
IEEE ROBOTICS & AUTOMATION MAGAZINE MONTH 20242
This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

The Effective Reproducibility of Robotics Code Repositories

Run to the Source

By Enric Cervera

In recent years the robotics community has actively embraced
the open paradigm, and research articles are commonly
enriched with the inclusion of a source code repository of
software. However, the reproducibility of such code is not
straightforward, and it may become increasingly difficult
with the evolution of software. There is a need for providing
not only the source code but also an executable version with
all of the necessary library dependencies. A solution based on
software containers is presented in this article, with some
unique advantages. First, the executable package is automati-
cally generated from the last version of the source code; sec-
ond, it is archived in the same cloud service that hosts the
code repository; third, it integrates seamlessly with the devel-
opment workflow of the research code; finally, it does not
consume any local computing resources from the researcher.
The executable code can then be downloaded and run by
other users, with the only requirement being installing a spe-
cific software for running containers. This article presents
the complete workflow, which is then applied to some illus-
trative examples of source code repositories of articles pub-
lished at robotics conferences.

INTRODUCTION
Public source code repositories are becoming increasingly
available in association with the research articles published in
robotics conference proceedings and journals. During the last
decade, the open paradigm has gained popularity among the
robotics community with many successful stories of software

integration and development of complex systems. Most of
them are based on the Robotic Operating System (ROS) [1],
an open framework that has enabled a significant break-
through in sharing robotics software [2], [3].

According to the statistics collected in our review of the
IEEE Xplore digital library [4], nearly one fifth of the articles
published in the last edition of the IEEE International Confer-
ence on Robotics and Automation (ICRA) and the last volume
of IEEE Robotics and Automation Letters (RA-L) include a
code repository. Figure 1 depicts the percentage of articles pub-
lished in ICRA Proceedings and RA-L since 2019 that include
an open source code repository. In both plots the trend is posi-
tive, reaching almost 20% of the articles in 2022.

This trend is even more significant due to the fact that the
total number of published articles (in RA-L + ICRA Proceedings)
has increased from 1,622 to 2,020 articles in those years.

Not only are the source code repositories available; they are
also actively used by other researchers. In Figure 2 we analyze
the code repositories published in ICRA Proceedings and RA-L
between 2019 and 2022 based on their number of forks. A fork is
a copy of a repository by another user. Forks let researchers make
changes to a project without affecting the original repository.

As one would expect, older repositories have more forks
than recent ones. The percentage of repositories with more
forks increases progressively for past editions of the confer-
ence, whereas the number of not-forked repositories decreases.
These trends mean that the community members effectively
reuse the code repositories for their own research.

Despite the fact that the code is freely available, reproduc-
ing the results of a research article is not straightforward [5].
A source code repository must be compiled and linked to the

Digital Object Identifier 10.1109/MRA.2023.3336470
Date of current version: 26 December 2023

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0002-5386-8968

3MONTH 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

required libraries prior to execution. It may be dependent on
specific versions of such libraries that run on an outdated
operating system (OS) version. Running software that is just
a few years old may turn out to be problematic in a current
system, unless some kind of virtualization is used.

This problem has been widely recognized in the robotics
community [6], and cloud hosting of the software was pro-
posed for reproducing the research results of articles published
in IEEE Robotics & Automation Magazine [7]. This service is
a big step forward, but it demands some effort from research-
ers for adapting their software. In addition, it might not be
suited for interactive applications with a GUI.

To overcome these issues, we present a simple workflow
based on continuous integration and continuous delivery
(CI/CD) techniques [8] for producing an executable version of
a code repository that can be downloaded and run in a straight-
forward way. Moreover, the executable package is automati-
cally generated from the last version of the source code and
archived together with the code repository. Last but not least,
the proposed workflow runs silently in the cloud, and it does
not require the installation of any software by the researcher or
use any resources from the local computer.

The rest of the article is organized as follows. The repro-
ducibility problem is briefly presented in the next section.
The section “Building From the Source” describes the pro-
posed method for automatically building a reproducible
binary package of a source code repository, and the section
“Repositories of Articles” presents some practical examples
of repositories included in recently published articles. Final-
ly, the section “Conclusions” gives some final remarks and
possible extensions.

THE REPRODUCIBILITY PROBLEM
As pointed out previously, most published code cannot be
reproduced in a straightforward way [5]. Lack of documenta-
tion and rapid evolution of software components prevent the
reproducibility of published code.

During the review of code repositories investigated for
writing this article, we found that there was a great variability

in the quality of the documentation. In some repositories even
a simple README file was missing. Many of them included
some basic instructions but lacked the necessary details (such
as OS version and required libraries) for building the software
without hassle. Other repositories presented complete building
instructions and the versions of the libraries, but the building
process was time consuming. Sometimes the necessary librar-
ies were not available as binary packages, and they had to be
compiled, meaning that their dependencies had to have been
previously installed.

