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We use Category Theory to interpret the family of algorithms for inference of DFAs that work by merging
states. This interpretation allows us to characterize the structure of the search space and to define criteria for
the convergence of these algorithms to the correct DFA. We also prove that the well-known EDSM algorithm
does not identify DFAs in the limit.

1. Introduction

Deterministic finite state automata (DFA) are pervasive models used
in Computer Science with many applications ranging from classic ones
such as models for lexical analysers [1] or parsing [2] to pattern match-
ing [3], process mining [4], in medical sciences for analysis of ECG
data [5] and analysis of clinical documentation [6], and neural network
interpretation in bioinformatics [7] and computational linguistics [8].
In many cases, these models are learned from data like in the previously
mentioned [4] and [7] or in [9].

Category Theory is gaining a lot of momentum in Computer Science
due to the powerful abstractions and generalizations that it provides. It
also provides a uniform way of understanding and using those abstrac-
tions. This has been especially noticeable in functional programming
but also in the most theoretical aspects of Computer Science, including
Automata Theory and the growing interest in understanding automata
learning from a categorical perspective. Examples of this are the work
on using the concept of T-algebras as the representation of automata
for learning in [10] or, also following an algebraic approach, the
work in [11]. A general categorical framework is present in the works
of Gerco van Heerdt et al. [12,13]. Automata can also be modelled
as functors [14], an approach that is closer to our approximation.
However, most if not all the previous works are based on Angluin’s
L* algorithm [15]. The paradigm followed is that of query learning: the
learner, an algorithm, can make queries to a teacher, an oracle. The
main result of [15] is that a learning algorithm can identify a regular
language if it can make two types of query: whether a string belongs
to the target language and whether a hypothesis is correct.

However, an adequate teacher is not always available. Often the
resource at hand is a corpus of samples of the desired language. In these
situations, the learning in the limit paradigm can be more appropriate.
Under this paradigm, the learning algorithm receives an increasing
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sequence of samples from the target language. The task of the learner
is to produce a hypothesis for each of those samples. In this case, there
is no defined point at which the task is accomplished, the learner is
considered successful if there is a point in the sequence of samples such
that from there on, all the hypotheses coincide with the target.

A family of algorithms that follow the paradigm of identification
in the limit can be grouped under the label of “state merging”. The
roots of these methods can be traced to the works of Lang [16] and
Oncina and Garcia [17], and surveys can be found in the works of
Bugalho et al. [18] and Tirnauca [19]. These algorithms were originally
developed in the context of Grammatical Inference but they have found
applications like the above-mentioned work in process mining [4].
These methods start by representing the input sample as an automaton
in the form of a tree. This automaton exactly represents the input
sample but does not generalize it. Generalization is achieved by pro-
gressively merging the states of the tree. When the sample is sufficiently
representative of the target language, the merging process is guaranteed
to produce the minimal automaton that recognizes it.

1.1. An example of learning by state merging

In this section, we use an example to show how the RPNI algo-
rithm [17] works. The target is the language of the strings of a’s and
b’s with an odd number of a’s. The available information is that the
language contains the strings {ab, ba, aaa, bab} and it does not contain
those in the set {4, b}, where A is the empty string. This information is
represented by the following tree:
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The initial state is marked by an arrow, accepting states are marked
by a double line, and those states for which is not known whether they
are final have a dashed contour.

The nodes are traversed in breadth-first order trying to merge each
state with the previous ones. The first merge tried is 2 with 1, but it
is rejected since to keep the automaton deterministic it would imply
merging also states 4 and 7 to state 1. But state 7 accepts and 1 rejects
so they cannot be merged. The second merge is 3 with 1, which is
successful, leading to the following automaton:

b /TN a
A PO
_,@ _a,gz @

Note that state 6 merged with state 2 and 8 with 5. State 2 is now
accepting since it has merged with state 6. State 4 can be merged with
state 1:

b

() a
~ =
-0 O ®
N~
a
Finally, state 5 cannot be merged with state 1 but it can be merged
with state 2:

b b
N a0
7 ™
_,@ @
~_
a
This is the minimal DFA that recognizes the language.

1.2. Why category theory?

A category is a collection of objects and morphisms between them.
We are interested in two categories. The first one is the category of
the automata that recognize a language, whose objects are automata
and the morphisms are correspondences between their states that pre-
serve the language. This is explained in Section 2.1 using the work of
Colcombet and Petrisan [20]. The second category has as objects the
automata that a merging algorithm can produce and its morphisms are
the merges. This category is defined in Section 5.3 and we will see that
when interpreted as the search space for merging algorithms, it has a
richer structure than the space presented in [21].

We also use extensively the concept of functor. A functor relates
maps the objects and morphisms of one category to the objects and
morphisms of another category in a way that preserves the structure
of the original category. We will define a functor between the two
categories mentioned above in Section 5.4. This functor will allow us to
give conditions for the convergence of learning algorithms in Section 5.
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1.3. The relationship of learning with minimization

As explained above, there is a category that contains every automata
that recognizes a language. An important automaton in this category
is the initial automaton, so called because it is related by a morphism
to every other automaton in the category. The initial automaton is an
infinite tree and we can interpret the morphism from it to another au-
tomaton as the merging of the states of this tree. The initial automaton
for the language of the strings with an odd number of a’s is

O

’ \
/ \

\

FN

/ \

/

_,@{ (5)
N

\

a

/N

/
/ \
/

\
\

’
/

The tree (1) representing the sample can be seen as a partial view
of (5) and the merges of Section 1.1 can be translated to it. The merge
of the states 3 and 1 in the initial tree can be translated here as the
merging of the states b and A, leading to this automaton:

©

The merge of 4 and | in (2) can be translated as the merge of
aa and 4, therefore we can interpret (3) as the partial view of this
automaton:

b
(V a
OWB O
— —_—
\_/

a

Finally, the merge of 5 and 2 leads to the merge of ab and a that
produces an automaton isomorphic to Eq. (4):

b b
N a0
7 ™
_,@ ®
\/
a
When looking at them from the perspective of Category Theory,
each of these merges is a natural transformation.

