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In the framework of the scalar theory of diffraction a surface-pixeled convergent lens for arbitrary amplitude and phase
modulation along the depth of focus is introduced. This complex diffractive lens is computer-generated from an exact
solution of the inverse focal shaping problem obtained by using the Fresnel diffraction integral. The spatial multiplex-
ing technique of the double-phase method is employed to encode the complex diffractive lens into a phase optical ele-
ment that can be dynamically implemented with a commercial liquid-crystal spatial light modulator. The optical surface
of this lens, capable of generating not only a single axial focus but also multiple parallel foci, has neither linear nor rota-
tional symmetry but phase jumps from one pixel to another. In addition to intensity shaping, the introduced lens pro-
vides simultaneous control over the phase of light along the depth of focus, which can be very attractive for improving
and/or developing photonic applications related to the interaction of coherent laser beams with matter. © 2023 Optica

Publishing Group under the terms of the Optica Open Access Publishing Agreement
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1. INTRODUCTION

Beam shaping is a prerequisite for most photonics applications [1–
5]. Starting from an input laser beam with known optical features,
the shaping should be able to generate an output laser illumina-
tion with prescribed characteristics. Hence, beam shaping can be
through a solution of an inverse problem (IP) that determines the
proper optical surfaces to get desired illumination [2,6]. For many
laser applications, having user-defined intensity distributions may
be sufficient to achieve the expected results. For this reason, beam
shaping is often associated only with amplitude modulation [7–9].
However, because laser beams are described by complex math-
ematical expressions, full control over them can only be achieved if
we are able to change their intensity and wavefront (phase) at will,
simultaneously. This shaping procedure is known as complex beam
shaping (CBS) [10–14].

Recently, freeform optics has become a technology in high
demand for CBS [15–17]. Nonetheless, for intensity and wave-
front modulation, at least two optical surfaces without linear or
rotational symmetry must be designed, measured, and fabricated
[18–20]. The design of these freeform surfaces remains an open
problem faced by researchers today by using different methods,
such as the calculus of a nonlinear partial differential equation [21],
the use of the geometric supporting quadric method [22], or the
ray mapping method based on an optimal mass transportation
problem with a quadric cost function [23]. In practice, reflective
and refractive optical elements fabricated by freeform optics are
relatively easy to implement and can achieve high energy trans-
fer efficiency, but their optical end surfaces cannot be changed
dynamically. In addition, it is well-known [24–27] that bulk
optics is unable to efficiently manipulate laser radiation at cer-
tain frequencies forbidden by scattering or light absorption. For

instance, when dealing with ultrashort lasers, the unwanted opti-
cal breakdown phenomenon may induce damage in materials
due to nonlinear absorption of energy [26,27]. In this context,
diffractive optics can be regarded as a user-friendly alternative to
perform CBS. Specifically, diffractive optical elements (DOEs)
have demonstrated high-performance and suitable characteristics
for beam shaping purposes [28–30], i.e., small thickness, low
weight, high efficiency, and high accuracy in manufacturing. On
the other hand, the latest generation of spatial light modulators
(SLMs) [31–33] allows dynamic beam shaping at frequencies up to
MHz.

Under the frame of the scalar theory of diffraction, the on-axis
electric field associated with focused laser beams can be engineered
by means of diffractive amplitude and phase pupils acting as opti-
cal filters [34]. For circularly symmetric pupils, this electric field
can be related to the one-dimensional Fourier transform (FT) of
a complex pupil function expressed in the squared radial coor-
dinate [35]. The calculus of a single FT operation significantly
decreases computation times, while establishing a unique solution
for the IP, which is directly related to the computer generation
of such complex functions. Furthermore, the use of phase-only
(pho-SLMs) guaranties the dynamic implementation of complex
pupils with enhanced light efficiencies in comparison with other
types of SLMs, i.e., a digital micromirror device. Nevertheless, for
working with phase-only optical devices the complex pupils must
be properly encoded into phase masks. One method proposed to
do that employs two spatial light modulators (SLMs) to separately
display the amplitude and phase information of complex pupils
[36]. In another method, the diffraction efficiency of phase filters
has been properly changed to accomplish amplitude modulation
[37]. It allows the amplitude of complex pupils to be encoded into
twisted nematic liquid-crystal SLMs to synthesize on-axis intensity
patterns [38]. Recently, by taking advantage of the double-phase
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method (DPM) [39–43], an exact solution for axial IP was found
[44]. This solution can be considered as an extension of the so-
called theory of complex pupils, providing not only intensity but
also wavefront modulation, simultaneously. However, from a prac-
tical point of view, the need for a spatially filtered 4f optical system
to reconstruct the complex pupil or the alignment requirements
with respect to the focusing element may limit the use of the focal
CBS method.

