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ARTICLE INFO ABSTRACT

Communicated by P. Zhao Investors make decisions about buying and selling a financial asset based on available information. The
traditional approach in Deep Learning when trying to predict the behavior of an asset is to take a price
history, train a model, and forecast one single price in the near future. This is called the frequentist perspective.
Uncertainty Quantification is an alternative in which models manage a probability distribution for prediction.
It provides investors with more information than the traditional frequentist way, so they can consider the risk
of making or not making a certain decision. We systematically reviewed the existing literature on Uncertainty
Quantification methods in Deep Learning to predict the behavior of financial assets, such as foreign exchange,
stock market, cryptocurrencies and others. The article discusses types of model, categories of financial assets,
prediction characteristics and types of uncertainty. We found that, in general terms, references focus on price
accuracy as a metric, although other metrics, such as trend accuracy, might be more appropriate. Very few
authors analyze both epistemic and aleatoric uncertainty, and none analyze in depth how to decouple them.
The time period analyzed includes the years 2001 to 2022.
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1. Introduction

Deep Learning (DL) applications have increasing relevance in almost
all fields, particularly finance. Along with this growing interest, it
appears that most authors are engaging in a model race to build the
most accurate, predicting future asset prices with the least error. This
competition might make sense in some applications where the level
of volatility, called noise, remains low to moderate. However, the
financial market presents a very high level of volatility. The amount of
noise related to this type of time series remains so high that researchers
are still debating whether Efficient Market Theory is valid or not [1].
Instead of looking for a very accurate prediction, traders seek for a
reasonable prediction that helps them understand which direction the
market will move next, up or down. A successfully predicted trend is
much more useful for securing an investment rather than knowing if the
next price will reach €29.4 instead of €29.5. In this context, it seems
reasonable to ask about the point of trying to boost the accuracy of
DL models in a scenario where the volatility of the input data is much
larger than the minimum error one can obtain from the predictions.
Trying to follow that line will lead to an overfitted model, inevitably
falling into the bias-variance dilemma. The authors of this review
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propose an alternative approach for predicting financial trading series,
in which the next price vector is framed inside a confidence interval.
That range can be defined by the degree of certainty of the model and
the amount of noise in the raw input data. Defining that interval means
quantifying the uncertainty of both the noise in the data and the degree
of knowledge acquired by the DL model.

We can distinguish between two types of uncertainties in prediction
with DL models, called aleatoric and epistemic [2,3]. The total uncer-
tainty in the prediction is the sum of both uncertainties. The first one is
related to the intrinsic noise in data and is called aleatoric uncertainty.
Aleatoric refers to inherent randomness of price data, i.e. price fluctua-
tions or volatility confusing genuine underlying trends [4]. Noise is an
intrinsic part of financial data and is the main reason why predicting
next prices remains so complex: DL models struggle to recognize the
difference between noise and a real trend. In fact, financial data, such
as stock market prices, differ from other time series in that they are
characterized by a very high level of noise. The stochastic component
of financial data misrepresents valuable price information and there-
fore confounds models. Unfortunately, financial data always exhibit
this stochastic component and it is impossible to reduce the related
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uncertainty simply by adding more data [5]. Therefore, the need to
address and quantify this type of uncertainty is clear: traders want to
distinguish between a real trend led by market dynamics and a false
trend led by noise, to maintain trades profitable. Identification of the
aleatoric part is the previous and necessary step to address it. While the
aleatoric uncertainty cannot be eliminated, in fact noise can and should
be treated as a necessary preliminary step before training DL models.
If the data is not cleaned and filtered to remove noise beforehand and
the model ingests the raw data, the prediction accuracy is negatively
affected. The reason is that the model will stick to noise patterns rather
than the valuable real price trends [6].

The second type of uncertainty, the epistemic component, is re-
lated to the prediction model, coming from sets of hyperparameters
not chosen for prediction. A trained DL model is defined by several
parameters related to its own architecture, that is, the combination of
parameters (W, b) corresponding to the weights and biases of the neural
network (NN), the length and depth, the shape (variation of length
across the depth), the number of iterations and batches, the optimizer
or the regularization term, to name a few. Instead of simply choosing
one optimized combination of those parameters, one could think about
a model from a different perspective, considering that not just one but
many of those combinations could shape an ensemble of valid models.
In this way, we do not have a matrix of weights and biases, but rather
the model handles a probability distribution corresponding to each of
the weights in the matrix (epistemic uncertainty) [5].

Already in 1992, Mackay [7] establishes the foundations of what
is called today Uncertainty Quantification (UQ) and applies them to
function approximation. He states that the Bayes approach is not con-
sistently better in performance than other methods for interpolating a
noisy dataset. However, a second level of inference is generally forgot-
ten, which is the ability of Bayesian methods to rank the alternative
models to the best chosen one.

If we take this concept to finance, it translates into opportunity
cost, or in other words, how much we are paying for not choosing
the alternative to the (supposedly) best trade at the right time. Big
financial decisions are made not simply by knowing a single future
price value recommended by a DL model (this is how a frequentist
approach is defined [8]). It is also necessary to consider risk and
opportunity cost [9]. We believe that the UQ approach is best suited
for real financial scenarios where probability and confidence intervals
can be introduced, not just for one predicted point in the future but for
entire identifiable trends.

UQ is defined differently throughout the existing literature. Within
the finance field, if we continue to approach the even more specific
subdomain of predicting the behavior of financial and tradeable assets
through DL, it can be defined as the science of measuring the extent
to which a DL model is uncertain about the profit that can be obtained
in the future. Ideally, this amount of uncertainty would be measured
with a probability distribution [10], or at least with the mean and the
variance varying over time [11]. UQ can be applied to a regression
problem, that is, predicting future price values [12]. It can also be
applied to a classification problem, where the output of a DL model
is a buy/hold/sell signal [13] or the start or end of a trend [14]. It can
even be applied to a ranking type prediction, for example predicting
the momentum in the future.

The main objective of this paper is to evidence whether the state
of the art related to UQ in DL applied to financial forecasting may
leave unexplored or insufficiently explored techniques, methods or ap-
proaches that could be further exploited by researchers in potential fu-
ture research and clarify which would be. Some other literature reviews
explore UQ applied to various fields: water resources research [15],
flood forecasting [16], climate modeling [17], cost estimation of the
aerospace life cycle [18] and others. To the best of our knowledge, this
is the first survey in the topic of UQ applied to financial time series.

Henceforward, the paper is organized as follows. Section 2 explains
the methodology used in the review to analyze the existing literature,
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following the PRISMA approach for records found between 2001 and
2022 without filters regarding the time period. Section 3 collects and
discusses the results of the analysis, provides potential approaches in
future research, and describes existing techniques commonly used to
quantify uncertainty. Finally, Section 4 draws the main conclusions of
this study.

2. Research methodology

PRISMA has been used as the main framework to carry out the
research. In addition, the following questions are defined to shed light
on the current state of the art on UQ for financial asset prediction using
DL:

1. What is the state of the art related to the research in UQ for DL
applied to finance?

2. What are the main UQ techniques in DL used so far for financial
prediction?

3. What financial forecasting needs are still not met at UQ in DL?

4. What technical challenges remain in financial prediction using
UQ in DL?

5. What approaches could potentially be explored to overcome
those challenges?

The above questions shape the research and guide the search for
references, while they will try to be answered in Section 3.6.

2.1. Inclusion and exclusion criteria

UQ in DL is a relatively new domain. It has been found that as of
2010, there is an explosion of documents dealing with the topic and
explicitly talking about the exact phrase “uncertainty quantification”,
as can be seen in Fig. 1. Although some articles mentioned UQ before
that date, they were rarer. In fact, as stated by Magris et al. [19],
Mackay’s paper [20] was the first work to apply UQ methods to a neural
network using a Bayesian regularization.

Not all found references intentionally use UQ, nor do they ex-
plicitly talk about it. Still, whether prepared intentionally or not, all
the selected papers meet the criteria for applying UQ techniques. For
example, the most typical unintentional use of UQ methods is dropout
as a regularization technique. The most likely reason why the authors
might want to apply it is to decrease the probability of overfitting, since
the technique causes the neural network to systematically forget data
in each backpropagation step. Applying this method is equivalent to
approximating the Bayesian posterior, which is often not mentioned in
most references.

The three parameters considered in the references to be added to
this review are described as follows (all of them must be met):

1. Prediction and trading of financial asset time series: The
reference must base the topic on methods or techniques for
predicting the value of trading instruments (Forex, equities, com-
modities and cryptocurrencies, see Fig. 2). The problem to be
solved can be regression, predicting the future value of the asset,
return and confidence intervals, or classification, predicting up
or down trends or buy/sell signals. The condition to be included
in this group is that the asset is tradeable, that is, the asset can
be bought and sold as a financial product for speculation.

2. Use of DL: The prediction should be done using DL. Classifi-
cation can be done, for example, by categorizing a series of
prices with a buy (go long) signal or a sell (go short) signal.
Regression is used to predict single price data points in the
future, several step-ahead price data points, or price intervals.
Fig. 3 shows a classification of the main DL methods used to
quantify uncertainty in financial time series forecasting.
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Fig. 1. Number of publications per year related to the general term Uncertainty Quantification. Source: Web of Science.
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Fig. 2. Type of financial and banking applications in DL. Based on Huang 2020 [23] and updated with Investopedia [24].

3. Use of UQ methods: The used methods should fall within the
UQ domain. Even the unintentional use of UQ methods has been
considered and added to the survey. Based on [21], a list of UQ
methods has been adapted as the main criterion for including an
article. These are listed and described in Section 3.1, divided by
type of techniques.

Some works, even those predicting economic time series, have not
been considered because the data does not correspond to a financial
asset. For example, Mishra and Ayyub [22] employed an MC dropout
LSTM model to predict net state domestic product (NSDP). NSDP
does not present enough noise, compared to financial markets, to be
included in this study.

Other studies focusing on portfolio management (PM) have been
excluded because they do not solve a value prediction problem. Instead,
they are solving for an asset classification or ranking. Sometimes the
PM problem can classify the behavior of the value curve in the past,
but it does not predict the behavior of the asset value in the future
(the work of Park et al. [25] is an example of this). However, this
does not mean that the PM is excluded from this survey. In the case

of [26], the PM problem includes a time series prediction with UQ,
and is consequently considered in the present study.