Overall, this is a recursive procedure that can become
frustrating if any of the dependencies is poorly documented
or causes a compilation error due to a change in the applica-
tion programming interface (API). Software containers can
provide an optimal solution for delivering a software package
along with all of its dependencies. We define optimality by the
number of commands in a script that are needed for download-
ing, installing, and running the source code repository. In our
examples shown in the section “Repositories of Articles,” a
single command is sufficient. By contrast, with the PyPI pack-
age manager, a script with eight commands is necessary in the
simplest example for creating the virtual environment, install-
ing the dependencies, and running the software.

Containers are runtime instances of images, which are pack-
ages of software that include all of the necessary elements to run
in a given environment. A workflow based on containers was
presented in [9], which allowed the definition of the software
dependencies for compiling and running a code repository.

Container technology is not widely used in robotics yet, and
building an image may depend on the availability of required
packages in online repositories.

Information for building an image in an automatic way is
included in very few repositories. This is typically a text file
named Dockerfile, which is a document that contains all
of the commands a user could call on the command line to
assemble an image [10].

However, this solution cannot ensure the building of the
software without errors in the future. For example, building
the image included in an article published at ICRA 2019 [11]
raises the error

2019
0

5

10(%
)

15

20

2020 2021 2022

RA-L
ICRA

FIGURE 1. Percentage of articles including a source code reposi-
tory published in RA-L and ICRA Proceedings since 2019 (articles
published in the journal and presented at the conference are not
counted twice; only the journal publication is taken into account).

0

25

50

75

100

(%
)

2022 2021

Forks = 0
Forks >= 1
Forks >= 10

2020 2019

FIGURE 2. Percentage of repositories with respect to their accumu-
lated number of forks since publication to present, for articles pub-
lished between 2019 and 2022 in ICRA Proceedings and RA-L.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE ROBOTICS & AUTOMATION MAGAZINE MONTH 20244

E: Unable to locate package libcudnn7
E: Version ‘2.7.8-1+cuda10.2’

for ‘libnccl2’ was not found
E: Version ‘2.7.8-1+cuda10.2’

for ‘libnccl-dev’ was not found

The image is based on Ubuntu 18.04, a long-term support
distribution supported until April 2023, but the package that
raises the error is not published in the Ubuntu repositories.
Instead, it is published in the Nvidia repositories, where only
versions 2.8.4 and newer are available [12].

The older a software becomes, the more likely it is to
miss necessary library versions in public repositories. It
is necessary to generate the executable package as soon
as the source code is updated and archive it (together with
its third-party dependencies) for public reuse to ensure
 reproducibility.

BUILDING FROM THE SOURCE
CI/CD services automatically compile and link a code reposi-
tory and then build the software into a deliverable package.
Their use in the robotics domain is gradually becoming more
popular, yet they are still underutilized when compared to
other fields of software development [8], [13].

In this article we propose a minimalistic CI/CD approach
for building and archiving a complete executable environment
(a software image) for a given source code repository, with the
following features:

 ■ It is automatically generated with each update of the code,
thus keeping the executable in sync with the source.

 ■ It is archived in the same cloud service as the code reposi-
tory (namely GitHub), not requiring any additional
account or service.

 ■ It does not interfere with the workflow of the researchers
in the development of their code and does not use any
local computing resources.
Our approach consists of two steps: first, writing a docu-

ment with the instructions for building a software image (the
section “From Source to Run”) and, second, defining a work-
flow for automatically executing the building instructions and
archiving the generated software image when the source code
repository is updated (the section “Building and Archiving
the Package”). After the software image has been generated,
it can be easily distributed; the section “Running the Code”
presents three illustrative examples, ranging from basic text-
only output to sophisticated GUIs with 3D simulation and
visualization. Finally, the section “Comparison With Other
Approaches” compares our approach with those of other
alternative package managers.

Although CI/CD workflows are routinely used in soft-
ware engineering and described in popular programmers’
websites, such as Medium and tech blogs, the presented
approach illustrates for the first time such a workflow with
detailed instructions for building reproducible repositories
of robotics software from those published in conferences
and journals.

FROM SOURCE TO RUN
The steps that are typically presented in the documentation of
a repository for building software are as follows:
1) choosing the operating system
2) installing the library dependencies
3) compiling the source code
4) defining a command for launching the software.

The level of detail and completeness of the information
determine the success of the execution. Even a perfectly
defined set of instructions may not be natively executable
because the OS of choice is different from the OS running in
the testing machine, requiring some type of virtualization. In
addition to this, machines might have different architectures
(arm versus x86).

The same steps are used for building a software image,
with the only difference that some specific keywords have to
be used, as shown in Algorithm 1.

We have forked the public repository https://github.com/
ros2/demos and created this Dockerfile in the root folder of
the repository.

The first line of the Dockerfile defines the base image—in
this case, a distribution of ROS. Lines 2 and 3 create a work-
space folder and copy the repository contents to it. The depen-
dencies are installed in lines 4–8. The repository is compiled
in lines 9–11. Finally, lines 12–14 are included for sourcing the
user workspace, and the last lines (15 and 16) define the com-
mand to be executed by default.