In this paper, a freeform diffractive lens (FFDL) for arbitrary
CBS of coherent laser beams along the depth of focus is introduced.
In contrast with a conventional diffractive lens, i.e., Fresnel lens
that tailors the intensity of the laser beams only, the introduced
FFDL can axially modulate both the amplitude and phase of the
on-axis electric field at the focal region, simultaneously. The pro-
posed beam shaping method implies several benefits that include
fast, complete, and deterministic beam shaping algorithm based
on an exact solution of the IP, reduced thickness and optical setup
dimensions, high accurate, efficiency and versatile operation, and
direct practical realization with programmable pho-SLM. The
physical behavior of the FFDL was corroborated with experiments
aimed to measure the prescribed on-axis intensity profile and axial
phase of a quasi-monochromatic laser beam focused by different
FFDLs. In all cases, numerical simulations and experiments agree
well, achieving values of root-mean-square-errors (RMSE) below
10%.

2. MATHEMATICAL MODEL

In this section, the mathematical formulation and design pro-
cedure of the FFDL are presented. The on-axis electric field E (z)
along the focus of a convergent lens of focal length f and radius
a , can be described by the Fresnel diffraction integral written in
Cartesian coordinates:

E (z)=
2π

i zλ

∫∫ a

−a
q(ξ, η) e

iπ
λz (ξ

2
+η2)dξdη, (1)

where the focusing element q(ξ, η) is defined as

q(ξ, η)= p(ξ, η) e−
iπ
λ f (ξ

2
+η2). (2)

In Eq. (1), the plane wave term e i 2π
λ

z was not considered. The
axial coordinate is given by z, and λ is the wavelength of light in
vacuum. The quadratic exponential term π(ξ 2

+ η2)/(λ f ) in
Eq. (2) denotes the phase of the convergent lens with complex
pupil p(ξ, η) under the thin lens approximation. By using Eqs. (1)
and (2), one can modify the axial electric field E (z) associated
with the focused laser beam by engineering the focusing element
q(ξ, η). However, to do that in a prescribed manner it is necessary
to invert Eq. (1), expressing the focusing element q(ξ, η) as a
function of the electric field E (z). After doing some mathematical
manipulations to Eq. (1), it can be shown that the solution of the IP
yields [44]:

q(s )=
i

2π
F−1

{
E (u) e−iπ(u−u0)

u

}
. (3)

To obtain Eq. (3), no assumptions or approximations have
been done. The symbol F−1 denotes the inverse FT operation,
whereas the normalized variable u = a2/(2λz), and the constant
u0 = a2/(2λ f ). The focusing element q(s ), expressed in the
squared radial coordinate s = r 2/a2

− 1/2 with s ∈ [−1/2, 1/2],

can cause on-axis electric field focalization with user-defined
amplitude A(u) and phase 2(u) features. To clearly identify
these terms in Eq. (3), the electric field is rewritten in the form
E (u)= A(u)e i[π(u−u0)+2(u)], consequently the solution of the IP
is reduced to the expression

q(s )=
i

2π
F−1

{
A(u) e i2(u)

u

}
. (4)

Once the focusing element q(s ) is calculated from Eq. (4), the
transformation of this vector q(s )→ q(r ) from squared to radial
coordinate is carried out. In addition, the rotation of q(s ) and q(r )
around their origins permits to digitally construct corresponding
two-dimensional amplitude and phase masks. The complex focus-
ing element q(x , y ), expressed for convenience in the Cartesian
coordinates x , y , cannot be directly sent to the pho-SLM. To
overcome this limitation, the spatial multiplexing technique of
DPM is used to encode q(x , y ) into a single-phase element. So, it
is rewritten in terms of two uniform waves e iθ(x ,y ) and e iϑ(x ,y ) as
follows:

q(x , y )=3(x , y ) e iφ(x ,y )
= e iθ(x ,y )

