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A B S T R A C T

Efficient energy management is vital for the sustainability of IoT devices employing solar
harvesting systems, particularly to circumvent battery depletion during periods of diminished
solar incidence. Embracing the structured methodology of CRISP-DM, this study introduces
machine learning (ML) models that utilise meteorological data to predict battery charge levels
in solar-powered IoT devices. These models enable proactive adjustments to the devices’ data
sampling frequencies, ensuring effective energy utilisation. The proposed ML models were
evaluated using authentic battery charge data and weather forecast records. The empirical
results of this study corroborate the predictive prowess of the models, with an average accuracy
reaching as high as 94.09% in specific test cases. This substantiates the potential of the
developed methodology to significantly enhance the energy autonomy of IoT devices through
predictive analytics.

. Introduction

The Internet of Things (IoT) allows real-time data collection, improving the efficiency of processes and decision-making [1].
oT systems can collect data from everyday real-world objects, process it, derive actionable knowledge, and act on it, making it an
normous asset. By 2025, more than 16.44 billion IoT devices are expected to be connected [2], with mobile connections surpassing
0.9 billion. This has led to the emergence of next-generation applications in various domains, including smart cities [3,4], smart
omes [5], healthcare [6], agriculture [7–9], smart factories, and Industry 4.0 [10].

IoT devices have evolved rapidly, enabling them to perform complex computational operations [11]. This has allowed for the
eneration of advanced analysis algorithms at the edge computing layer [12], which can improve network connections by reducing
ata latency and processing time. By processing data on-site, the need for a constant Internet connection is reduced, allowing for the
tilisation of IoT technology even in areas with inadequate network infrastructure [8]. This also makes it possible to use Machine
earning (ML) analysis in the lower layers of an IoT architecture, eliminating the need to transfer data to higher layers, which
ignificantly speeds up actions and reduces latency and computing loads that are common issues in cloud computing [13]. IoT and
L are a perfect symbiosis, with IoT providing the necessary data to feed ML models and techniques, making IoT smarter and

enerating decisions based on the data provided by devices. The use of ML models can be applied in a wide range of IoT domains,
uch as environmental monitoring [14], hydrologic monitoring [15], water quality monitoring [16], industrial applications [17] or
arcel monitoring in agriculture [18].
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The traditional approach to ML analytics involves cloud computing [19]. However, in an IoT architecture, cloud computing is
ocated on the far end of the physical devices, which may not offer the desired Quality of Service (QoS) properties due to high
atencies generated [20]. This is mainly due to the long path that large data flows must follow. These devices often need to take
ction based on the analysis results. In this scenario, the connection is not only the path to the cloud but also the path back to the
evice. This situation becomes even more complicated when the IoT application requires real-time analytical capabilities, especially
hen handling critical data such as emergency response, health monitoring, or smart assistants [21]. Besides these challenges,

loud-based analysis poses other problems, such as high energy consumption, privacy, and reliability issues [22].
In recent years, the emergence of edge computing has presented a solution to the issues caused by cloud computing [8]. Edge

omputing involves bringing data processing and storage closer to the point of data generation [23]. This approach has several
enefits, such as reducing latency, improving security, and reducing bandwidth costs [24]. By processing and storing data closer to
he source, edge computing reduces the amount of data that must be transmitted across the network, resulting in faster response
imes and better performance. Moreover, edge computing enhances security by keeping sensitive data closer to the source, reducing
he risk of data breaches [25]. Lastly, edge computing reduces bandwidth costs by reducing the data transmitted over the network,
esulting in lower business expenses.

Energy efficiency is a significant challenge that needs to be addressed in the IoT, as stated in [26]. Various solutions are proposed
o tackle this problem, from energy-efficient hardware and software solutions to energy harvesting through renewable sources
uch as solar energy. Solar panel energy harvesting in wireless devices enables perpetual operation, creating a sustainable and
aintenance-free IoT while eliminating battery switching, as mentioned in [27]. However, managing the energy intake and usage

f energy-restrained IoT nodes can be difficult, especially when the energy harvesting is inherently unpredictable. IoT devices need
ccurate solar energy predictions to plan energy in volatile weather conditions. According to [28,29], these predictions must consider
eather forecasts. With the availability of ML methods and computational power, it is possible to improve the accuracy of solar
nergy intake predictions. Although ML has been used in the renewable power sector for this purpose, as reported in [30], it has
eceived less attention in the context of IoT nodes, which require medium-term solar predictions to plan energy.

To resolve the issue of limited energy in IoT nodes, this research proposes a methodology that leverages ML to manage and
alance available energy. The potential impact of this model is considerable, particularly in terms of energy management and
perational efficiency. IoT devices equipped with this model can continuously monitor and respond to environmental changes,
tilising renewable energy sources such as solar power more effectively. This capability not only ensures uninterrupted operation
ut also significantly reduces dependence on traditional power sources. It also minimises the need for manual maintenance and
echarging during periods when solar power is less available. This reduction in hands-on maintenance not only lowers direct
abour costs but also extends the lifespan of the devices, leading to substantial long-term savings in operational expenses. The
ain contributions of the study are as follows: (a) proposing a set of ML models to predict battery levels on IoT nodes, (b) defining

nd developing necessary tools to retrieve weather forecasting, (c) introducing an edge computing architecture to deploy and run
he ML models, and (d) real data collected from IoT nodes installed in farmers’ fields has been utilised.

The paper is organised into several sections. Related works and main concepts are presented in Section 2. The methodology
pplied in this study, which includes detailed descriptions of the data and models used to achieve the objectives, is detailed in
ection 3. Experiments and results are presented and discussed in Section 4. Finally, Section 5 summarises the main achievements
nd highlights future work.