BUILDING AND ARCHIVING THE PACKAGE
The Dockerfile defines the steps for building the software,
but the set of orders for launching the building process is
given in a different configuration file written in YAML. The

 1 FROM ros:rolling
 2 RUN mkdir -p/ros2 _ ws/src
 3 COPY . /ros2 _ ws/src/.
 4 RUN . /opt/ros/$ROS _ DISTRO/setup.sh \
 5 && apt-get update && rosdep install -y \
 6 --from-paths ros2 _ ws/src \
 7 --ignore-src \
 8 && rm -rf /var/lib/apt/lists/*
 9 RUN . /opt/ros/$ROS _ DISTRO/setup.sh \
10 && cd /ros2 _ ws \
11 && colcon build
12 RUN sed --in-place --expression \
13 ‘$isource “/ros2 _ ws/install/setup.

bash”’ \
14 /ros _ entrypoint.sh
15 CMD [“ros2”, “launch”, “demo _

nodes _ cpp”, \
16 “talker _ listener.launch.py”]

ALGORITHM 1: Example of Dockerfile for building a
code repository with ROS.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://github.com/ros2/demos
https://github.com/ros2/demos

5MONTH 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

proposed workflow is presented in Algorithm 2. This file
must be included in the folder .github/workflows of the
repository.

Lines 2–4 define the event that triggers the building pro-
cess; in this case, a push to the master branch of the reposi-
tory. (Pushing is the operation of uploading the changes to
the online repository.) Consequently, upon any update in the
source code, a new image will be built and archived.

Lines 5–7 define the container registry where the pack-
age is going to be archived. A container registry is a server-
side application that stores and lets developers distribute
Docker images. Examples of container registries are Dock-
er Hub, Azure Container Registry, and Google Container
Registry.

Recently, code repository sites like GitHub and GitLab
have launched their own integrated container registries [14],
[15]. Their advantage is a complete integration with the code
repositories and the available CI/CD pipelines that create and
publish Docker images.

We propose the use of the GitHub container registry because
the majority of repositories for articles published in ICRA Pro-
ceedings and RA-L are hosted in GitHub; thus, authors do not
need to register in an additional service. Nonetheless, it can be
replaced by other registries, e.g., Docker Hub [16].

Lines 8–35 define the steps of the workflow for build-
ing and archiving the Docker image into the registry. First,
the repository is checked out (lines 15 and 16). Second, the
system logs in to the container registry defined previously
(lines 17–22). This can be easily customized to other regis-
tries (Docker, Azure, Google, Amazon Web Services, etc.) as
explained in https://github.com/docker/login-action. Third, the
system extracts the tags and labels of the Docker image that
will be needed later (lines 23–28). Finally, the image is built
and pushed to the registry (lines 29–35). The building context
can be customized here, but it is typically the root folder of the
code repository.

Those steps are independent from the content of the repos-
itory itself, so the same YAML file can be used for a wide
range of applications.

To sum up, to make a code repository available as a Docker
image, the researcher must write a specific Dockerfile with the
instructions for building the code and also a generic YAML
file with the workflow, and then upload both files to the code
repository. Then, on every update in the code, a package will
be automatically built and archived, readily available for other
users to download and run.

The presented workflow generates images for a single
architecture (x86). It could be extended in the future to mul-
tiple architectures (e.g., arm) since Docker supports multi-
platform images. On the other hand, code optimization may
be tricky since the optimized image might be downloaded
by a user with a different processor version. In that case, the
hardware requirements should be strictly specified in the
documentation.

The building process may take some time, depending on
the amount of code to compile and the additional packages

that need to be downloaded. In our tests, building the example
repositories took from some minutes to less than an hour,
using the free resources for public repositories. According to
the GitHub documentation, each job in a workflow can run for
up to 6 h of execution time.

 1 name: Create and publish a Docker image
 2 on:
 3 push:
 4 branches: [‘master’]
 5 env:
 6 REGISTRY: ghcr.io
 7 IMAGE _ NAME: ${ { github.repository } }
 8 jobs:
 9 build-and-push-image:
10 runs-on: ubuntu-latest
11 permissions:
12 contents: read
13 packages: write
14 steps:
15 - name: Checkout repository
16 uses: actions/checkout@v3
17 - name: Log in to the Container

registry
18 uses: docker/login-action@f054…
19 with:
20 registry: ${ { env.REGISTRY } }
21 username: ${ { github.actor } }
22 password: ${ { secrets.GITHUB _

TOKEN } }
23 - name: Extract metadata (tags,

labels)
24 id: meta
25 uses: docker/metadata-action@9866…
26 with:
27 images: ${ { env.REGISTRY } }/
28 ${ { env.IMAGE _ NAME } }
29 - name: Build and push Docker

image
30 uses: docker/build-push-

action@ad44…
31 with:
32 context: .
33 push: true
34 tags: ${{steps.meta.outputs.

tags}}
35 labels: ${{steps.meta.outputs.

labels}}

ALGORITHM 2: Definition in YAML of the workflow for
building and archiving the Docker image of a source
code repository (the complete version can be viewed
at https://github.com/RobInLabUJI/ros2_demos/blob/
rolling/.github/workflows/publish-image.yaml).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://github.com/docker/login-action
https://github.com/RobInLabUJI/ros2_demos/blob/rolling/.github/workflows/publish-image.yaml
https://github.com/RobInLabUJI/ros2_demos/blob/rolling/.github/workflows/publish-image.yaml

IEEE ROBOTICS & AUTOMATION MAGAZINE MONTH 20246

More details about creating or adapting workflows can
be found at https://docs.github.com/en/actions/
using-workflows.