+ e iϑ(x ,y ), (5)

where

θ(x , y )= φ(x , y )+ cos−1
[3(x , y ) /3max], (6)

ϑ(x , y )= φ(x , y )− cos−1
[3(x , y ) /3max]. (7)

To obtain Eq. (5), the constant term3max given in Eqs. (6) and
(7) was set to 2. This constant term is the maximum value of the
amplitude function 3(x , y ), whereas the phase associated to the
focusing element is denoted by φ(x , y ). Then, the above uniform
waves are spatially mapped with two complementary binary grat-
ings M1(x , y ) and M2(x , y ), taken at the Nyquist limit, such as
M1(x , y )+M2(x , y )= 1, in the following manner:

M1(x , y ) e iθ(x ,y )
+M2(x , y ) e iϑ(x ,y )

= e iα(x ,y ), (8)

where

α(x , y )=M1(x , y ) θ(x , y )+M2(x , y ) ϑ(x , y ) . (9)

At this point, one might realize that the uniform wave e iα(x ,y )

given in Eq. (8) can be used to emulate the diffraction effects of the
focusing element q(x , y ) in Eq. (1). This can be better understood
if we assume that the impact of e iα(x ,y ) on the electric field E (z)
does not depend on the sampling order originated by the inter-
change of binary gratings M1(x , y ) and M2(x , y ) in Eq. (9). This
assumption holds when the sampling frequency is high enough
to ensure full recovery of the sampled functions after a simple
interpolation operation. Under the above assumption, it can be
easily shown that E (z)= 2Eα(z), where the electric field Eα(z)
is determined by Eq. (1) after substituting the focusing element
q(x , y ) by the uniform wave e iα(x ,y ). However, when performing
CBS with the phase gratingα(x , y ) the diffracted light is redistrib-
uted among the different diffraction orders of this grating, being
the zero order the focus of the introduced lens. Consequently, the
available energy at the focus decreases with respect to the ideal
situation that comes from the coherent interference of the uni-
form waves e iθ(x ,y ) and e iϑ(x ,y ). The phase-only element α(x , y )
defined by Eq. (9) is called FFDL. The experimental implementa-
tion of FFDL is free from additional optical setups, i.e., 4f imaging
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optical system. In addition, the integration of the complex pupil
p(x , y )within the focusing lens provides a really compact and ver-
satile DOE. These advantages will be experimentally corroborated
in the next section. In Fig. 1, the whole process involving the design
of the FFDL is illustrated with an example. It begins with the selec-
tion of the desired amplitude and phase of the complex field along
the depth of focus. In this example, they are given by the triangular
function A(u)= 1− |u|, and the cubic phase 2(u)= πu3. The
number of sampling points N is determined from the difference
N = a2/[2λ( f −1z/2)] − a2/[2λ( f +1z/2)], where 1z is
the focal depth. After using Eq. (4) to solve the IP, the amplitude
and phase vectors associated with q(s ) are obtained. At this point,
a rescaling operation r 2

→ r to transform the above vectors from
square to linear coordinates is done. In Figs. 1(a)–1(d) the corre-
sponding two-dimensional masks due to the azimuthal rotation
of them are shown. In particular, for the masks shown in Figs. 1(a)
and 1(b) the profiles of the amplitude vectors are included as insets.
For clarity’s sake, in Figs. 1(c) and 1(d) only the central zone of
the phase masks is plotted. In the last step, the spatial multiplex-
ing technique of the DPM is employed to encode the amplitude
and phase masks given in Figs. 1(b) and 1(d) into a single-phase
DOE called FFDL, see Fig. 1(e). The spatial phase distribution
of the FFDL is provided by Eq. (9). Hence, its optical surface is
not circularly symmetric but shows phase jumps from one pixel
to another, as one can see in the zoomed part of Fig. 1(e). These
phase jumps correspond to a lens profile through the central line
of the zoomed area. The origin of the phase jumps comes from the
terms ±cos−1

[3(x , y )/3max] given in Eqs. (6) and (7), which
are responsible for the codification of the desired amplitude.
Additionally, the high-frequency sampling in Eq. (8) causes phase
jumps to happen among neighborhood pixels of the FFDL. So, the
successful realization of FFDLs with commercial pho-SLMs may
be conditioned by unwanted pixel crosstalk effects. That is why
a correct mitigation of these effects [43,45] could be essential to
bring the phase modulation in the pho-SLM closer to that expected
from the theory. In the next section, crosstalk phenomenon is
properly reduced while carrying out the practical demonstration of
FFDLs.