Some keywords can cause confusion when it comes to meeting the
inclusion criteria. For example, when searching for the terms regulariza-
tion, stock price prediction and DL, some studies were initially included in
the screening because they appeared in both the title and the abstract.
However, they were discarded after reading the abstract and realizing
that they do not use UQ techniques [27-29]. Similarly, some studies
related to Neural Networks or Bayesian Networks in price prediction
were added to the screening, but were later discarded because the used
models were not deep neural networks [30-36]. Other studies, such
as the paper of Alarab et al. [37], use MC-dropout DL for valid/not
valid classification of Bitcoin transactions and the article was dropped
because it does not include a regression problem, predicting the future
value of Bitcoin, trend, nor a buy/sell classification problem.

Only works written in plain English have been included in the
present study: based on this, two papers written in Turkish and Japanese
[38,39] were discarded. It is also important to mention that it was nec-
essary to include the broader term Network instead of Neural Network
because some authors such as Wilkins [40] use that more general term.
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Fig. 3. Taxonomy of the main DL methods used to quantify uncertainty in financial time series forecasting (right side) and the financial analysis perspectives related to each of

those DL methods.

Table 1
Search queries in two different sources.

Search query Scopus Google Scholar
(“Bayesian neural network”) AND (“stock”) OR (“forex”) OR (“foreign exchange”) OR (“cryptocurrency”) OR (“bitcoin”) OR 24 2730
(“financial”)

(“uncertainty quantification”) AND (“forex”) OR (“foreign exchange”) OR (“crypto*”) OR (“bitcoin”) OR (“stock”) OR 14 45300
(“financ*”) AND (“deep”) OR (“neural network*”)

(“dropout”) AND (“neural network”) AND (“stock”) OR (“crypto*”) OR (“financ*”) AND (“prediction”) 23 37600
(“markov chain montecarlo”) OR (“MCMC”) AND (“neural network”) AND (“stock”) OR (“crypto*”) OR (“financ*”) AND 4 19300
(“prediction”)

(“variational inference”) AND (“neural network”) AND (“stock”) OR (“crypto*”) OR (“financ*”’) AND (“prediction”) 4 8040
(“Bayesian active learning”) AND (“bitcoin”) OR (“crypto*”) OR (“financ*””) OR (“stock”) OR (“Forex”) OR (“foreign 0 5
exchange”)

(“bayes by backprop”) AND (“bitcoin”) OR (“crypto*””) OR (“financ*”) OR (“stock”) OR (“Forex”) OR (“foreign exchange”) 0 4
(“variational autoencoder*”) AND (“bitcoin”) OR (“crypto*””) OR (“financ*”) OR (“stock”) OR (“Forex”) OR (“foreign 53 208
exchange”)

(“deep gaussian”) AND (“bitcoin”) OR (“crypto*”) OR (“financ*”) OR (“stock”) OR (“Forex”) OR (“foreign exchange”) 1 28
(“laplace approximation*””) AND (“bitcoin”) OR (“crypto*”) OR (“financ*”) OR (“stock”) OR (“Forex”) OR (“foreign 46 49
exchange”)

(“deep ensemble*”) OR (“deep Bayesian ensemble*”) OR (“Bayesian ensemble*”) OR (“Bayesian deep ensemble*”) AND 16 46

(“bitcoin”) OR (“crypto*”) OR (“financ*”) OR (“stock”) OR (“Forex”) OR (“foreign exchange”)

An article was also removed [41] from the selected records because the
single point price prediction was made not only considering past data
but also future data. This reference was discarded because it does not
predict prices, since future data in real scenarios will never be available.

Variational Autoencoders (VAE) is a method widely used to generate
synthetic datasets and resampling in financial time series. All studies
not directly using VAE for the prediction of the next value or trading
have been excluded from this survey [42-45].

2.2. Information sources

In this study, the Scopus database and the Google Scholar search
engine were used. Given that there are very few articles that emerge
from the search, no time limitation was applied.

2.3. Search strategy

The search strings were refined until the most appropriate records
were found. This survey chose Scopus because it is a widely recognized
automatic database that shows quality results. However, the number
of records considered for screening after refinement was only 171, a

number too low for our purpose. That is why we decided to use a
more general search engine such as Google Scholar, in which we could
add 251 more records for screening. Due to the initial low number of
records found, we decided not to limit the date range. To the extent a
study meets the requirements described in 2.1, it was included with no
date restriction. In this way, the total time range covered by this review
goes from 2001 to 2022. In total, considering both the database and
the search engine, we found 15,295 raw records. After refinement and
removal of duplicates, 422 records were screened, 156 were assessed,
and 69 were added to the study. Since Google Scholar shows huge
numbers for some searches, the search was limited to the first 10 pages
shown, as these are considered the most relevant. Table 1 shows a
summary of the number of records found, ordered by database/search
engine.

2.4. Study selection process

The main idea behind this survey is to bring together all studies
that directly represent or use uncertainty within the neural network
architecture applied to financial time series prediction. Search queries
have been designed with this idea in mind. The record was chosen
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Fig. 4. Results of the search and selection process, from the number of records identified in the search to the number of studies included in the review.

for screening only if the title and abstract represented the purpose of
the study. The screening process involves deep reading and gathering
additional information to understand the article. If the work did not
meet the selection criteria, it was rejected. Throughout this process,
the selection criteria was refined to ensure that all articles met the
objectives established in the study. Fig. 4 shows a summary of the
results of the search and selection process.

3. Results and discussion

This section lists the most representative studies of the survey. The
order presented in Table 2 is the same in which the studies were
found and therefore included. It is not uncommon that studies listed
in Table 2 do not explicitly describe all the parameters defining the
models they used. For example, the number of predicted steps in the
future is not always specified, as in the case of [46]. Possibly, a single-
step prediction could have been deducted, but instead, and to keep
caution, the key "unspecified” has been added. The records have been
divided into five categories based on the parameters considered most
relevant: model, type of asset, financial input (analysis), prediction space
and epistemic/aleatoric.

3.1. Analysis by model

The category model includes the type of DL models used to represent
uncertainty. They should be part of at least one of the categories
described in Section 2.1. In the following subsections, we list the main
techniques used in the literature found for a probabilistic approach
to time series prediction and briefly explain them and provide some
definitions. Following Wilson and Izmailov [107], we will not make
a difference between Bayesian and non-Bayesian methods for approxi-
mating the exact posterior distribution, since some of the non-Bayesian
methods approximate the integral even better than the Bayesian ones.
Fig. 3 has been included to shed light on the set of main techniques
that can be found in the literature.

3.1.1. Bayesian neural networks (BNN)

For a financial time series, D = {X,Y} = {(x;, )} ,N is a training
dataset with historical price inputs x; € R and labeled price outputs
y; € R. From a frequentist point of view, a neural network attempts to
represent future values of a function y = @,(x), given that it has learned
the behavior of @ in the past. Let f and / be a non-linear transformation
(activation function) and a linear transformation, respectively. Then, in
the simplest architecture definition of a neural network, /; is applied to
W; at each hidden layer:

Iy =x, 1
I; = s;(Wil,_; + b)) Vi € [1,n], @
y=1, 3)

A stochastic neural network is a specific type of Artificial Neural
Network (ANN) in which the activation function is stochastic or the
weights are stochastic. Stochastic means that those values are not
single, but rather an ensemble of values that make up a probability
distribution [108]. A BNN would then be a stochastic neural network
trained using Bayesian inference [109]. Given a traditional ANN, learn-
ing is the process of regressing a set of parameters § = (W,b) from
the training data D, where D = (x,y) consists of an array of input
values x and their corresponding values y, W is a weight matrix and
b is a bias vector. From the set of parameters 0, the training process
consists of optimizing a cost function, or from a probabilistic point of
view, a Maximum Likelihood Estimation (MAP), to achieve 6, a set
of parameters where W and b are unique and optimal. The above is
the description of a frequentist approach to DL. Viewed from another
perspective, the probabilistic (Bayesian) approach establishes

6 ~ p(0) 4
y=®y(x)+e¢ C))

where p(0) is the prior probability associated with all possible
models # that explain y as an approximation to the real, but unknown
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Table 2
List of all studies included in the survey.
Ref. Model Asset Analysis Prediction Uncertainty
[47] BNN CRY T SS EPI
[46] Bayesian regularized NN STO T U EPI
[48] BNN + MCMC STO T MVMS EPI
[49] Stochastic ANN + LSTM CRY T,S SS EPI
[50] Hybrid model BST + LSTM STO T,S TR ALE
[51] NARX BRANN STO T SVMS EPI
[12] Bayesian LSTM STO T SS ALE
[52] dropout Bayesian CNN STO T SS EPI
[53] Levenberg-Marquardt BRANN STO T SS EPI
[54] BNN + ARD and BNN + HMC STO T SS EPI
[13] SVDBNN STO T B/S EPI
[55] SSA-EWSVM-RNN-GPR DE STO T CONF EPI
[56] VMD-AE-RNN-LSTM DE STO T CONF EPI
[57] Dropout CNN STO T TR EPI
[58] RBF, BNN and ARIMA DE FOR T,F SVMS EPI
[59] BRANN STO T MVMS EPI
[60] GBNN STO T SVMS EPI
[61] Dropout CNN STO T B/S EPI
[62] BRANN FOR T B/S EPI
[63] Variational Autoencoders FOR T CONF EPI
[64] BRANN STO T U EPI
[11] Interval adapted LSTM AE STO T SVMS, CONF ALE
[65] MC Dropout MLP STO T SS EPI
[66] Dropout MLP STO T SS EPI
[67] BRANN with NARX STO T SS EPI
[68] BRANN STO T SS EPI
[69] BRANN STO T SS EPI
[70] BRANN STO T SS EPI
[71]1 BRANN CRY T U EPI
[72] CAED-TCN STO T MSMV, CONF EPI
[19] Backprop BRANN STO T TR EPI
[14] MCMC BRANN STO T TR EPI
[73] VAE STO T SS EPI
[74] Attention based VAE-LSTM STO T TR EPI
[75] VAE-GCN-LSTM STO T SS, TR EPI
[40] MDN STO T SS ALE
[76] MC Dropout LSTM STO T, F CONF EPI
[771 Noise quantification MLP STO T SS ALE
[78]1 MDN STO T, S CONF ALE
[79] LSTM + MC Dropout CRY T, S S EPI
[80] BRANN via Variational Inference STO T TR EPI
[81] VAE STO T TR EPI
[82] VAE CRY T, S TR EPI
[83] VAE RNN STO T, S SS ALE
[84] VAE + VI Neural Network STO T, S SS EPI
[85] BNN CRY T SS EPI
[26] BNN CRY T SVMS EPI
[86] recurrent BNN STO T MVMS EPI
[871 BNN STO T SS EPI
[88] Stochastic ANN CRY T, S SS, B/S EPI
[89] dropout RNN CRY T SS EPI
[90] dropout ANN STO T SS EPI
[91] Dropout LSTM STO T SS EPI
[92] Dropout LSTM STO T SS EPI
[93] Dropout CNN+ LSTM CRY T SS EPI
[94] Dropout LSTM STO T SS EPI
[95] Dropout LSTM STO T SS EPI
[96] Dropout MLP STO S SVMS EPI
[971 Dropout MLP STO S SVMS EPI
[98] NSVM (VD) STO T SS EPI
[99] VAE-LSTM with dropout STO T MSMV ALE
[100] dropout VAE-GRU FUT T SS ALE
[101] VAE-LSTM STO T SVMS ALE
[102] PAE-XNMF STO T SS ALE
[103] Heteroskedastic DGP STO T U EPI
[10] BPNN, LSTM, GPR, Lasso, BILSTM ensembles STO T CONF EPI
[104] Deep ensembles LigthGBM FUT T SS EPI
[105] A2C, DDPG, PPO ensembles STO T B/S EPI
[106] RNN, GRU, LSTM ensembles IND T SS EPI