. Background and state of the art

.1. Related concepts

There has been a lot of research interest in IoT devices in recent years due to their applications in digital agriculture, mobile
ealth, or environmental monitoring [4,8]. However, the energy limitations and the need for frequent recharging remain obstacles
o the widespread adoption of IoT devices [31]. To overcome this issue, researchers have proposed harvesting energy from ambient
ources, such as light, motion, and electromagnetic waves [32,33]. Solar energy is the most efficient among these sources due to its
biquitous presence and high energy density.

To harvest energy from ambient sources, algorithms are required that can manage the harvested energy efficiently [34,35].
hese algorithms predict future energy availability to inform decisions on energy consumption. Thus, developing models that can
ccurately predict future energy availability is critical. Several approaches have been proposed to forecast the future availability of
olar energy [34,36]. Among the various methods for developing these algorithms, notable ones include the Exponentially Weighted
oving Average (EWMA) and those employing ML techniques [37,38]

EWMA [34] uses past observations to predict the energy for a finite set of intervals. EWMA performs poorly when the weather
onditions frequently change, such as when there are alternating sunny and cloudy days. To overcome this limitation, the EWMA [36]
ntroduces a weather factor that indicates the change in weather compared to the previous days. Another commonly used algorithm
s Profile-energy (Pro-energy) [39], which uses a pool of stored energy profiles to predict future energy. Pro-energy first finds the
ost similar profile and uses it to predict the energy.

Profile-based approaches, such as EWMA, exhibit high errors when they lack a stored profile for a specific weather condition. To
ddress this limitation, ML-based prediction models have been proposed in recent times [37,38]. For instance, the Neural Network
NN) employed in [37] incorporates various environmental parameters, including wind speed, temperature, and pressure, to forecast
2

uture solar energy. In contrast, the study presented in [38] utilises a Reinforcement Learning-based (RL) algorithm for predicting
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future energy levels amid diverse weather conditions. These ML approaches have been shown to outperform conventional models
in terms of accuracy. However, they come with a high computational cost that may not be suitable for low-power IoT devices.
Additionally, previous approaches usually train energy prediction models for a single location, and their accuracy in locations with
different climates is not verified.

In data science and Edge Computing, a trend can be observed towards implementing continuous learning systems that allow
he adaptation and constant improvement of the models used for decision-making. In this sense, the framework proposed in the
rticle mentioned above [40] offers a complete methodology that includes from the implementation of ML models to the validation
nd monitoring of their performance. This approach can be particularly beneficial for predicting battery levels in edge computing
odels, as it allows for enhanced efficiency and accuracy in battery monitoring with the increasing amount of data collected and
rocessed. In addition, continuous data cleaning and feature development can help identify patterns and trends that might otherwise
o unnoticed.

.2. Related works

In this section, the analysis focuses on research works utilising ML models to enhance the energy performance of IoT nodes,
dentifying several approaches akin to the proposed methodology. All selected research works depend on batteries to power IoT
evices.

• In [41], the authors demonstrate a prototype that uses ML algorithms to forecast solar energy allocation for commercial sensor
nodes. The k-Nearest Neighbours (k-NN) algorithm exhibits higher accuracy fluctuation than other algorithms tested.

• The research described in [42] employs a ML model that utilises the Principal Component Analysis (PCA)-based Random Forest
(RF) regression algorithm to forecast the battery life of IoT devices. The accuracy of the model was enhanced by applying
various pre-processing techniques, such as normalisation, transformation, and dimensionality reduction.

• In their study, Alzahrani et al. [43] explore the possibility of enhancing the efficiency of solar energy systems by applying ML
techniques to environmental (historical data and weather forecasts) data for predicting future energy availability.

• Authors in [44] created a hybrid Long Short-Term Memory (LSTM) neural network-based battery prediction method to provide
accurate information on the battery’s state.

• [45] analyses weather forecast, charge and usage battery to see if there is any correlation between the behaviour of the nodes
batteries, how the solar energy charges them, and how they use that power. After the behaviour is analysed, the goal is to see
if ML can be deployed to predict the future behaviour of batteries.

• The authors of the article [46] suggest a novel interface that can transform non-energy-aware IoT devices into energy-aware
ones. The interface employs ARIMA-based short-term energy forecasting and was tested using the OnePlanet sensor box. The
authors’ experiments showed that the proposed solution’s dynamically optimised transmission rate outperformed the constant
transmission rate-based solution.

• The researchers in [47] have proposed a new hierarchical ML framework capable of predicting solar energy harvest under
different weather and environmental conditions. This approach allows for accurate predictions based on the time of the day
while accounting for potential weather changes.

• Stricker et al. proposed a RF-based energy predictor for indoor energy harvesting systems, as described in [48]. The authors
introduced an on-device online learning method to maintain high accuracy while reducing resource requirements.

• [49] presents three RL-based methods for addressing user access control and battery prediction challenges in a multiuser
energy harvesting-based communication system. These methods, utilising LSTM-Deep Qlearning network (DQN) and deep
LSTM algorithms, optimise scheduling, battery state prediction, and joint long-term sum rate and battery prediction.

• [50] utilises a dataset from a real-time IoT network at six beach locations to predict sensor battery life using a DNN-based
model. The proposed model outperforms other Ml models by 12%, employing blockchain for backend storage to ensure tamper-
proof data, presenting potential applications in fields such as supply chain management, while acknowledging scalability and
transaction processing delays as unresolved challenges for future research.

In order to compare the formerly reviewed works, Table 1 has a comparison between the detailed works. The following features
o characterise each one have been proposed:

• ML algorithms: used to predict battery usage.
• Dataset: with the variables used in the model.
• Metrics: used to evaluate the ML models.
• Architecture: shows if the work defines an IoT architecture to manage the proposed harvesting solution. Scale: Yes/No.
• Harvesting energy: reveals whether a system that captures ambient energy is used to harness it. Scale: Yes/No.
• Domain: implies the use cases selected where the research work is applied.