Fig. 1. Design of the freeform diffractive lens (FFDL). (a),(c) From the
solution of the IP one can get the amplitude and phase masks in the square
radial coordinate. (b),(d) After rescaling, corresponding masks in the
radial coordinate are obtained. (e). Then, using the spatial multiplexing
technique of the DPM, complex information is encoded into the final
FFDL.

3. EXPERIMENT

In this section, the focusing properties of FFDLs are experimen-
tally validated. To do that, two experiments are carried out. In the
first one, the ability of programmable FFDLs to generate irradiance
profiles with arbitrary shapes and different axial phase distribu-
tions is tested in amplitude. In the second experiment, the phase
information imposed along the depth of focus is measured by using
an indirect method proposed for this end. In Fig. 2, a photograph
of the actual optical arrangement is shown. In addition, at the
top-right part of this photograph, a schematic of the corresponding
optical setup is included.

The laser beam emitted by a femtosecond laser oscillator
is previously expanded with a commercial 6x reflective beam
expander (Thorlabs—BE06R) to fix the transversal dimensions
(15.36 mm× 8.64 mm) of the liquid crystal display. For simplic-
ity, the above beam expansion procedure is not illustrated in Fig. 2.
Then, the spectral content of the ultrashort pulse is reduced to a
line of 10 nm full-width-at-half-maximum, centered at 800 nm,
with the help of a bandpass filter F (Thorlabs—FBH800-10).
In this way, the broadband radiation is transformed into a quasi-
monochromatic laser beam with central wavelength at 800 nm.
The SLM (Pluto-NIR-II, spatial resolution 1920× 1080 pixels,
8 µm pixel pitch) was also optimized and calibrated for 800 nm.
After filtering, the laser beam is sent to the SLM by using a 50:50
beam splitter BS (Venteon-BS0058). Consequently, half of the
incident beam impinges perpendicular to the SLM, whereas the
remaining light is blocked with a beam dump BD (Thorlabs—
BT610). In the liquid crystal display, the beam is diffracted by
the FFDL and focused back through the beam splitter to a CCD
camera CAM (UI-3370CP-NIR-GL). To record images along the
depth of focus, the camera was axially moved with stepped motors
SM (Newport—MFA-CC UE1724SR). The total displacement
of the motors is 66 mm. For the first experiment, all-tested FFDLs
have focal lengths and axial focal depths fixed to f = 200 mm and
1z= 50 mm, respectively. Additionally, pixel crosstalk phenome-
non happened in the pho-SLM were attenuated by using binary
gratings M1(x , y ) and M2(x , y ) with more than 2× 2 pixels per
cell. The optimization process was carried out by progressively
increasing the pixels per cell until the best approximation to the
expected results was achieved [43,45]. For the used pho-SLM,

Fig. 2. Photograph of the actual optical arrangement, including
optical setup (top-right part) used to measure the focusing properties of
introduced FFDLs. It is mainly made up of the following components:
bandpass filter F, silver mirror M, beam splitter BS, phase-only spatial
light modulator SLM, beam dump BD, CCD camera CAM, and stepped
motors SM.
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acceptable results appeared when binary gratings had 3× 3 pixels
per cell, up to a maximum of 5× 5 pixels per cell. The optimized
pixel-cell size significantly decreased crosstalk effects, while keep-
ing the diffraction orders of the gratings far enough apart to avoid
their overlap at the focal region of the FFDL.