T: technical analysis S: sentiment analysis F: fundamental analysis CRY: cryptocurrencies STO: Stock market FOR: Forex market FUT: Futures
market IND: indexes market SS: Single step prediction MVMS: Multi-value multi-step ahead prediction SVMS: Single value multi-step ahead
prediction CONF: Confidence interval B/S: buy, sell or hold signals TR: up, down or stay trends ALE: aleatoric uncertainty analysis EPI: epistemic
uncertainty analysis U: unspecified.
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function @,(x), being ¢ the representation of the random noise added
to the previous function.

In short, the above means that the goal here is not to find an exact
set of parameters 6, but rather a probability distribution p(6) given
that we know D, i.e. the posterior probability p(0|D). Applying the
Bayesian rule and enforcing independence between model parameters
and inputs, it can be stated that

p(D,|D,,0)p(6)
Jo P(D,|D,,0p(0")d6’

p(|D) = ©

where

* p(D,|D,,0) : likelihood
» p(0) : prior probability
* [, p(D,|D,.0")p(0")d6’ : evidence

Instead of using backpropagation over past data as in ANN, BNN
learns the probability distribution of the weights by approximating the
posterior [109]. However, in practice the evidence is computationally
expensive and is never calculated analytically. Instead, it is approxi-
mated by methods such as Markov Chain Montecarlo or Variational
Inference that are described in the following sections.

BNNs have two main applications in financial time series: avoiding
overfitting [46] and quantifying uncertainty. In a sense, both are closely
related. The fact of having a stochastic weight matrix makes them good
at generalizing, a desired characteristic in very noisy time series as
financial ones. The difference between each application arises at the
time of inference. Authors who employ BNNs as a way to generalize
use the mean in the predicted posterior, while authors who want to
quantify uncertainty use both the mean and the variance.

Yan et al. [87] apply BNNs to predict the closing price of the Shang-
hai Stock Index. As they state, the posterior probability distribution
P(h|X) of the neural network refines the prior distribution P(6) upon
receiving input data. In Bayesian training, the objective function is
based on the likelihood of the sample data and the weight adjustments
use the prior distribution of weights and threshold. This combines input
data to modify the posterior distribution of weights and threshold.
The Bayesian network parameters reference this posterior distribution,
potentially improving prediction accuracy. Authors like Yan’s team who
use raw BNNs need a regularization method to overcome overfitting
problems. In addition to the Mean Squared Error function Ej, in BNNSs,
the regularization term E,, is added and the error function remains
My, = aEp+pEy,, where « and § are hyperparameters that control the
probability distribution of other parameters. The authors improve the
generalization ability of the BNN using a Particle Swarm Optimization
(PSO) algorithm. They claim that the BNN-PSO is reliable in predicting
the Shanghai Index.

In the context of predictive uncertainty, BNN is a very general
way of naming a neural network that uses Bayes theory to construct
a posterior distribution. In the following sections, we will go deeper in
different methods that make neural networks have probability distribu-
tions at prediction time, rather than single points, and how they apply
to financial data.

3.1.2. Montecarlo (MC) dropout

MC dropout consists of randomly disconnecting different pairs of
neurons during backpropagation for training and testing. This has two
effects: on the one hand, it prevents overfitting and on the other, it
approximates the posterior probability described above. In fact, [110]
states that a neural network with arbitrary depth, without non-linearities
and with a dropout approximates the Bayesian posterior probability.
The objective function using L, regularization is defined as

N L
1 N 2 2
Laropou = 3 ; E(y. )+ 4 Z}(nw,nz +lIb,113) @)

MC dropout has the advantage of low computational cost and
simplicity. However, to mention a drawback, this technique needs to
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be complemented with others, since it cannot capture the uncertainty
of the data by itself [111].

Chauhan et al. [76] explain that MC-dropout can be applied at infer-
ence time, based on a previous work from Gal et al. [110]. The authors
use three financial time series data for each time step: fundamental
features (income statement, cash flow and balance sheet), momentum
features (calculated over 1, 3, 6 and 9 months), and auxiliary features
(company’s short interest, industry group and size category). They build
experiments with two models, MLP and LSTM. Both are trained to
meet the mean and the variance as targets, and both have prediction
modeling where they have two neurons as output, the predicted values
of mean and variance respectively. At prediction time, dropout is
activated to produce different outputs each time, and the model is
run 10 times to generate a sample of that size. Therefore, the total
uncertainty is given by the sum of the predicted variance (coming
directly from the data) and estimated epistemic uncertainty coming
from sampling the predicted mean.

3.1.3. Markov chain Montecarlo (MCMC)

MCMC is a set of algorithms for sampling from a probability dis-
tribution. The objective is to approximate the unknown distribution of
weights of a neural network corresponding to the posterior probability
p(w). The intuition behind MCMC is that a stationary Markov Chain
can construct a different but known distribution f(x), such that p(w)
can be sampled from f(x), where [S, .S;] is the burn-in initial sequence
of the Markov Chain and [S,,;,S,] is the final stationary sequence
of the Markov Chain for a Markov Chain of length n. Typically f(x)
is chosen as an easy or convenient distribution, such as a normal or
binomial distribution. If the chosen distribution is normal one, then the
MCMC method is called the Metropolis method. In a more generalized
definition, the sampling distribution can be a convenient distribution,
different from the normal one, and the method in this case is called
Metropolis—Hastings [109,112].

He and Chandra [48] apply this method to the prediction of multi-
step prices in the stock market (3M, China Spacesat Company Limited,
Common Wealth Bank of Australia and Daimler AG). A vector of
historical closing prices [x,...,x,] is used to predict the next closing
prices [x,.,....,x,]. This approach is called technical analysis, since it
only takes into account the history of prices and not major economic
events or investor sentiment. The model used by the authors utilizes
a neural network architecture with five output neurons, one for each
price step. Uncertainty in the prediction is managed by running the
model 30 times, each time with a different weight initialization. To
quantify the uncertainty, the RMSE is calculated from the sample of
size 30, and also the 95% confidence interval.

A particular use case of MCMC is that of Back et al. [66] to predict
open, close, high and low prices in 78 futures markets. They treat
not only the model weights as probabilistic variables but also other
hyperparameters such as the number of features, hidden dimensions,
dropout rate, epochs, and activation function. The authors compared
MCMC with variational inference and dropout. It is concluded that
MCMC, unlike the other two methods, simultaneously offers regu-
larization and generates predictive uncertainties associated with the
prediction error. These uncertainties contributed to improving a trading
strategy. However, this method does not fully converge to the desired
true posterior distribution, so more research is needed on this aspect.

3.1.4. Variational inference (VI)

MCMC methods are effective if the size of datasets is moderate
since they do not scale well. For large datasets, Variational Inference
(VD) is preferred [113]. Instead of sampling from the exact posterior
distribution, VI uses optimization to find the best performer of a family
Q of approximate densities, each of which attempts to minimize the
Kullback-Leibler (KL) divergence to the exact posterior

q"(z) = arg min K L(g(2)||p(z|x))q(2) € Q, ®
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Fig. 5. Basic architecture of an AE.

then the posterior is approximated using the best member of the family
Q, q*(-). Because the family of densities Q can be chosen, it should be
made as flexible as possible to capture p(x|z) closely, but not too com-
plex as to make optimization difficult. [114] states that any method that
uses optimization to approximate a probability density can be called
variational inference. If this rule is followed, then some other procedures
become part of the VI approach: expectation propagation [115], belief
propagation [116] or Laplace approximation.

In the article by Cocco et al. [85], two cryptocurrency series are
studied using VI: BTC/USD and ETH/USD. The authors compare the
performance of a BNN alone and an SVR + BNN with other models. In
the first case, the BNN takes the market signals (SMA, EMA, MOM, RSI
and MACD) as a feature vector to predict the price ¢ + n. In the second
case, the SVR takes the market signals to predict the market signals at
t+n, and the BNN ingests those predictions to predict the price at 7+n. n
evaluates to n = 1, n = 10, and n = 20. The posterior p(6| D) is estimated
by maximizing the ELBO through the reparameterization gradient.

3.1.5. Variational autoencoders (VAE)

Variational Bayes (VB), also called Neural Variational Inference,
is a way to optimize an approximation of the posterior probability,
which has already been stated as analytically intractable [117]. An
autoencoder (AE) is a specific type of DL model that consists of two
components: the encoder and the decoder. Fig. 5 shows the basic
structure of an AE. The goal of the encoder is to map a high-dimensional
input vector x = {x,x,,...,x,} into a low dimensional latent output
vector z = {zy, z,,...,2,} using a function f such that

z=f(x)=S,Wx+b), 9

where S, is the activation function. The parameters that define the
encoder are a m X n matrix of weights W and the bias vector b € R".

The decoder reconstructs the latent vector z back to an output
vector x' = {x/l,x’ ,...,x} using a function g such that

X =g(z) = S,(W'z+V), (10)

where S, is the activation function of the corresponding decoder. The
decoder’s parameters are defined by an n x m matrix of weights W’
and a bias vector ' € R".
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The training objective of the AE is to minimize the reconstruction
error between x and x’ [118]. In that way, a learning representation
for a high-dimensional distribution can be converted into a simpler VI
problem [119]. Given a sample space defined by a variable x and a
latent sample space given by a latent variable z, then the probability
distribution P,(x) can be written as

Po(x) = / Po(x|2)p(2). an
The lower bound of evidence is defined as

aper 108 Po(X12)] = D (4 (21001 p(x)), 12)

where g4(z|x) is the encoder, py(x|z) is the decoder, ¢ and 6 are their
respective parameters, and Dy is the Kullback-Leibler divergence.