)]

1.4. Objective of the paper

The objective of this paper is to formalize the intuitions mentioned
above and to use them to describe the search space of merging algo-
rithms and to derive conditions for identification in the limit of DFAs
by state merging algorithms. Our definition of the search space is richer
than that of [21] and the conditions we present allow us to easily
prove the convergence of several classic algorithms. We also prove that
EDSM [22] does not identify in the limit the class of DFAs.
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2. Basic concepts

In this section, we present the concepts and notation used in the rest
of the paper. We consider two formalizations of automata, the classic
one, which the reader can find in any introductory book like [23], and
the functorial one which is based on [20] and is explained in the next
section. The general concepts we will use from Category Theory can be
found in introductory texts like [24] and some of them are concisely
explained when used, those directly related to automata are explained
next.

2.1. Automata as functors

We follow the approach of Colcombet and Petrisan [20] to define
automata using functors. Let I be an arbitrary small category and
O a full subcategory. We can consider I as the specification of the
inner computations of the automata and © as the specification of the
observable behaviour. Then:

* A C-language is a functor: £ : O - C.
» A C-automaton is a functor: A : 1 — C.

+ A C automaton A accepts a C-language £ when A -1 = L:
1

0o £s ¢ A I where : is the inclusion functor.

We particularize this definition for the case of deterministic au-
tomata. Usually, a deterministic automaton A is defined as a tuple
(0, 2,4, qy, F) where Q is the set of states, X is an alphabet, 5 : Ox X —
Q is the transition function, g, € Q is the initial state, and F C Q is the
set of final states [23]. The use of categories changes the definitions.
The initial state is identified with a function' g, : 1 — Q. The transition
function is considered as a family of functions, one for each element of
the alphabet 6, : O — QO so that §,(p) = é(a. p).

We also define for every string w € X* the function 6, : O — O
with 6,(¢) = ¢ and 6, = 6, - 6, for a € X. Finally, for every g € Q, the
function 5,1 2> Qs defined as 8y 1w 6,(q)

Let 2 = {0, 1}. We can identify F with a function F : Q — 2 in such
a way that F(g) is zero if ¢ is not final or one otherwise.

With these observations A can be seen as a functor from Iy. to the
category Set, where 7. is the free category defined from the diagram

a

A

. > <
In —> states —— out

©)]

where there is an arrow for every a € X. The effect of A on objects is:
A(in) = 1, A(states) = Q,A(out) = 2. and on arrows: A(>) = ¢y, A(a) =
84, A(<) = F.

For instance, automaton (4) corresponds to the functor A defined
by: A(in) = 1, A(states) = {1,2},A(out) = 2, and A(>) = T,A(a) = 0,
A(b) = 6, A(<1) = F where 6,(1) = 2,5,(2) = 1,5,(1) = 1,5,(2) = 2, F(1) =
0,F2)=1.

This allows us to take a string a,...a, and associate to it the
morphism >a ... a,< in Iy.. This morphism is translated by A into the
function F-§, -...-8, -qy : 1 - 2, which can be interpreted as the result
of applying the automaton to the string. Returning to our example,
the string ab is associated with the morphism >ab<. This morphism is
translated by A into the function:

F-8,-8,-1=F-8,-2=F-2=1.

So the string is accepted.
The language accepted by an automaton A, L(A), is the set of strings
accepted by it. This set corresponds to the function L(A) : X* — 2.

! The set 1 is a singleton and we use & to denote the function @ : 1 — A

that selects the element a of a set A.
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Let Auto(L) be the category of automata that accept the language
L. The morphisms of this category are the natural transformations
between the functors representing the automataZ®. Its initial automaton
(the one that has a morphism from it to every other automaton) is
denoted by 7(L) and corresponds to the diagram:

9
A L? 2

Its states are the strings of X*, the initial state is the empty string 4,
the transition function is the function §,(w) = wa, and the final states
are the strings that belong to L. An example is the automaton (5) of
Section 1.3

The final automaton (the one that has a morphism from every other
automaton to it) of Auto(L) is denoted by (L) and corresponds to the
diagram:

D

1 Ls 27 2, 9

Its states are the languages of X*, the initial state is the language
L, the transition function is §,(L) = {w € X* | aw € L} (the left
quotient of L by the letter a), and the final states are those languages
that contain the empty string.

The minimal automaton recognizing a language L, Min(L), can be
characterized as the result of the EM-factorization of the morphism
from Z(L) to F(L) [20]:

I(L) =5 Min(L) »=> F(L) (10)

Colcombet and Petrisan also use factorization to characterize the
reachable and observable subatomata of an automaton [20]:

« Reach(A) is the factorization of the only morphism between Z(L)
and A.

+ Obs(A) is the factorization of the only morphism between A and
F(L).

They use a diagram analogous to the following while proving their
Lemma 2.3 [20]:

— i
I(L) —> Reach(A) ——— > 0bs(Reach(A)) »— F(L)
P 24

-
-

-
Min(L)

(1)

This diagram will be useful to define the search space of grammatical
inference.

3. Partial automata

Learning algorithms use automata that are only partially defined.
In this section, we introduce the necessary concepts to work with these
automata.

2 The natural transformations in this case are the functions between the
states of two automata that keep the language.
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3.1. Partial functions and generalizations

We model partial functions as morphisms in the category of pointed
sets. Given a set A, the notation A, denotes the pointed set (AU {Ll}, 1)
where L is not an element of A. We write / : A » B for the partial
function f : A, — B,. The set of elements a € A such that f(a) € B is
denoted by D,.