The results of the first experiment are shown in Fig. 3. Following
the procedure described in Fig. 1, a set of four FFDLs was pro-
grammed to generate different intensity profiles, but the same
linear phase (2(u)= πu) along the axial focus was computer
generated, see top-part of Fig. 3. To define phase functions 2(u)
within the phase range of the pho-SLM, the variable u was sampled
within the interval u ∈ [−1, 1] with N points. These intensity
curves with arbitrary shapes bear out the power of FFDLs for
tailoring the focal intensity of laser beams. Furthermore, as evi-
denced from the results achieved in Fig. 3, CBS also implies a
predefined change of the axial phase along the focal region, which
does not alter the shape of the expected intensity profiles. For this
experiment, a super-Gaussian function A(u)= e−uγ /σ (with
γ = 7, σ = 10−3), an increasing linear function A(u)= u, a
sinusoidal function A(u)= |sin(πu)|, and a cosine function
A(u)= |cos(3πu/2)|were chosen as desired amplitude profiles in
Figs. 3(a)–3(d), respectively. Measured intensity values were com-
pared with corresponding numerical simulations of the on-axis
diffracted field associated with each FFDL. Note that the measured
light intensities are represented by small circle dots, whereas the
corresponding theoretical values are represented by means of a
continuous line. After a visual inspection of these curves, one real-
izes that measured data are in close agreement with the theoretical
predictions. Small discrepancies between experiment and theory
can be estimated by the calculus of the RMSE, resulting in the
numerical values 3.7%, 2.2%, 4.9%, and 4.4%, respectively.

On the other hand, in Figs. 3(e)–3(h) another set of four
FFDLs, this time giving rise to an intensity profile with a triangu-
lar shape (A(u)= 1− |u|), but different axial phases were also
tested. For this experience, the focal depth 1z associated to the
triangular foci was increased from 20–50 mm with increments
of 10 mm, as shown in Figs. 3(e)–3(h). From the attained results,
it is apparent that phase encoding does not influence the look of
intensity profiles. This confirms, from an experimental point of
view, that CBS can be properly executed with independent election
of amplitude and phase architectures. In particular, a linear phase
function 2(u)= πu, a quadratic phase function 2(u)= πu2, a
cubic phase function 2(u)= πu3, and a quartic phase function
2(u)= πu4 were chosen in Figs. 3(e)–3(h), respectively. Again,

the measured intensities fulfil very well with the theoretical expec-
tations, exhibiting values of RMSE as low as 3.2%, 4.1%, 3.8%,
and 4.4%, respectively.

To accomplish a complete validation of the focusing proper-
ties of FFDLs, measurements of the phase along the axial focus
will be done. Owing to the relative-low spatial resolution of
Shack-Hartmann wavefront sensors these commercial devices
are not suitable for this task. Furthermore, the demand for one-
dimensional phase analysis and possible fluctuations of the laser
beam make the experiment even more challenging. At this point,
an indirect method for axial phase measurement is introduced. It
is based on the recording of the diffraction pattern corresponding
to the coherent interference of two close and parallel foci gener-
ated from a complex multifocal lens υ(x , y ). This lens contains
the code of two FFDLs synthetized from the focusing elements
q1(x , y ) and q2(x , y ), following the procedure described in
Fig. 1. After a transversal displacement δ = np of each FFDL
from the propagation axis of the laser beam, where n is an inte-
ger and p = 8 µm is the pixel pitch of the liquid crystal display,
the complex multifocal lens is obtained from the following sum
υ(x , y )≡ q2(x − δ, y )+ q2(x + δ, y ). Again, the spatial mul-
tiplexing technique of the DPM is used to encode υ(x , y ) into
the pho-SLM. To calculate q1(x , y ) and q2(x , y ) by using Eq. (4)
the amplitude A(u) was fixed and defined by a super-Gaussian
function, whereas the axial phase 2(u) is allowed to vary among
different functions. In these conditions, the axial phase of focused
beams is determined by minimizing the difference between reg-
istered and simulated diffraction patterns. Owing to the fact that
each diffraction pattern depends on the phase difference between
foci 12= [21(u)−22(u)]/2, phase distortions due to optical
aberrations in the plane of the liquid crystal display can be avoided.
For the same reason, the present method is unable to pick up which
function 21(u) or 22(u) goes to a particular focus. From the
experiment, it was found that the spatial shape of recorded patterns
significantly varies with the selection of the phase functions21(u)
and22(u).

