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Abstract
This study aimed to investigate the causes of contrasting ozone  (O3) trends in Spanish  O3 hotspots between 2008 and 2019, 
as documented in recent studies. The analysis involved data on key  O3 precursors, such as nitrogen oxides (NOx) and volatile 
organic compounds (VOCs), among other species, along with meteorological parameters associated with  O3. The dataset 
comprised ground-level and satellite observations, emissions inventory estimates, and meteorological reanalysis.
The results suggest that the increasing  O3 trends observed in the Madrid area were mostly due to major decreases in NOx 
emissions from the road transport sector in this urban VOC-limited environment, as well as variations in meteorological 
parameters conducive to  O3 production. Conversely, the decreasing  O3 trends in the Sevilla area likely resulted from a 
decrease in NOx emissions in a peculiar urban NOx-limited regime caused by substantial VOC contributions from a large 
upwind petrochemical area. Unchanged  O3 concentrations in other NOx-limited hotspots may be attributed to the stagnation 
of emissions from sectors other than road transport, coupled with increased emissions from certain sectors, likely due to the 
economic recovery from the 2008 financial crisis, and the absence of meteorological variations favorable to  O3 production.
In this study, the parameters influencing  O3 varied distinctively across the different hotspots, emphasizing the significance 
of adopting an independent regional/local approach for  O3 mitigation planning. Overall, our findings provide valuable 
insights into the causes of contrasting  O3 trends in different regions of Spain, which can be used as a basis for guiding future 
measures to mitigate  O3 levels.
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Introduction

Tropospheric ozone  (O3) is a key air pollutant that harms 
human health and the environment, and it is an important 
greenhouse gas (Fowler et al. 2009; Myhre et al. 2014; GBD 
2016; IPCC 2021; WHO 2021, 2013a, b). Additionally, it 
is a secondary atmospheric pollutant, 90% of which, glob-
ally, arises from photochemical reactions in precursors, 
particularly nitrogen oxides (NOx), volatile organic com-
pounds (VOCs), including methane  (CH4) and carbon mon-
oxide (CO), and the rest from stratospheric contributions 
(McLinden et al. 2000; Olson et al. 2001; Stevenson et al. 
2006; Young et al. 2013). Emissions of the two main  O3 
precursors, NOx and VOCs, may have different impacts on 
ground-level  O3, depending on the local conditions and their 
relative mixing ratios (Sillman 1999).

NOx-limited conditions tend to occur at locations with 
low NOx emissions (i.e., rural environments or locations 
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downwind of urban plumes and large sources) during peri-
ods of high photochemical activity, promoting enhanced  O3 
formation. Consequently, NOx-limited conditions are often 
associated with times and locations of high  O3 levels, with 
increased NOx emissions leading to  O3 increases, while 
increased VOC emissions may have limited effects (Sillman 
1999; Sillman and He 2002; Sillman et al. 2003).

VOC-limited conditions typically occur in areas with 
high NOx emissions (e.g., urban centers or large pollution 
plumes) and under conditions of reduced photochemical 
activity. Such conditions are often associated with lower 
 O3 levels (i.e., due to NO titration near high NOx emis-
sions and/or low photochemical activity). In VOC-limited 
conditions, increased NOx emissions can result in localized 
 O3 decreases, whereas increases in VOC emissions cause 
increases in  O3 (Jacob et al. 1995; Sillman 1999; Sillman 
and He 2002; Sillman et al. 2003).

The application of emissions controls on  O3 precursors 
in Europe, ranging from urban to the national and European 
scales, has resulted in a varied impact on ground-level  O3. 
This is a consequence of the spatiotemporal variability of 
emissions changes in recent decades and the variability of 
 O3 chemical formation regimes (Monks et al. 2015, Flem-
ing et al. 2018). A review of studies on  O3 trends by Sicard 
(2021) pointed to a general decrease in  O3 levels in rural 
European areas from the early 2000s due to effective  O3 
precursor emissions control policies. However, these reduc-
tions in the precursors were insufficient to transition from 
VOC-limited to NOx-limited conditions in the cities. Con-
sequently, there has been a general increase in  O3 concentra-
tions in urban environments, underscoring the necessity to 
apply effective control strategies to VOC emissions. Thus, 
decreased NOx emissions may to lead to both a reduced 
number of high  O3 peaks and an increase in the minimum 
 O3 values. This, in consequence, can lead to a narrowing of 
the  O3 distribution (Simon et al. 2015), and ultimately drive 
a convergence between urban and rural  O3 pollution in the 
long term (Paoletti et al. 2014; Yan et al. 2019). Moreover, 
at regional background-O3-monitoring stations, concentra-
tions have increased gradually over the last few decades in 
the Northern Hemisphere (Sicard 2021). This can likely be 
attributed to a combination of factors, including the influ-
ence of climate change, increased stratospheric  O3 intru-
sions, increased  CH4 emissions, decreased NO titration due 
to reduced NOx emissions in production areas, and enhanced 
hemispheric transport (Monks et al. 2015; Sicard 2021, and 
related references).