Haq et al. [84] construct a VAE network to encode the latent
variables Z and decode the price movements y from a variable space
of time X. However, price movements here are not used as the desired
final output. Instead, they are used as an intermediate result to infer a
more valuable prediction: market signals that will help make decisions
about buying, holding, or selling stocks. The market signal module is
then used as input to an attention mechanism that allows the neural
network to focus on relevant features. The market signal extractor is
implemented as a recurrent neural network with gated recurrent unit
cells to extract information from price curves and decode the market
signal. The encoder in this case is the mean and variance of the market
signals, which are then used as input to the decoder. Following the
VAE principle, prior and posterior are fit using neural approximation
and reparameterization [117,120]. The final output is a vector of
importance-weighted targets related to what market signals should be
considered for buying and selling.

Gunduz [74] predicts Istanbul Stock Exchange stocks using an
attention-based LSTM that predicts the price rise and fall of the next
hour. In this paper, a VAE was used as a UQ method to reduce the
dimensionality of the feature vector that feeds the LSTM model. When
authors use UQ in the intermediate process to obtain a price output, as
in this case, the prediction that emerges out from the model latently
includes uncertainty, even if it is not visible in the prediction. The
VAE in this article reduces a feature vector of dimension 65 to 15.
The probabilistic approach is solved in a latent space when using VAEs
and therefore the benefit of taking uncertainty into account becomes
blurred for traders, since they cannot see the risk of trusting the
prediction.

VAEs are included in this study because they are extensively rec-
ognized UQ methods in the existing literature. However, they might
not be the most suitable UQs for financial use if a trader wants to
take risk into account. A possible breakthrough to this application
with VAEs would be to apply Montecarlo methods during the decoding
phase to sample the posterior and propagate the uncertainty from the
latent space to the prediction space. However, as for the best of our
knowledge, this approach is still untested and remains as a potential
way of future exploration.

log pg(x) =E

3.1.6. Bayesian active learning (BAL)

Active Learning (AL) methods can be understood as a mechanism
to improve the way models are trained. AL decides which data values
are most relevant and as a consequence, it can be used when there is a
large amount of data to reduce the computing time for training [121].
If we now recall the Bayesian approach, we have a large amount of
data in a probability distribution that describes the posterior to model
the uncertainty of the weights. Nevertheless, not all data points within
the distribution provide the most information. Therefore, we can let the
AL mechanism decide which points the model has the most uncertainty
and pick them. Then, an oracle (as the standard literature calls it)
provides the label to the chosen and most uncertain data points [122].
In our finance case, since it is a regression problem, the labels are
numbers. Also in a buy/sell approach, the regression becomes a classi-
fication problem where the labels are buy, sell or hold. As we will see in
the following sections, to the best of our knowledge, no article has yet
applied BAL to a financial problem like the one defined in this study.
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3.1.7. Bayes by backprop (BBB)

Blundell first proposed BBB in his paper Weight uncertainty in neural
networks [123]. The idea behind it lies again in the approximation of
the posterior distribution previously defined in Eq. (6). Once again we
use KL divergence in Eq. (8), but we experience another intractability
given by the integral

qp(w| D)

w,
p(w|D)
which leads us to the ELBO (recall Eq. (12)). Taking advantage of
Blundell’s first proposition that claims that "under certain conditions,
the derivative of an expectation can be expressed as the expectation of a
derivative", we generalize the Gaussian reparameterization trick [124].
To turn intractability into something tractable, we follow the steps

13)

K Ligy(w| D) | puo| D)] = / 4o(w] D)log

sample from e ~ N(0, 1) a14)
and set O as
O=w=p+o-¢ 1s)

where y is the mean and ¢ is the standard deviation of the Gaussian
distribution.

Finally, one can calculate the unbiased MC-gradients w.r.t 4 and o
for the expected loss and optimize the variational parameters according
to

200 | 00
==+

Ap = —, 16

M= on (16)
00 ¢ 00

Ao = — — + —. 17

° Jwo do an

Although this technique has been used as a way to quantify un-
certainty, at the time of writing this paper, and to our knowledge, no
author has applied the technique to financial time series forecasting.

3.1.8. Deep Gaussian processes (DGP)

Uncertainty in DL can be expressed as a function of the existence of
infinite possible models that explain an observed data pattern. When
defining BNN in Section 3.1.1, it has been said that the uncertainty
can be modeled around a series of neural network weights w through
the prior p(w) to arrive at a definition of the posterior p(y|w). That
Bayesian perspective implies that a constraint is applied on the infinite
parameters w that a neural network can take to explain the observed
data, leading to Eq. (6). Let us consider another approach to defining
a Gaussian process [125]. For simplicity, consider a linear regression

F@=wex) = f(x)+e, 18)
where ¢ is white noise and ¢ are basis functions defining f
o(x) = (@ (%), ..., 0 p). 19)

In this simple financial regression with white noise, the observed
prices are defined as a Gaussian distribution:

pOlw, X, 1) = N(pw, A1), (20)
where ¢ is defined as

@1(xy) @1(xp)

¢ = ¢x) = 2D

@p(x) @p(xp)

Instead of defining the prior p(w) = N'(0,S) as a Gaussian with 0
mean and covariance .S, let us define a latent function f = ¢w such that

p(f) = N(0,K) (22)
is Gaussian and

K = cou(f) = Elpuww’ ¢"] = pS¢. (23)
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Instead of defining the group of basis functions ¢, one can choose a
K = k(-,-) such that ¢(-) is infinite dimensional. In this case, f can be
defined as a Gaussian Process (GP):

f(x) ~ GP(m(x), k(x, x")Vx, x', (24)

where m(x) is the mean of f

m(x) = E[f(x)], (25)
and k(x, x") is a kernel function
k(x,x") = E[(f(x) = mG)(f (x") = m(x"))]. (26)

For example, k can be chosen to be defined as follows (Gaussian
kernel) to make ¢ infinite dimensional:

/12
_lx=xil

k(x,x'y=e 22 . (27)

The DGP method is used in [55] to predict 95% confidence intervals
of the Nikei 225 Index and the Hang Seng Index. The radial basis is at
the core of the kernel function and its width ranges from 0.01 to 10000.
In this case, DGP is applied as a module added at the end of a point
prediction (driven by a recurrent neural network). The DGP ingests the
point prediction and the confidence interval for training is calculated
via MW Pys and M Cys.

3.1.9. Laplace approximations (LA)

The Laplace approximation uses the first-order Taylor series to fit a
Gaussian distribution around the Maximum A Posteriori (MAP) as the
center, defined as 0*, to approximate the posterior distribution

POID) ~ p(O")expl 50— 0" 28)

To the best of our knowledge, as of writing this survey, no record
has applied the Laplace approximation to financial time series predic-
tion.

3.1.10. Deep ensembles (DE)

Deep ensembles can be of two kinds. The first is to retrain the
same DL model multiple times with different initial conditions and then
take the average of all those diverse behaviors [107]. These are called
boosting methods and are adjusted sequentially. The second type of DE
is called randomization-based because it uses decision trees, as is the
case with random forests. As a result of both approaches, one has a
committee of models that hopefully focuses on different basins of the
true posterior representing the entire distribution by sampling. As the
number of samples increases, the group of models collapses into a single
model [126].

In other cases, like in the article [10], the models included in
the ensemble do not share the same architecture. The ensemble is
composed of MLP, LSTM, GPR, Lasso and BILSTM models. They are
applied to the prediction of daily and weekly crude oil price. The
uncertainty is calculated as a combination of an upper and lower bound
for both upper and daily crude oil prices at confidence levels of 90%
and 99%. To train each of the ensemble models, the article analyzes
the density distribution stable (SDF), among others. With that statistical
data, the upper and lower bounds in crude oil price are calculated as

[Ly, U =T — SDF,jy\/var(e), T + SDF, ,\/var(e)], 29)

where T is the predicted value and var(e) is the variance of the fitting
error.

3.1.11. Conclusions on the type of model
Conclusions on the analysis by model type are defined as follows:

» Applying directly the Bayesian regularization to shape the pos-
terior distribution in BNNs can be computationally expensive.
Consequently, some methods such as VI, MC or MCMC arise to
sample the posterior instead.
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» Very few authors consider relating financial risk to predicted
confidence intervals, as they are more interested in improving
accuracy.

Some authors, however, consider this perspective, extending the
concept of predictive uncertainty to annual earnings and adding
a risk consideration.

Some methods such as MC or VI allow for the representation of
predictive uncertainty, for example by obtaining the mean and
variance and converting them into confidence intervals. Some
other methods, such as VAE, use UQ in a latent space, which is not
visible at the end of the prediction unless a different technique is
applied. A method to take the uncertainty from the latent space in
which a VAE operates and translate it into predictive uncertainty
remains unexplored.

3.2. Analysis by financial asset

The type of asset indicates which category the asset belongs to:
stocks, Forex or cryptocurrencies. A stock is also called equity and
represents a small part of ownership in a company. Forex is the short
name for Foreign Exchange Market, where investors trade currencies.
A similar concept is that of cryptocurrency, with the difference that
these are virtual currencies secured by cryptography and impossible to
counterfeit.

3.2.1. Cryptomarket

The cryptocurrency markets are known by its high intrinsic volatil-
ity and high dependence on social sentiment [47,49] (50% of authors
in this study predicting cryptocurrencies are adding twitter sentiment
or google trends in the feature vector). Also, due to the small market
size, big traders known as crypto whales can influence the direction the
market takes. In such scenario, where trends are difficult to identify,
and the uncertainty is high, one could expect that UQ acquires high
relevance. Also in such volatile markets there is an opportunity to
analyze the paper of uncertainty generated by data, compared to the
one coming from the model, which is disentangling epistemic and
aleatoric uncertainties. However, authors investigating the prediction
of cryptocurrencies do not make UQ the central investigation matter of
their models. Although Jang et al. [47] use a BNN their motivation is
to reduce the occurrence of overfitting. They apply confidence intervals
to quantify the uncertainty, but they do not mention what the coverage
probability is, how it was calculated nor do they make a deeper analysis
of uncertainty in cryptomarkets.