As pointed set morphisms preserve the points, we have that f(L) =
1.

Given a function f: A — B, we use f* to refer to its extension as
a partial function A » B such that for all « € A, f*(a) = f(a) and
Sr=

Each partial function f : A - B can be associated with a span (two
morphisms with the same origin) in Set as follows:

Dy
1 7 (12)
A / \ B

where : is the inclusion. When f : A » Band g : B » C are composed,
we obtain the following diagram:

g-

/\
/\/\

13)

Note that D, <l—DgAf—f> Dy is a pullback of Df—f> B <l—DG.

To simplify the notation, the use of f in an arrow between two sets
must be understood as the restriction of f to those sets. This way, the
f and £ in (12) and (13) will be written simply as f.

A partial function g : A » B generalizes the partial function f :
A » B if for every x € A where f(x) is defined, g(x) is also defined and
f(x) = g(x). We denote this as f < g. The corresponding diagram is:

Dy

AN

A I B 14)

™~

D,

The following two lemmas present two useful properties.

Lemmal. Iff:A» B, g: A+ B,and h : A » B are three partial
functions such that f < g and g < h then f < h.

Lemma2. Iff:A+»B g:A»B h:B»C,and!: B» C are
four partial functions such that f <gand h<Ithenh- f <I-g.

3.2. Partial automata

The intermediate automata generated by learning algorithms have
partial transition and final functions. We formalize them in this section.
Partial automata are functors from the category of the diagram (9)
to the category of sets. They can be described by the following diagram:

)

a

q
1, 2 0, £ 2,

Like before, a string a; ...a, can be associated to the morphism
>ay ... a,< in Is.. This morphism is translated by A into the function
F -6, «...- 8, +qp : 1 2. In this case, the result is L if any of the
functions is undefined.
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The fact that the set of states is O, can be interpreted as the
automata having a sink state. For instance, automaton Eq. (2) in
Section 1.1 can be drawn as follows:

b /’

Yo 0d \

):) a,b

_>|

3 ~

4. Merges

Given a partial automaton A(Q, X, 4, q,, F) a merge of A is a pair
(AM ), where AM is another partial automaton (QM™, >, sM ,qo JFM)
and ¢ : Q — QM is an epimorphism® that when composed generalizes
the initial state and the transition and final functions. That is, ¢ - g, <
aq',¢-6,<8M -pand F < FM ¢

The diagram corresponding to ¢ - g, < z}é” is

D~l>Q

\ [ ) i 16)

DJM —> QM

The diagram for ¢- 6, < 6 3” - ¢ can be obtained from (13) and (14):

/\

S et

D, D,

N T

This can be simplified since ¢ is total, D, =0, and D¢-5a =D;:

D,,
A~

(0] Q
N

D¢

D(SaLQ
]
v N
| 0 —Ls> oM oM

tl¢t/

D5M< o > D5M
We can see that ¢ preserves the transitions by the subdiagram:
6[1
D;, —> 0

lo *“5 (17)

D‘M
Dy —> QM
P

This diagram can be extended to strings:

| » *"5 (18)

w

3 An epimorphism in Set is a surjective function.
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A similar process gives us the following diagram for the condition
F<FM.g:

Dp
b
-

™

2 (19)

Dpum

When the automaton is total, diagrams (16) to (19) can be redrawn
taking into account that the domains are known and we arrive at:

5,

,;U/Y (0] 0 —— 0 o \F*

1 $¢ i¢ iqb % 2 (20)
EM\“ M M o M M /FYM
0 o oY — 0 0

Therefore, the merges of total automata are natural transformations.

As the merge is determined by ¢ we usually refer to it simply as ¢.

Two states p and g of A are merged by ¢ if ¢p(p) = p(q). A state g is
reachable from p if there is a string w such that §,,(p) = ¢. The states
reachable from two merged states are also merged, as shown in this
lemma.

Lemma 3. Given two states p and g that are merged by ¢, if p’ and ¢
are reachable from p and q with the same string w then ¢(p’) = ¢p(q’).

Proof. We can find the pairs of states in the domain of §,, that are
merged by ¢ using this pullback:*

M s D;,

-
oy
Dau. —> Des,’f

We can add two copies of Diagram (18):

Ty Oy
M 2> D, 50
w

d
A
D,, %> Dy p

AN

0 —2 > oM

Let m be any element of M. The two states z,(m) and ,(m) fulfil
@ (m)) = P(my(m)), and p(5,,(7|(m))) = $(8,,(w,(m))). By construction,
there is an m with z,(m) = p and z,(m) = ¢, and the result follows. []

Now consider any merge different from the identity. This merge can
be decomposed in a sequence of what can be called direct merges. A
merge ¢ is a direct merge of p and q if, for every two states p’ and ¢’
that are merged by ¢, there is a string w such that either (p',q") =
(6,,(P). 8,,(@) or (p',q") = (8,,(q), 5,,(p)). So a direct merge is the minimal
merge that merges p and q.

The following theorem shows that every merge can be decomposed
in a series of direct merges.

Theorem 4. Given a partial automaton A(Q, X, 6, 4o, F) and a merge ¢, if
p and q are two states merged by ¢, there is a merge y such that ¢ =y -{,,,,
where £, is a direct merge of p and q.

4 Throughout the paper, we use z for the morphisms that project
product-like objects.
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Proof. Consider those strings w such that §,(w) and é,(w) are both
defined. They can be found with this pullback:

laf Iy 1)

Let (QP.¢ »q) D€ a coequalizer of 6, - #; and §, - 7, (a coequalizer is
a function such that ¢, - 6, - 7, = ¢, - 3, - m):

X R VR
V. _30 —> 0 (22)
53

We prove that (AP,¢ ,g) 1S @ merge by writing the components
QP,z,5P, q(?, FP) of AP and proving that they fulfil diagrams from (16)
to (19).