Predicting battery levels is a critical challenge in the era of mobile devices. ML provides powerful tools to address this issue.
mong the most commonly used ML algorithms for battery level prediction, supervised regression techniques such as Regression
ransformer (RT), Support Vector Regression (SVR), Kernel Ridge Regression (KRR), or Dynamic treatment regime (DTR) stand out
fter analysing all the works. Time series analysis methods, including ARIMA and RNNs, are also popular choices. Additionally,
nsemble methods like RF and XGBoost can combine the strengths of multiple algorithms to improve prediction accuracy by
3
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Table 1
Extracted features from selected papers.

Work
reference

ML algorithm Dataset Metrics Architecture Harvesting
energy

Domain

[41] KNN, SVM, ANN
and RT

Energy data (battery voltage, solar charge
current, . . . ), weather data (forecast,
temperature, wind, humidity, rain, . . . ) and
sun position (zenith and azimuth)

RMSE ✓ ✓ N/A

[42] LR, RF and
XGBoost

Battery life, water and waves conditions MAE, RMSE and R2 ✗ ✗ Environ.

[43] KNN, SVM and
ANN

Historical and weather forecast, photovoltaic
data, sun position and battery data

✗ ✗ ✓ Environ.

[44] hybrid
LSTM-PCA

Temperature and battery life RMSE and MAE ✗ ✗ Environ.

[45] LR, SVR, KRR,
KNN, DTR, MLP

Weather forecast, charging of the battery
and battery usage

Confidence Scores ✗ ✗ Environ.

[51] ELM-based Weather forecast, charging of the battery
and battery usage

RMSE and MAE ✗ ✗ Environ.

[46] ARIMA Solar irradiance and power sensor RMSE ✗ ✓ Environ.
[47] NN Solar irradiation and solar energy MAE ✗ ✓ Environ.
[48] RF Energy usage MADPE ✗ ✓ N/A
[49] LSTM Energy usage Own ✗ ✓ N/A
[50] DNN Water temp., turbidity, transducer depth,

period and height of wave and energy usage
MAE, MSE, RMSE, TVS ✗ ✓ Smart cities

Our LSTM and GRU Weather forecast and energy consump. MAE ✓ ✓ Agriculture

accounting for complex interactions between different variables. In this kind of scenario, supervised classification algorithms such
as Support Vector Machine (SVM), Linear Regression (LR), Extreme Learning Machine (ELM), and k-Nearest Neighbour (kNN) are
also used to predict energy. Finally, dimensionality reduction using PCA is also applied to these types of problems. The created
models’ performance evaluation metrics are Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), or R squared (R2).

Most works that create models for battery level prediction use meteorological data such as temperature, wind, humidity,
ain, or solar irradiation. Some studies also use meteorological prediction, as seen in [43,45,51]. In most research works, energy
arvesting techniques are used, mainly solar. In addition, two works, [41,43], use the sun’s position. Out of all the analysed works,
nly [41,46,47], and our study modify their behaviour based on the energy prediction obtained.

This research work introduces a new ML approach that accurately predicts solar energy availability. LSTM and Gated Recurrent
nits (GRU) models are proposed that can adapt to seasonal and environmental changes. Experiments were conducted using real
attery data and weather forecasts to demonstrate the approach’s effectiveness when used in an energy management algorithm.
eal datasets from the agriculture field were used; the ultimate beneficiaries of this solution are farmers, who can achieve more
obust monitoring in terms of energy, resulting in direct benefits for their field practices.

. Methodology

The proposed research work is focused on accurately predicting IoT devices’ battery levels through ML algorithms informed
y meteorological variables. The predictive model is designed to adjust the sampling rate of the nodes, and these adjustments are
mplemented on the IoT platform, which communicates back with the devices through the Gateway using the downlink channel [52].

In a previous project that was part of a study on smart farming, IoT nodes were developed and deployed to monitor
ineyards across various locations in the Castellón province of Spain [9]. These nodes, known as SEnviro, were designed to collect
nvironmental sensor data such as temperature, air humidity, soil moisture, atmospheric pressure, rain, and wind speed/direction.
owered by solar panels, the nodes were energy-autonomous [53]. The battery levels of the nodes were monitored and recorded.
he aim was to detect vineyard diseases such as Black rot, Botrytis, Powdery mildew, or Downy mildew, based on meteorological
onditions [54]. Sensor data was collected from April 1, 2018, to October 31, 2018, and the data made publicly available on the
enodo data repository [55].

The work follows the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology proposed by Chapman [56].
his methodology is widely recognised in data science and provides a well-defined framework to ensure a systematic approach
t every stage of the data mining process. The process is divided into six steps: business understanding, data understanding, data
reparation, modelling, evaluation, and deployment.

A crucial initial step is defining the study’s primary objective within the business context. The goal is to utilise data acquired by
oT nodes in vineyard plots, complemented with third-party services data that provides the daily number of sunlight minutes for a
pecific geolocation. Regular analysis and visualisation of this data are essential to ensuring correct interpretation.

Moving on to the data preparation stage, the data is treated to be ready for the modelling phase. Tasks in this stage include
leaning and processing the data for subsequent use in modelling. A key task is normalising and sequencing data from various
ources, preparing it as input for the prediction model. The data are then divided into different subsets depending on the type
4

f model to be applied. The modelling and evaluation stages involve creating models through training and subsequent metrics
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Fig. 1. System Design in Edge Computing.

validation. These stages are conducted offline. Finally, the deployment stage involves implementing the model on an IoT gateway
for inference to obtain predictions.