Livieris et al. [89] use a RNN with one hidden 12-neuron layer
to predict the next day price for Bitcoin, Litecoin, Ripple, Ethereum,
and CCi30 index. They study the model behavior with a daily close
price input window of 7, 14 and 21. The model implements dropout
at training and prediction time, which is the equivalent of sampling
from the posterior distribution, as we have seen already. Given that
they have a posterior approximation, they did have the opportunity
to add confidence intervals, although they prefer to just calculate the
distribution’s mean only. As many other authors, they are interested
in the predicted mean performance and reducing overfitting, instead
of exploiting the full capabilities of the uncertainty quantification
technique they use: dropout.

In an article written by Kalariya et al. [88], they propose a technique
to predict next prices for Bitcoin, Litecoin and Ethereum. The financial
features used to train the algorithm include Blockchain operations,
open and highest day price, and sentiments like Tweets and Google
Trends. It is based on perturbing the activation function during training
and prediction, using a factor y that moves the learned predicted price
from its mean and that is multiplied by the magnitude of the price
movement in the current day. With this mechanism, the authors are
sampling a posterior. Interestingly, they use the predicted sample price,
instead of the distribution mean at prediction time. They are interested

10
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on evaluating investment returns, instead of price prediction uncer-
tainty, so they build a sequential algorithm to trade those cryptocurren-
cies. No probabilistic analysis or conclusions are thrown in this case.

Lin and Blum [26] are aware of the need for uncertainty quantifi-
cation approach to measure the risk related to investments on seven
cryptocurrencies. They build a 3-stage algorithm to predict hourly price
changes, model short-term market patterns and make portfolio invest-
ment decisions. The first stage uses a recurrent Bayesian NN (BRNN),
the second one uses a GAN and the third one uses a reinforcement
model. The BNN ingests 60 financial technical indicators including
open, close, high and low hourly historical data and predicts prices
eight hours ahead. Again, the authors predicting cryptocurrencies seem
not to be attracted to the idea of exploiting the power of a Bayesian neu-
ral network. They only consider means, but not confidence intervals, to
quantify uncertainty. Those output prices are provided to the GAN as
inputs. The GAN is built in an uncommon and interesting manner, in
which the generator builds price patterns (simulated historical prices)
and the discriminator chose the most common one. This approach is
equivalent to choose the “mean” pattern from a sample of patterns. In
this article, the sample is not composed of single prices, but instead it
is made of price vectors, each one representing a pattern.

3.2.2. Foreign exchange market (Forex)

The article written by Pandey et al. [58] investigates the use of
two UQ methods applied to the prediction of Forex, more precisely
EUR/USD, GBP/USD and JPY/USD. They build an ensemble of models,
one of which is a Bayesian NN. The approach taken for choosing the
feature vector is to add fundamental and technical analysis, but not
sentiment. The output of the BNN is the expectation (mean) of the
exchange rate, with no variance. The output of the ensemble including
the BNN is a weighted exchange rate average. The authors choose
to average the outputs, however, they do not measure the prediction
variability coming out from the ensemble of models.

Hassanniakalager et al. [62] are using a BNN on open, close, high
and low EUR/USD, GBP/USD and JPY/USD Forex daily prices to pre-
dict the mean and variance of the next day. They do not use the
variance to make buy/hold/sell decisions. Instead they use the pre-
dicted mean as an input for a series of trading strategies (Moving
Averages, Support and Resistance, Channel Breakout and others). An
interesting further analysis as a potential continuation of this work
would be to study how the sparsity in the variance can modify the
trading behavior of the trading module, for example making decisions
on how much risk it is willing to accept when opening a new trading
position.

A particularly interesting approach is that of Kim [63], who uses
a Variational Autoencoder on Forex to smooth the south Korean Won
KRN/USD. The author is making an important assumption: the smoothed
curve is the real curve without the intrinsic data noise, or at least
an approximated curve to the real one. In other words, the aleatoric
uncertainty is deleted before a deep neural network ensemble is fed.
If the smoothed curve can be considered as the approximated real
curve, the estimated uncertainty at the exit after the prediction module
approximately corresponds to the epistemic uncertainty. This method
is considered as one of the many existing ones to disentangle both types
of uncertainty.

3.2.3. Stock market

Stocks is the biggest portion of the analyzed markets. None of
the authors exploring this market is explicitly mentioning a particular
behavior of it, different to the rest of market types, related to the
quantification of uncertainty. All articles in the study, except those
mentioned in the above sections for Forex and cyrptocurrencies, are
working with stocks. In order not to repeat records, those other records
will be analyzed in the rest of sections.
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3.2.4. Conclusions on financial asset
As a summary of the analysis based on the financial market we can
draw the following conclusions:

» The cryptocurrency market is characterized by comparatively
high volatility. Despite this, no article analyzes how aleatoric un-
certainty is affecting the results, because no author disentangles
both types of uncertainty.

Authors who predict cryptocurrencies are the most prone to
consider sentiment analysis (50%), and those who predict Forex
markets are the least likely (none of them). Among the authors
studied who focus on stocks, 13% apply sentiment analysis. This
may be because Forex markets are affected by long-term vari-
ables, such as political decisions, long-term traders, and big size
of markets. On the other hand, cryptocurrencies are made out of
many small traders that can be very easily affected by breaking
news. How aleatoric uncertainty can be modeled based on these
markets needs further exploration, as no author goes into depth
on that topic.

Many authors who perform predictions on stock market disentan-
gle UQ into epistemic and aleatoric uncertainties. This evidence
is greatly affected by the much larger number of records focused
on this market, compared to Forex or cryptomarkets.

No author explores how different markets react to UQ and makes
comparisons between them. This remains a potential field to
explore in the future.

3.3. Analysis by financial input

The analysis method comprises the fundamental, technical and sen-
timent subcategories. Investors perform fundamental analysis (FA) if
they only analyze economic and financial factors to estimate the value
of an asset. Examples of fundamental factors are company balance
sheets, gross domestic product, unemployment rate, politics or com-
pany management style. Technical analysis (TA) means estimating the
future value of an asset only by looking at past values or patterns of
values. Sentiment analysis (SA) focuses on extracting information from
investor’s will, expressed through text such as news, articles, social
networks and blogs. With Natural Language Processing (NLP), SA is
gaining popularity and is being used more frequently in investing. FA,
TA and SA can be used alone or in combination.

3.3.1. Fundamental analysis

In the article by Pandey et al. [58], fundamental data is added
into the feature vector. The inputs include interest rate, inflation rate,
country account deficits, public debts and short and long term moving
average of prices. It makes sense to add the fundamental inputs, given
that Forex markets are highly dependent on macroeconomic variables.
However, although the implemented predictor is a deep ensemble, the
authors choose to get a weighted average, but no confidence intervals
to quantify the uncertainty. The “committee machine” applies deter-
ministic weights to the weighted average: although they are selected
from a probability method, but they do not specify which one or how
it was performed. A potential field to explore this model in the future
is to let the weights of each model as a Gaussian distribution in a way
such as to have a sum of distributions with the objective to quantify
the uncertainty.

Chauhan et al. [76] proposed an investment strategy based on
predicting future fundamentals, more precisely the EBIT, as opposed
to most of the articles which make final price predictions. Financial
reports are a type of data more difficult to acquire, compare to prices
and sometimes those are only available every year or twice a year.
Financial reports depend directly on the performance of the company,
instead on investors desire to buy or sell stocks. The fact that the EBIT
depends on how well the company is effectively performing makes the
EBIT to have a larger signal to noise ratio, compared to final price. The
authors use dropout at prediction time to build a posterior distribution
around the expected EBIT value.
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3.3.2. Sentiment analysis

Hajek and Bohacova [97] quantified the uncertainty of sentiments
when applying the term-weighting scheme tf-idf to the word type
frequency in financial 10-K filing forms and feed a dropout regularized
NN with those distributions. The output of the NN is a distribution
characterized by the average and standard deviation sampled from run-
ning 10-fold cross-validation experiments. The authors use the model
accuracy mean and standard deviation to compare the models between
them. This article uses the UQ to make decisions over the model
adequateness to the predictions purpose. Surprisingly, although some
authors calculate confidence intervals or at least standard deviations
in the predicted values, not many use the uncertainty they quantify to
make financial decisions.

Another interesting point of view is proposed in the article by Xing
et al. [83]. The literature generally applies a UQ perspective to a
technical approach (predictive uncertainty in price data). This article
analyzes the sentiment volatility instead. Authors extend a Variational
Recurrent NN (VRNN) applied to stock return and volatility forecasting
with the integration of social media sentiments. The goal is to learn the
joint probability interactions between volatility returns and positive-
negative sentiments in social media in a bidirectional way (new prices
are changing sentiment and sentiments are updating prices). The dif-
ference of the proposed model with a VRNN is that the latent variables
z are no longer autoregressive Gaussian distributions, but instead takes
into consideration past both sentiments and price history. The final
model is used for next single step prediction and outperforms state of
the art VRNN and neural stochastic volatility model.

In the article by Jay et al. [49], tweet volume and Google Trends
spikes are incorporated into a feature vector, together with Blockchain
data and technical analysis coming from past Bitcoin History. They
process together this input data to feed MLP and LSTM models. Each
neuron implements a mechanism similar to the one in Kalariya [88]
that stochastically moves the activation value form its current value.
This is equivalent to estimating the posterior mean, if the stochastic
mechanism can be approximated to a Gaussian distribution. Although
they are indeed sampling the approximate posterior, they however do
not include a way to recover the standard deviation from it and thus
the uncertainty quantification is lost at prediction time.

Ray et al. [50] employed a Bayesian Structural Time (BST) series
model in which Twitter news from Governments, Business dailies, news
agencies and financial portals are included. Given a feature vector
X of regressors, two elements (positive and negative) are considered
in order to represent sentiments. To catch non-linear trends in the
rise and fall of the stock market, they added a LSTM deep learning
model fed by the residuals of the BST. The posterior distribution is
calculated via Bayes Theorem and the posterior is estimated using
MCMC. Although the authors are able to quantify uncertainty and they
represent confidence intervals, in the final validation using MAPE, they
only use the predicted mean value.

3.3.3. Technical analysis
The rest of articles in this study are based on technical analysis. For
this reason, they will be analyzed in the rest of sections.

3.3.4. Conclusions on financial input
The following points can be stated to summarize the analysis by
financial input:

» Most authors perform a technical analysis, while very few do
fundamental or sentiment analysis.

» Those who include fundamental or sentiment along with technical
analysis include those parameters together in the feature vector.

+ Only Hajek [97] analyzes the aleatoric uncertainty from the
sentiment analysis.

» No author analyzes aleatoric uncertainty from a fundamental
analysis perspective.