RUNNING THE CODE
To download and run a Docker image, an application must
be installed by the user on his/her computer. The de facto
standard for such an application is Docker [17]. If the
application uses a GUI or a GPU for computing, then the
extensions named Nvidia Docker (https://github.
com/NVIDIA/nvidia-docker) and OSRF/rocker
(https://github.com/osrf/rocker) must be
installed too.

Downloading an image and running a container requires a
single order in the terminal:

docker run ghcr.io/<user>/<repository>:
<branch>

where <user> is the name of the GitHub user account
where the repository is hosted, <repository> is the name
of the repository, and <branch> is the name of the branch.
Packages are public; thus, there is no need to log into GitHub
for downloading.

If the image has not been downloaded yet, the system con-
nects to the GitHub registry and downloads it. Next, the con-
tainer is launched, and the command defined in the Dockerfile
is executed. If the image was downloaded previously, the local
copy is used.

A different command can be executed simply by append-
ing it to the order

docker run ghcr.io/<user>/<repository>:
<branch> <command>

In that case, the default command is ignored, and the new
command is executed instead. The image can also be down-
loaded without execution with the order

docker pull ghcr.io/<user>/<repository>:
<branch>

Now we present the output of the execution. The first
example is the repository with the ROS demonstrations

presented in the section “From Source to Run,” which is
launched with
docker run ghcr.io/robinlabuji/ros2_
demos:rolling

The default command launches two processes, a publisher
and a subscriber, which publish and read a text topic, respec-
tively, and send the output to the terminal, as shown in Fig-
ure 3. They are stopped by pressing Ctrl-C in the terminal.

A different command can be run in the same container,
e.g., calling a ROS service:

docker run ghcr.io/robinlabuji/ros2_
demos:rolling \
ros2 launch demo_nodes_cpp add_two_ints.
launch.py

For the second example, we have forked the repository
https://github.com/ros-controls/ros2 _ control
_ demos, which contains a demonstration of GUI using
RViz.

For running such an application, we use OSRF/rocker, a
tool with support for X11 and GPUs. It greatly simplifies the
configuration of the container, which is executed with the
order

rocker --x11 \
ghcr.io/robinlabuji/ros2_control_
demos:master

The graphical output consists of two windows, RViz and
a Joint State Publisher, as shown in Figure 4. The user can
interact with the sliders and buttons in the publisher window,
and the 3D model in RViz is updated accordingly. Similarly,
the menus and visualization options in RViz can be freely
changed.

For the last example, we have forked the repository
https://github.com/ROBOTIS-GIT/turtlebot3
_ simulations, which contains Gazebo simulations of
the TurtleBot 3 robot. It is launched with

FIGURE 3. Output of the ROS2 demonstration repository.
FIGURE 4. Graphical example of the ROS2 control package
repository.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://docs.github.com/en/actions/using-workflows
https://docs.github.com/en/actions/using-workflows
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/osrf/rocker
https://github.com/ros-controls/ros2_control_demos
https://github.com/ros-controls/ros2_control_demos
https://github.com/ROBOTIS-GIT/turtlebot3_simulations
https://github.com/ROBOTIS-GIT/turtlebot3_simulations

7MONTH 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

rocker --x11 \
--env TURTLEBOT3_MODEL=waffle_pi \
--name turtlebot3_sim \
ghcr.io/robinlabuji/turtlebot3_simulations:\
foxy-devel

To interact with the simulation, the user opens a second
terminal, connects to the running container, and teleoperates
the robot with the keyboard:

docker exec -it turtlebot3_sim bash
source /opt/ros/foxy/setup.bash
ros2 run turtlebot3_teleop teleop_key-
board

The graphical output is shown in Figure 5, with the robot in
the Gazebo simulator scene.

The Dockerfiles of the second and third examples can be
found in our forked copies of the original repositories:

 ■ https://github.com/RobInLabUJI/ros2_
control_demos

 ■ https://github.com/RobInLabUJI/turtlebot3_
simulations.

COMPARISON WITH OTHER APPROACHES
There exist other approaches for packaging and distributing
software, e.g., PyPI [18] and Conda [19]. These are software
package managers that can create, save, load, and switch
between environments on the local computer. Software and
its dependencies are stored in an environment, and the ver-
sion of the Python language can be changed. Besides that,
Conda is not limited to Python programs; it can package and
distribute software for any language.

The main difference between those approaches and ours is
that they execute the code on the OS of the host. In our setup,
Docker containers are running on a software image that can
use a different OS, much like a virtual machine.

Recently, a new approach has been presented for inte-
grating Conda and ROS: RoboStack [20]. It allows the
installation of different ROS versions simultaneously in
the same machine, using Conda environments. However,
RoboStack is not compatible with C++ or Python libraries,
which can only be installed via apt. Also, the RoboStack
project does not contain all of the available ROS pack-
ages. Most of the missing packages require further depen-
dencies to be ported, are abandoned, or do not yet work
with Python 3.