Inference is performed using real-time data. After obtaining predictions from the data, it is essential to make further adjustments.
This process involves selecting a suitable sampling rate based on the gathered prediction data and issuing appropriate commands
to the nodes from the IoT gateway. The system is designed to be part of a node in Edge Computing, which includes the components
shown in Fig. 1. Each component’s functionality, as identified by its figure number (Fig. 1), is explained:

1. Data collection/preparation (num. 1): The system utilises two primary sources of data: IoT devices and a third-party service.
These data are gathered to generate historical records that include meteorological information, such as temperature, air and
soil humidity, precipitation, wind speed, barometric pressure, and battery level. Additionally, data from third-party services
are used to collect information on the number of minutes of sunlight per day for a specific geolocation.

2. Data modelling (num. 2): During this stage, the focus is on understanding the data, preparing it for analysis and modelling,
and evaluating the results. This stage is conducted offline and is iterative. The data from previous steps is analysed and
integrated to form different sets, which will be used to generate ML models. Various algorithms, such as GRU and LSTM will
be used to create different scenarios for predicting battery performance.

3. Model deployment (num. 3): This block contains an instance of a ML model that has been trained. Once implemented,
the model can handle incoming data and generate predictions for battery levels. These predictions are based on data from
forecast meteorological variables and historical data. The edge computing layer includes an IoT Gateway equipped with
advanced computational capabilities. This device is connected to various nodes deployed in the field through low-power and
wide-area networks. This network is used to receive new real-time data, perform inference, and reconfigure the nodes with
different settings. Consequently, this setup allows for real-time adjustments to the sampling frequency of the IoT nodes based
on the model predictions.

The current research centres on developing and evaluating ML models (num. 1 and 2) for accurately predicting IoT device
battery levels based on meteorological variables. Notably, the deployment of these models on hardware infrastructure (num. 3) is
intentionally excluded as it is considered less research-intensive compared to the intricate modelling processes. The decision to defer
model deployment to future work underscores the primary focus on modelling intricacies, while acknowledging the importance of
seamlessly integrating the models into the operational IoT framework in subsequent research and deployments.

In summary, the system is created to use meteorological variables through a ML model. This model assists in accurately predicting
the battery levels of IoT devices, allowing for careful adjustment of data sampling rate, which in turn leads to better energy
management. Our work focuses on stages 1 and 2, which involve generating the ML models and require in-depth research.
5
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Table 2
Results of the normality test (Lilliefors test).
Variable Lilliefors statistic Lilliefors 𝑝-value

Barometric Pressure 0.026 0.001
Battery 0.119 0.001
Humidity 0.060 0.001
Precipitation 0.506 0.001
Soil Humidity 0.357 0.001
Temperature 0.052 0.001
Wind Speed 0.223 0.001
Day Length 0.125 0.001

Table 3
Example of data at the end of the preparation process.
Barometric
pressure

Battery (%) Humidity (%) Temperature (◦C) Wind speed (m/s) Day length (min) Hour

987.628 87.636 49.686 23.712 2.412 846.0 15
990.870 86.220 46.395 21.543 2.410 846.0 18
991.743 77.947 55.387 15.701 0.535 846.0 21
991.772 69.660 61.112 12.890 0.160 848.0 0
991.103 61.120 65.922 12.018 0.141 848.0 3
991.265 51.054 65.933 13.695 0.267 848.0 6
991.297 63.023 38.357 28.445 2.544 848.0 9

3.1. Data preparation

The dataset used in this study was collected by Trilles et al. [57]. This dataset covers the time period from April 1, 2018, to
ctober 31, 2018, and was gathered through a network of IoT nodes placed in different outdoor environments, including four
odes in vineyard plots. These IoT nodes continuously monitor environmental variables such as temperature, air humidity, soil
oisture, atmospheric pressure, rainfall, and wind speed/direction. Opting for these variables, instead of solely focusing on solar

adiation data, was a strategic decision influenced by the high costs associated with solar irradiation sensors. While these sensors
rovide precise measurements, their expense can be prohibitive, especially when deploying a large number of nodes. Each of the
even nodes is uniquely identified, ensuring that the data collected can be traced back to the specific node. The nodes operate
n a 10-minute monitoring interval, generating a wealth of raw data, which may contain invalid or missing entries. Therefore, a
obust data preparation process is necessary before engaging in modelling activities to address and mitigate any discrepancies in
he dataset. The dataset has been enriched by adding a new variable called ‘‘day length’’. This variable represents the duration of
unlight in minutes for each day, and it has been obtained from the Sunrise Sunset API [58]. Its inclusion is crucial for increasing
he model’s adaptability across different geographical regions and providing valuable insights. Given the potential impact of solar
adiation on the battery charge of IoT nodes, this variable is essential and offers significant information to improve the model’s
nderstanding and predictions.

To determine whether the data is normally distributed or not, the Lilliefors test [59] is performed on each variable. Table 2
hows that the 𝑝-values of all variables are significantly lower than the threshold value of 𝛼 = 0.05. Therefore, it is appropriate to

reject the null hypothesis and conclude that the variables do not adhere to a normal distribution.
Afterwards, the analysis focuses on the relationships between variables. Nonparametric methods are particularly useful for

datasets that have a large number of samples which do not follow a normal distribution. These methods are not constrained by
predefined data distributions and are robust against such variations [60]. To investigate the complex interplay between variables, a
correlation matrix is calculated using Spearman’s correlation coefficient. This coefficient is effective at identifying both linear and
non-linear relationships, without relying on the assumption of data normality. Fig. 2 presents a heatmap that visually displays the
correlation results among the variables.

After completing the process of data cleaning, the next step is to sequence the historical data for model training. Sequencing
involves arranging the data points in chronological order to help the model identify patterns over time. The first step is to align
the data points based on their timestamps, ensuring a consistent interval between each point. Once the data points are aligned,
data windows are created. These windows contain a specific number of sequential points that serve as input features for the model.
These windows allow the model to consider not only the current state of the variables but also their temporal progression, which
is critical for capturing temporal dynamics. After sequencing the data, the original timestamps associated with each observation
are removed. However, to maintain temporal information, such as the hour of the day, this data is encoded and introduced as a
categorical variable. This helps the model to retain its temporal context, which is essential for predicting patterns influenced by the
time of day. By incorporating the hour of the day, the model benefits from seven distinct features during training. Table 3 provides
a visual representation of the data inputs before the sequencing process.