If we define qé’ = ¢,,(qp) we have trivially that:

o
D;, —> 0@

Define 5P as the unique morphism that makes this diagram com-
mute:
% $pq D
V_30 —>0

q I'p

s s

o v
“Pq

0, —> 0P

To check (17), we can draw the pullbacks corresponding to 6, and

s
Q<_1>Ql_p£.,Qf<l_>QD
g

where h exists because ¢, -6, and ¢, -1 are part of a commuting square.
The relevant part of the diagram is:

D;, —> 0

D(SD —> QD
a
a

11 Il

p %, o0
0P —» QP

Where you can see the commuting square and that (17) directly derives
from the upper part.

Define FP as the unique morphism that makes this diagram com-
mute:

ﬁp ¢
Vv —3 0 5> 0P

5'7 F 1
\ vFP
ZJ_
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Again, we can check (19) by drawing the pullbacks:

Finally, by Lemma 3 ¢(5,(w)) = ¢(5,(w)) for all w € V, therefore,
there must be a unique y that composed with ¢,, makes the following
commute:

% Spg )
Vv _3 0 —> 0

bl{ ¢ |
N
QM
¢y is epic since it is a coequalizer and v is epic because ¢ is epic. []

Since coequalizers are isomorphic, we can talk about the direct
merge of p and ¢ without a problem.

Direct merges commute in the following sense. The result of merg-
ing the states p and ¢ and then (the images of) the states r and s is
isomorphic to the result of merging r and s and then (the images of)
p and ¢q. Graphically:

§ ;
A My AD S AR

Crs ;
1

Cror
AM P4 AN

Theorem 5. Let:

« A(Q, X, 5, qy, F) be an automaton.

* p, g, r, and s be states of Q.

» p' and ¢’ be the images of p and q after the direct merge of r and s:
P =Gp) 4 = (@)

» ' and s’ be the images of r and s after the direct merge of p and q:
=), 87 = oy (9).

- AP(QP, x,57,40, FP) be the direct merge of p and q in A.

- AR(QR, 2, 6%, qf, FR) be the direct merge of r' and 5" in A”.

« AM QM 2,6M,q3", FM) be the direct merge of r and s in A.

- ANQV, 3, 8N, q)', FN) be the direct merge of p’ and ¢’ in AN,

Then AR and AN are isomorphic.

Proof. Consider the construction of the states of the automata:

g V’S
v =% 0 % o0 Ty ok

, i) Crs M S N
14 0O —> 0 (0]

Where V' comes from the pullback in Diagram (21) and V' is
analogous to V for 6, and 4.
First, we prove that the following diagram commutes:
bp $pa p S R
V30 —> 0° —> 0
g ~_h
AN

Eot gt “Crs

*1
QN

Where h and / are unique.
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We have that 6, = {,, - 6, and 6, =, - 6,. Therefore:
Cpgt Crs 8y =Ly Oy
=Cyq Oy ¢y 1s a coequalizer

= gp/qr N é’rs . 51]'

So, {yy - s coequalizes 5, and §,. Therefore, h is uniquely determined
since ¢, is a coequalizer.
Similarly, 6, = {,, - 6, and 6y = ¢, - &;. Therefore:

Equation for 4,

Equation for 6,

h-bu=h-Cpy- 8,

Equation for 6,

=Cpq s 6y h-¢,, commutes with ¢, -
=g s 6 ¢, is a coequalizer
=h-{- 6 h-¢,, commutes with £, - {,,
=h-oy. Equation for &,

So, h coequalizes 6., and 6. Therefore, / is uniquely determined since
¢ is a coequalizer.

A symmetric argument allows the definition of a unique I’ : QN —
OR confirming that they are isomorphic. This isomorphism is translated
to the isomorphisms of transitions and final states as in the proof of the
previous theorem. []

Note that Min(L), the minimal automaton that recognizes L, can be
seen as the result of a merge of (L), the initial automaton of Auto(L).
Therefore, Min(L) can be produced as the result of a sequence of direct
merges. This sequence can be finite.

Lemma 6. If L is a regular language, there is a finite sequence of direct
merges that when applied to T(L) produces Min(L).

Proof. We build such a sequence in steps. In each step we have an
automaton A(Q, X, 6, qy, F). In the first step, A is I(L). Assume that
Min(L) is the automaton (Q¥, X, M, q(])"[ , FM). Consider the merge y :
Q — OM that produces Min(L) from A. A string w points to a state that
has to be merged if the state g, = 84, (W) is different from ¢, = ey
where x is the shortest string such that 6, (x) = 6™, (w). Note that this

. 0 0
means that u(q,) = u(q,,), explaining why ¢,, “has to be merged”.

Now consider the shortest such w or, if there is more than one of
minimal length any of them. The next automaton is obtained as the
direct merge of g, and ¢,. We claim that only a finite amount of such
steps can be taken.

First, note that the path followed by w in A cannot have cycles
since a cycle would allow us to find a shorter string pointing to g,,,.
Similarly, the path followed by w in Min(L) does not have a cycle. For
the sake of contradiction, suppose that w can be decomposed in three
parts, w = ucv where ¢ cycles in Min(L). The relationship between the
paths traversed by w in A and Min(L) is:

1 I \ \
| \ 1 I

\ \ 1 !

M M M I H
\ \ / 7/
RN N 3 v ¥

Now, if q; = g, we have a cycle; if ¢, # g, then uc is a shorter string
than w which leads to a state that needs to be merged. Either way, we
have a contradiction.