11
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3.4. Analysis by prediction space

The prediction space is the shape and characteristics of the output
variable of the DL technique. If the output variable is just a value, then
the space is a single-step prediction, and a multi-step prediction if the
output variable is a vector of values. Furthermore, the prediction space
can be positive, negative and neutral if the predictor’s output considers
a rise, fall or stay in the price. An even more interesting space from a
UQ perspective are confidence intervals, associated with the probability
of the predictor variable is within the predicted range.

3.4.1. Single value multi-step ahead

Primasiwi et al. [51] acquire open, close, high and low data from
the Indonesian Stock Exchange to feed a NARX and a NN model
and they use Bayesian regularization with the aim to have improved
generalization abilities, but they do not exploit the UQ power of it.
Instead of predicting the next day price, they predict the future 5th
day, with no uncertainty associated to it.

3.4.2. Multi-value multi-step-ahead

It is rare in the investigated literature that an author applies a multi-
step-ahead strategy and uncertainty quantification in the same study.
The author Alghamdi et al. [72] use both strategies but separated. They
run 1000 times a temporal encoder—decoder that uses a hybrid CNN-
LSTM using MC dropout during inference time to predict the next single
step close price on Apple and Amazon stocks. To quantify uncertainty
they use 90% and 95% confidence intervals extracted from the sample
of size 1000. Unfortunately the authors do not estimate uncertainty in
the multi-step approach.

In other study made by Dixon [86], they develop a similar strat-
egy, with Bayesian RNN and variational inference to predict 1 to 5
ahead close prices from IBM stocks. In this case, opposed to Alghamdi,
they apply UQ to the multi-step prediction, including the close price
sequence inside 90% and 95% coverage probabilities. This is the only
study combining both multi-step as prediction space and uncertainty
quantification together.

3.4.3. Trend (up/down/stay)

Maeda et al. [57] proposed a UQ-based framework to trade Tokyo
Stock Exchange in which the explanatory variable is the predicted next
price, and the objective variable is an up, down or stay trend related
to that price. A dropout convolutional NN is used to extract patterns
form five Stock price curves from TYO (Tokyo Index) and predict the
next stock price. The dropout is performed during backpropagation but
also during the forward pass to infer the posterior price distribution.
100 predictions predict the shape of the same sample and the objective
variable is calculated as I,oq = argmax; Y, y;, where /.4 is the
predicted trend. The reliability of such method is low, and thus the
authors propose to add UQ to the framework. Adding a threshold of
probability dramatically improves the precision score, and thus the pre-
diction reliability. The conclusion then is that considering uncertainty
make stock prediction more reliable and precise.

In a later work by the same authors [13] they used CNN to extract
Orderbook features as sharp ratio distributions and a LSTM to extract
price features running in parallel. Both outputs are merged in a feature
vector feeding a sequential set of sparse variational layers. The archi-
tecture gives a vector of buy/hold/sell based on a score belonging to
the interval [—1, 1]. Values close to —1 means that the price will fall
next and a sell order is necessary. The opposite is valid for 1 and a buy
order. If the score is near 0, then a hold order is performed. The output
from the final layer is achieved by taking the mean value of the output
distribution.

Magris et al. [19] employed a Bayesian version of a Bilinear NN to
predict up, down or stay trends in tick-by-tick mid price of 5 stocks in
the NASDAQ Stock Exchange, extracted from Limit-Order Book (LOB).
Instead of using SGD (Stochastic Gradient Descent), RMSProp, Adam
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or AdaGrad, the authors use Variational Online Gauss-Newton (VOGN)
to optimize the best weight distributions, and then they use the mean
of them to get the predicted buy/hold/sell classes. The uncertainty
is predicted performing 50 forward passes to estimate the predictive
posterior. The interpretation of the results is complex, because three
(non Gaussian) probability distributions, corresponding to each one of
the classes, are overlapped. However, this representation of the results
is much richer than only having a single point predicted class, with no
information of its related uncertainty (and the related information of
not chosen classes).

The focus in the article by Zhang et al. [61] is put on showcasing
how uncertainty can be beneficial to predict buy/hold/sell signals on
5 stocks from the London Stock Exchange. One of the strategies they
evaluate is called Bayesian trading, and is based on the idea of predictive
entropy H = — },(p; - log(p;)). The study uses the MC technique with a
sample of size 100 to estimate the posterior probability of each buy,
hold or sell order, and p; is a vector with the three probabilities. They
enter a trade if max(p,) > « and exit the trade if H < §,. The uncertainty
is used to upsize the position to 1.5xu if H < #;, downsize the position
to 0.5xu if H > p, or keep the original size y if g, < H < p4,.
« is a probability threshold above which the trade is done; f, and
B, are entropy thresholds to magnify or decrease the trade position.
Thresholds are decided by grid search.

Another Bayesian approach to predict price direction on Apple,
Alphabet, Facebook, Microsoft and AMZN stocks is explored by Lind
et al. [80]. They sample 1000 times the prediction of a MLP to get
the probability distribution of an uptrend and another 1000 for a
downtrend to build a histogram that they after approximate to a
Gaussian.

Hou X. et al. [75] proposed a VAE model to learn latent fundamental
features from firms in the stock market and then a hybrid CNN-
LSTM model to build the relationships among firms as a graph. They
name their model as spatial-temporal to include the distances of edges
between two nodes in a graph and also to account for sequence of
events happening at the same time or with a delay between two related
stocks. To include enough financial data, they operate in the range
of minute trading. The prediction problem is hybrid, regression and
classification, accounting for two values: the next minute price and a
signal of the next price going up or down as a label in the integer range
[0,1]. The UQ in this article is applied to the distance between two
stocks using a Variational Autoencoder. Although they apply the fully
Bayesian approach, finally they only stay with the mean provided by
the model and they reject to keep uncertainty measures like standard
deviation. A further probabilistic analysis can be potentially made in
the future if an author accounts for uncertainty in the graph edge
length, which could be propagated to a probabilistic approach to the
rise and fall in prices.

3.4.4. Trading order (buy/hold/sell)

Skabar [14] named the trend prediction as direction-of-change fore-
casting. That name relates to buy/hold/sell signals in the same way as
Magris et al. and the other authors predicting trends. In this article,
the author predicts the trend of daily close values of the Australian All
Ordinaries financial index. Related to the problem of results interpre-
tation described with Magris, Skabar states that using the Metropolis
algorithm for Montecarlo integration leads to many candidates being
unwittingly rejected in the sampling chain. This is due to strong corre-
lations in the posterior probability distribution of weights when there
is a decrease in p(w/D). This effect is relaxed in the article by using
the Hybrid Montecarlo approach with Gibbs sampling. The author runs
1000 prediction iterations to shape the posterior and then chooses 100
among them to get the probability of an upward trend in the index.
Finally the probabilities of an upward trend where averaged over the
100 samples. The author’s conclusion on using Bayesian methods is
that they present a superior performance due to its integrative nature.
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Each individual weight vector has a bias, but the integration over them
reduces the bias.

Yang et al. [105] used deep ensembles in a novel way from 30 Dow
Jones stocks. Instead of sampling price predictions from a group of
models (which can be defined as parallel sampling), they implement an
inception algorithm that chooses the best performer of the ensemble,
which is equivalent to sequential sampling. The prediction is presented
as a reinforced classification algorithm whose actions (buy/hold/sell)
are rewarded or penalized based on the gains or losses it generates. This
way of dealing with uncertainty can be seen as an adaptive alternative
to deep ensembles, in which the posterior distribution is formed by a
group of sample generators, but only the best performer is used each
time.

3.4.5. Confidence interval

Wang et al. published a second work [56] similar to the one
analyzed above [55], in which a deep ensemble is sampled to predict
prices from stock market (S&P 500, DJI and Nasdaq). The difference
is that in this article they include a feature extraction module using
Variational Mode Decomposition (VMD) techniques. They implement a
95% confidence interval extracted after applying a Gaussian Process to
the output of an LSTM point predictor module.

A different perspective on predicting confidence intervals is studied
by Wang B. et al. [11]. They predict a sequence of ¢ + 1 future oil
prices using an autoencoder. The model implicitly learns the Brent oil
price probability distribution without explicitly working with it. They
state that aleatoric oil price do not follow a Gaussian distribution,
and their model is consistent with non-Gaussian noise. The prediction
interval learnt is inspired from another article by Pearce et al. [127].
During testing, every Prediction Interval Coverage Probability (PICP)
was greater than 0.9.

The conclusions drawn from the perspective of prediction space
analysis after reviewing the literature can be summarized as follows:

+ Confidence intervals are the natural way of quantifying the un-
certainty. The typical coverage probability that the authors are
considering is 90% and 95%. A potential field of study that no
authors have explored is what are the possibilities of having
a down or up trend inside a coverage probability interval. If
the interval size is so big as to allow for the next price to be
above or below the current price, then the confidence interval is
not providing a useful representation. A potential future field of
study would be to find coverage probabilities that maximize the
certainty about the trend, and not only the certainty about the
next (mean) price.

Predicting up/down/stay trends is equivalent to predicting
buy/sell/hold trading orders. They are both related: a predicted
up trend is a signal to buy the asset, a predicted down trend is
a signal to sell the asset, and stay trends means that no action
needs to be taken (hold). The difference is that authors who
predict trends work with final price explanatory variables, while
authors who work with trade orders predict investment returns.
The second form is richer from a financial point of view because
the explanatory variable to be maximized is the liquidity of the
annual account, which is a high-order KPI in financial companies,
understandable by all members. Both perspectives can benefit
from UQ, although the second allows organizations to directly
establish best and worst case scenarios.

Only one article is combining multi-step prediction with uncer-
tainty quantification. From a financial point of view, a multi-step
prediction space combined with a coverage probability is the
richer representation of all. It combines the risk estimation of
the confidence intervals with a trend prediction. This view is
especially valuable for trader, who look not only for the next
price, but for a trend to start their trading opening.

13

Neurocomputing 576 (2024) 127339

» The farther we predict a price in the future, the more unsure
the model is about its value. No authors have deepen into the
variation of UQ related to price predictions beyond single-step.
This topic remains as a potential field of study related to UQ when
a multi-step perspective is adopted.