Apart from changes in anthropogenic precursor emis-
sions at the local, regional or global level,  O3 trends are 
influenced by various interconnected factors, including 
changes in meteorology (radiation, temperature, transport 
patterns, etc.), shifts in biogenic emissions, the impacts of 
biomass burning (regionally and globally), and changes in 

stratosphere-troposphere exchange, among others (Monks 
et al. 2015; von Schneidemesser et al. 2015).

The Southern European regions, and especially the West-
ern Mediterranean Basin, are the most exposed to  O3 pol-
lution in Europe, where Spain and several other countries 
systematically exceed the legal thresholds for the protection 
of health and vegetation (EEA 2021a).

In a companion study, Massagué et al. (2023) examined 
the trends in several relevant ground-level  O3 metrics in 
Spain covering 2008 − 2019. The selected period was framed 
between two major events that had a substantial impact on 
global emissions––the 2008 financial crisis and the COVID-
19 pandemic in 2020 (Peters et al. 2011; Castellanos and 
Boersma 2012; Sokhi et al. 2021). The study aimed to clas-
sify the atmospheric regions in Spain based on their  O3 
pollution patterns and identify the main  O3 hotspots. These 
included the Madrid region, the interior of the Valencian 
Community, the northern (downwind) areas of Barcelona, 
the Guadalquivir Valley, which includes the urban area of 
Sevilla, and the closed basin of Puertollano.

The  O3 trends in these areas exhibited marked differences: 
(i) the Madrid region showed the highest number of upward 
trends across all metrics, often with the highest increasing 
rates, indicating increasing  O3 levels associated with both 
chronic and episodic exposure; (ii) the Valencian Commu-
nity had a mixed variation pattern, depending on the metric 
considered; (iii) areas situated downwind of Barcelona, the 
Puertollano Basin, and the Guadalquivir Valley generally 
did not show  O3 trends, but (iv) the urban area of Sevilla 
stood out as the only major city in Spain with generalized 
decreasing  O3 trends.

Building upon this work, in the framework of the devel-
opment of a Spanish Ozone Mitigation Plan, this study was 
aimed at exploring possible causes for these contrasting  O3 
trends through the analysis of changes in meteorological 
parameters relevant to  O3 and available information on  O3 
precursors.

Methodology

Study area

This study was focused on mainland Spain and the Balearic 
Islands (Fig. 1a). Figure S1.1 provides general information 
on the land cover and use, demographics, and main climatic 
characteristics of the study area. Madrid, Barcelona, Valen-
cia, and Sevilla are the most populated metropolitan areas in 
Spain. The northern and north-western regions in Spain have 
the lowest  O3 levels due to meteorological conditions that are 
not favorable for  O3 production (Gangoiti et al. 2002, 2006; 
Saavedra et al. 2012) (see Figure S1.1c–f). Conversely, in the 
central, southern, and Mediterranean areas,  O3 levels tend to 
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be higher due to the occurrence of large anthropogenic and 
biogenic precursor emissions, the prevailing meteorological 
conditions during the warm seasons, and the characteristic 
orography that favors the production and accumulation of  O3 
(Millán et al. 1997, 2000; Gangoiti et al. 2001).

The areas frequently impacted by the most intense epi-
sodes of  O3 in Spain––or  O3 hotspots (Fig. 1a)––have been 
described in Diéguez et al. 2009), Querol et al. (2016), and 
later updated by Massagué et al. (2023). The  O3 phenom-
enology in these areas has been studied previously––the 
Madrid metropolitan area (e.g., Plaza et al. 1997; Querol 
et al. 2018; Reche et al. 2018; Escudero et al. 2019), north-
ern Barcelona (e.g., Toll and Baldasano 2000; Querol et al. 
2017; Massagué et al. 2019), the Guadalquivir Valley (e.g., 

Notario et al. 2012; In 't Veld et al. 2021; Massagué et al. 
2021), the Valencian Community, generally including the 
 O3 dynamics affecting the Western Mediterranean Basin 
(WMB) (e.g., Millán et al. 1997, 2000; Gangoiti et al. 2001), 
and the Puertollano Basin (e.g., Saiz-Lopez et al. 2009; 
Notario et al. 2013).

Figure 1b schematically illustrates the main  O3 trends 
of the various hotspots during the period 2008 − 2019, as 
described in the “Introduction” section.

Data and methods

We utilized multiple sources of data, encompassing: (i) 
concentration data on the available  O3 precursors, including 

Fig. 1  a  O3 hotspots or areas 
relevant to this study––yellow 
(fully described in Querol et al. 
2016), autonomous regions––
white, and important cities 
mentioned in this study––red. 
b Summary of the main  O3 
trends for the main hotspots for 
2008–2019 (from Massagué 
et al. 2023). The size of the 
arrows provides an indication 
of the magnitude and number 
of the trends observed. Upward 
arrow––O3 increasing, down-
ward arrow––O3 decreasing, 
and gray block––no  O3 variation
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ground-level measurements of  NO2 and NO, satellite obser-
vations of  NO2 and formaldehyde (HCHO) tropospheric 
columns; (ii) emissions data on the main  O3 precursors, 
including NOx, VOCs, CO, and  CH4, obtained from official 
inventories; and (iii) reanalyzed data of several meteorologi-
cal parameters relevant to  O3. For all data except the emis-
sions data, we considered annual aggregates for the period 
April to September (i.e.,  O3 season), which corresponds 
to the main vegetation growing season and is when the  O3 
levels are typically at their maximum in Europe (EC 2008; 
Langner et al. 2012; Gaudel et al. 2018; Mills et al. 2018). 
Additional information can be found in Section S2.