Before delving into the architecture and functionality of the model, it is important to clarify how forecast data will be used. Once
the model is trained and deployed, it uses the most recent 120 samples of cleaned historical data, including battery levels, to predict
6

the battery level in the forthcoming 1-hour interval, relative to the latest data point. To obtain the future battery values, the model
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Fig. 2. Heatmap representation of variable correlations.

Table 4
Example of data sourced from OpenWeather.
Date Humidity (%) Temperat. (◦ C) Wind speed (m/s) Day length (min)

2023-05-30 12:00:00 57 21.10 4.43 887
2023-05-30 15:00:00 57 21.62 4.04 887
2023-05-30 18:00:00 61 20.97 2.35 887
2023-05-30 21:00:00 74 18.24 1.83 887
... ... ... ... ...
2023-06-04 03:00:00 80 17.41 1.29 887
2023-06-04 06:00:00 79 17.94 1.44 887
2023-06-04 09:00:00 72 19.47 0.86 887

integrates forecast data from the OpenWeather API. This service provides a series of 40 predictions for weather conditions over a
5-day span, spaced at 3-hour intervals. The choice of a 120-sample window for data sequencing covers a full 1-hour interval over a
5-day cycle. This duration is specifically selected to align with the OpenWeather API’s 5-day forecast. The forecasted weather data
must be aligned with a 1-hour resolution, ensuring consistency with the historical data. An excerpt from the downloaded dataset,
before interpolation, is shown in Table 4.

3.2. Data normalisation

Data normalisation is an essential preprocessing step that ensures uniformity by bringing all data to a consistent scale. Among
the different normalisation methods, min–max normalisation is widely used, which transforms feature values to a standardised range
of 0 to 1. The min–max scaling formula is given by:

𝑋_𝑠𝑡𝑑 =
𝑋 −𝑋.min(𝑎𝑥𝑖𝑠 = 0)

𝑋.max(𝑎𝑥𝑖𝑠 = 0) −𝑋.min(𝑎𝑥𝑖𝑠 = 0)

𝑋_𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑋_𝑠𝑡𝑑 × (max − min) + min

In this equation, the variable 𝑋 stands for the original feature, and 𝑋.min(𝑎𝑥𝑖𝑠 = 0) represents the feature’s minimum value,
while 𝑋.max(𝑎𝑥𝑖𝑠 = 0) represents the feature’s maximum value. The parameters max and min denote the maximum and minimum
7
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Fig. 3. Simple LSTM model diagram.

Fig. 4. Double LSTM Model Architecture.

values of the scaling range, which are set to default values of 1 and 0, respectively. The feature normalised to a range of 0 to 1 is
denoted as 𝑋_𝑠𝑡𝑑, while the feature normalised to a specified range that is determined by min and max is represented as 𝑋_𝑠𝑐𝑎𝑙𝑒𝑑.

Using normalisation to transform data is a useful technique because it restricts the data to a specific range, making it less
vulnerable to outliers than standardisation. This method is especially helpful when ML algorithms require input features to be
within the same range, preventing any one feature from dominating the learning process.

3.3. Data modelling

This phase is critically important as it focuses on developing models to predict battery usage. The main goal is to enhance the
data transmission rate between the node and the gateway, which is key to achieving better energy efficiency and extending battery
life. The selection of meteorological variables, as shown by the correlation analysis in Fig. 2, is based on the acknowledgement that
weather conditions significantly affect the battery level, our target variable. This decision is informed by the understanding that
climatic factors are crucial in affecting the performance of IoT nodes, especially regarding their energy production and consumption.

In predictive modelling, selecting the right model architecture is crucial for generating precise and dependable forecasts. When
all four models are trained using the same datasets, it establishes a consistent basis for evaluating them. This makes it easier to
compare their strengths and weaknesses in the specific context in which they are used. Before diving into the specifics of each
model’s architecture, it is important to understand the overall prediction process. To make predictions, the model uses a portion of
historical data that is aligned with its training sequence length of 120, taken from the test dataset. The model predicts one step into
the future at a time using a multi-step forecasting approach. After each prediction, the input data is updated to reflect the latest
predicted value. To start the process, the most recent 120 data points from the dataset are used as the initial input sequence. Once
these data are normalised and arranged, they are fed into the model for prediction. The model’s output represents the predicted
battery value and is then converted back to its original scale and combined with the weather forecast data obtained from the
OpenWeather API for the next prediction step. This cycle is repeated until a complete set of 120 future predictions is generated,
mirroring the time span of 5 days covered by the OpenWeather forecasts.

3.3.1. LSTM
The initial model employs the LSTM algorithm and comprises a layer with 50 units, followed by a dense layer. The LSTM layer

processes input data of shape 120 (time steps) by seven features, as outlined in Table 3. The model concludes with a dense layer
activated by a sigmoid function, ensuring output values within the range of 0 to 1. Notably, this model encompasses 11,651 trainable
parameters, distributed as 11,600 in the LSTM layer and 51 in the dense layer. The architectural representation is visualised in Fig. 3.

The second model utilises a two-layer LSTM architecture. Each layer consists of 50 units and is followed by a dense layer. In this
configuration, the first LSTM layer processes input data of shape 120 (time steps) with seven features, which are the same as those
used in the previous model. It generates a complete sequence of outputs, which is then input to the subsequent LSTM layer. The
model concludes with a dense layer activated by a sigmoid function, ensuring output values within the range of 0 to 1. Notably,
8

this model contains 31,851 trainable parameters, with 11,600 in the first LSTM layer and 20,200 in the second (see Fig. 4).
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Fig. 5. Single Layer GRU Model Architecture.

