected but 
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had difficulty recognising 170 solar panels. A detailed assessment was carried out to understand 

the decline in F1 score as well as an increase in false negatives. It was observed that during the 

photogrammetric image processing, the multiband true orthophoto for data with 100% cloud cover 

was unable to properly reconstruct a section of the study area which contained many solar panels.  

  

 

Figure 23 – Image showing reconstruction problem due to homogeneity problem in dataset with 100% cloud cover. 
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This problem has been described by (Starek et al., 2014) as emanating from the confusion and 

inability of the SIFT point matching algorithm to detect corresponding key points within 

overlapping images due to homogeneity of image texture. This is also a typical problem when 

flying over water. In this case it cannot be safe to assume that the aforementioned accuracy is a 

true accuracy assessment for the deep learning model. 

A proper delineation of the multiband true ortho photo testing dataset was done to clip off area of 

the imagery with bad image reconstruction as it amounted to poor image quality. The proposed 

deep learning model was again deployed on the clipped multiband true ortho photo for the testing 

data set. Having clipped the multiband image, the ground truth was again clipped to contain the 

new area with good image quality. Upon deployment of the deep learning model with the proposed 

deep learning architecture on the imagery with 1% cloud cover, a drastic improvement was 

observed. The proposed deep learning architecture was now observed to achieve a precision of 

0.8482, a recall of 0.9719 and an F1 score of 0.8445 on an intersection over union of 0.75. This 

was achieved on the new clipped dataset with proper image reconstruction having 1% cloud cover. 

The model was observed to detect 380 true positives, 68 false positives and only 11 false negatives. 

On the clipped multiband true ortho photo with 100% cloud cover, the proposed deep learning 

architecture was now observed to achieve a precision of 0.8409, a recall of 0.8605 and an F1 score 

of 0.8506 on an intersection over union of 0.75. The model was observed to detect 148 true 

positives, 28 false positives and 24 false negatives. The model was observed to accurately delineate 

the boundary to each solar panel it detected. 
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The accuracy assessment reports on multiband true ortho photos with image reconstruction 

problems and without image reconstruction problems. 

Table 2 – Accuracy table of multiband true orthophoto testing dataset with 1% cloud cover. 

IoU >= 

0.75 

Precision Recall F1 

Score 

AP True 

Positive 

False 

Positive 

False 

Negative 

Cloud 

Cover 

Clipped Out 

Image 

reconstruction 

error 

 0.8511 0.8775 0.8641 0.7684 480 84 67 1% No 

 0.8482 0.9719 0.9058 0.8445 380 68 11 1% Yes 

Difference 0.0029 0.1 0.0417 

 

0.0761 

 

-100 

 

-16 -56   

 

Figure 24 - Precision over recall graph.     Figure 25 - Precision over recall graph. 

From the result seen here when the model was operated on the multiband true ortho training dataset 

with the clipped-out area, no significant increase was observed in the precision score. However, a 

great improvement was seen in the Recall score of about 0.1 and a 0.04 increase in F1 score. 
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Table 3 - Accuracy table of multiband true orthophoto testing dataset with 100% cloud cover. 

IoU >= 

0.75 

Precision Recall F1 

Score 

AP True 

Positive 

False 

Positive 

False 

Negative 

Cloud 

Cover 

Clipped Out 

Homogeneity 

error 

 0.7594 0.4864 0.5930 0.4027 161 51 170 100% No 

 0.8409 0.8605 0.8506 0.7730 148 28 24 100% Yes 

Difference 0.0815 0.3741 0.2576 

 

0.3703 

 

-13 -23 -146   

 

 

Figure 26 - Precision over recall graph     Figure 27 - Precision over recall graph. 

When the area with reconstruction problem was clipped out in the testing dataset with 100% cloud 

cover, the model was observed to have performed well enough with 0.08 increase in precision and 

0.37 increase in Recall and 0.25 increase in F1 score. It can be generally seen from the table above 

that poor image reconstruction problems from the SIFT algorithm confusion have a big impact on 

the performance of the deep learning model. This problem could have emanated from low lighting 

condition when aerial data was collected in 100% cloud cover or the general know reconstruction 
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problem in the SIFT algorithm. For fairness in research, having stated the problem of image 

reconstruction from the SIFT algorithm, this research takes the clipped testing dataset with 1% 

cloud clover and takes the clipped off testing dataset with 100% cloud cover as second testing data 

set to test the generalization of the deep learning model. This research therefore reports its 

proposed deep learning model accuracy as follows. 

Table 4 - Accuracy table of multiband true orthophoto testing dataset with diverse weather 

condition. 

IoU >= 

0.75 

Precision Recall F1 

Score 

AP True 

Positive 

False 

Positive 

False 

Negative 

Cloud 

Cover 

Clipped Out 

Homogeneity 

error 

 0.8482 0.9719 0.9058 0.8445 380 68 11 1% Yes 

 0.8409 0.8605 0.8506 0.7730 148 28 24 100% Yes 

Mean 0.8445 0.9162 0.8782 

 

0.8087 

 

264 48 17   

 

 

