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Abstract

The increasing number of Internet of Things devices, propelled by technological

advancements and widespread Internet coverage, has led to an unprecedented surge

in data generation. This influx of data, often characterized as Big Data, poses

significant challenges in terms of handling, processing, and extracting meaningful

insights.

The rise of Artificial Intelligence is crucial for the managment of Big Data, estab-

lishing a foundation for the perfect symbiosis of Internet of Things and Artificial In-

telligence. Internet of Things devices generate enough data to feed Machine Learning

a subset of Artificial Intelligence. Machine Learning specializes in recognizing pat-

terns, discerning intricate trends and anomalies, streamlining data analysis through

automation, and exhibiting scalability to effortlessly accommodate expanding data

quantities. Machine Learning’s strengths in predictive analytics and real-time pro-

cessing makes it highly suitable for prompt decision-making.

Despite promising prospects, creating and deploying Machine Learning models

in numerous heterogeneous Internet of Things devices and ecosystems presents a

formidable and competitive task.Similarly, developing a universal ML model capable

of encompassing all IoT devices worldwide is an impractical endeavor since each IoT

device comes with its unique characteristics and functionalities, making a one-size-

fits-all model unfeasible. Therefore, this study proposes a novel solution in which

Machine Learning models are shared among Internet of Things devices based on their

similarity in purpose, domain, and context. This strategy leverages the concept of

Communities of Interest within the Social Internet of Things framework.

The main goal of this master thesis is to develop an efficient method for sharing

Machine Learning models across Internet of Things devices. To achieve this, the

research work proposes a novel approach focused on distributing Machine Learning

models among Internet of Things Communities of Interest based on the similarity

of Internet of Things data streams and geospatial components such as location and

elevation. To validate this approach, the study adopted a cluster-based strategy to

form Internet of Things Communities of Interest. Initially, a thorough similarity

analysis of IoT weather sensor data streams was conducted using both Dynamic

Time Warping and Spearman’s correlation methods.

Evaluation of the similarity results revealed that Spearman’s correlation per-

formed better than Dynamic Time Warping, producing higher-quality and more

coherent clusters. Thus, the study proceeded with K-means clustering using the out-

comes of Spearman’s correlation analysis and goespatial data to form clusters, guided

by the optimal number of clusters, four, determined through the elbow method.
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These clusters formed the foundation for Internet of Things - Communities of

Interest, essential for the development, validation, testing, and sharing of Machine

Learning models. Evaluation of Machine Learning model performance during the

sharing and testing phases revealed that the majority of the Machine Learning mod-

els performed better when trained, tested, and shared within the same Community

of Interest dataset. On the contrary, models trained on a different Community of In-

terest exhibited poorer performance when tested on members of another Community

of Interest.

The findings of this study demonstrate that it is possible to delineate geospatial

zones based on the inherent similarity of Internet of Things data streams, and to

craft and validate Machine Learning models tailored to the unique characteristics of

each zone. It also establishes that it possible to leverage geospatial components for

sharing and reusing pre-trained Machine Learning models among Internet of Things

devices.
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1. Introduction

1.1 Context and Motivation
Today, rapid advances in technology have led to the widespread adoption of

Internet of Things (IoT) systems in various areas such as smart homes, healthcare,

agriculture, and transportation Granell et al. [2020], Trilles et al. [2015, 2020, 2017].

According to Karie et al. [2020], the number of interconnected IoT devices will

increase to 38.6 billion by 2025 and is expected to reach approximately 50 billion by

2030. The advent of IoT ushers in an era where all objects in our surroundings will

be connected to the Internet, enabling seamless communication between them with

minimal human intervention [Atlam et al., 2018].

However, this proliferation of IoT devices comes with a challenge: the huge

amounts of data they generate. Managing and analyzing these data, especially

when real-time analysis is needed for tasks such as health monitoring, emergency

response, security, and smart assistants, has become increasingly complex [Yu and

Wang, 2020].

According to Adi et al. [2020] the emergence of Machine Learning (ML) is crucial

to processing and analyzing IoT data due to the unprecedented scale and complex-

ity of information generated by interconnected devices. Traditional data analysis

methods struggle to handle the sheer volume, velocity, and variety of IoT data.

ML algorithms excel in discerning patterns, identifying anomalies, and extracting

meaningful insights from this data deluge [Trilles et al., 2024, Hammad et al., 2023].

Using ML, organizations can predict future events, optimize resource utilization, en-

able real-time decision-making, and adapt to changing circumstances. Essentially,

ML empowers IoT systems to derive actionable intelligence from massive datasets,

unlocking the full potential of IoT in diverse applications and industries.

The rapid advancement of IoT devices enables them to undertake more intricate

computational tasks. This has resulted in the emergence of Artificial Intelligence of

Things AIoT, driven by the synergy of AI and 5G technology. This trend offers two

key strategies: a centralized system based on cloud computing for data analysis and

decision-making, and a decentralized approach, known as edge computing, capable

of generating immediate responses at the data source [Pinyoanuntapong et al., 2022].

This progress, in turn, has facilitated the development of more sophisticated analysis

algorithms within the edge computing layer.

Each strategy has distinct advantages and drawbacks. The centralized model

[Corchado, 2020] offers simplicity during the implementation and deployment of

the model, while the decentralized approach reduces the costs and time associated
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1. Introduction

with data transfer. The choice between these strategies depends on specific use-case

requirements. For example, applications that require real-time decision making, such

as health or safety systems, often benefit from the decentralized approach [Corchado,

2020]. In contrast, scenarios that require extensive computational power may favor

the centralized strategy, aligning with the unique needs of the application.

In connection with the AIoT paradigm, a compelling concept known as TinyML

has surfaced [Ray, 2022, Trilles et al., 2024]. TinyML focuses on creating ML models

specifically optimized for execution on IoT devices. This approach enables ML

models to operate directly where data is generated or where decisions need to be

implemented. The ultimate goal is to empower IoT devices to autonomously make

decisions, transforming them from mere messengers conveying information to the

control center into active decision-makers [Ray, 2022].

In a diverse field such as IoT, characterized by a wide range of devices, purposes,

and dynamic contexts, generating and managing specific models for each individual

IoT device is a daunting task. Given the intricate and diverse nature of IoT devices

and ecosystems, developing a universal ML model capable of encompassing all IoT

devices worldwide becomes an impractical endeavor. Each IoT device comes with

its unique characteristics and functionalities, making a one-size-fits-all model unfea-

sible. A potential solution lies in the ability to share ML models among IoT devices

based on their similarity in purpose, domain, and context.

A possible solution is to share these models is using the concept of a Community of

Interest (CoI) [Bao et al., 2013]. CoI is a strategic approach to facilitate the sharing

of models among IoT devices. It originates from the Social Internet of Things

(SIoT) realm Atzori et al. [2011], allowing IoT nodes to be grouped according to

shared interests or purposes. SIoT extends the scope of IoT by enabling IoT devices

(Social Objects) to establish autonomous relationships, similar to trust relationships

between humans [Shahab et al., 2022]. Within a CoI, there are three types of social

relationships an IoT device can benefit from: friendship, representing intimacy; CoI,

signifying common purpose or knowledge; and social contact, denoting closeness

and proximity. This concept is particularly valuable for improving cooperation and

effectively delivering services through autonomous collaboration. CoI has previously

been employed to establish trust between IoT devices, with each community being

overseen by a trusted administrator managing membership [Djedjig et al., 2020].

Moreover, IoT devices within a CoI must adhere to acceptance conditions to main-

tain their participation. According to Sagar et al. [2021], considerations of temporal

and geospatial components become essential when defining a CoI. The temporal

aspect recognizes that devices may undergo changes over time, and the geospatial

condition recognizes that the behavior of an IoT device can vary depending on its

2



1. Introduction

location, especially in contexts such as the Internet of Vehicles (IoV) where devices

are in constant motion [Adnan et al., 2019].

Therefore, it is imperative to incorporate temporal and geospatial components

when defining and maintaining a CoI to determine the eligibility of IoT devices

within the community [Sagar et al., 2021]. Leveraging these components in an ML

parsing system is highly beneficial to improve adaptability in addressing the same

underlying challenges. The term ML will be used to refer to the TinyML system to

be shared in this project.

This research aims to establish a new method of sharing of ML models among

IoT devices using CoIs based on the similarity of IoT data streams and geospatial

components that is location and elevation. It leverages ML models for forecasting

temperature through simulations using real-world IoT data from weather sensor

networks to demonstrate the effectiveness and relevance of the proposed approach

in addressing real-world challenges and advancing the field of IoT and ML.

To achieve this goal, the project will perform a comprehensive time series analysis

of temperature data collected from weather sensors as IoT devices. The analysis will

identify patterns of similarity in the data. It will then integrate temperature time-

series similarity data with geospatial attributes such as location and elevation to

execute geospatial clustering of the IoT devices. This approach will generate CoI,

and organize sensors based on their similarities. As a result, a foundation and

framework for seamless crafting, validation, testing, and experimenting with the

sharing of TinyML models among interconnected IoT devices will be presented.

1.2 Main Objective
The main objective of this master thesis is to define a strategy to share and

reuse pre-trained ML models among IoT devices using data similarity and geospatial

components.

1.2.1 Specific Objectives

To provide a clear roadmap for achieving the broader goal of enabling the sharing

and re-use of pre-trained ML models among IoT devices this study addresses this

aim by, breaking down the overrarching goal into smaller, manageable objectives

that guide the research process. The specific objectives of this study are as follows:

1. Following the concept of CoIs, to establish geospatial zones based on the in-

herent similarity of IoT data streams.

2. Use these geospatial zones to design, validate, test, and experiment the sharing

of ML models tailored to the unique characteristics of each geospatial zone.

3



1. Introduction

1.3 Research Questions
Crucial for understanding how to enable the sharing and re-use of pre-trained ML

models among IoT devices this study also addresses fundamental research questions.

These questions provide clear direction for exploring the complexities of model shar-

ing within IoT environments. This research aims to uncover meaningful findings and

contribute to a better understanding of how to effectively distribute models in IoT

systems by carefully examining the following reasearch questions:

1. Can IoT devices be grouped into CoI based on the similarity of temporal data

and geospatial attributes?

2. Can grouping IoT devices into CoI based on their data similarity enable the

sharing of Tiny ML models among the devices?

1.4 CoIoTIA project
This study is part of the broader national project, Communities of Internet of

Things in Artificial Intelligence (CoIoTIA), aimed at enhancing the practical im-

plementation of AIoT devices, particularly those equipped with edge computing

capabilities. To realize this objective, a ML analysis platform will be developed,

creating a decentralized repository hosting pre-trained models and the necessary

tools for adaptability, illustrated in Figure 1.1.

The repository will be filled with micro ML models generated through local learn-

ing algorithms, distributed using the CoI paradigm derived from the SIoT. These

models are customized for context-dependent IoT devices, considering factors like

location and time. The study embraces a distributed IoT architecture, departing

from the conventional centralized model reliant on cloud computing, opting instead

for the computational power of edge/fog computing to provide scalability and low

latency. In parallel, the ML model repositories reside in fog nodes (Figure 1.1),

ensuring the publication, reuse, and reproducibility of integrated models. Simulta-

neously, these fog elements become integral components of a blockchain network,

contributing to scalability, security, transparency, and traceability.

The research introduces an innovative approach to facilitate the sharing of ML

models within IoT CoI, based on the similarity of IoT data streams and geospatial

components (location and elevation). The goal is to devise a method for sharing

models stored in fog nodes among IoT devices. The anticipated outcomes of the

project are expected to exert a significant impact across various business sectors,

including smart cities, smart homes, and industry, among others.

This study contributes to the project by proposing a novel method for sharing and

reusing pre-trained ML models among IoT devices. This objective will be achieved

4



1. Introduction

Figure 1.1.: Overall architecture of the project

by defining geospatial zones based on the inherent similarity of IoT data streams

and location, and utilizing these zones to effectively design and validate machine

learning models tailored to the unique characteristics of each geospatial zone. The

experiments will involve the use of ML models to forecast temperature changes,

conducted through simulations using real-world data from weather sensor networks.

The aim of these experiments is to demonstrate the efficacy and relevance of this

approach in addressing real-world challenges and advancing the fields of IoT and

ML.

1.5 Document Structure
This master thesis report is divided into five chapters. Chapter 1, which is the

current chapter, explains the motivation behind this work, the goals of the study,

and the research questions.

Chapter 2 explains the background, giving contextual information and relevant

concepts that set the stage for the research presented in this thesis. It provides

an overview of topics related to this work, which are IoT and ML, Social Internet

of Things and Communities of Interest, Time Series – Similarity Analysis, Time

Series – Clustering, Cluster Quality Analysis and Time Series Forescasting

Chapter 3, explores the literature on existing work related to IoT, CoI, and Time

Series Similarity Analysis and Clustering, as well as its applications.

Chapter 4 is the Methodology describing the systematic approach or framework

used to conduct this research. It encompasses the principles, procedures, and tech-

niques employed to gather data and analyze information.

Chapter 5 provides details about the implementation and development stage of

the methodology. It includes code snippets to illustrate key components of the

analysis and provided explanations for each snippet.
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1. Introduction

After that, Chapter 6 shows the development and experimental results of simi-

larity analysis and clustering and the results of the ML model crafting, validation,

testing and sharing. Followed by Conclusions and Future Work, the last section

concludes the work and summarises the results, as well as suggests future develop-

ment.
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2. Background

This chapter provides an overview of the background and context that form the

foundation of this thesis research. It delves into the historical, theoretical, and

practical aspects that have shaped the subject matter of this study, laying the

groundwork for the subsequent chapters.

2.1 IoT and ML
As technology has advanced, the exponential increase in the number of IoT de-

vices has contributed substantially to the global surge in data production. By Karie

et al. [2020], the number of connected devices in the IoT ecosystem is projected to

reach 38.6 billion by 2025 and an estimated 50 billion by 2030. This proliferation

of IoT devices not only has diversified the sources of data but has also significantly

magnified the scale of data generated. From smart home devices and industrial sen-

sors to wearable gadgets and connected vehicles, the IoT landscape spans a myriad

of sectors, resulting in a diverse array of data sources. This surge not only en-

compasses building information models, parking transactions, and public transport

transactions but also includes real-time health monitoring, environmental sensors,

and more.

Despite this abundance, current applications often demonstrate a propensity to

focus narrowly on specific use cases. As the IoT landscape continues to expand,

addressing the challenge of effectively harnessing and leveraging this vast and diverse

dataset for broader applications becomes increasingly crucial.

ML serves as a pivotal solution to the challenges posed by the influx of big data

and the large datasets that emanate from the IoT. It is instrumental in harnessing

the full potential of IoT by extracting meaningful insights and optimizing processes

in the face of massive and diverse datasets [Adi et al., 2020].

By automating tasks such as feature extraction and dimensionality reduction,

ML algorithms facilitate the processing and analysis of diverse and unstructured IoT

data. Predictive modeling and anomaly detection enable proactive decision-making

and identification of potential issues. Real-time processing, pattern recognition,

and behavioral analysis capabilities allow immediate insights and adaptability in

dynamic IoT environments [Adi et al., 2020].

In the world of CoI, the goal is to make devices more than just information

carriers—they should be able to make decisions on their own. However, dealing with

the diverse array of devices, purposes, and dynamic situations in the IoT makes it

practically impossible to create and manage individual ML models for each device.
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Similarly, creating a single ML model that can cover all IoT devices around the

world is too complicated and unrealistic due to the wide variety and complexity of

these devices and systems. A practical solution is to let the IoT device share ML

models based on their similarities in purpose, domain, and context. This sharing

can happen through a CoI, where devices with similar functions or environments

team up. This simplifies the task of handling ML models and allows devices to

collectively benefit from shared insights, making decision-making in the IoT world

more effective and relevant [Bao et al., 2013].