Fig. 6. Double Layer GRU Model Architecture.

3.3.2. GRU
Two models that use the GRU architecture are described in this paper. The first model consists of a single GRU layer with 50

units, designed to handle input data of dimensions 120 by seven specified features. The architecture of the model is shown in Fig. 5
and comprises a total of 8,901 trainable parameters, with 8,850 of these in the GRU layer and the remaining 51 in the subsequent
dense layer.

The second model that uses GRU has a dual-layer architecture, which includes two GRU layers. Each layer has 50 units and is
followed by a dense layer. The first GRU layer produces a complete sequence of outputs. It is important to note that this model has
24,201 trainable parameters, which is a reduction from the 31,851 parameters in the double LSTM model. A visual representation
of the architecture is shown in Fig. 6.

3.4. Evaluation metrics

It is crucial to define key metrics before beginning model training. These metrics will serve as indicators of the model’s predictive
performance within the specific problem domain. For time-series models like LSTM and GRU, the focus is on assessing the forecast
accuracy of the model in comparison to the actual data. To evaluate the current research problem, the Mean Absolute Error (MAE)
is chosen as the metric. This metric calculates the average error and maintains the same scale as the battery values, which range
from 0 to 100. MAE treats positive and negative errors equally, making it a well-suited option. Adopting MAE as the evaluation
metric enables an effective comparison between different models to identify the model that exhibits the lowest MAE. A lower MAE
indicates more precise forecasts of battery levels. To translate the MAE into accuracy, the percentage accuracy is calculated using
the following formula:

Accuracy (%) =
(

1 − MAE
Range of Battery Levels

)

× 100 (1)

In this context, the Range of Battery Levels refers to the difference between the maximum and minimum levels, which in the case
f a scale from 0 to 100 simplifies to:

Accuracy (%) = (1 − MAE∕100) × 100 (2)

This calculation generates a percentage that reflects how close the model’s predictions are to the actual values. Higher percentages
ndicate greater accuracy.

. Results

After training the models, a test prediction is executed using the test dataset. A subset of historical data from the test set,
quivalent to a training sequence length of 120, is selected to serve as the model input. The model then begins forecasting for the
ubsequent 120 time steps, using a multi-step prediction method. This involves predicting the next step and updating the input data
ith the most recently predicted value.

The process begins with the first 120 entries from the dataset, forming the input sequence to estimate the initial battery level.
hese data are then normalised, and sequences are constructed to feed into the model for generating predictions. After obtaining
9
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Fig. 7. Future value predictions using a simple LSTM.

Fig. 8. MAE across the entire dataset using a simple LSTM.

the predicted battery value, it is converted back to its original scale. This predicted value is then integrated with upcoming weather
forecast data to prepare the input for the next prediction step.

This iterative approach continues until the model completes all 120 future predictions. The final step is to visualise the predictions
alongside the historical data and actual observations. Using Scenario 1 as an illustrative example (see Section 4.1.1), a graph (Fig. 7)
is generated to illustrate the trends in battery level over time. The graph distinguishes between historical data (depicted in blue),
model forecasts (depicted in orange), and real observations (depicted in green).

In this scenario, the MAE metric registers at 4.24, this value indicates an average error of 4.24% relative to the full range.
Attaining such a metric across 120 predictions underscores noteworthy model accuracy. Nonetheless, it is crucial to acknowledge
that any error persists with each subsequent prediction step, potentially magnifying the overall error as the predictions unfold.
Additionally, it is important to note that this MAE value reflects performance within a specific subset of the data. A comprehensive
evaluation across the entire test dataset is imperative to fully comprehend the model’s effectiveness in diverse conditions and to
identify any consistent error patterns that may emerge. Fig. 8 illustrates the fluctuation of this metric across different segments of
the dataset.

4.1. Scenarios

In order to fully evaluate the effectiveness and flexibility of our predictive model, we created a range of different scenarios
by combining various datasets. Each scenario has its own specific configuration, featuring different combinations of datasets from
different IoT nodes. By merging these diverse datasets, we are able to test the model’s ability to adapt to different conditions,
including changes in weather, location, and battery types. These scenarios represent a broad range of real-world situations, providing
a solid foundation for testing the model’s predictive capabilities. This approach not only enhances the model’s reliability, but also
gives us a better understanding of its strengths and limitations in different circumstances.

An analysis was carried out to determine how much the values of the target variable varied across datasets generated by
individual nodes. The insights gained from this examination could help us understand how differences in dataset values may impact
the future performance of a model trained on data that exhibits significant differences. As mentioned in Section 3.1, the Lilliefors
test results suggested that the variables did not follow a normal distribution, making the assumption of normality and homogeneity
of variance in the ANOVA test inappropriate. Therefore, the Kruskal–Wallis test, which is a non-parametric alternative to ANOVA
designed for datasets that are not presumed to be normally distributed, is considered more appropriate. This test compares medians
across groups and posits the null hypothesis that all group medians are equal, while the alternative hypothesis suggests that at least
10
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Table 5
Simplified comparison of dataset pairs using the Kruskal–Wallis test.
Dataset A Dataset B Statistic 𝑝-value Differences

Dataset 1 Dataset 3 1.910 0.167 Not significant
Dataset 0 Dataset 6 5.818 0.016 Significant
Dataset 3 Dataset 4 49.083 0.000 Significant
Dataset 0 Dataset 2 85.921 0.000 Significant
Dataset 3 Dataset 6 105.278 0.000 Significant

Fig. 9. Comparison of the temporal extent of datasets.

one group median differs. Table 5 concentrates on instances with non-significant differences. Additionally, the identifiers for each
node will be replaced with dataset indices to facilitate more straightforward reference.