Figure 28 - Precision over recall graph for mean accuracy of the study. 
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The research findings unveil the robustness of the deep learning model, showcasing its adaptability 

across various weather conditions and achieving an impressive mean accuracy of over 84% in both 

test datasets. Despite reconstruction problems from aerial imagery, the proposed deep learning 

model trained in diverse weather condition had a precision score 0.8445, a Recall of 0.9162, an F1 

score of 0.8782 and MaP of 0.8087 on a high intersection over union of 0.75 as against previous 

research who report intersection over union less than 0.75. The model was observed to have 

detected an average of 264 true positives, 48 false positive and 17 false negatives. In comparison 

with the small size of training dataset used in training this model, it is fair to the model to have 

achieved this impressive feat in comparison with previous research work who have used dataset 

as large as an entire state like Connecticut, North Rhine Westphalia and even the entire country 

like Netherlands, Sweeden and Switzerland while reporting detection on 0.5 IOU. This research 

had only used a university campus the size of only 1.74km square and a high intersection over 

union of 0.75. This research compares with previous research as follows. 
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Table 5 – Comparison of previous study on the detection solar panels  

Study Model Country Precision [%] Recall [%] F1 [%] Image 

resolution 

[m/ pixel] 

Number of 

images 

evaluated 

Share of 

positive 

samples of the 

images [%] 

(Yuan et al., 

2016) 
ConvNet US 81.2 / 85.5 84.0 / 87.3 82.6 / 

86.4 

0.30   

(Malof et al., 

2019) 
SolarMappe

r 

US 76.00 77.00 76.00 0.30   

(Yu et al., 2018) DeepSolar US 93.1 / 93.7 88.5 / 90.5 90.7 / 

92.1 

0.15 93 500 1.31 

(Mayer et al., 

2020) 
DeepSolar US 91.0 98.1 94.4 0.05 3 798 4.08 

(Kausika et al., 

2021) 
TernausNet the 

Netherland

s 

93.1 90.7 91.9 0.10 2 791 904 5.61 

(Rausch et al., 

2020) 
DeepSolar Germany 87.3 87.5 87.4 0.10 45 060 0.85 

(Lindahl et al., 

2023) 
DeepSolar 

— CNN 

Germany 93.4 81.3 86.9 0.10 45 060 0.85 

(Lindahl et al., 

2023) 
DeepSolar 

— CNN 

Sweden 63.9 81.8 71.1 0.16 877 142 0.09 

This Study Mask 

RCNN 

Spain 84.45 91.62 87.82 

 

0.03 417 0.1 

 

While this research achieves remarkable results, challenges exist for future studies.  It is the first 

time a deep learning model for the detection of solar panels has been implemented in the Kingdom 

of Spain, trained with diverse weather conditions. This research is a demonstration that the 

proposed deep learning model can be used to monitor the growth of solar panels at the university 

(UJI) in Spain. Moreover, given that this deep learning model was implemented upon instance 

segmentation, the volume of electricity which solar panels contribute to the campus can also be 

accurately computed. With this, government agencies, policy makers and financial institutions can 
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adequately determine homeowners who have installed solar panels on their roof top and as well 

give incentives adequately to them.  

Spatial Distribution of Solar Panels 

A spatial distribution of the solar panels was done to map the concentration of solar panels in the 

study area through point data. A centroid of the solar panels was calculated and interpolated as 

heat maps to show areas with sparsely populated solar panels and areas with densely populated 

solar panels. The point data was also aggregated to count the number of solar panels hosted by 

buildings. The building called Edifici JC 2 on the campus was observed to be hosting 93 solar 

panels. The Edifici TC building also hosts 196 solar panels, col-legi d Educacio infantile I primaria 

Vincent Marca host 111 solar panels on its building while Escola official d idiomes de castelló host 

112 solar panels. From the spatial distribution of solar panels in the test dataset, urban planners 

can adequately locate urban furniture that requires the utilization of solar panels. For example, the 

parking lots that share proximity with densely populated solar panels can be installed with car 

charging points for electric vehicles in those parking lots.  

 

Figure 29 - Spatial distribution of solar panel clusters in the testing dataset. 
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Figure 30 - Heat map showing cluster density of solar panels in the study area. 

Figure 31 - Heat map showing cluster quantification of solar panels in the study area. 
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Conclusion. 

The findings from the development of an instance segmentation deep learning model for the 

detection of solar panels, shows that instance segmentation provides high accuracy for the 

detection of solar panels with less training time and minimal edge loss using small dataset from 

very high-resolution UAV imagery. It is important for users to note that detecting solar panels in 

industrial areas may pose significant problem because of image reconstruction problem of solar 

panels and homogeneity of texture using VHR imagery but only in low lighting condition. If solar 

panels of large areas must be detected, the photogrammetry process must be conducted to avoid 

image reconstruction problems due to low lighting condition and homogeneity of image texture. 

Instance segmentation deep learning models which combine object detection and image 

segmentation proves to generalize properly with a small amount of training dataset as opposed to 

the popular use of large datasets to train deep learning models. Again, despite image reconstruction 

problems, the deep learning model performs well in real world scenario. This research affirms that 

training models in diverse weather condition improves generalization of deep learning model to 

accurately detect solar panel when faced with real world scenarios. Since the deep learning model 

can detect solar panels of all instances, subclasses of solar panel variant can be created to detect 

granularity of the instances of the panels. With accurate detection of solar panels and a high 

intersection over union at 0.75, the deep learning model delineate accurately a bounding box over 

each solar panel with high confidence. This high confidence of the model shows that the model 

can be deployed to calculate the amount of electricity generated by each solar panel. The fear of 

very high-resolution imagery creating unwanted multiclass during segmentation does not exist as 

this did not happen in this research. This research also proves that false positives can be eliminated 

greatly by the addition of a nDSM to the training dataset as fourth band to eliminate false positives. 

Homogeneity of image texture poses a problem to solar panel reconstruction and solar panel 

detection. Future studies in solar panels detection are encouraged to train deep learning models in 

diverse weather conditions while incorporating a nDSM to enhance model generalization. 
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