This master thesis aims to take advantage of the CoI concept, where nodes or

devices are grouped based on shared interests or purposes. The inspiration for

this concept is drawn from the realm of the SIoT Atzori et al. [2011]. By applying

the CoI approach, devices with similar functions or objectives can form collaborative

communities, simplifying the complexity of managing and sharing ML models within

the IoT ecosystem. This utilization of CoI not only streamlines decision-making

processes among devices, but also enhances the efficiency of communication and

collaboration within the IoT framework.

2.2 Social Internet of Things and Communities

of Interest
The concept of SIoT comes from Atzori et al. [2011]. It introduces a social struc-

ture among objects in the IoT. Similar to how social networks connect individuals,

SIoT aims to establish social relationships among objects. These relationships en-

able objects to interact, collaborate, and share information autonomously, without

relying solely on human intervention.

CoI plays a significant role in the SIoT concept. Objects with similar char-

acteristics and profiles can form communities based on shared interests, goals, or

functionalities. These communities allow objects to exchange information, share

best practices, and collaborate on solving common problems. For example, devices

in the same local area network can establish social relationships to find solutions to

common configuration issues. Similarly, objects visiting the same geographical area

can form friendships to exchange useful information about the physical world.

By forming CoI, objects in SIoT can leverage collective intelligence and bene-

fit from the knowledge and experiences of other objects with similar characteris-

tics. This improves the general functionality, efficiency, and effectiveness of the IoT

ecosystem.

In the field of IoT, characterized by numerous heterogeneous devices, varied pur-

poses, and dynamic contexts, the individual creation and management of specific
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models for each IoT device poses significant challenges. Given the intricate and

diverse nature of IoT devices and ecosystems, developing a universal ML model ca-

pable of encompassing all IoT devices worldwide becomes an impractical endeavor.

Each IoT device comes with its unique characteristics and functionalities, making a

one-size-fits-all model unfeasible. To address this, a viable solution involves sharing

of ML models among IoT devices that exhibit similarities in purpose, domain, and

context.

2.3 Time Series – Similarity Analysis
Time series data represent a continuous flow of information generated by measur-

ing various attributes such as sales, temperature, stocks, etc., at regular intervals.

These data sets are typically indexed chronologically, making them valuable for ap-

plications such as weather forecasting, econometrics, earthquake prediction, signal

processing, and other fields where analysing patterns and trends over time is crucial.

According to Esling and Agon [2012] a Time series T is an ordered sequence of

n variables with real value.

T = (t1, ..., tn), ti ∈ R (2.1)

Time series similarity measures are essential for tasks such as mining, retrieval,

classification, and clustering. The goal is to determine to what degree a given time

series resembles another one, which can provide valuable insights and enable various

applications in different domains. According to Serrà and Arcos [2014] it is a core

part of many systems, including case-based reasoning systems. Case-based reasoning

(CBR) systems are a type of AI system that solves new problems by reusing solutions

from similar past problems. CBR systems are particularly useful in domains where

explicit rules or algorithms may be difficult to define or where there is a lack of

complete domain knowledge Serrà and Arcos [2014]. They excel in situations where

past experiences and solutions can be leveraged to solve new, similar problems. It

has been successfully applied in various domains, including healthcare, engineering,

finance, and customer support, among others.

According to Kianimajd et al. [2017] similarity in time series can be gauged based

on the following aspects:

• Value: Time series exhibit similarity when the values of the Analysis Variable

are approximately equal across time. For instance, a time series with values

(1, 0, 1, 0, 1) is more similar to another time series with values (1, 1, 1, 1, 1)

than it is to a series with values (10, 0, 10, 0, 10) due to the closer resemblance

in values.
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• Profile (Correlation): Time series display similarity if their values demonstrate

synchronous increases and decreases, maintaining a roughly proportional rela-

tionship over time. For instance, a time series with values (1, 0, 1, 0, 1) is more

akin to a time series with values (10, 0, 10, 0, 10) than it is to a time series

with values (1, 1, 1, 1, 1) because of the correlated trends in their fluctuations.

• Profile (Fourier): Time series share similarity if they feature analogous smooth,

periodic patterns in their values over time. These periodic patterns, also known

as cycles or seasons, represent the durations of a pattern that repeats in sub-

sequent periods. For example, businesses may observe recurrent patterns in

total weekly sales, with the period starting on Monday and ending on Sunday.

In the investigation conducted by Abanda et al. [2019], there is a best distance

measure for each case in theory and according to Aghabozorgi et al. [2015] the most

prevalent shape-based methods commonly used to measure similarity in time-series

clustering are Euclidean distance and Dynamic Time Warping

Several research articles argue that the Euclidean distance metric is not well

suited for time-series analysis. In summary, it is criticized for being insensitive

to time shifts, essentially overlooking the temporal dimension of the data. If two

time series are strongly correlated but one is shifted by just one time step, the

Euclidean distance may inaccurately measure them as being more distant. One

particular article by Keogh and Ratanamahatana [2005] contends that DTW serves

as a significantly more robust distance measure for time series, enabling similar

shapes to match even when they are out of phase along the time axis.

In their investigation, Zhu et al. [2018] delve into an examination and comparison

of clustering techniques based on raw data and features. Their evaluation reveals

that the feature-based clustering approach enhances the performance of time series

models, particularly those integrating information from analogous time series and

weather data. In particular, the use of Spearman correlation within the feature-

based method consistently yields superior results on diverse metrics. The authors

recognize the effectiveness of the feature-based approach in clustering and emphasize

subsequent experiments centered on this method to further validate its performance.

2.3.0.1. Dynamic Time Warping

DTW stands out as a robust method in subsequence time series clustering due

to its ability to compare time series data. It is described as an elastic measure

that is well-suited for dealing with temporal drift and capturing similarity in shape,

where the time of occurrence of patterns is not important Aghabozorgi et al. [2015].

DTW’s key functionality involves aligning two time series, minimizing discrepancies

by creating a warping path that traverses the distance between the corresponding
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points in the series. In particular, the measurement of Euclidean distance is integral

to this alignment process.[Zolhavarieh et al., 2014]

One of the main strengths of DTW lies in its ability to accommodate variations

in the length and pace of time series, making it a potent tool for assessing sim-

ilarity between subsequences in the context of subsequence time series clustering.

The method’s versatility in handling diverse temporal patterns contributes to its

widespread use in this specific domain.

In comparison to Euclidean distance algorithms, the paper Zolhavarieh et al.

[2014] emphasizes efficiency, highlighting its ability to quickly search and mine exten-

sive time series datasets and in terms of time-series classification accuracy [Aghabo-

zorgi et al., 2015]. This efficiency factor positions DTW as an invaluable asset for

the analysis and clustering of massive time-series datasets.

The DTW between sequences x and y is formulated as the following optimization

problem:

DTW (x, y) = min
π

√ ∑
(i,j)∈π

d(xi, yj)2 (2.2)

where π = [π0, . . . , πK ] is a path that satisfies the following properties:

• It is a list of index pairs πk = (ik, jk) with 0 ≤ ik < n and 0 ≤ jk < m.

• π0 = (0, 0) and πK = (n− 1,m− 1).

• For all k > 0, πk = (ik, jk) is related to πk−1 = (ik−1, jk−1) as follows:

– ik−1 ≤ ik ≤ ik−1 + 1

– jk−1 ≤ jk ≤ jk−1 + 1

the equation 2.2 from:tslearn documentation depicts a DTW optimization prob-

lem.

To sum it up, DTW is computed by taking the square root of the sum of squared

distances between each element in the time series X and its corresponding nearest

point in the time series Y .

Consider two distinct curves, one red and the other blue, as shown in Figure

2.1 above, characterized by varying lengths. Despite both curves sharing a com-

mon pattern, the longer blue curve poses a challenge when employing a one-to-one

Euclidean match, resulting in a misalignment where the tail of the blue curve is

omitted (as depicted on the right). DTW addresses this issue by introducing a one-

to-many matching approach. This ensures a precise alignment of the shared pattern,
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Figure 2.1.: Differences between DTW and Euclidean matching Source:Wikimedia
Commons

eliminating any omission in both curves (illustrated on the left, Figure 2.1).

2.3.1 Spearman’s Rank Correlation

Spearman’s rank correlation assesses the intensity and direction of the connection

or relationship between two variables that have been ranked. According to Gauthier

[2001] it essentially gauges the degree of monotonicity in the relationship between

these variables, indicating how effectively their association can be depicted using a

monotonic function. See equation 2.3 [Gauthier, 2001].

rs = 1 − 6
∑n

i=1 d
2
i

n3 − n
(2.3)

where,

rs = Spearman Correlation coefficient

di = the difference in the ranks given to the two values for each item of the data

n = total number of observation

The Spearman Rank Correlation can take a value from +1 to −1 where,

A value of +1 means a perfect association of rank

A value of 0 means that there is no association between ranks

A value of −1 means a perfect negative association of rank

Spearman’s rank correlation coefficient offers several advantages compared to the

more commonly used Pearson’s correlation coefficient. Being a non-parametric tech-

nique, it remains unaffected by the underlying data distribution. Since it operates

on data ranks rather than actual values, it demonstrates robustness against outliers,

and there is no requirement for data to be collected at regular intervals. In addition,

it is applicable even with small sample sizes and is straightforward to implement.

However, a drawback is the loss of information when converting data to ranks, and

when dealing with normally distributed data,the corresponding statistical test for in-
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dependence may be less powerful than the Pearson correlation coefficient [Gauthier,

2001].

2.4 Time Series – Clustering
Clustering is classified as an - unsupervised learning problem that revolves around

identifying similarities among various data points and grouping them -together. The

primary objective is to organize the data points into clusters, where those within

the same group share more similarities with each other than with those in other

groups. This technique is a fundamental aspect of exploratory data mining and

finds applications in diverse fields such as bioinformatics, pattern recognition, image

analysis, machine learning, and more [Esling and Agon, 2012].

Given a time-series database DB and a similarity measure D(Q, T ), find the set

of clusters C = {ci} where ci = {Tk|Tk ∈ DB} maximizes the distance between

clusters and minimizes the variance within clusters.

More formally, for all i1, i2, j such that Ti1 , Ti2 ∈ ci and Tj ∈ cj, it holds that

D(Ti1 , Tj) ≫ D(Ti1 , Ti2).

Figure 2.2.: Visual depiction of number of clusters when N is three and when N is
eight respectively. Source:Esling and Agon [2012]

Figure 2.2 is a visual illustration of two different scenarios of the clustering equa-

tion when the number of clusters is three and when the number of clusters is eight.

2.4.1 Taxonomy of Time series Clustering

Upon reviewing the existing literature, it becomes apparent that many works

related to clustering time-series can be categorized into three main groups: whole

time-series clustering, subsequence clustering, and time point clustering [Keogh and

Lin, 2005].
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• Whole time-series clustering -involves clustering a collection of individual

time-series based on their similarity. In this context, clustering entails the

application of conventional (typically) clustering methods on discrete objects,

where these objects are the time-series themselves [Esling and Agon, 2012].

• Subsequence clustering - entails clustering a set of subsequences extracted

from a time-series using a sliding window. This method involves clustering

segments derived from a single extended time-series [Esling and Agon, 2012].

• Time points clustering - represents another category found in Ultsch and

Morchen. It involves clustering time points based on a combination of their

temporal proximity and the similarity of corresponding values. This approach

shares similarities with time-series segmentation; however, it differs in that not

all points need to be assigned to clusters, meaning that some may be treated

as noise [Esling and Agon, 2012].

In essence, subsequence clustering is executed on an individual time series, but ac-

cording to Keogh and Lin [2005] this form of clustering lacks significance. Similarly,

time-point clustering is implemented on a solitary time-series and bears resemblance

to time-series segmentation. The aim of time-point clustering is to identify clusters

of time points rather than clusters of entire time-series data.

2.4.2 Temporal and Spatial Clustering

According to Esling and Agon [2012] there are three primary approaches to cluster

time series: shape-based, feature-based, and model-based, as shown in Figure 2.3

below.

In the shape-based approach , the focus is on matching the shapes of two time-

series through non-linear stretching and contracting of the time axes. This method,

often termed a raw-data-based approach, operates directly on raw time-series data.

Shape-based algorithms typically utilize conventional clustering methods, adapted

for time-series with modified distance/similarity measures.

The feature-based approach involves converting raw time-series into lower-

dimensional feature vectors, followed by applying a conventional clustering algo-

rithm to these extracted feature vectors. Typically, equal-length feature vectors

are computed from each time-series, and the Euclidean distance is often used for

measurement.

In the model-based methods , raw time-series are transformed into the model

parameters (parametric models for each time-series). A suitable model distance and

a clustering algorithm, often conventional, are chosen and applied to the extracted

model parameters[Warren Liao, 2005]. However, model-based approaches have been
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Figure 2.3.: Time series clustering approaches. Source: Esling and Agon [2012]

shown to face scalability issues [Aghabozorgi et al., 2015], and their performance

tends to decrease when clusters are in close proximity to each other [Aghabozorgi

et al., 2015].

For this master thesis since we will be dealing with (dynamic) temperature time

series data, both shape-based and feature-based approaches will be applied and

compared to discover which of these approaches best captures hidden patterns and

relationships in raw time series data Warren Liao [2005]. The distance or similar-

ity measure used could be based on the differences between temperature values at

different time points. This is because shape-based and feature-based methods ex-

cel differently in capturing patterns and variations in time series data.[Aghabozorgi

et al., 2015].

2.4.3 Time-Series Clustering Algorithms

Time-series data mining encompasses diverse tasks such as clustering of whole

time series, anomaly detection, motif discovery, and query by content [Esling and

Agon, 2012]. To address these tasks, various techniques such as K-means clustering,

Self-Organizing Maps (SOM), Hidden Markov Models (HMM), Support Vector Ma-

chines (SVM), and decision forests are employed. Each algorithm exhibits unique

strengths and limitations, and the selection of a particular algorithm is contingent

on the specific demands and features of the time-series data under analysis.
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The authors of Keogh and Lin [2005] point out that in existing literature, among

clustering algorithms, K-means are widely used and deemed more effective than re-

cently proposed distance measures for time series. However, they emphasize certain

drawbacks associated with K-means, including its heuristic nature and susceptibility

to the initial selection of centres.

Some researchers [Javed et al., 2021] explore the benefits of opting for the Ko-

honen self-organizing map in contrast to the K-means clustering algorithm. They

claim that while K-means stands out as a widely acknowledged and superior cluster-

ing technique, it falls short in terms of interpretability and visualization capabilities

when compared to SOM. SOM, in contrast, is distinguished by its unique data vi-

sualization features and is frequently employed for tasks such as data visualization,

dimensionality reduction, and feature selection. However, it is highlighted that if

the sole requirement is for classification or hard clusters, then K-means serves as a

faster and equally accurate clustering algorithm.

In reference to the literature reviewed, this master’s thesis plans to utilize the

K-means algorithm for clustering time-series data. Following the application of

this algorithm, the Silhouette score of the clustering outcomes from the similarity

analysis data of both the DTW and Spearman Correlation method will be assessed

and compared.

The cluster groups with the highest silhoutte score will be used to conduct further

experiments in this Master Thesis. This will involve sharing ML models trained on

sensor data from one station in each cluster group and then tested on each of the

other clusters to assess the ML model performance in at least one sensor in each of

the other clusters.

2.4.3.1. K-Means Algorithm

The K-means algorithm is a data mining technique that employs clustering meth-

ods. Clustering entails the segmentation of a dataset into clusters or groups shar-

ing comparable traits. This algorithm operates through iterations, endeavoring to

organize the dataset by assigning each data point to the closest cluster centroid

Melo Riveros et al. [2019].

The objective function of K-means is to minimize the sum of the squared Eu-

clidean distances between each data point and its nearest cluster center, also known

as square-error distortion [Bação et al., 2005]. Input parameters include the pre-

ferred number of clusters and initial centroids, with the algorithm producing the

ultimate centroids. Each data element is grouped into a cluster according to its

similarity to the cluster centroid. The primary objective of the K-means algorithm

is to minimize the distance between data points and their designated cluster cen-
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troids [Melo Riveros et al., 2019].