Comparing the time span of each dataset is crucial, as it informs decisions related to the selection of datasets for model training
and testing. Fig. 9 provides a visual comparison of the temporal extents of the datasets.

Table 5 shows that Dataset 5 should potentially be excluded, primarily due to its marked discrepancies compared to others.
Additionally, the apparent strong correlation between Datasets 1 and 3 prompts an initial recommendation to use Dataset 1 for
training and Dataset 3 for testing purposes. It should be emphasised that this is an initial recommendation, and further confirmation
is necessary during the upcoming modelling phase.

Building upon the analysis of dataset variability and the Kruskal–Wallis test results, the next step involves assessing the temporal
duration of each dataset. This assessment is critical for guiding the decision-making process in the modelling phase, particularly in
choosing which datasets are best suited for training and testing. The visual representation in Fig. 9 provides a comparative view of
each dataset’s duration, offering insights into their respective coverage periods. This analysis, coupled with the simplified dataset
comparisons in Table 5, lays the groundwork for devising various modelling scenarios. These scenarios, each with a distinct approach
to dataset utilisation, aim to explore and validate the model’s predictive capabilities under different conditions.

The ensuing sections delve into three distinct scenarios employing the two algorithms (LSTM and GRU) outlined earlier: training
with separate datasets, employing multiple datasets for training, and choosing datasets with minor variations. These scenarios are
crafted to assess the model’s effectiveness and precision under varied conditions.

4.1.1. Scenario 1: Separate training and test datasets
In this first scenario, the model is trained using dataset 1, keeping 20% of the data for validation. The testing is done using

dataset 0. This method checks the model’s capability when trained and tested on different datasets. Fig. 10 and Table 6 show the
results for this model.

The results in Fig. 10 and Table 6 suggest that the model’s ability to adapt to data not seen during the training phase can be
gauged effectively. The low MAE scores suggest that the model, trained on Dataset 1, has demonstrated commendable performance
on Dataset 0. This is a favourable indicator of the model’s potential effectiveness in real-world settings where it would be exposed
to diverse data variations. The best average accuracy in this scenario is achieved by the double LSTM model, with an accuracy of
up to 94.09%.

4.1.2. Scenario 2: Training with multiple datasets
In the second scenario, datasets 0 and 4 are used for training, while dataset 1 is used for testing. The goal is to improve prediction

accuracy. However, the MAE values increased for all models compared to Scenario 1. Refer to Table 6 and Fig. 11 for results.
The intention behind using multiple datasets for training in the second scenario was to expose the model to a diverse range of

data, aiming to enhance its predictive accuracy. However, the increase in MAE values, as documented in Fig. 11, indicates that a
greater quantity of data does not necessarily equate to improved model performance. This suggests that the added data may bring
additional complexity or elements of inconsistency that challenge the model’s predictive capabilities. The best average accuracy in
11

this scenario is achieved by the double LSTM model, with an accuracy of up to 91.14%.
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Fig. 10. MAE comparison between LSTM and GRU models.

Fig. 11. MAE comparison using datasets 0 and 4 for training and dataset 1 for testing.

Fig. 12. MAE comparison using dataset 1 for training and dataset 3 for testing.

4.1.3. Scenario 3: Datasets with small variations
In this scenario, datasets with small changes in battery levels are chosen. Training is done using dataset 1, and dataset 3 is used

for testing. The MAE values increased across all models compared to previous scenarios. Table 6 and Fig. 12 summarise the results.
The selection of datasets with slight variations in battery levels was presumed to simplify the model’s task, potentially leading

to improved accuracy. Contrary to expectations, the observed increase in MAE values across all models, as reported in Table 6 and
illustrated in Fig. 12. It appears that even slight changes in the battery data have a substantial impact on the model’s ability to
predict accurately. This reaction highlights the model’s responsiveness to specific data attributes and emphasises the critical role of
selecting the most suitable datasets for training and validation to ensure optimal performance. The best average accuracy in this
scenario is achieved by the double LSTM model, with an accuracy of up to 85.36%.

4.2. Comparison

To offer a comprehensive perspective on the performance of each model across diverse scenarios, Table 6 has been compiled.
This table incorporates an efficiency index for each model, computed by dividing the average MAE by the total count of model
12
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Table 6
Model comparison in different scenarios.
Used datasets Model MAE min MAE max MAE avg (STD) MAE/Parameters

Dataset 1 (train)
Dataset 4 (test)

simple LSTM 4.37 12.31 6.73 (1.64) 5.77 × 10−4

double LSTM 4.04 11.41 5.91 (1.54) 1.86 × 10−4

simple GRU 15.21 29.08 18.08 (2.78) 2.03 × 10−3

double GRU 12.90 27.14 16.71 (2.79) 6.90 × 10−4

Dataset 0/4 (train)
Dataset 1 (test)

simple LSTM 6.47 24.65 9.78 (3.56) 8.39 × 10−4

double LSTM 5.60 22.61 8.86 (3.46) 2.78 × 10−4

simple GRU 10.52 25.16 17.91 (3.96) 2.01 × 10−3

double GRU 7.22 20.68 13.59 (3.65) 5.61 × 10−4

Dataset 1 (train)
Dataset 3 (test)

simple LSTM 10.62 30.28 15.27(6.25) 1.31 × 10−3

double LSTM 10.45 28.70 14.64 (5.85) 4.60 × 10−4

simple GRU 18.82 27.55 22.76 (3.27) 2.55 × 10−3

double GRU 19.02 34.12 24.30 (4.63) 1.00 × 10−3

parameters. This index functions as a gauge of performance efficiency, with lower values being desirable, indicating a reduced error
rate relative to the model’s complexity.