Therefore, in each step, we have a new w that does not cycle, and
since L is regular, there is a finite number of such strings. []

5. Samples and learning

In this section, we formalize the process of learning. First, we adapt
the definitions in [25,26] of the concept of learning in the limit.
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A sample of a language L is a pair (X,.S) where X C X* is a set of
strings and S : X — 2 is the restriction of L to X: S(x) = L(x).

Given two samples (X,.S) and (X', S") we write (X, S) < (X', S") if
X C X and for all x € X, S(x) = S'(x). This means that sample S’ has
all the information from S and possibly some more.

A learning algorithm has as input a sample (X,.S) and produces
an automaton A that is compatible with it. L.e. the following diagram
commutes:

X 3> 2

l£ /L:A) 24)
ok

A presentation of a language L is a sequence of samples {(X;, S},
such that (X;,S;) < (X}, S;) for i < j and for all w € X* there is an i
such that w € X,. So we can interpret a presentation as a sequence of
increasingly larger samples that eventually contain any string.

A learning algorithm identifies in the limit the class of DFAs if, for
any regular language L and any presentation {(X;,S)}2, of L, there
is a finite n such that for every (X;,S;) with i > n the output of the
algorithm is a DFA that recognizes L

To alleviate notation and when we do not need to consider the
strings, we refer to S as the sample.

An important concept is that of characteristic sample. A characteristic
sample for a language and a learning algorithm is a sample (CX,CS)
such that the algorithm returns a representation of the language for
every sample that contains it, i.e. (X,.S) > (CX, CS). We also refer to CX
as the characteristic set.

Identification in the limit is only possible for an algorithm if every
language has a characteristic sample for that algorithm [27].

5.1. The PTA

A DFA A is a tree if there is a single path from the initial state to
every other state and no path arriving at the initial state.

A prefix tree acceptor (PTA) for a sample S is a tree T that repre-
sents S and only it. This means that for every string w in the sample,
L(T)(w) = S(w), and for every string not in the sample, L(T)(w) = L.

One construction of the PTA is the automaton T(X, X, 8, A, F) where
the states X are the set of prefixes of the strings in X. The transition
function §, is defined as ,(w) = wa if wa is the prefix of a string in
X and §,(w) = L otherwise. The final function F is the function that is
equal to S in the strings of X and equal to L in every other string.

5.2. Merging algorithms

The algorithms we consider take an input sample and represent it as
a PTA. Then, they apply a sequence of direct merges to the initial tree
until no more merges are possible. The final automaton is returned as
the result of the algorithm. A survey of several algorithms of this type
can be found in [19].

Assume we have the following functions:

» PTA(S): returns the PTA corresponding to sample S.

» canMerge(A): returns true if two states of A can be merged.

+ chooseMerge(A): returns a pair of states of A that can be
merged.

» merge(A, p, q): returns the result of merging states p and ¢ of A.

The general form of the learning algorithm is as follows:

This is not intended to be efficient. For instance, there is no
data structure to avoid repeatedly exploring impossible merges in
canMerge. Also, there is a large overlap between canMerge and
chooseMerge. Instead, the algorithm adequately represents the mer-
ges produced by concrete instantiations, that is, the merges produced
by RPNI [17] are the same as those produced by Algorithm 1 with an
adequate choice of chooseMerge, like in the example of Section 5.6.

Pattern Recognition 150 (2024) 110326

Algorithm 1: The generic merging inference algorithm.

Input: A sample: S
Output: An automaton compatible with .§
A < PTA(S);
while canMerge(A) do
(p.q) < chooseMerge(A);
A —merge(A,p,q),
end
return A;

Theorem 4 guarantees that if the automaton corresponding to the
target language can be obtained by merging the PTA, then it can be
obtained by Algorithm 1. But this crucially depends on the choice of
the function chooseMerge.

It can be noted that Algorithm 1 is more general than the algorithm
presented by de la Higuera et al. [28]. Their algorithm begins with a
trivial automaton consisting of a single state and no transitions. The
algorithm is parameterized by a function ¢ (like ours is parameterized
by chooseMerge) that returns a symbol x and a pair of states (q,4’)
from the automaton being built. If the pair of states and the symbol
define a transition that is compatible with the sample, the transition is
added to the automaton. Graphically, the first case corresponds to the
left diagram and the second case, to the right diagram:

QN
Ry TN

There is a correspondence between these two cases and the working
of Algorithm 1. The first case corresponds to the situation in which the
pair of states (g,q’) can be merged. In this case, the algorithm merges
the states and adds the transition from the merged state to itself. The
second case corresponds to the finding that the states cannot be merged.

We can revisit the beginning of the example in Section 1.1 to
compare the working of both algorithms. The initial automaton in de la
Higuera’s algorithm has only the initial state while Algorithm 1 would
build the automaton (1). When de la Higera’s algorithm discovers that
it is not possible to move from the initial state with an q, it adds a new
state (second case) whereas Algorithm 1 keeps the automaton intact.
Next, de la Higuera’s algorithm adds a new transition from the initial
state to itself with a b (first case), which corresponds to the merge of
states 1 and 3 that results in automaton (2). The process ends when the
remaining arcs are added.

However, there is a big difference between both algorithms. De
la Higuera’s algorithm does not allow merging already merged states.
Instead, it only considers the roots of the subtrees that have not been
merged yet and tries to merge them to the consolidated states of the
automaton.