2.5 Cluster Quality Analysis
There are various methods available to assess the quality of the clustering. These

methods can be broadly classified into two groups based on the availability of ground

truth.

Extrinsic methods , or supervised methods , utilize the ground truth when

available, comparing the clustering results against this known truth. On the other

hand, Intrinsic methods, or unsupervised methods , assess the quality of clus-

tering by examining the separation between clusters in the absence of ground truth.

Ground truth, in this context, serves as a form of supervision represented by

cluster labels. Therefore, metrics for supervised algorithms, such as accuracy,

R-square value, sensitivity, and specificity, are commonly used to evaluate their

goodness of fit.

When employing unsupervised machine learning techniques and incorporating

clustering algorithms such as K-Means, DBSCAN, or HDBSCAN,Esling and Agon

[2012] the actual or true labeling of a dataset is unavailable. In this case, intrinsic

methods are employed to assess the quality of clustering. Typically, these methods

gauge the effectiveness of clustering by analyzing the degree of separation and com-

pactness of the clusters. Inherent to many intrinsic methods is the utilization of a

similarity metric to measure the relationships between objects within the dataset.

Several scholarly (Ashari et al. [2023]),(Shi [2021]), sources propose several tech-

niques to assess the effectiveness of the K-means clustering algorithm in achieving

optimal results. These methods include the Elbow, Silhouette, Davies-Bouldin,

Calinski-Harabasz, and Rand-Index, along with the gap statistic method. These

techniques serve as validation measures to ensure the quality of the clusters gener-

ated by the algorithm.

In their work, Aksan et al. [2021] highlights the diverse applications of evalu-

ation measures. They specifically advocate employing the elbow method for de-

termining the optimal number of clusters, whereas the silhouette coefficient and

Calinski–Harabasz index are recommended as metrics for evaluating clustering per-

formance.

In Shi [2021], the Elbow method and the Silhouette method stand out as the

most prominent and widely recognized approaches. The Elbow method, considered

the oldest, is mentioned to estimate the potential optimal cluster number. However,

it is acknowledged to have subjective aspects due to the ambiguity of identifying

the elbow point. The Silhouette method on the other hand is noted for its effective
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performance in estimating the potential cluster quality.

In the perspective of Agoun et al., the elbow method focuses on evaluating the

cohesion of the cluster, specifically assessing the position of the data points within

a cluster. On the other hand, the silhouette score is highlighted as offering a more

comprehensive assessment of cluster quality. This is achieved by considering both

cohesion, which measures the proximity of data points within a cluster, and separa-

tion, which measures the distance between data points in one cluster and those in

the nearest cluster.

Due to the distinct functionalities of these metrics, this master thesis aims to

employ both the elbow method and the silhouette score to thoroughly evaluate

cluster quality.

2.5.1 Silhoutte Score

The Silhouette method, a widely acknowledged technique with commendable ef-

ficacy to determine the optimal number of clusters, evaluates the clustering results

based on the average distances between individual data points within the same clus-

ter and the average distances between different clusters. According to Rousseeuw

[1987] the key metric employed in this method is the silhouette coefficient (S), de-

noted by

b− a

max(a, b)
(2.4)

where :

a - signifies the mean intra-cluster distance,

b - represents the mean nearest-cluster distance.

The silhouette coefficient (S) is defined within the range of −1 ≤ S ≤ 1. A higher

S value, closer to 1, signifies superior clustering, while proximity to −1 suggests that

the sample may be more appropriately assigned to an alternative cluster. Notably,

the Silhouette method is preferred for estimating the potential optimal cluster num-

ber. The silhouette index, derived from this method, proves effective in determining

the optimal number of clusters across diverse scenarios.

2.5.2 Elbow Method

The Elbow method is regarded as the earliest approach to estimate the optimal

cluster number for utilization in a K-means clustering algorithm [Shi et al., 2020].

The rationale behind the Elbow method is that as the number of clusters increases,

the WCSS tends to decrease, leading to more compact clusters. The process involves

plotting a curve of SSE against each cluster number, and experienced analysts are
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tasked with estimating the optimal elbow point based on their curve analysis. How-

ever, at a certain point, adding more clusters provides diminishing returns in terms

of reducing WCSS.

The Elbow point is where the reduction in WCSS slows down, indicating a balance

between cluster compactness and avoiding overfitting. However, if the SSE curve

exhibits a smooth pattern, analysts may struggle to clearly identify the Elbow, ren-

dering the Elbow method less effective in determining the optimal cluster number

[Shi et al., 2020]. The obtained cluster number through the Elbow method is sub-

jective and visual, lacking a quantitative metric to explicitly indicate the optimum

elbow point [Shi et al., 2020].

Figure 2.4.: Elbow plot revealing optimal cluster count. Source :Oreilly.com

2.6 Time Series Forescasting
Time series forecasting is a branch of predictive analytics that focuses on pre-

dicting future values based on past observations of a time-dependent variable. In a

time series, data points are ordered chronologically, and the goal of forecasting is to

make predictions about future values or trends. It is widely used in various fields,

including finance, economics, weather forecasting, inventory management, and more.

Deterministic and statistical models have been created to predict and forecast

outcomes over time, using multivariate metrics for variable selection. However,

the intricate nature of the relationship among IoT sensor data poses challenges for

straightforward inference [Bogado Machuca et al., 2023]. In addition, IoT devices
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vary, with certain sensors experiencing faults that result in delayed or even missing

data transmission. This complexity has led to the emergence of competitive alter-

natives in the form of data-driven methodologies, such as ML and deep learning,

as they are better equipped to handle the complexities associated with IoT data

[Bogado Machuca et al., 2023].

This master’s thesis will employ conventional ML techniques, specifically Random

Forest Regression, and a Deep Learning approach,LSTM namely Long Short-Term

Memory, for predicting temperature time series values. The objective is to demon-

strate that grouping time series data by assessing the similarity of incidence time

series, enhances the overall performance of the forecasting models Bogado Machuca

et al. [2023].

2.6.1 Long Short Term Memory

The LSTM is a type of recurrent neural network (RNN) architecture. LSTM

models, are specifically tailored for time series forecasting, leveraging memory cells,

which effectively capture both long and short dependencies Bogado Machuca et al.

[2023]. LSTM cells consist of input (i), forget (f), and output (o) gates, playing roles

in incorporating new information into the cell state (C), discarding less relevant

information from memory, and controlling the output prediction (h). Recurrent

Neural Networks such as LSTM utilize sequential information, where the output is

influenced not only by current inputs but also by preceding ones. For instance, the

input at a given point xt is a value xt − n from the same series, with n representing

the look-back period. The collaborative function of these gates allows the network

to learn and store information, both short-term and long-term, pertinent to the

sequence.

The computation of LSTM cell states is performed as follows Bogado Machuca

et al. [2023]:

it = σ(Wiht−1 + Uixt + bi) (2.5)

ft = σ(Wfht−1 + Ufxt + bf ) (2.6)

ot = σ(Woht−1 + Uoxt + bo) (2.7)

Ĉt = tanh(WCht−1 + UCxt + bC) (2.8)

Ct = ft⊙ Ct−1 + it⊙ Ĉt (2.9)

ht = ot⊙ tanh(Ct) (2.10)

where : W , U and bq are weights matrices and bias respectively, the subscript

q can be either for input gate i, output gate o, forget gate f , or memory cell c
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depending on what is being calculated. The ⊙ symbol represents the Hadamard

entrywise product. Vectors it, ft, and ot denote the input, forget, and output gates,

respectively. Vector Ct represents the current cell state, and vector Ĉ represents the

new candidate value for the cell state.The function σ(·) is a Sigmoid function and

modulates equations 2.4 to 2.6 between 0 and 1.

2.6.2 Random Forest

The random forest is a ML technique that employs a set of decision trees to

enhance flexibility, accuracy, and accessibility of the output. It combines Breiman’s

bagging sampling approach and random selection of features to construct a collection

of decision trees with controlled variation. Each decision tree in the ensemble is

constructed using a sample based on training data replacement, and the class label

of an unlabeled instance is determined by majority voting of the classifiers.Fawagreh

et al. [2014]

It outperforms the decision tree algorithm, which tends to have a lower accuracy.

In essence, the random forest method boosts the effectiveness of decision trees, serv-

ing as an excellent algorithm capable of handling both classification and regression

tasks. As a supervised learning algorithm, the random forest utilizes the bagging

method within decision trees, which leads to improved model accuracy.

2.6.3 Perfomance Evaluation

Perfomance evaluation metrics are crafted to gauge the model’s proficiency in

predicting future values, providing quantitative insights into its accuracy and ability

to capture inherent patterns and trends within the data. Evaluation metrics for time

series models serve to measure the model’s overall performance and effectiveness in

forecasting.

RMSE is an extended form of MSE (Mean Squared Error) and is a widely adopted

technique for assessing model performance. It serves to measure the dispersion of

data points around the optimal line, representing the standard deviation of the mean

squared error. A lower RMSE value signifies that the data points are closer to the

best-fit line, indicating improved model performance.[Chai and Draxler, 2014]

RMSE =

√∑N
i=1(ŷi − yi)2

N
(2.11)

where:

ŷi : Predicted value for observation i

yi : Actual value for observation i

N : Number of observations
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This section categorizes the literature reviews into distinct thematic areas, namely

Social Internet of Things and Communities of Interest, Time Series Similarity Anal-

ysis and Clustering, Clusted-Based Time Series Forecasting and Machine Learning

Model Testing and Sharing.

3.1 Social Internet of Things and Communities

of Interest
In the realm of IoT, how objects relate to each other has been a topic in re-

search. One study by Kosmatos Kosmatos et al. [2011] explores social networks-like

relationships, exploring various architectural models of IoT such as RFID, smart

objects, and social perspectives. In this framework, objects can join communities,

create interest groups, and work together. However, the paper does not detail the

methods for establishing these desired social networks among objects.

Another group of researchers focuses on IoT object relationships by introducing

Social Virtual Objects SVOs, which represent real-world objects RWOs in an edge-

cloud environment. These researchers propose a platform called SVOR Farris et al.

[2015] (Social Virtual Object Root) which serves as a central coordinator in the

proposed platform, facilitating the dynamic definition of IoT areas or CoI. Its key

role lies in managing social relationships among Social Virtual Objects SVOs in the

edge-cloud. SVOR dynamically establishes and adapts social connections among

SVOs based on varying permission levels, responding to changing interactions within

the IoT. By efficiently addressing resources and providing access keys, SVOR enables

effective interaction and service provision among IoT objects.

In an alternative study, the concept of friendship selection is introduced within

the context of the SIoT. This addresses the challenge posed by the abundance of

objects in the IoT by developing strategies to improve network navigability through

the selective establishment of links Nitti et al. [2015]. The study suggests that the

principles derived from friendship selection and enhanced network navigability could

be applied to dynamically group IoT objects for collaborative purposes.

Another paper by Misra et al. [2012] introduces a method for detecting com-

munities within an integrated architecture of the IoT and Social Network SN. Em-

ploying a graph mining approach to address complexities within the network, the

proposed scheme, known as Community Detection in an Integrated IoT and SN

-(CDIISN), categorizes nodes/actors in complex networks into fundamental nodes

and IoT nodes, subsequently applying a community detection algorithm. Addition-
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ally, the paper explores the significance of community detection within an integrated

setting and discusses potential future applications of this approach.

Yue et al. [2014] suggests adopting a community-centric strategy to cluster IoT

devices into communities. The criteria for organizing these IoT devices revolve

around their shared interests in data and information. Users with comparable inter-

ests are assembled into communities, fostering streamlined data dissemination and

sharing for enhanced efficiency.

The paper by Barthwal et al. [2013] introduces two graph clustering algorithms

designed for community detection within integrated IoT and social networks. The

first algorithm is tailored for undirected graphs like those found on Facebook and

Google+, while the second algorithm is specifically designed for directed graphs, such

as those on Twitter. Both algorithms work by categorizing nodes into basic and IoT

nodes and utilize the Community Detection in Integrated IoT and the SN-CDIISN

algorithm to identify clusters of nodes where the connections within a cluster are

denser than connections between clusters. The algorithms incorporate the concept

of friendship in social networks, taking advantage of the metric of mutual friends

for community extraction. After identifying communities, the algorithms take into

account an access control policy based on these communities, determining resource

sharing among nodes. In essence, the proposed graph clustering algorithms focus

on recognizing communities in integrated IoT and social networks, emphasizing the

role of friendship and mutual connections among nodes.

The primary objective of Lianhong Ding et al. [2010] is to propose a platform

that combines the Internet, the IoT and social networks, in order to promote the

advancement of IoT and social networking. The platform is designed to enable sci-

entists to analyse the behaviors of both objects and individuals as data. Although

the paper lacks specific details on the methodology or algorithms employed for clus-

tering, it highlights the integration of the Internet, IoT, and social networks into a

unified virtual platform. This integration is intended to establish meaningful rela-

tionships among information, objects, and people, although the specific clustering

techniques are not explicitly outlined in the provided excerpts.

Aldelaimi et al. [2020] proposed a Dynamic Community of Interest Model (DCIM)

that enables IoT objects to socialize and form communities based on common in-

terests. The model allows objects to join or leave communities, with criteria such

as the number of objects allowed, object types, and duration of membership. The

DCIM model has been evaluated through simulation, demonstrating its effectiveness

in detecting common interests and facilitating the formation of dynamic communi-

ties. The model provides a framework for IoT objects to build communities and

enhance interactions in various scenarios, such as smart cities, smart homes, and
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universities.

Researchers in Atzori et al. [2011] paper delve into the creation of social con-

nections among objects within the SIoT. The paper highlights that objects can

form relationships through shared physical proximity and collaborative activities,

mirroring the way humans build connections through shared experiences. These re-

lationships are categorized into location-based application profiles or situation-based

application profiles. Furthermore, the paper proposes the exchange of social profiles

between devices possessing similar characteristics, enabling them to autonomously

share knowledge and address challenges. It continues to suggest that the social

structure within SIoT can be shaped to ensure effective navigation of the network

and facilitate the discovery of objects and services. This parallels the functional-

ity of human social networks. Notably, the paper does not explicitly mention the

grouping of devices into CoI or dynamic areas.

In Shahab et al. [2022] the authors discuss coordination strategies in a collabora-

tive system where social entities, places, and data interact seamlessly. This implies

that the grouping and coordination of IoT devices within a social network frame-

work can facilitate more efficient and effective interactions and collaborations. The

paper does not provide specific technical implementations or algorithms for device

grouping, but recognizes the importance of social relationships and coordinated in-

teractions among devices in the SIoT context.

The paper by Bao et al. [2013] is mainly focused on the development and assess-

ment of a trust management protocol for the CoI-based SIoT system. Although it

notes the dynamic nature of nodes, allowing them to join and depart while forming

CoIs it does not delve into the intricate details of node functionalities.

Each node in the system is identified by a distinct address, and the formation

of CoIs is dependent on the social networks of entity owners, where nodes sharing

common interests and robust social bonds become part of the same community. It

elaborates how the nodes within the same CoI can establish trust agreements due to

shared interests but refrains from providing explicit insights into the specific mech-

anisms employed by nodes to organize themselves within the CoI. In essence, the

paper centres its attention on the trust management protocol design and evaluation,

leaving the detailed characterization and organizational aspects of the nodes within

the CoI less expounded.

The paper by Achtaich et al. [2018] outlines the process of fleet formation, de-

picting fleets as Dynamic Software Product Lines (DSPL) operating at the domain

level. Described as unique products within this framework, each fleet shares common

characteristics with others while tailoring its features to meet the specific demands

of the served customer base. Fleet formation involves the creation of assets and the
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derivation of features, aligning with individual customer requirements.

The same paper underscores the dynamic nature of fleets, emphasizing that their

composition is subject to change over time. Devices forming a fleet in one configura-

tion may not necessarily persist in the same capacity in subsequent fleet instances.