In the bottom-part of Fig. 4, three irradiance patterns, recorded
with the camera at the transversal plane z= 230 mm are shown.
The focal length f = 200 mm remains the same as before, whereas
the focal depth 1z= 60 mm. The distance between parallel
focused beams 2δ was set to 224µm (n = 14). It ensures the gener-
ation of two separate focused beams. To check that, the transversal
width w of one focus was estimated with the help of the TEM00

Gaussian beam model (w≡ λ f /(πa)∼= 12 µm). Note also that

Fig. 3. Experimental and theoretical on-axis focal intensity and phase curves obtained by direct light diffraction on FFDLs. (top) Axial foci characterized
by intensity curves with different shapes but the same linear phase. (bottom) Axial foci with intensity profiles of triangular shapes but different phase con-
tent.
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Fig. 4. (a)–(c) Theoretical and (d)–(f ) experimental irradiance
patterns originated by the coherent interference of two parallel foci.
The electric fields associated with them have the same super-Gaussian
amplitude but spatial phases given by (a),(d) linear and quadratic func-
tions, (b),(e) sinusoidal and quadratic functions, and (c),(f ) cosine and
cosine functions.

the recording position (z= 230 mm) coincides with the position
at which foci start to vanish, consequently they can hardly be seen
from the irradiance patterns in Fig. 4.

In this experiment, the measured irradiance patterns are
formed due to the codification of axial phase profiles defined by
linear and quadratic functions [21(u)= πu, 22(u)= πu2

] in
Fig. 4(d), sinusoidal and quadratic functions [21(u)= π sin(πu),
22(u)= πu2

] in Fig. 4(e), or cosine and cosine functions
[21(u)= π cos(πu), 22(u)= π cos(πu) in Fig. 4(f ). Addi-
tionally, in Figs. 4(a)–4(c) the corresponding theoretical irra-
diance patterns assessed with the help of the Fresnel diffraction
integral are included. For the numerical simulations, the influ-
ence of nondiffracted light coming from the pho-SLM on the
recorded irradiance patterns was also considered. From Fig. 4,
it is apparent that the spatial structure of diffraction patterns
changes when modifying the phase content of focused light. This
is the key point to support indirect phase measurements with the
proposed method. The calculus of the RMSE between similar
images corroborates that measured irradiance patterns retrieve the
expected theoretical ones with high accuracy. For the cases shown
in Figs. 4(a), 4(d), 4(b), 4(e), and 4(c), 4(f ), numerical values of
RMSE yield 8.3%, 9.5%, and 9.3%, respectively.

For further validation of the proposed method, the same
experiment can be performed at different axial positions along
the depth of focus. In this case, the shape of irradiance patterns
should vary in less extension from one transversal plane to another.
Measuring the interference light pattern in additional planes
can be useful to rule out the ambiguity of having other combi-
nations of prescribed amplitude and phase profiles that bring
into a similar irradiance pattern. To show that, keeping the
same experimental conditions as before, two foci with a super-
Gaussian amplitude function and axial phase profiles defined
by the functions [21(u)=−π sin(πu), 22(u)= πu3

] were
codified in a multifocal FFDL. The irradiance patterns measured
at planes z1 = f −1z/2, z2 = f , and z3 = f +1z/2 where
1z= 60 mm are shown in Figs. 5(d)–5(f ), respectively. Again,
corresponding theoretical irradiance patterns are shown in the top
part of Figs. 5(a)–5(c). From Fig. 5, it is apparent that theory and
experiment are in very good agreement, which is supported by
RMSE values of 8.6%, 9,4%, and 9.7%, respectively. The results
shown in Fig. 5 confirm the ability of FFDLs to modify the axial
phase of focused coherent laser beams along the depth of focus.

Fig. 5. (a)-(c) Theoretical and (d)-(f ) experimental irradiance patterns
originated by the coherent interference of two parallel foci at different
transversal planes along the depth of focus. The electric fields associated
with them have the same super-Gaussian amplitude but spatial phases
given by minus sinusoidal and cubic functions.

4. FINAL REMARKS

The optical design of the FFDL allows compensating for wave-
front deviations of the laser beam from the ideal plane wave. To
do that, the wavefront αreal(x , y ) associated with the input laser
beam at the plane of the pho-SLM must be measured. After adding
the complementary phase term into the lens function such as
e i[α(x ,y )−αreal(x ,y )], the measured wavefront can be approached to a
spatially uniform one. This precompensation procedure can help
to obtain desired beam characteristics even when dealing with a
convergent or divergent laser beam and/or under the presence of
optical aberrations at the liquid crystal display.