5.3. The search space of grammatical inference

Dupont et al. propose a structure for the search space of Grammat-
ical Inference [21]. They view the merging of states as the product
of any equivalence relation between the states of the automaton, even
when it gives rise to a nondeterministic automaton. Furthermore, they
do not include the concept of partiality in the final function and they
do not include the information from negative samples into the search
space. Instead, they consider the negative information as a way of
defining the border of the lattice that defines their search space.
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In this paper, we restrict ourselves to the inference of DFAs and by
including both positive and negative samples in the PTA, we arrive at
a different structure. Our understanding of the search space is that it is
the category that contains as objects the PTA and all the automata that
can be obtained from it by considering merges of states. The arrows
of the category are the merges. Let Merge(S) be that category. By
construction this category has two properties: it is thin and the PTA
is an initial object of Merge(S).

Each election of the function chooseMerge defines a subcategory
of Merge(S) which contains the sequence of automata produced by
Algorithm 1.

5.4. The sampling functor

Now let us define a functor S;¢ that relates the automata that
recognize a language to those that can be generated by merging the
PTA obtained from a sample of that language. This functor, which we
call the sampling functor, allows us to interpret the sample S as a probe
in the category Auto(L) of the automata that recognize the language L.
Furthermore, this will allow us to reason about the behaviour of
Algorithm 1 using the automata in Auto(L).

Define the image of an automaton A(Q, %, 4, q,, F) by S, 5 as the par-
tial automaton AR(QR, =, 6R,qR FR)in Merge(S) The set of states QR
is the set of states reached by the strings of X, QR = {84, (w) |we X}.
The transition function 6% is the restriction of § to QR 55(1)) = 6,(p)
if p € OF and 5,(p) € OR, 5R(p) = L, otherwise. And F® is only
defined in those states reached by strings of X: FR(p) = F(p) if there is
a string w € X such that 8q,(w) =p, F R(p) = 1, otherwise.

Since a morphism f : A —» AM in Auto(L) corresponds to a function
Q — QM its image S, ¢(f) can be defined simply as the restriction of f
to OR.

To check that S;¢ is well-defined, note that the image of Z(L)
(the initial element of Auto(L)) is the PTA and for each automaton A
in Auto(L), there is a morphism f : (L) — A that corresponds to the
merge in Merge(SS) that produces S; ¢(A) from the PTA.

This functor allows us to connect the automata in Section 1.3 to
those in Section 1.1. This is because the image of a direct merge
in Auto(L) is a direct merge in Merge(.S).

Lemma?7. Let{,, : A— AP be a direct merge of A,AP € Auto(L). Then
SLS(é‘pq) 1 S;s(A) — SLS(AD) is a direct merge in Merge(.S).

Proof. First, note that as A is a total automaton, Diagram (22) can be
redrawn as:
" i) o D
2 T30 —> 0
q
We can combine it with (22) for A? and add the morphisms corre-
sponding to the functor to arrive at:
5
o — g D
2 T3 Q0 —> 0
q N
Srsylt
LS lt \

SLs SLs(QD) \Ih

5,01 o "
14 e S1s(0) — oM

q° 72
Where the inclusion of S, ¢(QP) is a consequence of the definition
of S;5 and the morphisms s and ! exist because ¢,, and g“;q are
coequalizers.

From there, we conclude that S; ¢(Q?) and QM are isomorphic. []

And from Theorem 4 we arrive at the following corollary.

Corollary 8. The functor S; g preserves epimorphims.
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Unfortunately, we cannot use the same idea to define a functor
in the other direction. To see why, consider learning the language L
of the strings with a number of a’s that is a multiple of three. The
corresponding automaton is:

b b
0 0

a

b

For any sample with at least one string with 3n+ 1 a’s and a string
with 3m + 2 a’s we can join in the PTA the nodes corresponding to
the two longest such strings (one from the 3n + 1 group, one from the
3m+2) and the resulting automaton is not related to any in Merge(L).
This also means that an algorithm that would use this strategy for
chooseMerge would fail to identify in the limit this language.

Therefore, we are interested in restricting the choices of
chooseMerge to those merges that are the image of a merge by S; g.

To do that, let us consider the subcategory of Merge(.S) generated
by S; . Let us call it SM(S).

Note that by construction the image of the automaton A is built
using only reachable states, therefore we have the following lemma:

Lemma 9. For every automaton A in Auto(L), S; ¢(A) = S; s(Reach(A)).

This lemma tells us that when moving from the category of all the
automata recognizing the language L to the category of the automata
derived from the PTA using merges, we need to consider only the
reachable parts of the automata. For instance, let us return to our initial
example from Section 1.1. An automaton that recognizes strings with
an odd number of a’s is the following:

b b a a

YomoWo ol

And since states 3 and 4 are not reachable, the image of (27) by S; ¢
is (4).

Now we can conclude the following:

Theorem 10. The automata S; ¢(I(L)) and S; ¢(Min(L)) are initial and
final objects of SM(SS).

Proof. As noted above, the image of I(L) is the PTA, which is initial
in Merge(S), therefore it is also initial in SM(S).

Let A be an automaton in SM(S) and A’ and automaton in Auto(L)
such that S;¢(A’") = A. By Lemma 9, S;¢(A") = S,¢(Reach(d)),
and by Diagram (11) there is an epimorphism from Reach(A’) to
Min(L). Corollary 8 implies that there is an epimorphism from A to
S; s(Min(L)). And this morphism is unique since Merge(S) is thin. [

Returning to the example in Section 1.1, this means that every
automaton that can be built using the sampling functor on an au-
tomaton that recognizes the language of strings with an odd number
of a’s will be the result of merging the states of (1) and from every
such automaton there will be a sequence of merges that leads to
automaton (4).

From here we can derive the conditions for Algorithm 1 to produce
a correct hypothesis.