Some devices may transition to being part of the contextual landscape, while others

may assume roles in the broader environment.

The table provided below 3.1 offers a comprehensive overview of different commu-

nity formation techniques. This comparative analysis serves as a valuable resource

for researchers and practitioners seeking to design and deploy IoT systems capable

of forming robust and adaptable CoI tailored to specific application requirements.

Table 3.1.: Comparison of CoI Concepts

SIoT Work CoI Concept Comparison with Thesis

Kosmatos et al.

[2011]

Objects can join

communities, cre-

ate interest groups,

and work together,

but lacks detailed

methods for estab-

lishment.

Unlike Kosmatos et al., this study pro-

vides a structured framework for CoI for-

mation, potentially leading to more effi-

cient collaboration and resource sharing

among objects.

Farris et al. [2015] Introduces Social

Virtual Object

Root (SVOR) for

managing social re-

lationships among

objects.

Unlike Farris et al., this study empha-

sizes data-driven criteria for CoI forma-

tion, potentially leading to more effec-

tive utilization of resources and improved

model sharing.

Nitti et al. [2015] Introduces friend-

ship selection to

improve network

navigability, sug-

gesting dynamic

group formation.

Unlike Nitti et al., this thesis offers a sys-

tematic approach for forming CoIs based

on objective criteria, potentially leading

to more efficient model sharing across IoT

devices.

Continued on next page
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Table 3.1 – continued from previous page

SIoT Work CoI Concept Comparison with Thesis

Misra et al. [2012] Proposes CDIISN

for detecting com-

munities within

integrated IoT and

Social Network,

without detailed

methods.

Unlike Misra et al., this study offers a

streamlined approach for CoI formation,

potentially avoiding the complexity of in-

tegrated network architectures.

Yue et al. [2014] Suggests a

community-centric

strategy based on

shared interests,

without detailed

methods for estab-

lishment.

Unlike Yue et al., this thesis provides a

systematic framework for CoI formation,

potentially leading to more effective uti-

lization of resources and improved model

sharing.

Barthwal et al.

[2013]

Introduces graph

clustering algo-

rithms for com-

munity detection,

without specific

integration with

IoT.

This study focuses on data similarity and

geospatial factors for CoI formation with-

out detailed algorithms. Unlike Barth-

wal et al., this study offers a straight-

forward approach for forming CoIs, po-

tentially avoiding the complexity of inte-

grated network algorithms.

Lianhong Ding

et al. [2010]

Proposes integrat-

ing IoT, social

networks, and

the Internet for

meaningful rela-

tionships, lacking

specific CoI meth-

ods.

Unlike Ding et al., this thesis provides a

systematic framework for CoI formation,

potentially leading to more efficient re-

source sharing among objects.

Aldelaimi et al.

[2020]

Introduces DCIM

for dynamic CoI

formation based on

common interests.

Unlike Aldelaimi et al., this provides a sys-

tematic framework for CoI formation, po-

tentially leading to more effective model

sharing across IoT devices.

Continued on next page
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Table 3.1 – continued from previous page

SIoT Work CoI Concept Comparison with Thesis

Atzori et al. [2011] Discusses creating

social connections

among objects

through shared

physical proximity

and collaborative

activities, with-

out specific CoI

methods.

This thesis focuses on data similarity and

geospatial factors for CoI formation, pro-

viding a more structured approach com-

pared to physical proximity. Unlike At-

zori et al., this research offers a system-

atic framework for CoI formation, poten-

tially leading to more efficient model shar-

ing among IoT devices.

Shahab et al. [2022] Discusses coordina-

tion strategies in

SIoT, without spe-

cific CoI methods.

Unlike Shahab et al., this study provides

a systematic framework for CoI formation,

potentially leading to more efficient model

sharing among IoT devices.

Bao et al. [2013] Develops trust

management pro-

tocol for dynamic

CoI formation,

but lacks detailed

methods for CoI

establishment.

Unlike Bao et al., this research offers a

systematic framework for CoI formation,

potentially leading to more efficient model

sharing across IoT devices.

Achtaich et al.

[2018]

Describes dynamic

fleet formation at

the domain level,

without specific

CoI methods.

Utilizing data similarity and geospatial

factors for CoI formation, offering a more

structured approach compared to fleet for-

mation alone. Unlike Achtaich et al., this

research provides a systematic framework

for CoI formation, potentially leading to

more efficient model sharing among IoT

devices.

3.2 Time Series Similarity Analysis and

Clustering
Several studies have utilized time series clustering to reveal the inherent patterns

in their time series data. The researchers in Jastrzebska et al. [2022] introduce a novel

concept-based strategy for assessing time series similarity and applying it to time

series classification. The primary goal is to overcome the lack of transparency and

interpretability observed in existing methods for evaluating time series similarity.

The authors employ fuzzy sets to represent concepts and utilize linguistic labels to
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express data in natural language.

The proposed approach entails the creation of global and local models for time

series based on abstract concepts. Subsequently, the evaluation of similarity between

time series involves a comparison of their respective local models. The authors

substantiate the efficacy of their method by achieving highly favourable results in

time series classification tasks, surpassing other contemporary approaches.

A group of researchers Xia et al. [2011] utilized an extended local similarity analy-

sis (eLSA) method to examine time series data related to microbial communities and

gene expression. This technique facilitated the detection of statistically significant

local patterns and potentially time-delayed associations within both the microbial

community and gene expression datasets.

In this paper Van Onsem et al. [2022], researchers introduce a streamlined anomaly

detection method termed Hierarchical Pattern Matching (HPM), designed for real-

time monitoring of device metrics to prevent downtime and data loss by continuously

observing critical device metrics. HPM employs time series similarity analysis and

establishes a lightweight hierarchical structure called a Time Series Identity Tree,

enabling the retention of extensive metric history without necessitating a large mem-

ory footprint. During similarity analysis, incoming subsequences are compared with

stored patterns in the Time Series Identity Tree. If a match is identified, it is con-

sidered normal behavior, and no anomaly is triggered. In cases where no match is

found, signalling an anomaly, an alarm is activated.

Scholars in Wang et al. [2006] devised an approach to cluster time series data

by focusing on their structural attributes, with the aim of improving the sensitivity

to missing or noisy data while reducing dimensionality. The approach performs a

similarity analysis by extracting overarching features from the time series, encom-

passing elements such as trend, seasonality, and periodicity. These features serve as

the foundation for measuring the similarity between time series and establishing the

groundwork for clustering.

The global features extracted are then inputted into clustering algorithms, in-

cluding hierarchical clustering and self-organizing map SOM clustering. Similarity

analysis, based on these extracted features, aids in the identification of meaningful

clusters, effectively capturing the inherent characteristics of the time series data.

The proposed method exhibits promising outcomes in terms of clustering accuracy

and its ability to handle time series data of varying lengths.

Utilizing datasets sourced from the University of California Riverside archive for a

time series similarity analysis incorporating three distinct distance measures, namely

the Euclidean distance, the DTW and the shape-based distance. The researchers
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in Javed et al. [2020] gauged the similarity among time series data to perform clus-

tering. Their goal was to group time series data into meaningful clusters based on

their similarity. This approach served to assess the effectiveness of various clustering

methods and distance measures in the context of time series data.

The researchers in Razaque et al. [2022] conducted a time series similarity analysis

by introducing an algorithm called the Novel Matrix Profile (NMP), which incor-

porates features from existing algorithms such as STAMP and STOMP. The NMP

algorithm calculates and stores information for a search for all-pair similarity, offer-

ing utility in various data mining tasks. The results of the time series analysis using

the NMP algorithm were then applied to enhance the efficiency and effectiveness of

data mining tasks in the healthcare domain.

In Maurya et al. [2016], the authors suggest an enhanced algorithm that leverages

grid correlation and attraction calculations for precise clustering of time-series data

within the Smart Grid. This modification allows for the efficient analysis of extensive

energy consumption data in the Smart Grid, ultimately leading to enhanced energy

management, improved demand response strategies, and more effective appliance

diagnostics.

Researchers in Bornemann et al. [2018], performed a time series similarity analysis

by representing data changes as time series and clustering them based on their

similarities. They introduce a transformation framework designed to aggregate sets

of changes into numerical time series at varying resolutions. Time series clustering

is then applied to the transformed data, utilizing different similarity measures and

clustering algorithms. The outcomes of the clustering process are employed to unveil

patterns, identify outliers, and offer insights across diverse domains. The paper

illustrates the application of this framework in uncovering patterns in IMDB voting

behaviour.

The paper by Alwan et al. [2022] uses a time series similarity analysis, using

measures such as DTW, to compare the shapes or features of time series and identify

malfunctioning sensor nodes. Based on the results of this analysis, the time series

are then grouped into different clusters according to their patterns. The research

shows that time-series clustering is adept at detecting both continuous and emerging

faults in sensor nodes.

Scholars in Robinson et al. [2021] performs an analysis of time series similarity

by comparing spectral values within a building footprint to those in the surrounding

area across different time points. The results of the similarity analysis are clustered

using k-means clustering on time series data derived from remotely sensed imagery.

The combined approach of time series similarity analysis and clustering, as imple-

mented in the Temporal Cluster Matching (TCM) model, facilitates the detection of
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building changes by comparing spectral values inside and outside the footprint and

pinpointing dissimilarities in their distributions relying on the assumption that the

colours and textures of a developed structure will differ from those of its immediate

surroundings.

Another paper by Bonacina et al. [2020] employs natural visibility graphs for time

series similarity analysis, creating a weighted graph that represents signal similari-

ties. Community detection algorithms are then applied to identify clusters of similar

time series. The clustering results are leveraged for feature subset selection, effec-

tively reducing the dataset’s dimensionality by 74.4%. Applied to a cogeneration

plant’s condition monitoring system, the method outperforms standard time series

clustering, providing insights into system behaviour, relationships between compo-

nents, and enhancing information content about signal roles within the network.

The approach proves valuable for diagnosing exceptional events, explaining causal

mechanisms, and responding to urgent events.

According to Ergüner Özkoç [2021] and numerous reviewed literature time-series

similarity analysis and clustering play a crucial role in understanding, organizing,

and extracting meaningful information from time-series data, leading to improved

decision-making, problem-solving, and data-driven insights.

3.3 Clusted-Based Time Series Forecasting
Many studies employ cluster-based techniques to tackle the complexity posed by

diverse devices, behaviors, and data streams in training ML models. Researchers

use clustering methods to group similar time series data based on their similarities,

aiming to enhance the effectiveness of ML models. This approach enables the train-

ing of models by capturing patterns and dependencies in time series data through

the utilization of clusters, ultimately resulting in enhanced accuracy in predictive

forecasting.

The research conducted by Bogado Machuca et al. [2023] explores the application

of cluster-based LSTM models to enhance the precision of dengue cases forecasts

by integrating information from similar time series and weather data. The study

addresses the issue of heterogeneous behaviors and the limited accuracy of LSTM

models, particularly in regions with sparse data. The authors suggest a cluster-

ing analysis across time series using scores to evaluate the quality of clustering in

217 cities in Paraguay. They compare various clustering techniques, both raw and

feature-based, and conclude that hierarchical clustering combined with Spearman

correlation proves to be the most effective approach. The paper highlights a notable

enhancement in model accuracy by 19.48 ± 18.80% achieved through the utilization

of clustered models.
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In their study, Zhu et al. [2018] employ time series clustering to identify anomalies

in flight vibration, addressing the challenge posed by uncorrelated features in time

series data. The approach utilizes Spearman’s rank correlation coefficient and a

hierarchical clustering method to group related time series. The clustering outcomes

reveal the aggregation of monotonically similar series, effectively removing unrelated

ones. This technique is applied to mitigate the impact of uncorrelated features on

the prediction model. The clustering results, integrated into the prediction model,

notably decrease the RMSE of predicted outcomes, as evidenced in the experimental

analysis conducted on COMAC’s C919 flight test data.

In their investigation, Kim et al. [2023] utilize Euclidean distances and DTW dis-

tance as metrics for assessing similarity in time-series data. The clustering process

employs the K-means method, with households being categorized into clusters to

capture distinct characteristics in electricity usage data over time. Prior to forecast-

ing, clustering is conducted to group households exhibiting similar electricity usage

patterns, resulting in enhanced forecasting accuracy. The findings indicate that the

approach of clustering households and forecasting electricity usage for each cluster

outperforms the prediction of total electricity usage for all households without clus-

tering. In addition, the study affirms that incorporating exogenous variables such

as cooling degree day, humidity, and insolation contributes to improved forecasting

performance compared to relying solely on electricity consumption data.

The approach described in Laurinec and Lucká [2018] involves a preprocessing

step for time series data, encompassing normalization and the computation of di-

verse model-based time series representations. Subsequently, consumer clustering is

performed using either K-means or K-medoids, and forecasts are generated based

on the centroids of these clusters. The final forecasts, derived from the centroids,

are adjusted by applying the saved normalization parameters for each consumer.

This clustering-based methodology significantly enhances forecasting accuracy, par-

ticularly for residential consumers, and offers greater scalability compared to a fully

disaggregated approach. Notably, this scalability is achieved by training the model

on clusters rather than individual consumers. The evaluation results, conducted on

smart meter datasets from residences in Ireland and Australia, as well as factories in

Slovakia, underscore the effectiveness of the clustering-based method in improving

the accuracy of electricity load forecasting for individual consumers.

The study conducted by Tadayon and Iwashita [2021] employs DTW for distance-

based similarity analysis and introduces two distinct feature extraction methods for

time series data to facilitate feature-based similarity analysis. Prior to time series

forecasting, K-means clustering is applied, aiming to enhance both the prediction

time and forecasting performance of the neural network. The research introduces

various neural network architectures utilizing the LSTM algorithm for dynamic mea-
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surements in time series forecasting, exploring the impact of techniques such as

anomaly detection and clustering on forecasting accuracy. The findings suggest

that clustering not only improves overall prediction time but also enhances the fore-

casting performance of the neural network. The paper highlights that feature-based

clustering surpasses distance-based clustering in terms of speed and efficiency.

Researchers in Daskalov and Nikolov [2017] employ a time series similarity anal-

ysis method that involves segmenting the initial data series into subseries and or-

ganizing them into clusters based on their shapes. Each cluster retains the relative

differences between consecutive values for its subseries, which are then averaged to

generate a consolidated series for each cluster. This methodology is utilized to dis-

cern patterns and similarities within the time series data, leading to the creation of

clusters that represent akin shapes in the dataset.

As per Daskalov and Nikolov [2017], the clustering technique employed centers

around grouping subseries into clusters in a manner that minimizes the distance

between subseries within a group while maximizing distances between subseries in

different groups. Various clustering algorithms, including K-means, ISODATA, hier-

archical clustering, and self-learning neural networks, can be applied for this purpose.

Clustering performed prior to forecasting serves to identify and capture patterns and

similarities in the time series data, which can then be leveraged for predictions based

on the cluster centers. This approach facilitates the recognition of distinct shapes

and patterns in the data, contributing to more precise predictions.

3.4 Machine Learning Model Testing and

Sharing
There are numerous other methods proposed for the sharing of ML models, how-

ever the main advantage of the objective and method proposed in this thesis, lies in

its customized approach to addressing the unique challenges of IoT environments.

By incorporating data similarity analysis and geospatial integration, this method of-

fers context-aware model selection, localized deployment, resource-efficient sharing,

and dynamic adaptation, thereby improving performance and efficiency compared

to traditional methods. If proven viable, this method has the potential to be applied

across numerous other IoT scenarios, offering benefits such as optimized resource

utilization and improved adaptability to dynamic environmental conditions.

AI has significantly transformed various aspects of our lives, influencing both

human interactions with the Internet and computational devices, as well as the

way devices engage with us. This impact extends to industrial and socioeconomic

domains where ML applications are gaining prominence. The IoT is a pivotal el-

ement in facilitating these interactions by providing contextual information that,
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when processed, enhances intelligence in various processes. However, delivering ML

applications in IoT encounters challenges due to the inherent complexity of ML

operations, the multitude and diversity of IoT devices, and the need for online in-

teroperability. Consequently, there is a pressing need to harness the potential of AI

in IoT devices. However, developing ML models for the numerous IoT devices is a

daunting, costly, and competitive endeavor, prompting scholars to explore avenues

for sharing ML models among these devices.