In our system, we can use either Python 2 or Python
3, and we use many previous ROS versions, e.g., Indigo
based on Ubuntu 14.04, which is available in the official
ROS images of Docker Hub. Moreover, our method can
accommodate the aforementioned package managers: in
the examples described in the sections “Python Applica-
tion With Graphical Output” and “Deep Learning Appli-
cation on a GPU,” PyPI is used for installing software
dependencies.

REPOSITORIES OF ARTICLES
We are now going to apply the presented workflow to the
code repositories of three articles published at the ICRA.
They have been randomly selected among the articles that
included the necessary information for building the code
without much trouble and clear instructions for running
an example.

In addition, we aimed to use different environments in
terms of the programming language, the dependency librar-
ies, and the hardware requirements.

PYTHON APPLICATION WITH GRAPHICAL OUTPUT
The first repository belongs to an article [21] published at
ICRA 2020 that uses Python for the implementation of an
unscented Kalman filter. It includes different demonstrations
of applications of the filter that display graphically the
 variables of the system and the estimation error.

FIGURE 5. Execution of a ROS2 repository showing the Gazebo
window with a mobile robot.

 1 FROM ubuntu:20.04
 2 ARG DEBIAN _ FRONTEND=noninteractive
 3 RUN apt-get update \
 4 && apt-get install -y \
 5 python3-pip \
 6 python3-tk \
 7 && rm -rf /var/lib/apt/lists/*
 8 RUN python3 -m pip install --upgrade pip
 9 RUN mkdir /ukfm
10 COPY . /ukfm/.
11 RUN cd /ukfm/python \
12 && python3 -m pip install -r

requirements.txt
13 RUN cd /ukfm/python \
14 && python3 -m pip install .
15 WORKDIR /ukfm/python
16 ENV PYTHONPATH=/ukfm/python
17 CMD [“python3”, “demo.py”]

ALGORITHM 3: Dockerfile for building the code
repository of [21], an article published at ICRA 2020
that uses Python for the implementation of an
unscented Kalman filter.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://github.com/RobInLabUJI/ros2_control_demos
https://github.com/RobInLabUJI/ros2_control_demos
https://github.com/RobInLabUJI/turtlebot3_simulations
https://github.com/RobInLabUJI/turtlebot3_simulations

IEEE ROBOTICS & AUTOMATION MAGAZINE MONTH 20248

The Dockerfile for this repository is presented in Algo-
rithm 3. The authors reported the testing of their code with
Python 3.5 on an Ubuntu 16.04 machine, but we were not able
to build an image with those versions because of some errors
in the installation of the Python packages. Instead, we used
Python 3.8 on an Ubuntu 20.04 image (line 1). A text file with
the requirements was already present in the repository, which
considerably eased the process (line 12). However, some addi-
tional requirements were necessary (lines 5 and 6), which
were not mentioned in the documentation.

As for the YAML file, we used exactly the same document
presented in the previous section without any modification.
The repository can be tested with

rocker --x11 ghcr.io/icra-2020/
ukfm:master

A more complete demonstration showing a set of figures
can be executed with

rocker --x11 ghcr.io/icra-2020/
ukfm:master \
python3 examples/pendulum.py

The graphical output is shown in Figure 6.

COMPARISON WITH PYPI
In the previous example, a single command is sufficient for
downloading and executing the Docker image of the reposito-
ry. If the user wants to reproduce the results using PyPI
directly, the necessary steps are shown in Algorithm 4.

First, the source code repository must be cloned (line 1);
the user creates a virtual Python environment in line 3, where
the software is installed (lines 5 and 6); finally, the demo is
executed in line 7, and upon termination the virtual environ-
ment is deactivated (line 8).

Using a Docker image is much more straightforward since
the image contains all of the dependencies in binary format,
and the demonstration script can be readily executed in the
same command used for downloading the image.

ROS C++ PACKAGE WITH GAZEBO SIMULATION
The second repository is included in an article [22] published
at ICRA 2021, consisting of a C++ implementation of mobile
robot planning benchmarks.

We built the image with Ubuntu 18.04 and ROS Melodic as
suggested by the authors (see Algorithm 5). The use of a ROS
image as a starting point (line 1) reduces the number of addi-
tional installs. Nevertheless, we found that a few packages not
mentioned in the documentation had to be installed (lines 4–6).

The C++ code is compiled in lines 13–16, and a script is
modified for using the new workspace in lines 16–18. Finally,

FIGURE 6. Demo of the repository of a Python graphical applica-
tion showing 2D plots of the results for a pendulum simulation.

1 git clone https://github.com/ICRA-
2020/ukfm.git

2 cd ukfm/python
3 python -m venv ukfm _ env
4 source ukfm _ env/bin/activate
5 pip install -r requirements.txt
6 pip install -e .
7 python demo.py
8 deactivate

ALGORITHM 4: Commands for installing the source
code repository and its dependencies with PyPI and
running the demonstration code.