3.5. Analysis by uncertainty type

The category most associated with the definition of UQ is epis-
temic/aleatoric. The uncertainty related to the DL model is called epis-
temic, that is, the variability in the data associated with the many
different configurations that a model could take. Statistically speaking
and applied to the field of ML (Machine Learning), epistemic uncer-
tainty is the variability of weight distributions or activation functions in
a neural network. From a practical perspective, a ML model has several
hyperparameters that define the model itself. One could choose a DL
model with 3, 4 or 10 hidden layers for the same data. Furthermore, the
width of each layer can vary, or even the matrix of weights in a neural
network can take an infinity number of different configurations. All this
uncertainty makes the output variable more or less accurate. Epistemic
uncertainty can be adjusted to reduce (i.e., narrow the probability
distribution of prices) if a better model can be found. In contrast,
aleatoric uncertainty is related to the intrinsic variability of noise in
the data and is irreducible, meaning that financial data always comes
with noise. And by default, the noise level in asset price is high. This
definition of randomness in the data expresses the concept of a latent
price curve that the model can never know, except through the noise
that dirties its pure shape. Interestingly, the idea of a pure price pattern
that will never be known directly contradicts the Efficient Market
theory.

3.5.1. Aleatoric uncertainty

Following the definition of Valdenegro [128], based on the pre-
dictive uncertainty of the model, both epistemic and aleatoric uncer-
tainties can be defined. Considering variational or ensemble model
approaches in which the model generates multiple samples, each de-
fined by the mean and variance, epistemic uncertainty is the variance of
the means and aleatoric uncertainty is the mean of the variances. This
definition implies that the model should learn the mean and variance
from a price dataset. This perspective is adopted in articles such as
that of Chauhan et al. [76], as we have seen previously. However, the
methodology to meet the mean and variance labels is rarely found in
the literature studied in this survey. The rest of the authors quantify
only epistemic uncertainty, leaving aside aleatoric uncertainty.

Wilkins et al. [40] used Mixture Density Networks (MDN) to explic-
itly quantify stock market uncertainty for Fox, Warner Bros, Netflix,
Disney, Amazon, and Comcast. They state that their model is capable
of predicting epistemic and aleatoric uncertainty at the same time,
by learning the mean and standard deviation from the closing price
datasets. However, they do not explain how they do it nor do they show
a disentanglement between both uncertainties. It is unknown if they use
an approach similar to Valdenegro [128].

Huang et al. [12] implemented a Bayes-LSTM model run » times on
different dataset samples drawn from two stocks in the Chinese Stock
Market: Shanghai Index and Shenzen Index. They acquire six variables
of daily features: opening, closing, high and low prices, volume and
value. They predict the value of the next day’s closing price. This article
implements a special case of uncertainty quantification and different
from the other methods in the survey. The initial price dataset starts
in 1990 and ends in 2016 with daily prices. The dataset is divided into
an arbitrary number of samples. The same LSTM model is trained with
each different sample to have as many models as samples. They use an
optimization algorithm to find the best number of samples, which is the
number of samples that maximizes the set of accuracies in each model.
One can think of that model as an ensemble of different models with
different prediction capabilities. However, in this case, the authors are
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only interested in the optimal value and not in a confidence interval.
This is an interesting case of aleatoric uncertainty analysis because the
history window used for prediction is dynamic and depends on the
variance and changing periods of the very volatile stock market.

In the work of Shen et al. [77], the authors state that most classi-
fication and regression tasks focus on improving performance, but UQ
studies have not made much progress. Furthermore, among those stud-
ies that apply a UQ perspective, most consider only model uncertainty,
but very few consider stochasticity caused by data noise. In fact one of
the hardest questions to ask in financial trading is what is noise?. Traders
ignore data from the price curve because they consider irrelevant to
define what a price trend is. The choice of distinguishing between noise,
which should be ignored, and trends, which should prompt action, is
subjective and varies based on the individual interpreting the data. The
article attempts to solve this problem by defining a neural network that
classifies each price time window as clean or noisy using a variable
o € [0,1]. They then build a second neural network that predicts the
next day’s price from stocks in the NYSE. The second is trained with a
loss function that depends on the amount of noise decided by the first.
They extract opening, closing, high and low prices and trading volume
for each stock and use technical indicators such as momentum and
volatility as a feature vector. The model takes uncertainty into account
by ingesting the mean and standard deviation and also by predicting a
distribution. The authors use the model and measure the effectiveness
through the annual cumulative returns, depending on the threshold
set to o. The annual profit increases by 5% compared to a framework
without noise consideration.

In the article by Abrishami et al. [101], a Variational Autoencoder
was used to denoise the original data features, composed of closing,
opening, high, low prices and volume. The extracted data is consid-
ered high-frequency trading as prices are extracted every minute. The
framework is able to predict 7-minute closing prices several steps ahead
from 12 Nasdaq stock prices. However, the paper does not perform an
explicit UQ analysis, since the mean and variance of the VAE remain
in the latent space Z. Inherently, a model that can eliminate noise
from actual price data and reveal the underlying true curve quantifies
aleatoric noise by the same amount of noise it eliminates. Unfortu-
nately, the authors do not perform a deeper probabilistic analysis after
denoising to quantify the predictive uncertainty. Roy et al. take a
similar approach in a later work [99], clearly influenced by Abrishami’s
team. The difference between both records is that the second takes into
account top 100 Nasdaq stocks and they extend the experiment with
different input and output window sizes.

The opposite strategy was implemented in the paper by Li et al. [100].

They ingest raw price data from S&P 500 (open, close, high, low and
volume) and add various levels of noise to make a VAE more robust
against noise. As in the case of Roy et al. Li. et al. do not look further
into the probabilistic perspective of the predictive uncertainty related
to the additional noise they are adding to the input data.
Montesdeoca et al. [102] proposed a framework in which a VAE
is fed by 16 exogenous financial variables related to the FTSE100.
The feature vector contains UK macroeconomic factors, other stock
market indices and Forex rates and is defined by a matrix V' € R™"
with m dimensions and »n data points. The goal is to approximate that
space to a richer latent space that admits exogenous market factors
such that V ~ W,H, + W,H,, where W, € R™" is a matrix with
constant elements produced from some external data source. In this
case, the external source is a second VAE fed by input data noise.
W, e R™"1 H, € R"*" and H, € R"*" are matrices that the first VAE
needs to find. The dimensions r; and r, are the selected subspace data
size and the exogenous size respectively. In summary, the authors treat
the real price curve as one of many possibilities that could be found in
a financial scenario. This means that the real curve is treated as just
a sample of a probability distribution predicted by the model. This is
equivalent to estimating noise directly from the input data, or in other
words, quantifying the uncertainty of the data, which can be richer that
estimating the predictive uncertainty of the data (aleatoric).
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3.5.2. Epistemic uncertainty

The rest of the records not mentioned in the previous subsection
focus on epistemic uncertainty and we will not review them again in
this subsection.

3.5.3. Conclusions on the uncertainty type analysis

» Most authors focus their research only on epistemic uncertainty
and not on aleatoric uncertainty or both.
No records have been found among the records studied that
predict epistemic uncertainty as a variance of means or aleatoric
uncertainty as a mean of variances, as described by Valdene-
gro [128].
In general, authors use predictive uncertainty to improve accu-
racy metrics, but very few authors perform an in-depth analysis
on the financial implications of predictive uncertainty. For ex-
ample, how should an investor interpret a confidence interval?
Ideally, the actual price will fluctuate between the confidence
interval with a probability similar to the coverage probability.
Sometimes it will be close to the upper bound sometimes close to
the lower bound. When should an investor place an order? What
are the implications of placing an order based on position within
the interval?
Also, derived from the previous point, what is the maximum level
of uncertainty that an investor should accept to place or not to
place an order and what are the implications for the financing of
an investment from a probabilistic point of view?
Another unexplored area is what are the implications of placing
orders making a difference between epistemic and aleatoric un-
certainties? Can we trust the prediction and place an order if one
of the uncertainties is high and the other is low? Nothing is said
about the threshold of acceptable uncertainty during investment.
All of these questions could potentially be explored in subsequent
analyses.

3.6. Discussion

This section will discuss the results related to the research questions
formulated in Section 2.

What is the state of the art related to the research in UQ for DL
applied to finance?

Table 3 lists the journals, proceedings and publishers of each one
of the records described in Table 2, corresponding to articles studying
UQ for DL applied to finance. 25 studies have been published as
proceedings coming from congresses or conferences, 42 studies have
been published in journals and finally 2 records have been published
as reports for master thesis or doctoral thesis.

As can be seen in Fig. 6, the number of publications related to UQ
applied to business economics has been growing and exploding since
2010. The peak is found in 2019, with a total of 389 publications.
Despite the explosion, it appears that the popularity of the term ap-
plied to economics has then decreased, possibly due to a migration of
research towards more popular areas such as medicine, microbiology
or infectious diseases after the global Covid-19 pandemics. This effect
has been seen in the Web of Science searching for those other topics:
the amount of research in those other areas has grown considerably
since then. In fact, the general term Uncertainty Quantification, applied
to all possible domains, continues to gain popularity and has 2578
publications in 2021 (see Fig. 1).

China, USA and India are the three countries publishing the most
papers on the subject, with 16, 12 and 10 articles, respectively. Fig. 7
shows the complete list of countries and their respective number of
publications.

There seems to be a preference for stock price prediction, as seen in
Fig. 8; this effect might also be influenced by the specific existence of
the keyword stock in the search queries.
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Table 3