The study conducted by Mira et al. [2023] introduces a platform for ML as a

Service (MLaaS), specifically designed to offer intelligent applications within the IoT

domain. This platform is structured to provide services that include DL training

and inference online, the conversion and sharing of ML models, and the verification

of zero-knowledge models using blockchain technology. By tackling the inherent

intricacies of ML operations and ensuring online interoperability with IoT devices,

the platform aims to augment IoT capabilities with enhanced intelligence.

The research by Resifi et al. [2022] addresses the challenges associated with de-

ploying DL models in resource-constrained environments such as the IoT, where

DL models demand significant computational resources. The authors suggest two

strategies to overcome this challenge: sharing the DL model between the cloud

and the device, and optimizing model execution through early exiting, a method

where the entire model does not need to run for certain inputs. These approaches

are automatically optimized to determine the most effective points for sharing and

early exiting based on input, offering a versatile solution applicable across various

scenarios and providing a viable option for local execution of DL models.

In their work Zhou et al. [2021], researchers propose a Ciphertext Policy Attribute

Based Proxy Re-encryption CP-ABPRE scheme that incorporates accountability

to address security and privacy concerns in the sharing of edge intelligence (EI)

models for the IoT. The authors intend to facilitate the sharing of ML models by

enabling users to delegate access rights, incorporating unique IDs for traceability,

and conducting a security analysis and performance evaluation to showcase the

efficacy of their proposed scheme. The CP-ABPRE framework ensures adaptable

data access and security while establishing accountability for both edge nodes and

users involved in EI model sharing. Furthermore, the scheme is designed to be

resilient against Chosen Plaintext Attacks (CPA), providing robust security without

compromising efficiency, even with additional features.

The research paper by González-Soto et al. [2024] introduces a collaborative and

decentralized ML framework specifically designed for IoT devices with limited re-

sources. The focus is on sharing ML models using random-based protocols and de-

centralized prototype sharing protocols. This approach involves sharing local models
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among computing elements within the network, enhancing both the diversity and

quantity of available data to improve the overall performance of the network model.

The study assesses the effectiveness of these sharing protocols and underscores the

significance of sharing parameters in decentralized ML. The findings reveal promis-

ing results in terms of accuracy, training time, and robustness when compared to

traditional centralized approaches. The paper contributes valuable insights into the

influence of data sharing protocols on ML performance, emphasizing the critical role

of selecting optimal sharing parameters to achieve optimal performance and resource

efficiency in decentralized ML frameworks.

The Nguyen et al. [2021] paper introduces a novel ecosystem for trading ML

models on a secure Blockchain-based network, with a specific emphasis on promoting

collaborative training and data/model exchange for IoT devices. The proposed

system facilitates the sale of contributions in training ML models, allowing buyers

to acquire these models. All transaction details are securely recorded in a tamper-

proof distributed ledger.

In this ecosystem, participants share updated model weights with the market-

place. An aggregator then consolidates these locally trained models to create global

models. The results of this approach demonstrate competitive runtime performance,

accompanied by a 15% reduction in execution costs. The system ensures fairness in

terms of incentives for participating individuals.

This section, presents comparative analysis of various ML sharing methods, aim-

ing to explain their strengths, weaknesses, and applicability in diverse contexts.

The table below 3.2 compares ML sharing mechanisms. This comparative examina-

tion,seeks to contribute to the advancement of ML methodologies while creating a

deeper understanding of the trade-offs inherent in different sharing paradigms.
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Table 3.2.: Comparison of Machine Learning Sharing Approaches

Reference Approach Key Contributions Benefits of This Thesis
Mira et al.
[2023]

MLaaS for
IoT

DL training and in-
ference online, model
conversion and shar-
ing, verification of
zero-knowledge mod-
els using blockchain

This study introduces a novel
CoI-based approach for efficient
ML model sharing, tailored
specifically for IoT environments.

Resifi et al.
[2022]

DL model op-
timization for
IoT

Strategies for model
sharing between cloud
and device, model ex-
ecution optimization
through early exiting

This thesis offers a structured
framework for CoI formation and
model sharing, optimizing re-
source utilization in IoT deploy-
ments.

Zhou et al.
[2021]

CP-ABPRE
for EI model
sharing

Security and privacy
framework for sharing
edge intelligence mod-
els in IoT

This research emphasizes contex-
tual factors like data similarity
and geospatial components, en-
hancing model sharing efficacy.

González-
Soto et al.
[2024]

Decentralized
ML frame-
work for IoT

Random-based and
decentralized proto-
type sharing protocols
for enhancing model
diversity and quantity

This study leverages advanced
clustering and similarity analysis,
ensuring more effective grouping
and sharing among IoT devices.

Nguyen
et al.
[2021]

Blockchain-
based ML
model trad-
ing

Secure ecosystem for
collaborative training
and data exchange
among IoT devices

This thesis provides a structured
CoI formation approach, enabling
transparent and efficient model
trading within IoT networks.
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The literature review serves as the foundational framework for this methodology.

The methodology chosen to support this research is influenced by both the achieve-

ments and limitations identified in existing research, as discussed in Section 2 the

background.

The main objective is to use CoIs to develop, train, validate, and share ML

models among IoT devices. These CoIs will be formed based on the similarity of

the IoT data streams and the only additional input is geographic factors such as

location and elevation, which influence the ML model outcomes to varying degrees.

The ultimate goal is to present an innovative and reusable approach for sharing ML

models, with the aim of reducing cost, improving competitiveness and simplifying

the process of creating ML models for the multitude of IoT devices generating data.

Through out this study the term ML is used in place of TinyML models which can

be generated using Tensorflow lite.

This study opted to use a cluster-based methodology and selected optimal mea-

sures for similarity analysis and evaluation to establish CoI, which facilitates the

development, validation, testing, and sharing of ML models. The methodology used

in this study is illustrated in Figure 4.1.

Figure 4.1.: The workflow to share ML models among IoT devices based on CoI.

36



4. Methodology

4.1 Study Area
This study leveraged the data from weather sensor network to simulate real-world

scenarios involving IoT devices. The weather sensor map plays an important role in

this study by providing a spatial representation of 43 AVAMET weather sensors dis-

tributed across Castelló province, Valenciana Community, Spain (Figure 4.2). These

sensors were carefully selected based on their consistent data streaming reliability

throughout the years 2021 and 2022, ensuring the integrity of the dataset. While

there are additional weather sensors in the region, they have been excluded from

the study map due to inconsistencies in data streaming, rendering them unreliable

for research purposes.

Figure 4.2.: Distribution of Avamet weather sensors in Castellon Province, Spain.

The map serves as a foundational visualization tool for investigating how location

or geospatial factors influence the similarity of sensor data streams and the formation

of CoI. By visualizing correlations of sensor data with geographic attributes such

proximity to coastlines, or urbanization levels, the study aims to uncover spatial

patterns in sensor data similarity and identify clusters or communities of sensors

with similar data profiles.

This study will use the stations with the highest silhouette scores to train ML

models. This is because these stations are likely to share common features or pat-

terns that distinguish them from stations in other clusters. Stations with high
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silhouette scores within a cluster are more representative of the cluster’s overall

characteristics and can be considered as prototypical members of that cluster.

4.2 Exploratory Data Analysis
To unravel the inherent patterns, trends, and anomalies encapsulated within the

temporal evolution of the temperature readings, a comprehensive analysis was un-

dertaken to identify anomalies and missing data. This exploration delves into the

multifaceted aspects of the dataset, encompassing seasonality, long-term trends, and

potential irregularities, with the aim of discerning meaningful insights into the dy-

namic behavior of temperature variations over time.

Data Visualization

To enhance the comprehension of patterns, trends, and insights within the tem-

perature data, a comprehensive temperature time series plot was generated for the

entire dataset, along with a randomly chosen subset of stations. This visualization

aims to simplify the presentation of intricate data, making it more accessible for

easier understanding. The objective is to foster a nuanced and well-informed inter-

pretation of the temperature dataset, supporting thorough analysis and informed

decision-making processes (Figure 4.3).

Randomly selected stations have been included to ensure a representative sample,

allowing for a more holistic exploration of temperature variations across different lo-

cations. The purpose these visualizations play is to facilitate a clearer understanding

of the temperature data and contribute to a robust analytical approach.

Data Distribution

This study employs a box plot to succinctly summarize the temperature distri-

bution data of Almenara - Comunitat de Regants, a station exhibiting the highest

variance of 117.07 degrees within the dataset. By focusing on this station, the anal-

ysis aims to capture a broad spectrum of temperature fluctuations, encompassing

both typical ranges and extreme values. The utilization of the box plot facilitates

the visualization of the temperature distribution, offering insights into the central

tendency, variability, and presence of outliers. This approach enables the identifica-

tion of patterns, anomalies, and potential drivers of temperature variability, laying

the foundation for hypothesis generation and further in-depth analysis.

The right-leaning median line see Figure 4.4 suggests that the majority of tem-

perature readings cluster towards the lower end of the distribution, with fewer high

values, indicating positive skewness. Despite the presence of high temperatures, they

are relatively close to the upper quartile (Q3), implying a narrower spread of high

values compared to lower values. This consistency in high temperature readings,
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without extreme outliers, suggests stability influenced by factors like geographical

location and climate conditions.

To enrich the depth and relevance of the research findings and to contributing to a

better understanding of temperature dataset dynamics the station with the highest

mean temperature Castellon de la Plana-IES Vicent Sos Baynat was selected for

plotting a box plot.

The resulting box plot displaying whiskers on both the left and right sides see

Figure 4.5, coupled with a median line leaning towards the second quartile or to

the left shows a symmetrical spread of temperature readings around the median

suggesting a balanced variability in both lower and higher temperature values. The

left-leaning median indicates a central tendency towards lower temperatures within

the dataset, reflecting a notable shift towards cooler conditions. The absence of

outside points or outliers underscores the uniformity and stability of the temperature

data, devoid of any extreme values.

Data Seasonality

An investigation into seasonal patterns and fluctuations is conducted to reveal

seasonal variations within the dataset. This analysis of seasonality is carried out

on two stations: Almenara - Comunitat de Regants, which exhibits the highest

variability, and Castellon de la Plana-IES Vicent Sos Baynat, which has the highest

mean temperature see Figure 4.6. The identification of seasonal trends and patterns

at these stations aids in evaluating long-term climate trends.

Upon comparing the seasonality between the two stations, it becomes apparent

that the dataset from Almenara - Comunitat de Regants displays irregular patterns,

prompting a need for closer scrutiny. This comparative approach and data exam-

ination contribute to a deeper comprehension of climate variability, the detection

of abnormal patterns or datasets, and informs subsequent stages of the research,

including hypothesis formulation and in-depth analysis.

The abnormal seasonal plot observed for Almenara - Comunitat de Regants ex-

plains why it exhibits a high positively skewed variance. This skewness indicates

a tendency towards higher variability and the presence of extreme values in the

dataset. This data exploration not only enhances our understanding of climate dy-

namics at the Almenara station but also provides valuable context for interpreting

and analyzing the rest of the datasets. These insights informed adjustments to

data analysis and cleaning techniques, hypothesis formulation, and decision-making

processes, ultimately contributing to more accurate and comprehensive research out-

comes.
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Artana Benassal La Mata La Pobla-Tornesa Les-Useres
count 8760 8760 8760 8760 8760
mean 16.2 13.2 7.42 13.51 16.29
std 6.92 6.86 9.26 8.41 6.31
min 0.0 -3.80 -1.9 -2.5 0.0
max 38.1 35.3 38.0 38.2 36.3

Table 4.1.: Summary statistics for temperature data at different stations.

Monthly Temperature Trends

This thesis computed the mean monthly temperature during exploratory data

analysis to help in identifying seasonal patterns, and provide insight into how tem-

peratures fluctuate throughout the year. Secondly,to aid in anomaly detection by

highlighting any unusual deviations from the typical temperature patterns, which

could indicate extreme weather events or errors in data collection.

The mean monthly temperatures were also used to offer a concise summary of the

data, facilitating easier visualization and interpretation of temperature trends over

time (Figure 4.7). By comparing mean temperatures across different months, long-

term trends were identified. These mean temperatures serve as valuable features for

further analysis such as predictive modeling or time series forecasting.

Data Description

To provide a summary of the essential statistics of the data and to aid in un-

derstanding the characteristics of the data. This study computed key descriptive

statistics, including count, mean, standard deviation, minimum and maximum val-

ues, as well as percentiles such as the median and quartiles. See Figure 4.1

This information is essesntial to quickly grasp the central tendency, variability,

and distribution shape of the dataset, to facilitate informed decision-making in data

analysis and interpretation. This was done to identify outliers, assess data quality,

and gain insights into the underlying patterns and trends within the data.

4.2.1 Data Preparation

In this study, the data source employed was AVAMET, the Meteorological Associ-

ation of Valenciana, which supplied weather sensor data for the years 2021 and 2022

stored initially in text files which were then converted to CSV format. The dataset

contained data from over 120 weather stations with vital meteorological parame-

ters, including temperature, humidity, wind speed, precipitation, and atmospheric

pressure.

To narrow the focus of the analysis to temperature data, a data extraction pro-

cess was executed to isolate and retain only the temperature data from both the
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2021 and 2022 datasets. These combined measures ensured the creation of a ro-

bust and standardized dataset, laying the foundation for subsequent analyses and

interpretations in this study.

A series of comprehensive data molding and transformation techniques were ap-

plied. To deal with irregular time stamps in the data, the dataset was standardized

by homogenizing and resampling the time stamps to 10-minute intervals. This was

done to enhance the quality, consistency, and usability of weather data, to ultimately

improve the accuracy and reliability of analyses and forecasts based on that data.

Next, weather stations with consistent data streaming patterns for both 2021 and

2022 were identified by filtering out stations that had at least 90% data availabil-

ity and no more than 10% missing values, ensuring reliable and continuous data

streams.To uphold the dataset’s completeness,addressing missing data through ef-

fective data imputation techniques was essential. This study employed methods

such as mean, median, and forward fill to fill in missing data points effectively, en-

suring completeness and accuracy in the dataset. An indispensable refinement step

involved data normalization to detect and manage outliers efficiently.

After careful data preparation, the study narrowed down to 43 Avamet weather

sensors for both the 2021 and 2022 datasets. Subsequently, the station names were

correlated with their respective station codes and geospatial data, including location

and elevation. Ensuring the reliability of these sensors was paramount, given that

the 2021 dataset would be employed for developing and training forecast models,

while the 2022 dataset would be used for evaluating the prediction accuracy of these

models. These datasets will mimic real-world IoT device scenarios.
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(a) Forcall

(b) Xodos

(c) Vallibona

Figure 4.3.: Temperature time series Forcall 4.3a, Xodos 4.3b and Vallibona stations
4.3c.
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Figure 4.4.: Temperature distribution for Almenara - Comunitat de Regants.

Figure 4.5.: Temperature distribution for Castellon- IES Vicent Sos Baynat.
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Figure 4.6.: Seasonality plot for Almenara - Comunitat de Regants, Castellon de la
Plana-IES Vicent Sos Baynat stations

Figure 4.7.: Mean Monthly Temperature.
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This chapter provides details about the implementation of the methodology. It

includes code snippets to illustrate key components of the analysis and provide

explanations for each snippet.

5.1 Similarity Analysis
Following extensive data preparation and standardization, this research utilized

two distinct similarity analysis metrics, as recommended by numerous research ar-

ticles mentioned in the related works, to assess the similarity of temperature time

series data. The research applied DTW, an approach based on shape, and Spear-

man’s correlation, which is a feature-based approach.