 1 FROM osrf/ros:melodic-desktop-full
 2 RUN apt-get update \
 3 && apt-get install -y \
 4 ros-melodic-navigation \
 5 ros-melodic-teb-local-planner \
 6 libceres-dev \
 7 && rm -rf/var/lib/apt/lists/*
 8 RUN mkdir -p/catkin _ ws/src \
 9 && cd /catkin _ ws/src \
10 && git clone \
11 https://github.com/NKU-MobFly-Robotics/

p3dx.git
12 COPY . /catkin _ ws/src/.
13 RUN . /opt/ros/$ROS _ DISTRO/setup.sh \
14 && cd /catkin _ ws \
15 && catkin _ make
16 RUN sed --in-place --expression \
17 ‘$isource “/catkin _ ws/devel/

setup.bash”’ \
18 /ros _ entrypoint.sh
19 CMD [“roslaunch”, “move _ base _

 benchmark”, \
20 “move _ base _ benchmark.launch”]

ALGORITHM 5: Dockerfile for building the code
repository of [22], an article published at ICRA 2021
that uses C++ for the implementation of mobile robot
planning benchmarks.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://github.com/ICRA-2020/ukfm.git
https://github.com/ICRA-2020/ukfm.git
https://github.com/NKU-MobFly-Robotics/p3dx.git
https://github.com/NKU-MobFly-Robotics/p3dx.git

9MONTH 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

the demonstration command is defined in lines 19 and 20.
Again, the YAML file is the same with a single modifica-
tion in the name of the branch (melodic-devel instead
of master).

This application uses hardware acceleration for the graphi-
cal output; thus, a Nvidia card is required, and the code is
executed with the command

rocker --x11 --nvidia \
ghcr.io/icra-2021/local-planning-benchmark:\
melodic-devel

The output is shown in Figure 7. The user defines the goal
by clicking in the RViz window, a plan is computed, and the
simulated robot starts moving toward the goal in Gazebo. The
visualization is updated in real time.

In this example, all of the ROS nodes run in the same con-
tainer, but it is straightforward to connect these container-
ized applications to other ROS nodes running on the host or
in other containers. The user needs only to run Docker with
the --net=host option, which makes the processes inside
the container look like they were running on the host itself,
from the perspective of the network.

DEEP LEARNING APPLICATION ON A GPU
For the third example, we forked the repository of an article
[23] published at ICRA 2019, using deep learning for road-
object segmentation from a lidar point cloud. The Dockerfile
is shown in Algorithm 6.

This repository has more software and hardware require-
ments, namely TensorFlow, Compute Unified Device Archi-
tecture (CUDA), and a GPU. (TensorFlow is a software
library for machine learning and artificial intelligence with
a focus on training and inference of deep neural networks.
CUDA is a parallel computing platform and API that allows
software to use GPUs for general-purpose processing.) It
is worth noting that the user does not need to install either
TensorFlow or CUDA in the local computer; only the GPU
driver is necessary.

The authors recommend Ubuntu 16.04, CUDA 8, and
TensorFlow 1.4, but we could not find a proper image in the
repositories. Instead, we have chosen Ubuntu 18.04, CUDA

10, and TensorFlow 1.13 for installing the repository and
running a simple demonstration.

This repository requires a Nvidia GPU card, and the result
is not displayed but saved in a folder shared between the con-
tainer and the local host. Therefore, we use two commands: the
mkdir command, which creates the folder, and the rocker
command with the option --volume for executing the con-
tainer and saving the results to the shared folder:

mkdir /tmp/samples_out && \
rocker --volume /tmp/samples_out:\
/SqueezeSegV2/data/samples_out:rw \
--nvidia \
ghcr.io/icra-2019/squeezesegv2:master

The program uses an already-trained network for segment-
ing cars and cyclists in a road, and the saved output images are
shown in Figure 8.

FIGURE 7. Demo of the repository of [22] showing a 3D simula-
tion in Gazebo and the visualization in RViz.

FIGURE 8. Demo of the repository of [23] showing examples of
the output label map overlapped with the projected lidar signal.
Green masks indicate clusters corresponding to cars, and blue
masks indicate cyclists.

 1 FROM nvidia/cuda:10.0-cudnn7-devel-
ubuntu18.04

 2 ARG DEBIAN _ FRONTEND=noninteractive
 3 RUN apt-get update \
 4 && apt-get install -y \
 5 python-pip \
 6 && rm -rf/var/lib/apt/lists/*
 7 RUN python -m pip install --upgrade pip
 8 RUN mkdir/SqueezeSegV2
 9 COPY . /SqueezeSegV2/.
10 RUN cd /SqueezeSegV2 \
11 && python -m pip install -r

requirements.txt
12 WORKDIR /SqueezeSegV2
13 CMD [“python”, “src/demo.py”]

ALGORITHM 6: Dockerfile for building the code
repository of [23], an article published at ICRA 2019
that uses TensorFlow with CUDA on a GPU for road-
object segmentation from a lidar point cloud.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE ROBOTICS & AUTOMATION MAGAZINE MONTH 202410

TOWARD PRACTICAL REPRODUCIBILITY
In the previous examples, we have shown how to execute
Docker images that are already built and stored in the GitHub
registry. This method would have solved the problem present-
ed in the section “Building From the Source” if the authors of
that repository had built the image while the necessary librar-
ies were available in the repositories.