As it might be inferred from the last experiment, the proposed
beam shaping method can generate parallel foci, each one having a
prescribed configuration of intensity and phase. For this purpose,
a single multifocal lens υ(x , y ), computer generated from the
sum of P × Q off-axis focusing elements qnm(x , y ), such that
υ(x , y )≡

∑P
n=1

∑Q
m=1 qnm(x ± δxn, y ± δy m), where δxn and

δy m are transversal displacements in x and y directions, could
be synthetized. Then, before sending υ(x , y ) to the pho-SLM,
it must be encoded into a single-phase mask by using the spatial
multiplexing technique of the DPM. In principle, the maximum
number of foci achieved with this method will basically depend on
the technical specifications of the SLM. On one hand, the diameter
of the encoded FFDLs should allow displacements δxn and δy m in
the transversal directions of the pho-SLM’s display without cutting
their phase information. On the other hand, these displacements
should avoid overlapping among the Bessel-like structure associ-
ated to each focus. For instance, for FFDLs designed with 1080
pixels in diameter and focal length f = 200 mm, the maximum
number of foci achieved with a pho-SLM of spatial resolution
1920× 1080 pixels can be roughly estimated on 12. In this case,
the associated multifocal FFDL will cover the entire screen of the
pho-SLM, and generated foci will be located equidistantly along a
horizontal line.

In comparison with a Fresnel lens, the additional benefit of a
FFDL related to the phase modulation comes at the expense of
some energy losses at the focus. Note that, as the complex focusing
element q(x , y ) is encoded by using a two-dimensional phase
grating with transmission function e i[M1(x ,y )θ(x ,y )+M2(x ,y )ϑ(x ,y )],
the available energy is redistributed among its different diffraction
orders. Therefore, the amount of light sent to the focus of the
FFDL (zero order of the grating) is not fixed, but it is conditioned
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by the selection of the design parameters of the FFDL, i.e., the
axial amplitude A(u) and phase2(u) of the electric field, the focal
depth 1z, or the focal length f . Numerical estimations of the
diffraction efficiency of the FFDL for different sets of parameters
indicate that intensity values greater than 25% of the light focused
by the corresponding Fresnel lens are attainable. Furthermore,
the diffraction efficiency of the FFDL can be finely modified
by programming slightly changes in the phase function 2(u),
i.e., tuning its spatial shape or phase range continuously. For beam
shaping applications that demand a precise control over the focal
energy this programmable manipulation of the axial phase might
be particularly interesting, i.e., in light-sheet microscopy due to
the possibility to excite regions of interests with different energy
thresholds, or in laser micro-processing to adjust the depth of
ablation, without touching any components of the optical setup.

In the scalar theory of light, the intensity of coherent laser beams
at the focal region can be tailored by using several types of refractive
and/or diffractive focusing optical elements. However, without the
ability to change, in a prescribed manner, the spatial phase of light,
conventional beam shaping techniques can only provide a partial
control over the focused light.

With the introduction of FFDLs it is possible to get complete
and dynamic management of the amplitude and phase of coherent
laser beams along the depth of focus. This kind of complex axial
beam shaping, carried out with a single surface-pixeled diffractive
lens, has additional benefits that include small thickness, low
weight, or high efficiency. Nevertheless, when implementing
with pho-SLMs the FFDLs maybe limited by the spatial resolu-
tion these liquid crystal devices, their phase response to abrupt
phase jumps (crosstalk effects), the operating wavelength range,
or the laser-induced damage threshold. In contrast, the direct
fabrication of FFDLs by advanced lithography techniques, i.e.,
photolithography or electron beam lithography could reduce
the above limitations due to the high accuracy in manufacturing
demonstrated by these fabrication techniques. Hence, this direct
fabrication may allow decreasing the pixel pitch, reducing crosstalk
effects, and working with high power laser radiations whose ener-
gies can reach values above the damage threshold of commercially
available pho-SLMs.

I believe that the extra degree of freedom provided by a pre-
scribed phase modulation along the depth of focus should impact
several photonic applications related to the interaction of coherent
laser beams with matter such as laser materials processing, linear
and nonlinear microscopy, digital holography, generation of non-
linear optical effects under ultrashort pulsed illumination, light
propagation through turbid media, generation of optical vortices,
or optical encryption.
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