Dynamic Time Warping

DTW was selected for this study based on its recognition by Aghabozorgi et al.

[2015] and several other scholarly articles as one of the most widely adopted shape-

based methods for similarity analysis. According to Keogh and Ratanamahatana

[2005], DTW stands out as a notably robust distance measure for time series, al-

lowing similar shapes to align, even when they are out of phase along the time axis.

This analysis was conducted on google colab environment and the code used in this

thesis for the DTW is made available on Github1.

To assess the intrinsic similarities among a multitude of time series, each rep-

resenting the temperature observations from distinct weather stations. The DTW

algorithm operates by constructing a cost matrix, wherein each element encapsulates

the cost of optimally aligning specific observations from different stations.

As the matrix is systematically populated, the DTW distance, located at the ma-

trix’s conclusion, captures the dissimilarity between any two stations’ temperature

profiles. This not only facilitates the identification of highly similar or dissimilar

station pairs but also allows for the construction of a holistic similarity matrix en-

compassing all 43 stations with lower values indicating greater similarity. DTW

incorporates a backtracking step to unveil the optimal alignment path, revealing

how each point in one sequence corresponds to points in the other.

This snippet of code in Listing 5.1 demonstrates the implementation of DTW in

python. The code imports necessary libraries such as NumPy for numerical oper-

ations and the fastdtw module for efficient DTW calculation. It defines a function

‘dtw distance‘ that takes two time series as input and returns their DTW distance.

1Github: https://github.com/MikeSirya/Master-Thesis.git
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This analysis was conducted in Google Colab environment and the code used in this

thesis is made available on Github.

Listing 5.1: Python code for Dynamic Time Warping Similarity Analysis.

1 import pandas as pd

2 import numpy as np

3 from fastdtw import fastdtw

4 import seaborn as sns

5 import matplotlib.pyplot as plt

6

7 distance between two columns

8 def calculate_dtw_distance(column1 , column2):

9 valid_indices = np.isfinite(column1) & np.isfinite(

column2)

10 distance , _ = fastdtw(column1[valid_indices], column2[

valid_indices ])

11 return distance

12

13 num_columns = len(seasonality_df.columns)

14 dtw_distance_matrix = np.zeros(( num_columns , num_columns))

15

16 for i in range(num_columns):

17 for j in range(i + 1, num_columns):

18 dtw_distance_matrix[i, j] = calculate_dtw_distance(

seasonality_df.iloc[:, i], seasonality_df.iloc

[:, j])

19 dtw_distance_matrix[j, i] = dtw_distance_matrix[i,

j]

20

21 dtw_distance_df = pd.DataFrame(dtw_distance_matrix , index=

seasonality_df.columns , columns=seasonality_df.columns)

22

23 distance matrix

24 fig = sns.clustermap(

25 dtw_distance_df ,

26 annot=True ,

27 annot_kws ={"size": 10},

28 linewidths =0.4,

29 figsize =(15, 10),

30 cmap='viridis ', # Change color map to 'viridis ', you

can choose other colormaps

31 )

32
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33 plt.setp(

34 fig.ax_heatmap.xaxis.get_majorticklabels (),

35 rotation =90,

36 )

37 plt.show()

Spearman’s Correlation

Spearman’s correlation is particularly valuable when assessing the monotonic

relationship between two variables. Unlike Pearson’s correlation, Spearman’s corre-

lation does not assume linearity and is particularly robust in the presence of outliers.

In the context of weather station temperature data analysis, Spearman’s correlation

was utilized to discern the degree and direction of monotonic associations between

the temperature observations from different stations.

The Spearman’s correlation coefficient is calculated by first ranking the values in

each time series. The correlation is then computed based on the ranks rather than

the original values, making it less sensitive to extreme values and better suited for

capturing non-linear relationships.

When applied to the temperature time series it provides insights into the con-

sistency and direction of temperature trends across different locations. A positive

Spearman’s correlation suggests a monotonic increasing relationship, while a nega-

tive correlation indicates a monotonic decreasing relationship. A correlation close

to zero implies a lack of monotonic association.

Listing 5.2: Python code for Spearmans Correlation Similarity Analysis.

1 seasonality_corr = seasonality_df.corr(

2 method="spearman"

3 )

4

5 correlation_matrix_csv = 'correlation_matrix.csv'

6 seasonality_corr.to_csv(correlation_matrix_csv)

7

8 fig = sns.clustermap(

9 seasonality_corr ,

10 annot=True ,

11 annot_kws ={"size": 10},

12 linewidths =0.4,

13 figsize =(15, 10),

14 )

15

16 plt.setp(

17 fig.ax_heatmap.xaxis.get_majorticklabels (),

47



5. Development

18 rotation =90,

19 )

20 plt.show()

The code snippet in listing 5.2 calculates the Spearman correlation matrix in

python. The ‘corr‘ method is used with the parameter ‘method=”spearman”‘ to

compute the correlation matrix based on Spearman’s rank correlation coefficient,

which measures the strength and direction of monotonic relationships between vari-

ables. To visualize the correlation matrix, the seaborn ‘clustermap‘ function is

employed. The function generates a hierarchical clustering heatmap of the corre-

lation matrix, with annotations showing the correlation coefficients. This analysis

was conducted on google colab environment and the code used in this thesis is made

available on Github.

5.1.1 Performance Evaluation

In the methodological framework of this Master thesis, the evaluation of similarity

methods and subsequent clustering efficacy is comprehensively undertaken through

the application of the Silhouette Score. Before delving into the clustering phase,

DTW and Spearman’s correlation are independently scrutinized.

5.1.1.1. Silhouette Score

This study employs the Silhouette Score as a pivotal metric to quantify the would

be coherence of clusters to be formed by clustering the similarity analysis results of

each method applied to the temperature time series data.

A higher Silhouette Score is indicative of more distinct and well-defined clusters,

shedding light on the inherent effectiveness of each similarity method in capturing

nuanced temporal patterns. This pre-clustering assessment allows for the identi-

fication of the superior similarity method, laying the groundwork for subsequent

analyses. The K-means algorithm is then employed to group these stations into

distinct clusters, considering the similarities revealed by the chosen method (DTW

or Spearman’s correlation).

Post-clustering, the Silhouette Score is once again employed to assess the quality

of the obtained clusters, providing a quantitative measure of the clustering efficacy

based on the similarity information extracted from the temperature time series data.

5.1.1.2. Elbow Method

This Master thesis, integrated the elbow method in the determination of the op-

timal number of clusters for the forthcoming K-means clustering analysis. Prior to

the application of K-means to the similarity matrix, derived from either DTW or

Spearman’s correlation, a systematic exploration of various cluster counts is con-
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ducted.

The elbow method involves running K-means for a range of cluster values and

plotting the resultant sum of squared distances against the number of clusters. This

plot exhibits a discernible “elbow” point where the reduction in the sum of squared

distances diminishes, indicating the optimal number of clusters. The elbow point

signifies the balance between capturing meaningful patterns within the data and

avoiding overfitting by introducing unnecessary clusters.

Listing 5.3: Python code for Elbow Method Implementation

1 import pandas as pd

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from sklearn.cluster import KMeans

5

6 correlation_matrix_csv = 'correlation_matrix.csv'

7 seasonality_corr = pd.read_csv(correlation_matrix_csv ,

index_col =0)

8

9 inertia = []

10 max_clusters = 10

11

12 for k in range(1, max_clusters + 1):

13 kmeans = KMeans(n_clusters=k, random_state =42)

14 kmeans.fit(seasonality_corr)

15 inertia.append(kmeans.inertia_)

16

17 plt.plot(range(1, max_clusters + 1), inertia , marker='o')

18 plt.title('Elbow Method for Optimal Number of Clusters ')

19 plt.xlabel('Number of Clusters (k)')

20 plt.ylabel('Inertia ')

21 plt.show()

The python code snippet in listing 5.3 implements the elbow method to ascertain

the optimal number of clusters (k) for K-means clustering based on the inertia

values. The code calculates the inertia for varying values of k, ranging from 1 to a

predefined maximum. Utilizing K-means clustering for each k, the code computes

the inertia, representing the sum of squared distances of samples to their closest

cluster center, and appends these values to a list. Subsequently, a plot of the elbow

curve is generated, illustrating the relationship between the number of clusters and

inertia. This analysis was conducted on google colab environment and the code used

in this thesis is made available on Github.
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5.1.2 K-Means Clustering

In this study, K-means clustering assumes a crucial role following the completion

of preliminary similarity analyses facilitated by DTW and Spearman’s correlation.

Having conducted DTW to capture nuanced temporal variations and Spearman’s

correlation to discern monotonic relationships among the temperature time series

from multiple weather stations, the subsequent application of K-means clustering

aims to distill these intricate patterns into discernible clusters.

The process unfolds by selecting a predetermined number of clusters using the

Elbow method, denoted as K, and initializing cluster centroids. Leveraging the in-

sights gleaned from the earlier similarity analyses, additional data containing the

location and elevation of the weather sensors was added, K-means then iteratively

assigns each weather station’s temperature profile to the cluster with the closest cen-

troid, fostering the grouping of stations that exhibit similar temporal and geospatial

characteristics.

The algorithm refines these assignments and updates the centroids until conver-

gence is achieved, yielding a final partitioning of weather stations into distinct tem-

perature behavior groups. This sequential approach, encompassing similarity anal-

ysis with DTW and Spearman’s correlation, merging with geospatial data, followed

by K-means clustering, synergistically empowers the study to explore, categorize,

and interpret the diverse temperature dynamics exhibited across the weather station

network. Figure 5.1 shows the steps and procedures undertaken in implementing

the K-means algorithm.

Figure 5.1.: K-Means Clustering flow Chart

5.2 Machine Learning Model Development
The process of modeling the ML models in this study began after the K-means

clustering grouped the IoT devices into CoI. Two suitable ML algorithms were cho-

sen. For each CoI formed, data from one station with the highest Silhoutte score

was chosen for the training of the ML models such that there was a ML model for
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each of the CoI. Then models were then trained on portions of the dataset, and their

performance evaluated on, a separate validation set using RMSE. Hyperparameter

tuning and cross-validation were employed to optimize the model, and their general-

ization was validated on an independent dataset the 2022 Castellon weather sensor

data. The iterative nature of this process involved continuous refinement to ensure

the model effectively addresses the problem and generalizes well to the new, unseen

data.

5.2.1 Long Short Term Memory

LSTM is a specialized recurrent neural network architecture designed to address

the challenge of capturing and learning long-range dependencies in sequential data.

LSTM models incorporate memory cells equipped with input, forget, and output

gates. Figure 5.2 shows how gates can regulate the flow of information into, out of,

and within the memory cells, enabling the network to selectively store or discard

information.

The unique architecture of LSTMs allows them to effectively handle the prob-

lem of vanishing gradients, a common issue in deep networks. LSTMs maintain

an internal state, facilitating the retention of relevant information over extended

sequences. This ability to capture and remember long-term dependencies makes

LSTMs particularly valuable in applications such as natural language processing,

speech recognition, and time series analysis. The success of LSTMs lies in their

capacity to model intricate patterns in sequential data, contributing significantly to

the advancement of DL techniques for various real-world tasks.

5.2.2 Random Forest

Random Forest, an ensemble learning method, operates by constructing a multi-

tude of decision trees during training and outputs the mode of the classes (classifi-

cation) or the mean prediction (regression) of the individual trees. Each tree is built

on a random subset of the training data and a random subset of features, utilizing

bootstrapped sampling to introduce diversity among the trees. The randomness

extends to feature selection for each split in a tree, preventing the dominance of a

single feature and enhancing overall robustness. The final prediction in classification

tasks is determined by a majority vote from all trees, while regression tasks rely on

the average prediction.

This ensemble approach mitigates overfitting, as errors from individual trees are

balanced out by the collective decision. Random Forest also leverages out-of-bag

samples to estimate model performance without requiring a separate validation set.

The algorithm provides insights into feature importance, aiding in the interpreta-

tion of the model. Renowned for its versatility, Random Forest finds application
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Figure 5.2.: Long Short Term Memory Cell. Source :Zhu et al. [2018]

in diverse domains due to its effectiveness in handling high-dimensional data and

delivering robust predictions.

Listing 5.4: Python code for Random Forest Implementation

1

2 import pandas as pd

3 import numpy as np

4 from sklearn.model_selection import TimeSeriesSplit ,

GridSearchCV

5 from sklearn.ensemble import RandomForestRegressor

6 from sklearn.metrics import mean_squared_error

7

8 # Features (X) and Target Variable (y) using df_to_X_y

9 WINDOW_SIZE = 5

10 X, y = df_to_X_y(temp , WINDOW_SIZE)

11

12 # Nested Cross -Validation

13 tscv_outer = TimeSeriesSplit(n_splits =5)

14 tscv_inner = TimeSeriesSplit(n_splits =3)

15

16 param_grid = {'n_estimators ': [10, 50, 100], 'max_depth ': [

None , 10, 20]}

17

18 rf_model = RandomForestRegressor ()
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19

20 grid_search = GridSearchCV(estimator=rf_model , param_grid=

param_grid , scoring='neg_mean_squared_error ', cv=

tscv_inner)

21

22 for train_outer , test_outer in tscv_outer.split(X):

23 X_train_outer , X_test_outer = X[train_outer], X[

test_outer]

24 y_train_outer , y_test_outer = y[train_outer], y[

test_outer]

25

26 # Flatten the X_train_outer array

27 X_train_outer_flat = X_train_outer.reshape(

X_train_outer.shape[0], -1)

28

29 grid_search.fit(X_train_outer_flat , y_train_outer)

30

31 best_model = grid_search.best_estimator_

32

33 # Flatten the X_test_outer array for prediction

34 X_test_outer_flat = X_test_outer.reshape(X_test_outer.

shape [0], -1)

35

36 y_pred_outer = best_model.predict(X_test_outer_flat)

37

38 mse = mean_squared_error(y_test_outer , y_pred_outer)

39 print(f'Mean Squared Error for this fold: {mse}')

The python code snippet in listing 5.4 illustrates the implementation of a Random

Forest Regressor model utilizing nested cross-validation for time series forecasting.

Initially, the feature matrix (x) and target variable (y) are prepared using a cus-

tom function with a defined window size. Subsequently, nested cross-validation is

established with two levels of time series splits to ensure robust evaluation and hy-

perparameter tuning. Within each outer fold, a grid search is conducted to identify

the optimal hyperparameters for the Random Forest model based on negative mean

squared error. The best model obtained from the inner cross-validation loop is then

evaluated on the testing data for the outer fold, and the mean squared error is

computed as a performance metric.
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5.2.3 Model Implementation and Evaluation

5.2.3.1. Training Data

After the K-means clustering, the assessment of the resultant clusters was con-

ducted using the silhouette score. Within each cluster, stations with the highest

silhouette scores were identified.

The selection of stations with the highest silhouette scores for training ML models

within each community of interest was important for several reasons. Firstly, high

silhouette scores indicated that the data points within these stations were well-

clustered and distinct from other clusters, ensuring that the training data were

representative of the underlying patterns within each community. This enhanced

the models’ ability to accurately capture the characteristics of each community and

generalize well to unseen data.

Training models on stations with high silhouette scores focused the efforts on the

most informative data points, leading to more efficient model training processes thus

optimizing computational resources. This made the models less prone to overfitting,

as they were less likely to capture noise or irrelevant features in the data, thus

improving the models’ accuracy, generalization, and interpretability in addressing

the CoI.

5.2.3.2. LSTM Model Parameters

In the implementation of the LSTM-based time series forecasting model, spe-

cific parameters were selected to optimize model performance and efficiency, further

augmented by the integration of TensorFlow Lite to extend its functionality to IoT

devices.. The LSTM layer is configured with 64 units, striking a balance between

capturing intricate temporal dependencies in the data and computational efficiency.