In that case, the binary of the libraries would have been
integrated in the Docker image and conveniently stored in the
registry. Any user could later download and execute the image
in a container without needing to build it from the source.

The presented examples give a broad overview of appli-
cations that can be used as a template or reference for other
projects. The repositories, Dockerfiles, and workflow actions
are publicly available at

 ■ https://github.com/icra-2020/ukfm
 ■ https://github.com/icra-2021/local-planning-benchmark
 ■ https://github.com/icra-2019/squeezesegv2.

Those repositories are forks from the original ones pub-
lished with the articles. Instructions for running the Docker
images have been included, so they can be easily adapted for
similar applications. Typically the only change will be the
replacement or addition of the necessary library dependencies,
which is straightforward for binary packages. For packages
only available as source code, the compilation and installation
instructions should be rewritten as Docker commands.

CONCLUSIONS
Robotic researchers are becoming increasingly aware of the
importance of releasing their source code to the community,
and many code repositories are available together with the
articles published in conference proceedings and journals.

GitHub repositories are the most popular option for pub-
lishing the source code among the robotics community. We
have presented a simple workflow that can be added to any
code repository for the automatic generation of a software
image. The resulting image is archived in the GitHub registry
and can be downloaded and executed in containers by other
researchers.

As software development is a continuous process, there is a
need for a binary executable version of the code that includes
all of its library dependencies. An interested researcher should
be able to reproduce the code by simply downloading and exe-
cuting this binary version, without any compilation.

In addition, researchers should be offered a way to build
the packaged version of their software without any change or
additional requirement in their workflows.

The solution presented in this article suits well any
source code hosted in GitHub, the choice of the vast major-
ity of researchers in the robotics community. But it can
also be adapted to other cloud services, such as GitLab or
Bitbucket.

The main contribution of this article is to present a work-
flow that not only generates a software image of a code reposi-
tory and its dependencies but also allows the resulting image
to be archived as a binary package in a site (the registry). Any

user can later download and execute the code with a single
command. The only previous requirement is the installation
of the container software (Docker) and the graphical drivers in
case a GPU is required.

The proposed workflow only requires of the developer two
steps: first, writing a Dockerfile for building a software image
and, second, using the YAML file presented in this article (or a
similar one for a different container registry) for the workflow
action that will automatically build and archive the image.

The workflow does not interfere with the development of
the code, and it runs silently in the cloud, thus not requiring
any local computing resources. A user needs to install the
Docker application for running containers and the necessary
extensions for using GUIs and GPUs.

The software dependencies are installed in the resulting
software image and archived for future use. Any software
package manager can be used (apt, PyPI, Conda), which
ensures the generality of the method.

Our approach has some limitations, though. First and fore-
most, it cannot solve the lack of documentation of the original
code repository; and second, from a practical point of view,
the Docker image can be very large and take a long time to
download from the registry. Access to the public registries
may be limited in the future, and public organizations should
be encouraged to create their own registries for ensuring that
the software remains publicly available.

ACKNOWLEDGMENT
This article describes research done at the Robotic Intelli-
gence Laboratory. Support for this laboratory is provided in
part by Generalitat Valenciana (PROMETEO/2020/034) and
by Universitat Jaume I (UJI-B2021-27).

DISCLAIMER
The views and opinions expressed in this article are those of
the author and are not affiliated with any of the projects men-
tioned.

AUTHOR
Enric Cervera, Robotic Intelligence Laboratory, Jaume I
University, 12071 Castelló, Spain. E-mail: ecervera@uji.es.

REFERENCES
[1] M. Quigley et al., “ROS: An open-source robot operating system,” in Proc.
ICRA Workshop Open Source Softw., Kobe, Japan, 2009, vol. 3, p. 5.

[2] S. Cousins, B. Gerkey, K. Conley, and W. Garage, “Sharing software with ROS
[ROS topics],” IEEE Robot. Autom. Mag., vol. 17, no. 2, pp. 12–14, Jun. 2010, doi:
10.1109/MRA.2010.936956.

[3] S. Cousins, “Exponential growth of ROS [ROS Topics],” IEEE Robot. Autom.
Mag., vol. 18, no. 1, pp. 19–20, Mar. 2011, doi: 10.1109/MRA.2010.940147.

[4] A. Durniak, “Welcome to IEEE Xplore,” IEEE Power Eng. Rev., vol. 20, no.
11, p. 12, Nov. 2000, doi: 10.1109/39.883281.

[5] E. Cervera, “Try to start it! The challenge of reusing code in robotics
research,” IEEE Robot. Autom. Lett., vol. 4, no. 1, pp. 49–56, Jan. 2019, doi:
10.1109/LRA.2018.2878604.

[6] F. Bonsignorio and A. P. del Pobil, “Toward replicable and measurable robotics
research [From the Guest Editors],” IEEE Robot. Autom. Mag., vol. 22, no. 3, pp.
32–35, Sep. 2015, doi: 10.1109/MRA.2015.2452073.