Across all scenarios, the Double LSTM model consistently outperformed other models, recording the lowest minimum, maximum,
nd average MAE across the board. It demonstrated superior performance, notably in terms of efficiency, as evidenced by the lowest
AE/Parameters index in the first two scenarios. While the Single LSTM model also achieved reasonable results, it fell short of the

fficiency benchmark set by its Double counterpart. The GRU models, both Single and Double, trailed behind the LSTM models in
erformance, potentially attributed to their fewer trainable parameters. These findings suggest that LSTM architectures, and the
ouble LSTM model in particular, may offer greater efficiency for predictive tasks, effectively balancing error rates.

. Discussion

The presented results underscore the robustness and adaptability of the ML models in predicting IoT device battery levels under
arious scenarios. Notably, the Double LSTM model consistently outperformed other models across different datasets, exhibiting
uperior accuracy and efficiency, surpassing both the simple LSTM and both GRU variants. Despite its higher parameter count of
1,851, the double LSTM model exhibits superior precision in predicting actual values as evidenced by the lowest MAE/Parameters
ndex observed in the initial scenarios. This finding aligns with the model’s architecture, which allows for capturing more intricate
emporal dependencies within the data. The Single LSTM model also demonstrated commendable performance, while both GRU
odels trailed slightly, potentially due to their reduced parameter count.

The success of the Double LSTM model in Scenario 1, where the model is trained on one dataset and tested on another, indicates
ts ability to generalise well to unseen data. This adaptability is a crucial attribute for real-world applications, where IoT devices may
ncounter diverse environmental conditions. In Scenario 2, where training involved multiple datasets, the increase in MAE values
uggests that a larger quantity of training data does not necessarily lead to improved model performance. This result prompts
deeper investigation into the complexities introduced by combining diverse datasets and their potential impact on predictive

ccuracy. Scenario 3, focusing on datasets with small variations, revealed unexpected challenges. The models struggled to maintain
ccuracy even when presented with subtle changes in battery levels. This sensitivity highlights the importance of careful dataset
uration and the need for models that can discern meaningful patterns amid nuanced variations.

The efficiency index, calculated by dividing the average MAE by the total count of model parameters, provides insights into the
rade-off between model complexity and performance. The lower values for the Double LSTM model indicate a more efficient use
f parameters in reducing prediction errors. This suggests that, in certain scenarios, a more complex model architecture may indeed
e beneficial for enhancing predictive capabilities.

.1. Limitations

One notable limitation lies in the variability across datasets, as evidenced by the Kruskal–Wallis test results. While efforts were
ade to select datasets that represent distinct conditions, the inherent diversity among IoT nodes may introduce challenges in

chieving a uniform model performance. Addressing this limitation may require further investigation into the impact of dataset
eterogeneity on predictive accuracy.

While the models showcased strong performance within the defined scenarios, the translation of these findings to real-
orld applications warrants careful consideration. Factors such as network connectivity, hardware constraints, and unforeseen
nvironmental anomalies could influence model efficacy in practical settings. Future work should involve field testing to validate
he models under authentic IoT deployment conditions.

The models’ performance is contingent on hyperparameter tuning, and the presented results are based on optimal configurations
etermined during experimentation. Sensitivity to hyperparameter changes may influence the models’ generalisation capabilities. A
ore exhaustive exploration of hyperparameter space could unveil additional nuances in model behaviour.
13
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6. Conclusion

In addressing the challenge of constrained energy resources in IoT nodes, this study introduced an innovative edge computing
rchitecture empowered by ML for the purpose of effective energy management. The potential ramifications of this proposed model
re extensive, particularly with regards to energy optimisation and operational efficiency. IoT devices integrated with this advanced
odel exhibit continuous monitoring and adaptive responses to environmental dynamics, thereby enhancing the utilisation of

enewable energy sources, such as solar power. This not only ensures uninterrupted device functionality but also substantially
iminishes reliance on conventional power grids. Moreover, the model’s capacity to minimise manual maintenance and recharging
equirements during periods of limited solar power availability contributes to significant operational benefits. The resultant reduction
n hands-on interventions not only lowers direct labour costs but also prolongs the operational lifespan of the devices, translating
nto substantial long-term savings.

The proposed predictive models, particularly the Double LSTM architecture, showcase promising results in forecasting battery
evels across diverse scenarios. The study highlights the importance of careful dataset selection, considering variations, and the
otential limitations associated with training on multiple datasets. The efficiency index, incorporating model complexity, indicates
hat the Double LSTM strikes an effective balance between accuracy and efficiency. The model achieves an outstanding accuracy rate
f up to 94.09% in the initial scenario, making it ideal for efficient energy resource management and guarding against operational
isruptions during periods of reduced solar activity.

The model’s predictive capability is due to its integration of meteorological data from the OpenWeather API, which can be used
o adjust the sampling rates of IoT nodes. To ensure adaptability to diverse daylight hour fluctuations, the model also considers
eographical location and seasonal variations. This approach enhances the model’s ability to generalise across different times and
ocations. Designed for deployment on an Edge Computing platform, the model is ideal for implementation in environments utilising
tar topology networks with gateway technologies for IoT communication.

Exploration into distributed deployment directly on nodes for real-time data processing and immediate response to battery level
redictions is suggested for future work. This approach allows for a comparative analysis between centralised and decentralised
odels, shedding light on efficiency, scalability, and potential trade-offs in prediction accuracy due to edge device computational

onstraints. Additionally, a distributed model could pave the way for federated learning systems, promoting collaborative learning
mong nodes to enhance prediction accuracy and generalisation without compromising data privacy and security.

Considering the model’s potential evolution, incorporating additional meteorological variables such as solar radiation or cloud
over could enhance prediction accuracy. An experiment investigating the impact of IoT device location on model accuracy is also
roposed, recognising that different regions may exhibit distinct weather patterns.
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