Following the LSTM layer, a Dense layer with Rectified Linear Unit (ReLU)

activation is introduced to enable the model to learn complex relationships. The

output layer utilizes linear activation, aligning with the regression nature of time

series forecasting. The Adam optimizer is chosen for efficient gradient-based op-

timization, with Mean Squared Error (MSE) as the loss function and Root Mean

Squared Error (RMSE) as the evaluation metric for prediction accuracy.

In the implementation of our LSTM-based time series forecasting models,this

study opted for simplicity in parameter choices, given the experimental nature of

our research.The LSTM model underwent 10 epochs of training, a sensible choice

aimed at preventing overfitting while allowing the model to learn from the data

considering the experimental context, balancing the need for model complexity with

the risk of memorization of noise in the training set.

A batch size of 32 was chosen, prioritizing computational efficiency while still
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enabling the models to benefit from stochastic gradient descent. Empirical observa-

tions and experimentation confirmed that these parameter choices strike a suitable

balance between model performance and computational resources for our experi-

mental setup.

The experimental nature of the models and knowledge from related works [Bo-

gado Machuca et al., 2023] guided the selection of these specific numbers for the

LSTM hyperparameters to optimize both model performance and efficiency.

The implementation incorporated nested cross-validation with TimeSeriesSplit

to robustly evaluate the models’ performance while preserving temporal dependen-

cies in both the outer and inner loops ensuring reliable assessment of the models’

generalization ability in the context of this study’s experimental investigations.

5.2.3.3. Random Forest Model Parameters

In the configuration of the Random Forest for time series forecasting, careful

consideration has been given to the selection of parameters, with a deliberate em-

phasis on striking a delicate balance between computational efficiency and model

expressiveness considering the experimental nature of the models. The choice of n

estimators and max depth as the key hyperparameters stems from a thoughtful eval-

uation of the model’s complexity and its ability to capture temporal dependencies

within the dataset.

The parameter n estimators determines the number of decision trees in the forest.

Through a grid search exploring values of 10, 50, and 100, a range of ensemble sizes

was examined. This parameter significantly influences the trade-off between model

performance and computational efficiency. While a higher number of estimators

can enhance predictive capacity, potentially capturing more nuanced patterns in the

data, it may also incur increased computational costs. The selection of these specific

values reflects a pragmatic approach, allowing for comprehensive exploration while

mitigating excessive computational burdens.

The max depth parameter sets the maximum depth of each individual tree in

the forest. Considering None, 10, and 20, the grid search evaluates different levels

of tree complexity. Deeper trees can capture more intricate patterns in the data

but risk overfitting, especially with limited samples. By including these values in

the grid search, we aimed to strike a balance between model expressiveness and

generalization capability, given the experimental context of the models. The goal

was to prevent overfitting while extracting meaningful patterns from the time series

data, ensuring that the model’s predictions are robust and reliable.

The selection of these specific numbers for the Random Forest hyperparameters

was informed by a combination of empirical experimentation, insights from related
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works [Tyralis and Papacharalampous, 2017], and the experimental nature of the

models. These choices aimed to optimize both model performance and efficiency for

the given time series forecasting task.

5.2.3.4. Model Cross-Validation Strategies

Cross Validation is systematic evaluation of a model’s performance to ensure its

effectiveness in making predictions on new, unseen data. The primary objective of

Cross validation is to ensure that a model not only learns patterns effectively from

the training data but also generalizes well to new, unseen instances. The systematic

partitioning of the dataset into distinct subsets for training, validation, and testing,

validation techniques is to prevent overfitting. Overfitting occurs when a model

becomes too tailored to the peculiarities of the training data and fails to generalize to

diverse or unseen examples. Through iterative model evaluation during the training

phase, validation helps identify the optimal set of hyperparameters, enhancing the

model’s adaptability and predictive accuracy

5.2.3.5. Three-Way Hold Out Cross Validation

According to Berrar [2019] and several other scholarly articles, the holdout -

method stands out as one of the simplest data resampling strategies. Given that the

primary objective of this thesis is to determine the optimal approach for sharing ML

models among IoT devices, little emphasis is put on the choice of the cross-validation

method. The simplicity and ease of implementation of the holdout method are

favored.

This study employed the three-way holdout method for model evaluation. The

dataset was strategically partitioned into three distinct subsets: a training set, a

validation set, and a testing set (Figure 5.3). The training set was utilized for the

initial training of the ML model, allowing it to learn patterns and relationships

within the data. The validation set plays a crucial role in hyperparameter tun-

ing, as the model’s hyperparameters are adjusted based on its performance on this

independent subset.

This separation helps prevent overfitting hyperparameters to the testing set. Once

the hyperparameters are optimized, the model’s final evaluation is conducted on the

testing set, ensuring an unbiased assessment of its generalization performance to

previously unseen data. This method provides a systematic approach to balancing

the training, hyperparameter tuning, and final evaluation stages, contributing to the

robustness and reliability of the model assessment in the context of this research.

5.2.3.6. Nested Cross Validation

Researchers in Bergmeir and Beńıtez [2012] advocate for the utilization of k-fold

cross-validation in the evaluation of time series models, emphasizing its ability to
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Figure 5.3.: Three Way Hold Out Cross validation flow
chart.Source:Sebastianraschka.com

contribute to a more resilient model selection process. This approach is favored

for its capacity to leverage all available information, thereby mitigating theoretical

challenges associated with alternative methods. In a separate study, Bates et al.

[2023] suggests nested cross-validation (NCV) as an attractive option for generating

confidence intervals for prediction error. The research highlights NCV’s consistent

superiority in coverage compared to confidence intervals derived from naive cross-

validation methods, making it a robust choice for obtaining reliable estimates of

prediction error.

For this reasons this study utilizes NCV a variation of k-fold cross-validation.

Traditional k-fold cross-validation involves splitting the dataset into k folds and us-

ing one fold for testing and the remaining k-1 folds for training in each iteration,

nested cross-validation adds an additional layer of cross-validation for hyperparam-

eter tuning.

In NCV , the outer loop performs the typical k-fold cross- validation to assessthe

model’s performance on different subsets of the data. Within each outer fold, there is

an inner loop that is responsible for hyperparameter tuning. The inner loop typically

uses another round of k-fold cross-validation to evaluate different hyperparameter

configurations. See Figure 5.4
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Figure 5.4.: Nested Cross validation flow chart.Source:Sebastianraschka.com

Nested cross-validation obtains a more reliable estimate of a model’s performance

by including both an outer loop for overall model evaluation and an inner loop for

hyperparameter tuning. This helps to reduce the risk of overfitting to a specific set

of hyperparameters and provides a more unbiased performance estimate.

5.2.3.7. Testing Data

Following the completion of model training, validation, and testing phases, the

models underwent further evaluation on distinct datasets. These assessments en-

compassed testing on a station within the same cluster as the model’s training data,

selected based on the second-highest silhouette score within that cluster.See Table

5.1

Testing was extended to stations from other clusters, with the choice of testing

stations determined by their possession of the highest silhouette scores within their

respective clusters. This consistent reliance on silhouette scores for both training

and testing station selection underlines the commitment to ensuring representative

and well-defined datasets for model training and evaluation. It is important to note

that the 2022 dataset was used for this testing phase.

5.2.3.8. Model Perfomance Evaluation using Root Mean Square Error

To evaluate the ML models this study employed RMSE. It calculates the average

magnitude of errors between the model’s predicted values and the actual observed

values. It involves squaring the differences between predictions and true values,

averaging these squared errors, and taking the square root of the result. This process
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Table 5.1.: Testing Data Stations

Station Code Station Name Cluster Silhouette Elevation
c04m055e02 Xodos C1 0.703216 1074
c05m040e13 Castelló - IES Vicent Sos Baynat C2 0.715614 22
c03m100e02 Sant Mateu C3 0.719095 330
c01m061e01 Forcall C4 0.712083 692
c01m091e01 Portell de Morella C1 0.703188 1074
c05m085e03 Orpesa Torre Bellver C2 0.715601 22
c03m070e01 la Jana - la Pedrera C3 0.719037 330
c02m042e02 Cat́ı C4 0.710289 661

ensures that both overestimations and underestimations contribute positively to the

overall error measure.

The lower the RMSE, the better the model’s performance, indicating smaller

errors in predicting continuous outcomes. RMSE is particularly suitable for regres-

sion tasks where accuracy in predicting specific values is paramount. Its application

provides a quantitative and interpretable assessment of the model’s ability to make

accurate predictions, facilitating the comparison and selection of models based on

their predictive performance.
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This chapter will showcase the outcomes of conducting time series similarity

analysis, evaluating results, implementing K-means clustering, or establishing CoI

based on similarity data and geospatial components. The subsequent steps involve

the development, validation, testing, and sharing of ML models.

These experiments aim to substantiate the effectiveness of the newly proposed

method for sharing ML models among IoT devices. The primary goal is to substan-

tiate that sharing ML models among CoI formed by grouping together IoT devices

with similar data streams and geographical proximity is not only feasible but also

advantageous. The chapter aims to provide empirical evidence supporting the effec-

tiveness and viability of the proposed method in the context of IoT model sharing.

6.1 Time Series Similarity Analysis Results
In this study Time series similarity analysis was conducted with the primary

objective of identifying and recognizing of patterns or trends embedded in time series

data, enabling the extraction of valuable insights. The reason being this technique is

instrumental in clustering and classification tasks, facilitating the grouping of time

series data into clusters based on similarity for enhanced understanding of distinct

categories.

6.1.1 Dynamic Time Warping

The DTW similarity analysis was conducted on temperature data collected from

the 43 weather sensors. The primary objective was to assess the temporal patterns

and similarities in temperature trends across these stations.

The results of the analysis are encapsulated in a similarity matrix, (see Figure

6.1) a comprehensive representation of pairwise DTW distances between the time

series of each station. The similarity matrix provides a quantitative measure of the

temporal proximity or dissimilarity between station pairs. The corresponding DTW

similarity matrix heat map visually enhances the interpretation of these results, uti-

lizing color gradients to highlight patterns within the matrix. From the figure darker

shades have a value closer to zero indicating higher similarity, while lighter shades

have a value closer to one hundred denoting greater dissimilarity. By examining

the heat map, one can discern clusters of stations with similar temperature profiles

and identify outliers or stations with distinctive patterns by examining the dendo-

grams on the left hand side depicting clusters. This dendograms show the complex

relationships within the dataset, facilitating the identification of regions or groups

exhibiting consistent temperature behavior and enhancing our understanding of the

60



6. Results

Figure 6.1.: Dynamic Time Warping Similarity Matrix Heat Map .

overall temporal dynamics across the 43 stations.

6.1.2 Spearman’s Correlation Method

This study also employed the Spearman’s correlation method to analyze the tem-

poral relationships in temperature data from the 43 weather sensors. The primary

aim was to assess the degree of monotonic association between the temperature

time series of different stations. The outcome of the analysis is encapsulated in a

correlation matrix, portraying the strength and direction of the Spearman’s rank

correlation coefficients for each station pair. This matrix serves as a quantitative

measure of the temporal similarity or dissimilarity in temperature trends.

The accompanying heat map (see Figure 6.2)visually represents these correlation

coefficients, using a spectrum of colors to convey the strength and direction of the

relationships. Positive correlations are typically represented by brighter colors, while

negative correlations are depicted by darker tones.As depicted in the legend values

approaching 1 have a higher correlation while values approaching 0 have a lower cor-

relation. Interpretation of the Spearman’s correlation heat map involves identifying

clusters of stations with similar monotonic trends and recognizing areas of diver-

gence. By examining this graphical representation, one can gain insights into the

overarching patterns and relationships within the temperature dataset, contributing

to a nuanced understanding of the temporal dynamics across the 43 weather sensors.
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Figure 6.2.: Spearman’s Correlation Similarity Matrix Heat Map .

6.1.3 Similarity Analysis Perfomance Evaluation using

Silhoutte Score

To evaluate the quality of the similarity analysis results from the two different

similarity analysis methods. By treating the identified groups or clusters from the

similarity analysis as clusters, this study employed the Orange Data Mining tool to

compute the silhouette scores.

This score, ranging from -1 to 1, provided a comprehensive assessment of how well-

defined and separated the clusters were. A high silhouette score indicates that the

data points were well-matched within their respective clusters and poorly matched

to neighboring clusters, suggesting robust and distinct patterns in the data.

On the other hand, a silhouette score close to -1 suggests potential misclassifica-

tions, while a score around 0 indicated overlapping clusters. The average silhouette

score across all data points serves as a global measure of the overall quality of the

similarity analysis results.

The evaluation of similarity analysis results in this thesis revealed that Spear-

man’s method exhibits a higher silhouette score than DTW across all the different

number of clusters as seen in Table 6.1

The silhouette score, serving as a metric for assessing the quality of clustering

across a range of random number of clusters or similarity analysis, indicates that
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Spearman’s method leads to more well-defined and internally cohesive clusters com-

pared to DTW. This outcome suggests that, on average, the data points are better

matched within their respective clusters and less matched to neighboring clusters

when Spearman’s method is employed.

Table 6.1.: Cluster Quality Evaluation Silhouette Scores

Cluster Number DTW Score Spearmans Score
2 0.653 0.692
3 0.56 0.632
4 0.543 0.65
5 0.541 0.639
6 0.506 0.659
7 0.48 0.655
8 0.469 0.66

The superior performance of Spearman’s correlation method may be attributed

to its rank-based correlation approach, capturing monotonic relationships in the

data. In contrast, DTW, designed for time-series data with variable speeds, may

exhibit lower silhouette scores due to its flexibility. This flexibility is advantageous

when dealing with time-series that may exhibit variations in speed, phase shifts,

or temporal distortions. However, this flexibility may also lead to challenges in

clustering scenarios, as the varying speeds might introduce additional complexity in

forming well-defined clusters.

These findings contribute valuable insights into the effectiveness of the similarity

analysis methods, aiding in the selection of the most suitable approach based on

the specific requirements and characteristics of the dataset under consideration. For

this reason this thesis chose to proceed with the similarity results from Spearman’s

Correlation for the K-means clustering.

6.2 Elbow Method
After establishing that Spearman’s method produces clusters of superior qual-

ity, the elbow method was employed to determine the most appropriate number

of clusters for the K-means clustering. The elbow method involves plotting the

within-cluster sum of squares, also known as inertia, against the number of clusters.

Inertia measures how tightly packed the points are within each cluster. The plot

visually displays the trade-off between capturing patterns in the data and avoiding

unnecessary complexity. The point on the plot resembling an elbow is crucial, as

it signifies the optimal number of clusters. At this juncture, adding more clusters

would result in diminishing returns in terms of reducing inertia, indicating the most

effective balance between explaining variability in the data and avoiding overfitting.
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Figure 6.3.: The Elbow Plot for Optimal number of Clusters

Figure 6.3 shows the outcome of visually examining the elbow plot to determine

the ideal number of clusters for the subsequent clustering of K-means. Visual anal-

ysis indicates that the optimal number of clusters is 4, identified at the juncture

where the rate of change in inertia decreases as the number of clusters increases or

decreases. This point signifies a balance where further adjustments to the number

of clusters yield marginal improvements in reducing inertia, guiding the selection of

an effective number of clusters for the subsequent analysis.

6.3 K-means Clustering
The K-means clustering algorithm, a widely used unsupervised learning tech-

nique, has been instrumental in uncovering patterns and structuring the dataset in

this study.

Prior to performing the clustering of K-means, the similarity data of the weather

sensors, derived from the Spearman correlation method, were augmented with geospa-

tial information that included sensor locations and elevations. Integration of these

data sets was facilitated using the Orange Data Mining tool, and subsequently, K-

means clustering was applied to partition the merged data into distinct clusters, with

the predetermined number of clusters (K) identified as 4 using the Elbow method.

The K-means algorithm systematically assigned data points to clusters, itera-

tively adjusting the centroids until convergence, thus optimizing the sum of squares

within the cluster. The outcomes of this clustering process unveil the inherent struc-

ture of the dataset, delineating clear groups. The resulting clusters, depicted in the
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accompanying Figure 6.3, serve as the basis for further analysis and interpretation.