[7] F. Bonsignorio, “A new kind of article for reproducible research in intelligent
robotics [From the Field],” IEEE Robot. Autom. Mag., vol. 24, no. 3, pp. 178–182,
Sep. 2017, doi: 10.1109/MRA.2017.2722918.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://github.com/icra-2020/ukfm
https://github.com/icra-2021/local-planning-benchmark
https://github.com/icra-2019/squeezesegv2
mailto:ecervera@uji.es
http://dx.doi.org/10.1109/MRA.2010.936956
http://dx.doi.org/10.1109/MRA.2010.940147
http://dx.doi.org/10.1109/39.883281
http://dx.doi.org/10.1109/LRA.2018.2878604
http://dx.doi.org/10.1109/MRA.2015.2452073
http://dx.doi.org/10.1109/MRA.2017.2722918

11MONTH 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

[8] V. Rashitov and M. Ivanou, “Continuous integration and continuous delivery in
the process of developing robotic systems,” in Proc. Int. Conf. Objects, Compon.,
Models Patterns, Cham, Switzerland: Springer-Verlag, 2019, pp. 342–348.

[9] E. Cervera and A. P. Del Pobil, “ROSLab: Sharing ROS code interactively
with Docker and JupyterLab,” IEEE Robot. Autom. Mag., vol. 26, no. 3, pp.
64–69, Sep. 2019, doi: 10.1109/MRA.2019.2916286.

[10] R. White and H. Christensen, ROS and Docker. Cham, Switzerland: Springer
International Publishing, 2017, pp. 285–307.

[11] S. Pillai, R. Ambruş, and A. Gaidon, “SuperDepth: Self-supervised, super-
resolved monocular depth estimation,” in Proc. Int. Conf. Robot. Automat.
(ICRA), 2019, pp. 9250–9256, doi: 10.1109/ICRA.2019.8793621.

[12] Packages for Linux and Unix. Accessed: Dec. 15, 2023. [Online]. Available:
https://pkgs.org/search/?q=libnccl2

[13] S. Teixeira, R. Arrais, and G. Veiga, “Cloud simulation for continuous inte-
gration and deployment in robotics,” in Proc. IEEE 19th Int. Conf. Ind. Inform.
(INDIN), 2021, pp. 1–8, doi: 10.1109/INDIN45523.2021.9557476.

[14] “Working with the Container registry.” GitHub. Accessed: Dec. 15, 2023.
[Online]. Available: https://docs.github.com/en/packages/working-with-a-github-
packages-registry/working-with-the-container-registry

[15] “GitLab container registry.” GitHub. Accessed: Dec. 15, 2023. [Online].
Available: https://docs.gitlab.com/ee/user/packages/container_registry/

[16] J. Cook, “Docker hub,” in Docker for Data Science. Berkeley, CA, USA:
Apress, 2017, pp. 103–118.

[17] C. Anderson, “Docker [Software Engineering],” IEEE Softw., vol. 32, no. 3,
pp. 102–c3, May/Jun. 2015, doi: 10.1109/MS.2015.62.

[18] “The Python package index.” PyPI. Accessed: Dec. 15, 2023. [Online].
Available: https://packaging.python.org/en/latest/tutorials/installing-packages/

[19] “Conda documentation.” Conda. Accessed: Dec. 15, 2023. [Online].
Available: https://docs.conda.io/projects/conda/en/latest/user-guide/index.html

[20] T. Fischer, W. Vollprecht, S. Traversaro, S. Yen, C. Herrero, and M. Milford,
“A RoboStack tutorial: Using the robot operating system alongside the Conda and
Jupyter data science ecosystems,” IEEE Robot. Autom. Mag., vol. 29, no. 2, pp.
65–74, Jun. 2022, doi: 10.1109/MRA.2021.3128367.

[21] M. Brossard, A. Barrau, and S. Bonnabel, “A code for unscented Kalman fil-
tering on manifolds (UKF-M),” in Proc. IEEE Int. Conf. Robot. Automat. (ICRA),
2020, pp. 5701–5708, doi: 10.1109/ICRA40945.2020.9197489.

[22] J. Wen et al., “MRPB 1.0: A unified benchmark for the evaluation of mobile
robot local planning approaches,” in Proc. IEEE Int. Conf. Robot. Automat.
(ICRA), 2021, pp. 8238–8244, doi: 10.1109/ICRA48506.2021.9561901.

[23] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer, “SqueezeSegV2: Improved
model structure and unsupervised domain adaptation for road-object segmenta-
tion from a LiDAR point cloud,” in Proc. Int. Conf. Robot. Automat. (ICRA),
2019, pp. 4376–4382, doi: 10.1109/ICRA.2019.8793495.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

http://dx.doi.org/10.1109/ICRA.2019.8793621
https://pkgs.org/search/?q=libnccl2
http://dx.doi.org/10.1109/INDIN45523.2021.9557476
https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry
https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry
https://docs.gitlab.com/ee/user/packages/container_registry/
http://dx.doi.org/10.1109/MS.2015.62
https://packaging.python.org/en/latest/tutorials/installing-packages/
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html
http://dx.doi.org/10.1109/MRA.2021.3128367
http://dx.doi.org/10.1109/ICRA40945.2020.9197489
http://dx.doi.org/10.1109/ICRA48506.2021.9561901
http://dx.doi.org/10.1109/ICRA.2019.8793495