Corollary 11. If the sample S is such that S; g(Min(L)) ~ Min(L)
and chooseMerge always produces a merge that results in an automaton
in SM(S), then Algorithm 1 produces an automaton isomorphic to Min(L).
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We can relate this corollary to the example in Section 1.1. There, the
order of the merges always produced an automaton that was the image
of an automaton of Auto(L). Therefore, the minimal automaton for the
language (automaton (8)) is isomorphic to its image by the sampling
functor (automaton (4)), which is the product of the algorithm.

5.5. Another interpretation of learning in the limit

Consider two samples (X,.S) and (X’,S’) where X’ C X. We can
define the sampling functor Sg¢ between SM(S) and SM(S’) in a way
analogous to the definition of S; ;. The definition of the image of an
automaton Sg¢(A) is again the result of keeping the states reached by
the elements of X and the image of a morphism is the restriction of
that morphism to the new states.

With this definition, the composition of the sampling functors is
simply Sg/gn - Sg» = Sgg when the corresponding sets of strings
are such X” C X’ C X. Furthermore, the functor Sgg is the identity
for SM(SS). Therefore, the different SM(S) together with the sampling
functors form a category.

This category gives another interpretation of the process of iden-
tification in the limit. The different SM(S) are progressively better
approximations to the subcategory of Auto(L) that is generated by the
merges. And this subcategory can somehow be considered as SM(L).

5.6. Data-independent algorithms

There is a class of algorithms, like RPNI [17] that try to merge the
states following a predefined order. These algorithms are called data-
independent [28]. We can characterize these algorithms as having a
function chooseMerge parameterized by a predefined list of pairs
of strings. Each pair of strings is used to define the pair of states
reached by the strings. The first such pair of states that can be merged
is returned by chooseMerge.

Let P = {(v,w)}2, be a sequence of pairs of strings such that
for every pair (v,w) € X* x X* there is an i with (v,w) = (v;, w;) or
(v,w) = (v;, w;). The data-independent version of chooseMerge is

Algorithm 2: The data-independent version of chooseMerge.
{(wwp}2

Input: An automaton A and a sequence P =
Output: Two states (p, q) of A to be merged
i« 1;
while True do

P = 6,y

q < 64, (w;);

if p # g A compatible(A, p, ¢) then

| return (p, q);

end

i—i+1;
end

of pairs

where compatible is a function that checks that the states can be
merged in the automata.

As an example, consider RPNI. For the alphabet ¥ = {q,b}, the
sequence is P = {(4,a),(4,b),(a,b),(4,aa),(a,aa), (b, aa),(4,ab),(a, ab),
(b,ab), ...}. So, the order in which merges will be tried in the case
of the samples seen in Section 1.1 is {(4,a), (4, b), (a, b), (4, aa), (a, aa),
(b, aa), (4, ab), (a, ab), (b, ab), ...}.

Note that our definition of data-independent algorithm is more
general than the one in [28] since they have a different version of
the base algorithm. Our version allows more orders to be used. For
instance, a possible order would first check the merge of the states
reached by « and b and after that, the merge of the state reached by a
with the initial state. This order is not allowed in [28].

DFAs are learnable in the limit by data-independent algorithms
without regard to the sequence of strings.
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Theorem 12. DFAs are learnable in the limit by Algorithm 1 for any P
when Algorithm 2 is chosen for chooseMerge.

Proof. Let Min(L) be the automaton (Q, =,5M, ¢}, FM). We build
a characteristic set CX such that Algorithm 1 generates an automaton
isomorphic to Min(L) when used in any sample that includes CX.

The set has two parts that correspond to the conditions of Corol-
lary 11. To ensure that the image of Min(L) is isomorphic to it, we
include a string for each state in Q™ and each edge of Min(L). We also
introduce strings that prevent the merges outside SM(.S) to ensure that
no merge ends outside it.

Then, we can write CX as

X = {4 (p) | p€OM} U {o4(p)al pe O™ Aae Z}uDI(L),P). (28)

Here, o,,(p) is the shortest string x such that 5;‘]4 (x) = pand D is a
function that produces the strings that avoid “bad merges”.

The value of D is computed by essentially simulating Algorithm 1 in
the automata in Auto(L). When the simulation finds that the algorithm
would make an incorrect merge, a pair of strings is added to prevent
it.

The value of D(A, P) is the empty set for any A isomorphic to
Min(L) and every P.

For an automaton A(Q, X, 6, gy, F) nonisomorphic to Min(L) the
value of D(A, P) depends on (v,,w;). Let p = 64 (V1); ¢ = qu(w,) and
P = {(Ui,w,-)}fiz

« If p = q there is no need to merge, therefore D(A, P) = D(A, P').

« If p # q there are two possibilities:
-5ng_5

S0 we perform the direct merge of p and ¢, and we get

D(A, P) = D({,,(A), P').

5M (v)) # M (w)) and then the two states cannot be
a!

(w;) and then the two states can be merged,

merged Let x and y be two strings such that L(v;x) #
L(w;x). Then D(A, P) = {v;x,w;x} U D(A, P').

In summary, for A nonisomorphic to Min(L):
D(A, P")
D(¢,py PN

{vx,w;x} U D(A, P') otherwise.

if p=g,

D(A,P) = 1fp;éqand5 (ul)—é v (W),

D is well-defined: there is a finite sequence of merges that leads
the automaton to Min(L) (Lemma 6) and it is indifferent where this
sequence appears (Theorem 5), therefore the base case of D will be
eventually reached.

To see that Algorithm 1 produces the correct result in every sample
that contains CX, note that the sequence of automata traversed by the
algorithm is exactly the image by the sampling functor of the sequence
of automata traversed in constructing D(Z(L), P). [J

Corollary 13. RPNI identifies in the limit the class of DFAs.
5.7. Data-dependent algorithms

In general, chooseMerge will examine A and decide what states
to merge in a variety of ways. Some general heuristics are employed,
one of which is that it is better to try to merge states near the initial
state. One way to capture this idea is to consider that when the sample
grows enough the number of candidates that can be merged is limited
to a finite set. That means that when the sample is large enough there
is a region around the initial state where merges happen.