They are recognized as the CoI for the weather sensors, providing a more nuanced

understanding of relationships and patterns within the data. These CoI in this study

are invaluable for crafting, validating, testing, and sharing the ML models .

Figure 6.4.: K-Means Clustering results (Communities of Interest)

ML Model Results

6.3.1 Training Data

Following the application of K-means clustering, the assessment of the resultant

clusters was conducted using the silhouette score. Within each cluster, stations with

the highest silhouette scores were identified.

Table 6.2 subsequently shows ,the selected stations employed in the training pro-

cess of ML models specific to each cluster.
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Station Code Station Name Cluster Silhouette Elevation
c04m055e02 Xodos C1 0.703216 1074
c05m040e13 Castelló- IES Vicent Sos Baynat C2 0.715614 22
c03m100e02 Sant Mateu C3 0.719095 330
c01m061e01 Forcall C4 0.712083 692

Table 6.2.: Training Data Stations

The selection of stations with the highest silhouette scores for model training was

aimed at maximizing the quality of the training data. This ensures that the models

learn from stations that exhibit strong cohesion within their clusters and clear sep-

aration from other clusters, ultimately leading to more effective and representative

ML models.

Model Sharing and Testing

Figure 6.5.: Actuals Vs Predictions - Random Forest Models

The visual representations provided by the figures for Random Forest (Figure

6.5), LSTM with Nested Cross Validation (Figure 6.6), and LSTM with Three-way

Hold Out Cross Validation (Figure 6.7) illustrate the performance of the three ma-

chine learning algorithms utilized in this study. Each algorithm underwent training

with four distinct models using data from Xodos, Castellon- IES Vicent Sos Bay-

nat, Sant Mateu, and Forcall stations in 2021 see figure 6.2, followed by testing on

2022 data from the same stations. These graphs showcase the comparison between

actual values and predictions, providing a visual understanding of how effectively

each model performs. These visualizations offer valuable insights into the predictive

capabilities of the algorithms, enabling a qualitative evaluation of their performance
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Figure 6.6.: Actuals Vs Predictions - Nested Cross Validation LSTM Models

Figure 6.7.: Actuals Vs Predictions - Three Way Hold Out LSTM Models

relative to real-world data.

Following the establishment of the four IoT CoI through K-means clustering

utilizing similarity and geospatial components, the subsequent step involved the

development of ML models using various algorithms outlined in the methodology

section. Subsequently, data from sensors exhibiting the highest Silhouette scores

within each CoI or cluster were chosen and employed to train the ML models.

These trained models were then assessed using sensor data originating from clusters
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distinct from the ones on which they were initially trained. Only the data from the

sensors with the highest Silhouette scores were used for this training and testing

process.

Table 6.3.: Comparison of ML Model performance using RMSE.

Performance Comparison

Year Community Random

Forest

LSTM

NCV

LSTM HV

Community One: Xodos 2021 (Cluster One)

Xodos 2022 C1 0.74 0.72 1.08

Portell 2022 C1 1.12 1.08 1.22

Bayanat 2022 C2 1.36 1.28 1.46

Sant Mateu 2022 C3 1.50 1.50 1.43

Forcall 2022 C4 1.94 1.71 2.11

Community Two: Bayanat 2021 (Cluster Two)

Bayanat 2022 C2 0.37 0.34 0.45

Orpesa 2022 C2 0.33 0.33 0.48

Xodos 2022 C1 0.71 0.46 0.57

Sant Mateu 2022 C3 0.81 0.56 0.68

Forcall 2022 C4 2.46 1.57 2.39

Community Three: Sant Mateu 2021 (Cluster Three)

Sant Mateu 2022 C3 0.72 0.76 0.50

Pedrera 2022 C3 0.46 0.63 0.53

Xodos 2022 C1 0.60 0.63 0.59

Bayanat 2022 C2 0.38 0.52 0.54

Forcall 2022 C4 3.04 1.88 2.33

Community Four: Forcall 2021 (Cluster Four)

Forcall 2022 C4 0.34 0.34 1.05

Cati 2022 C4 0.33 0.33 1.05

Xodos 2022 C1 0.43 0.49 1.27

Bayanat 2022 C2 0.34 0.62 1.85

Sant Mateu 2022 C3 0.58 0.84 1.65

Table 6.3 presents the results of four distinct ML tests. Each CoI was used

to train three different ML models making a total of 12 models three for each of

the four CoIs.The models were subsequently tested on one member from the same

community as well as one member from each of the other communities. The three

different models employed different algorithms: Random Forest with Nested

Cross Validation, Long Short Term Memory with Nested Cross Vali-

dation, and Long Short Term Memory with Three-way Hold-Out . This
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diversity of approaches serves to validate and cross-verify the hypotheses posited in

this study.

In the table (Table 6.3), the orange highlighting indicates instances where the

models demonstrated the expected performance. Specifically, this observation holds

true for all the Models in Communities One , Two and Four. This implies that

these models exhibited lower Root Mean Square Error (RMSE) values, indicative of

higher prediction accuracy, when trained and tested on members of the same cluster.

The table clearly illustrates that training a model on data from a member of one

cluster and subsequently testing it on data from a member of a different cluster leads

to a higher RMSE, thereby indicating lower prediction accuracy. This underscores

the importance of training,testing and sharing ML models within the same CoI to

achieve optimal performance based on the inherent similarities within those clusters.

However, an anomaly is observed with the red highlighting see figure 6.3 in Com-

munity Three, signifying an unexpected outcome. The results of testing the Models

in Community Three, which was trained on data from Cluster 3, on data from

Cluster 1 and 2, the results deviated from expectations. Surprisingly, the models

exhibited a lower Root Mean Square Error (RMSE) and, consequently, higher pre-

diction accuracy when tested on data from sensors in Cluster 1 and 2 compared to

its performance on members from Cluster 3, where the model was originally trained.

6.4 Discussion
In this study, three different algorithms, namely Random Forest and LSTM with

NCV, as well as Three-Way Holdout Cross-Validation LSTM, were utilized. Each

of these models was individually trained using data from one CoI at a time. With

the creation of four CoI through K-means clustering, a total of 12 ML models were

developed, consisting of three models for each of the four IoT CoIs established.

In the outcomes, it was observed that 10 out of the 12 models exhibited reduced

RMSE, indicating higher predictive accuracy when assessed on data originating from

the same CoI on which they were initially trained. Conversely, when these models

were tested on data from sensors located in different CoIs, their prediction accuracy

decreased.

In Communities One, Two and Four, all the models exhibited a consistent pattern

highlighted in orange see figure 6.3, whereas only one model in Community Three

adhered to the observed pattern seen in the models from other CoIs. Among the 12

models, only two did not show the same pattern as the remaining 10. Specifically,

these models were the Random Forest and LSTM with NCV in Community Three

highlighted in red see figure 6.3.
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The results indicate that 83% of the models revealed the effectiveness of catego-

rizing IoT devices into CoIs based on the similarity of temporal data and geospatial

attributes to facilitate the sharing of ML models among devices.

6.5 Limitations
While this study contributes valuable insights into the sharing of ML models

among IoT devices through CoI, several limitations warrant consideration.

The generalizability of the findings may be constrained by the specific context and

conditions of this research, potentially limiting applicability to diverse deployment

scenarios. The data source utilized, consisting of weather data sensors simulating

real IoT devices, may not fully capture the complexities of real-world IoT device

data.

Scalability remains a concern, as scaling the proposed method to larger IoT net-

works or accommodating dynamic changes in network composition may pose tech-

nical challenges. The absence of mobile sensor data limits the generalizability of

the findings to scenarios involving stationary sensors only. The proposed method’s

effectiveness relies on specific assumptions and parameters, which may not always

hold true in practical deployment scenarios.

Another limitation of this study is that it did not progress to the development of

tinyML models for testing on real-world IoT devices. Tiny ML models, created using

TensorFlow Lite, offer the potential for efficient deployment on resource-constrained

devices. This avenue remains unexplored within the scope of this project, leav-

ing room for future investigation into the implementation and performance of such

models in practical IoT environments.

Resource constraints inherent to IoT devices, including processing power, mem-

ory, and energy, were also not fully explored. Addressing these limitations and

further investigating their implications is crucial for the successful implementation

and deployment of ML models in real-world IoT environments.
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The primary objective of this thesis was to establish an effective method for

sharing ML models across IoT devices. To achieve this goal, the thesis proposed

an innovative approach centered on distributing ML models among IoT-CoI based

on the similarity of IoT data streams and geospatial components, specifically loca-

tion and elevation. To validate the feasibility of this approach, the study adopted

a cluster-based strategy to form IoT-CoIs. The initial phase involved a comprehen-

sive similarity analysis of IoT weather sensor data streams using both DTW and

Spearman’s correlation methods.

Evaluation of the similarity results through the Silhouette score revealed that

Spearman’s correlation outperformed DTW, indicating its superiority in producing

higher-quality and more coherent clusters.This superior performance may be at-

tributed to Spearman’s correlation robustly capturing monotonic relationships and

being less sensitive to temporal misalignments, characteristics that are crucial for

the nature of the IoT weather sensor data streams.

Due to this observation, this study proceeded by utilizing the similarity anal-

ysis outcomes derived from Spearman’s correlation for K-means clustering. The

optimal number of clusters, determined as four through the elbow method, guided

the subsequent K-means clustering. This clustering process incorporated both the

similarity results and an additional geospatial component comprising location and

elevation. The resulting clusters formed the basis for IoT-CoIs, instrumental in the

development, validation, testing, and sharing of ML models.

Assessment of ML model performance during the sharing and testing phases

revealed a notable trend: the majority (83%) of ML models exhibited superior per-

formance when trained, tested, and shared within the same CoI dataset. This was

evidenced by lower RMSE values, indicative of higher prediction accuracy. Specif-

ically, 10 out of 12 models followed this pattern, demonstrating improved perfor-

mance when operating within the same CoI. Conversely, models trained on a dif-

ferent CoI exhibited poorer performance when tested on members of another CoI,

reflected in higher RMSE values and lower prediction accuracy.

The findings of this study provide conclusive answers to the posed research ques-

tions. Firstly, the study successfully demonstrates that IoT devices can indeed be

effectively grouped into CoI based on the similarity of both temporal data and

geospatial attributes. Secondly, the investigation establishes that grouping IoT de-

vices into CoI according to their data similarity facilitates the sharing of Tiny ML

models among these devices.
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Furthermore, the study has achieved its primary aim, which is to leverage geospa-

tial components for the sharing and re-use of pre-trained ML models among IoT

devices. The overarching goal of establishing geospatial zones, guided by the CoI

concept, has been realized. By delineating these zones based on the inherent sim-

ilarity of IoT data streams, the thesis successfully crafts and validates ML models

tailored to the unique characteristics of each geospatial zone.

7.1 Future Work
To build on the favorable results supporting the proposed method of sharing

ML models within IoT CoI based on the similarity of data streams and geospatial

components, the future direction of this research presents several compelling avenues

for exploration.

To pave the way for future advancements, this study suggests the exploration of

the development of an automated recalibration system for clusters. This innovative

system, driven by real-time data, holds the potential to not only refine but signifi-

cantly enhance the adaptability of ML models. The aim is to enable these models to

dynamically respond and evolve inline with the intricate and ever-changing patterns

within the expansive landscape of IoT.

Exploring the development and testing of tinyML models on real-world IoT de-

vices using TensorFlow Lite remains a valuable avenue. Despite not being pursued

in this study, the implementation of such models holds promise for efficient deploy-

ment on resource-constrained devices. Investigating the performance and practical

implications of these tiny machine learning models in IoT environments could offer

valuable insights for future research and application.

To optimize ML applications,this study suggests the incorporation of a location-

centric pre-trained model service. This implementation holds the potential to fine-

tune models, customizing them to suit the distinctive characteristics of particular

geographic regions.

To spearhead the collaborative sharing of ML models within the IoT commu-

nity.This study would suggest that it is imperative to not only establish a centralized

model repository but also explore the potential of decentralized repositories. This

dual repository approach aims to diversify avenues for knowledge exchange and col-

laboration. A web service could further amplify the impact of these repositories,

streamlining the publishing and accessibility of ML models. This envisioned web

service would serve as a facilitator, providing a user-friendly platform for seamless

sharing, exploration, and utilization of models, fostering an environment of collab-

orative innovation within the ever changing realm of the IoT.

There is also an opportunity for future research to broaden its scope by delving
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into phenomena beyond temperature. For instance, exploring ML applications in

healthcare for predicting patient outcomes or diagnosing medical conditions could

significantly enhance the versatility of the proposed model-sharing method. Em-

bracing diverse algorithms and extending the approach to classification tasks not

only opens doors for advancements in fields such as image recognition or natural

language processing but also amplifies the adaptability of the shared models. This

expanded exploration could revolutionize various domains by harnessing the ca-

pabilities of ML for tasks beyond traditional temperature predictions and anomaly

detections, fostering a more comprehensive and impactful utilization of the proposed

methodology.

Conducting real-world testing, especially with mobile IoT devices positioned in

dynamic environments like moving vehicles, holds the promise of providing valuable

insights into the adaptability and efficacy of the proposed ML-sharing approach in

practical scenarios. These deliberate initiatives collectively aspire to make significant

contributions to the broader integration and scalability of the proposed method.

This concerted effort aims to strengthen its applicability and impact across diverse

IoT applications, ensuring its effectiveness in addressing real-world challenges and

fostering widespread adoption within the IoT ecosystem.
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A. Annex

A.1 Repository Title:Master Thesis
The is Master Thesis repository 1 hosts code inspired by DataCamp for multi-

variate time series data exploration, analysis, and similarity analysis. It includes

implementations of Dynamic Time Warping and Spearman Correlation methods for

similarity analysis.

The repository contains code utilized in crafting, training, validating, testing,

and sharing ML models for time series forecasting simulations in real-world Internet

of Things (IoT) device ML scenarios. This encompasses 12 ML models, with four

models each for Random Forest and Long Short-Term Memory (LSTM) algorithms,

incorporating nested cross-validation and three-way holdout validation techniques.

A.1.1 Contents

• Multivariate time series data exploration and analysis scripts.

• Dynamic Time Warping and Spearman Correlation similarity analysis imple-

mentations.

• ML model crafting, training, validation, testing, and sharing scripts for time

series forecasting (Random Forest and LSTM) with Nested cross-validation

and three-way holdout validation code

• Sample datasets and data preprocessing utilities

A.1.2 Features

• Exploratory data analysis (EDA) for multivariate time series data.

• Dynamic Time Warping and Spearman Correlation similarity analysis meth-

ods.

• Crafting, training, and evaluation of ML models for time series forecasting.

• Implementation of Random Forest and LSTM algorithms with nested cross-

validation and three-way holdout validation.

• Simulation of real-world IoT device ML scenarios

1Github: https://github.com/MikeSirya/Master-Thesis.git
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A.1.3 Dependencies

• Python (3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]).

• NumPy, pandas, matplotlib, scikit-learn, TensorFlow (for LSTM and Random

Forest).

• Seaborn,statsmodels, NumPy, pandas, matplotlib and scikit-learn (for DTW

Spearmans Correlation).

A.1.4 Usage

• Clone the repository to your local machine.

• Navigate to the desired script or module.

• Install dependencies using ‘pip install -r requirements.txt‘.

• Run the scripts with appropriate parameters or configurations.

A.1.5 Acknowldgements

The code in this repository draws inspiration from DataCamp tutorials and re-

search in multivariate time series analysis and ML for IoT applications. I would like

to express my gratitude to Agència Valenciana de Meteorologia (AVAMET) for pro-

viding the weather sensor data used in this project to simulate real-world IoT data

stream scenarios. I also would like to acknowledge the use of the Orange data min-

ing tool for conducting K-means clustering and generating CoI map, which greatly

enhanced the analysis and visualization capabilities of this project. I am also thank-

ful for the computing resources and collaborative environment provided by Google

Colab, which facilitated the development and execution of my experiments.
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