List of all studies ordered by publisher, journal or conference paper.
Ref. Journal/Conference Publisher
[47] Access IEEE
[46] Transactions on neural network IEEE
[48] Plos One Public Library of science
[49] Access IEEE
[50] Transactions on computational social systems IEEE
[51] Conference ICTS 2019 IEEE
[12] Conference ICMLC 2018 Association for Computing Machinery
[52] Conference ITIAI-AAI 2019 IEEE
[53] Expert systems with applications Elsevier
[54] Arxiv Arxiv
[13] International Journal of Smart Computing and Artificial Intelligence 1IAL
[55] Cognitive Computation Springer
[56] Applied soft computing Elsevier
[571 Conference AISC 2020 Elsevier
[58] Journal of King Saud University - Computer and Information Sciences Elsevier
[59] Neural computing and applications Springer
[60] Quantitative finance Taylor and Francis Online
[61] Conference Neurips 2018 Arxiv
[62] Journal of empirical finance Elsevier
[63] SSRN Elsevier
[64] Financial Innovation Springer
[11] Neurocomputing Science Direct
[65] Journal of Risk and financial Management MDPI
[66] Plos One Public library of science
[671 Conference WCECS 2017 IAENG
[68] International Journal of Performability Engineering Totem
[69] Conference NCCS 2019 Springer
[70] Conference ISKE 2012 Springer
[71]1 Conference SCI 2018 Springer
[72] Conference IJCNN 2021 IEEEXplore
[19] Arxiv Arxiv
[14] Advances in Electrical Engineering and Computational Science Springer
[73] Academic Commons University of Columbia
[74] Financial Innovation Springer
[75] IEEE/CAA Journal of Automatica Sinica IEEEXplore
[40] Arxiv Arxiv
[76] Conference PMLR 2020 Arxiv
[77] Conference ICAI 2018 Springer
[78] Conference PMLR 2015 JMLR
[79] Repository Pontificia Universidad Catdlica de Chile
[80] Repository Uppsala Universitet
[81] Conference 56th Annual Meeting of the Association for Computational Linguistics ACL
[82] Conference ICMLA 2021 IEEEXplore
[83] Knowledge-based systems Science Direct
[84] Expert Systems with Applications Science Direct
[85] Computer science PeerJ
[26] Conference Spring Simulation 2020 IEEEXplore
[86] Technometrics TANDF
[87] International Journal of Production Research TANDF
[88] Mathematics MDPI
[89] Evolving Systems Springer
[90] Conference ICDAM Springer
[91] Conference CEC 2020 IEEEXplore
[92] Digital Signal Processing Science Direct
[93] Conference BlockSys 2022 Springer
[94] Conference EANN 2019 Springer
[95] Conference DCABES 2018 IEEEXplore
[96] Neural Computing and Applications Springer
[971 Neural Computing and Applications Springer
[98] 2018 Conference AAAI 2018 Arxiv
[99] AI Communications I0S Press
[100] Access IEEEXplore
[101] Conference ICTAI 2019 IEEEXplore
[102] Conference ISPA 2019 IEEEXplore
[103] Conference PMLR 2016 JMLR
[10] Applied Soft Computing Journal Elsevier
[104] Digital Signal Processing Elsevier
[105] Conference ICONIP 2020 Elsevier
[106] Applied Sciences MDPI
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Furthermore, one can observe in Table 2 how researchers focus
mainly on epistemic uncertainty (57 records), while only 12 are based
on aleatoric uncertainty. No records have been found that explicitly
use the combination of epistemic and aleatoric uncertainty. As sum-
marized in Fig. 9, a large portion of records (57) look for patterns
in historical data (technical analysis), seven combine technical and
sentiment analysis approaches, three use only a sentiment analysis and
two combine technical and fundamental approaches. The authors of
this survey did not find any articles that use all three methodologies
(technical, sentiment and fundamental) at the same time, and this could
inspire researchers to explore this path.

Something that could potentially and a priori be a surprise is that
most of the papers focus on a single step approach (Fig. 10), although
they use UQ methods to predict, and can take advantage of interval
prediction space representations. The authors are already taking advan-
tage of more informationally efficient models, i.e., UQ methods, rather
than frequentist ones, and have in-hand distribution of information,
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rather than a single point. One might wonder why the authors settle
for a mean value instead of using a more robust prediction space, given
that they have already calculated the space. In other words, why use
optimization methods after finding the uncertainty space? There are
possibly many answers to those questions. Firstly, some authors, as we
stated before, do not intentionally use UQ methods, but rather use it as
a way to generalize, as in the case of dropout. Another reason could be
that not many other authors use confidence intervals in prediction (only
eight), which restricts the number of records to compare their works.
In any case, it appears that interval prediction is barely explored in
financial time series and could be a potential avenue for future work.

What are the main UQ techniques in DL used so far for financial
prediction?

These have been defined in Section 3.1: Bayesian neural networks
and some associated methods for approximating the true posterior,
i.e., Montecarlo dropout or Markov chain Montecarlo or variational in-
ference. Also variational autoencoders, Bayesian active learning, Bayes
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by backprop, deep Gaussian processes, Laplace approximation or deep
ensembles. We have seen that Bayesian active learning and Bayes
by backprop are not sufficiently explored techniques and no records
of them have been found, which can be a potential field for future
research.

What financial forecasting needs are still not met at UQ in DL?

The initial hypothesis that triggered the idea of tailoring this survey
is that financial investment needs information (the most probable
future value) and quantifying the variance related to that information
to minimize risk. If the variance is wide and the probability distribution
is flat-like, then the most probable future price is not really valuable.
In this situation an investor should decide to hold operations until the
variance is low and the probability distribution is thinner. A similar
situation would be found if the predictive probability distribution is
modal, which is synonym to having peaks and valleys. The investor
would probably be confused and not know what decision to make. The
authors of this review consider that a further research is necessary to
understand the implications of the variance shape in order to relate
shapes with investment decisions and profit.

An overwhelming majority of studies focus on next single step
prediction (34 out of 69). Although this approach could make sense
on a big time scale, such as weeks or months, it does not represent
the actual needs of investing. As it was said before, the financial time
series present a strong noise component, and thus the next single point
prediction does not supply much value if the delta price is smaller
than the variance, because all that it is representing is noise. A more
valuable approach would be to predict a trend or even represent a
vector of future values from which to infer a trend. Nevertheless, only
eight articles predict trends and five work with multi-valued prediction
vectors. A better approach would be to relate buy/sell/hold positions
with UQ. Although four studies center on buy/sell/hold approach, none
sew a clear relationship with UQ. Consequently, we consider that there
are many opportunities for taking further the state of the art related to
the prediction vector, including spinning around UQ.

A good investor considers the three available sources of informa-
tion: technical, fundamental and sentiments. This review has shown
how researchers are very attracted to technical analyses (57 records
relate to pure technical approaches), but not that much to sentiment
nor fundamental (see Fig. 9). Only two records use the fundamental
approach, combined with the technical one. Ten records focus on
sentiment analysis combined with a technical approach. We find here
an exciting research opportunity, combining different UQ methods, one
for each of the three approaches. Some questions remain for this future
research such as what is the optimal weight of each approach in the
final prediction and under what conditions or applied to what assets.

The Foreign Exchange is, by a vast difference, the biggest invest-
ment market which volume is 700 billion US dollars per day. This
compares and contrasts with smaller markets like stocks (200 billion
US dollars) or futures(30 billion US dollars) [129]. However, only
three records have been found related to the prediction of international
currencies. The Forex market supplies a few advantages in some areas,
like the amount of time the Forex market is open for trading. From
Monday opening in Australia to Friday closing in New York, there are
five days of non-stop trading 24 hours a day. That positively impacts
the amount of available data. Also, there are no commissions and the
transaction costs are low. Because of the market size, it is always
liquid and transactions are executed instantly [130]. This market is
less popular for researchers, but it shows a potential to be investigated
further.

The epistemic uncertainty is related to the lack of knowledge in
the model. The found studies focus on the variability related to the
neural network’s weights, but other parameters could also be put
under the light of evaluation. A researcher decides, as empirically as
possible, the architecture of the network, but that decision leaves aside
other possible configurations that are part of the epistemic uncertainty.
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Gencay [46] considers exactly this aspect when studying different net-
work architecture configurations and it could potentially be carried out
further in future studies, possibly varying the length and width of the
neural net, choosing different activation functions, different training
iterations or batches.

One of the more important aspects that the authors of this review
have identified is that all the studies are based on a limited amount
of data and trained accordingly, although the real and professional
scenarios use updated streaming models along their functioning. The
real models continuously adapt the training parameters to new and
unseen data, which certainly impacts in scaling the training data. A
possible research on data streaming could be exploring an unsupervised
approach to price prediction.

As Shen [77] states: “Too many studies are focused on model uncer-
tainty, but very few focus on data uncertainty”. The typical study that
includes uncertainty in the prediction mixes both types of uncertainty
in such a way that they cannot be differentiated. Hiillermeier [5] ably
describes this as a necessary discrimination between a predicted proba-
bility score and its related prediction uncertainty. One for example, can
be very confident that tomorrow will not rain with a 10% probability,
but very unsure that the probability of rain the next week will be 50%.
This uncertainty comes from the lack of knowledge, as the opposite of
the probability confidence interval, coming from noise in data. Indeed,
future studies can explore further the combination of epistemic and
aleatoric uncertainty.

What technical challenges remain in financial prediction using
UQ in DL?

The technical challenge most mentioned by almost all authors is
to achieve valuable predictions, considering that the data available
in financial time series are extremely noisy, non-stationary, have a
poor signal-to-noise ratio and especially sensitive to external and not
completely known factors [11-13,52,55,72,81]. Magris et al. [19] con-
sider the inability of ML methods to address uncertainties in financial
applications as a major drawback and a major concern in econometrics.
Due to this dynamic behavior, the authors believe that point estimation
is not optimal for predicting financial time series. Instead, UQ is a
much better approach to predict trends, offering plenty of opportunities
to dig deeper. Wilkins [40] states that some UQ methods have been
proposed in the past years; however, they fail when applied to large
and noisy datasets. In fact, there is a limit to reducing the total uncer-
tainty, defined by the aleatoric uncertainty. Even if we hypothetically
managed to reduce epistemic uncertainty to zero, there will always be
uncertainty intrinsic to the data. Researchers typically try to extract
the function hidden beneath all the stochasticity; however, it is very
common to find in the literature that the chosen feature space does
not capture all the information it could from stochastic data. As a
consequence, the prediction of a target, i.e., price, trend change, or
buy/sell orders, is not optimal [40].

Furthermore, the true posterior distribution in a Bayesian neural
network cannot be determined analytically (without an unacceptable
amount of computing power). In fact, this is the source of almost
all probabilistic methods for UQ prediction mentioned in this review:
approximating the posterior distribution using much less computing
power, at the cost of giving up some accuracy.

What approaches could potentially be explored to overcome
those challenges?

Some approaches have already been proposed previously, which can
be summarized as follows:

1. Increase the efficiency of extracting information from the feature
space.

2. Explore a more meaningful feature space that includes funda-
mental, sentiment, and technical information combined.

3. Develop newer methods to represent uncertainty in a richer way.

4. Delve into trend prediction as an alternative to point estimation.
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5. Consider alternative markets to stocks such as Forex, cryptocur-
rencies, futures or derivatives.

6. Explore newer methods to approximate the true posterior distri-
bution.

4. Conclusions

In this survey, a PRISMA approach was followed to review 69
records on UQ in DL applied to financial time series forecasting. We
have analyzed some of the most distinctive aspects of such studies:
the type of asset, the techniques used, the forecast space, the analysis
method and the epistemic versus aleatoric approaches. We have seen
that there are potential areas that are not sufficiently explored in the
literature, such as combining fundamental, sentiment and technical
analysis, further exploring the application to the foreign exchange
market and finding a better way to address aleatoric uncertainty. As
a conclusion of this survey, we can state that there is a lot of room for
future research on UQ for financial time series prediction.
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