If the set of states that chooseMerge can produce is finite, it is
possible to construct a characteristic set that contains a counterexample
for each bad merge. This idea is formalized in the following theorem
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where the notation o,(p) corresponds to the shortest string w such
that éqo(w) =p.

Theorem 14. If the version of chooseMerge in Algorithm 1 is such
that for every regular language L there is a sample M such that the set
{(@4(P).04(@) | (p.q) = chooseMerge(S, (A))}

AcAuto(L) MCSCE*

F=
is finite, then Algorithm 1 identifies DFAs in the limit.

Proof. Like in the proof of Theorem 12, let Min(L) be the automa-
ton (QM, x,6M, qé”, FM), Also, like we did in the proof of Theorem 12,
we build a characteristic set CX. The set has three parts: the M from the
hypothesis to ensure the finiteness of F; the strings needed to reach the
states of QM; and the strings needed to avoid those merges in F that
may fall outside SM(S).

The value of CX is then

CX=MU{oy® | peQ”)U(oy(alpe QY nae ZjuD.  (29)

Here, the set D is derived from F by collecting one pair of strings
of the form o,(p)x and o4(q)x for every (c,(p),04(q9)) in F so that
L(o 4(p)x) # L(c 4(p)x). As F is finite, so is D and therefore CX.

Like in the case of Theorem 12, the set CX is a characteristic sample
so DFAs are identified in the limit. [

This theorem can be used to prove that the Blue Fringe algorithm
identifies DFAs in the limit. This algorithm was first presented in [22].
The behaviour of chooseMerge for this algorithm is to find a set of
red states. These are found by first marking ¢, as red. Then iteratively
each neighbour of a red state that cannot be merged to a red state is
also marked red. When all red states are merged the set of states that
are not red but are neighbours to a red state are marked blue. Finally,
the states returned are the pair formed by a red and a blue state that
maximizes the total number of states merged.

Once the sample is large enough, there can be no more red states
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To see why that is the case, consider again the language of strings
with a number of a’s that is multiple of three and whose automaton
is (26). Let us assume that there were a characteristic sample (CX, CS).
Let s be the number of elements of CX. Note that the score of merging
any two states in the PTA is going to be less than s. Now create a new
sample with all the strings from CX plus all the strings of the form a3+!
and o***2 for every k from 1 to a large enough value. The PTA for
this new sample has a shape similar to that in Box I, so there is a part
corresponding to all the samples in CX and a long tail of states reached
by the additional strings of a’s. After an initial part of length / every
three such states contain one with no information and two rejecting.
It is always possible to merge the first and the second of those states
giving rise to:

-,
-
-

-
.
-
.
g3l
—> NN\ > ) a
~
N
~
~
~
~
N
~

~
~

N

(€19)

which precludes finding the correct automaton.

The score of this merge will be greater than s if the number of added
strings is large enough, so it will be preferred over any merge involving
the states in the PTA corresponding to CX. It could be possible that
there were merges with higher scores, but all of them will involve the
newly added strings and will produce the same incorrect loop.

Therefore, there is no characteristic sample for this language and
EDSM fails to identify in the limit the class of DFAs.

6. Conclusions

Category Theory is a powerful tool to analyse from a theoreti-

than those in Min(L), therefore the set of possible outcomes of chooseMergg| perspective the functioning of inference algorithms. It has been

is finite and we have that Blue Fringe identifies DFAs in the limit.

Corollary 15. The Blue Fringe algorithm identifies in the limit the class of
DFAs.

A similar argument can be used to prove that the data-dependent
algorithm presented in [28] identifies DFAs in the limit.

It is interesting to note that the finiteness of F is sufficient but not
necessary. We can see that with the following (contrived) example.
Imagine a version of chooseMerge that works as follows: if all the
states in the automaton are accepting, it returns the two states further
from the initial state; if not all states are accepting, it works like RPNI.
When using this version of chooseMerge, Algorithm 1 behaves like
RPNI for most languages, so it identifies them. The only exception is X*,
but for any sample of it, there is no problem in merging states in any
order, so it also identifies it. Finally, note that as the states chosen are
those further from the initial state, the set F is not finite since larger
samples produce longer strings to reach those states.

5.8. The case of EDSM

Another algorithm presented in [22] is EDSM (short for Evidence
Driven State Merging). The way chooseMerge works in this algo-
rithm is by considering all possible direct merges and scoring them.
Then the merge with the highest score is returned. The score of a
merge is the number of states that are merged or, equivalently, the
difference in the sizes of the original and the merged automata. This
algorithm performs well in practice. Unfortunately, it does not fulfil
the hypotheses of Theorem 14. In this case, it is because EDSM fails to
identify the regular languages in the limit.

10

successfully used in the analysis of query-based learning algorithms
and we have applied it in this work to state merging algorithms for
DFA inference. One of the reasons for this success is that it provides
insight and new methods for proving aspects like the convergence of
algorithms. The work presented here can help in the development of
new algorithms in two main aspects. First, it explains the search space
that the algorithms must explore. Second, the criteria derived for the
convergence will ease the proof of convergence of those algorithms.

There are still different aspects that need to be addressed in future
work. Perhaps the most obvious one is that the high level of abstrac-
tion about the nature of the algorithms makes it difficult to extract
conclusions about the computational costs of running them. Another
pending aspect is the viability of using these techniques on other types
of automata, especially subsequential transducers and probabilistic au-
tomata. Also, from a more formal perspective, it would have been nicer
if the conditions for convergence could be used for the characterization
of convergent algorithms.
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