Ground‑level concentrations of pollutants

We used  NO2 and NO hourly data series from all the air-
quality monitoring stations (AQMSs) in Spain that reported 
to the European Council based on Decision 2011/850/UE 
and were active during at least one of the last two years in 
the study period (2018 or 2019).

Following the same criteria as for the analyses in Mas-
sagué et al. (2023), for the assessment of the present-day 
distribution (2015–2019), each AQMS was required to have 
had at least three years’ worth of valid data for that period, 
and for the trend estimates (2008–2019), at least 10 years’ 
worth of valid data (Section S2.1). To robustly detect and 
estimate the trends, we used the non-parametric Mann–Ken-
dall test, along with the Theil–Sen statistical estimator 
(hereafter, MK–TS) (Theil 1992; Sen 1968). To this end, 
we used the R package Openair (Carslaw and Ropkins 2012; 
R Core Team 2021) to obtain the regression parameters for 
the trends (slope, uncertainty, and p-value), estimated via 
bootstrap resampling, and considered them to be statistically 
significant if p < 0.05.

Based on the data availability constraints, we used data 
from 414 and 319 AQMSs for the present-day and trend 
assessments, respectively (see detailed information in Fig-
ure S1.2 and Tables S1.1 and S1.2).

Remote sensing

To characterize the spatiotemporal variability of the trop-
ospheric  NO2 (used as a proxy for NOx emissions, Liu 
et al. 2016) and HCHO (used as a proxy for the total VOC 
reactivity, Martin et al. 2004), we employed spaceborne 
observations provided by NASA’s ozone monitoring instru-
ment (OMI) aboard the Aura satellite (OMI Team 2012). 
The OMI follows a sun-synchronous orbit, with a daily over-
pass at approximately 13:45 h local solar time, and has a res-
olution of 13 × 24  km2. The area assessed included the entire 
Iberian Peninsula, southern France, and northern Africa. 
We used official  NO2 and HCHO monthly data obtained 
from the Quality Assurance for Essential Climate Variables 

website (QA4ECV) (http:// www. qa4ecv. eu, refer to Section 
S2.2), which was developed within the framework of the EU 
FP7 project (Boersma et al. 2017; De Smedt et al. 2018). 
Data is stored in uniform global grids with a 0.25° × 0.25° 
spatial resolution.

With these monthly data, we calculated April–September 
averages of tropospheric  NO2, HCHO and the HCHO/NO2 
tropospheric column ratio, used sometimes as an indicator 
of the  O3 sensitivity regime (Li et al. 2021), for every year 
for each pixel. Then, we calculated the present-day spatial 
distribution and estimated the trends.

Emissions of  O3 precursors

We used data on national emissions of relevant  O3 precur-
sors: (i) NOx, VOCs (non-CH4), and CO contained in the 
EU emissions inventory report 1990–2020 (EEA 2022) 
under the UNECE Convention on Long-range Transbound-
ary Air Pollution; and (ii) for  CH4, from the national green-
house gas inventories submissions to the UNFCCC and the 
EU Greenhouse Gas Monitoring Mechanism (EU Member 
States). More information can be found in Section S2.3.

We estimated the trends in the emissions using the 
Openair MK–TS for 2008–2019. Firstly, we evaluated the 
Spanish emissions in a European context and, secondly, at 
a national level with data disaggregated by main emissions 
sector (using the EEA sector classification; see EEA 2022).

Meteorological parameters

To complement the analysis with other potential factors 
that might have had an effect on the surface  O3 trends, 
we used the fifth generation of the European Centre for 
Medium Range Weather Forecasts (ECMWF) global rea-
nalysis (ERA5). We evaluated monthly averaged meteoro-
logical data from the ERA5 reanalysis dataset, which pro-
vides a continuous dataset in time and space with a regular 
0.25° × 0.25° grid (Hersbach et al. 2019). We selected nine 
meteorological parameters that might have impacted sur-
face  O3 (Jacob and Winner 2009; von Schneidemesser et al. 
2015; Coates et al. 2016; Otero et al. 2016; Lefohn et al. 
2018; Wei et al. 2022). These include temperature, down-
ward surface solar radiation, downward UV radiation at the 
surface, cloud cover, boundary layer height, evaporation, 
surface wind speed, surface pressure, and total precipita-
tion. Refer to Section S2.4 for information on calculations.

For each grid pixel, we calculated the annual 
April–September averages in order to determine the pre-
sent-day (2015–2019) spatial variation, and to estimate the 
2008–2019 trends. The trends and level of significance were 
obtained by adapting the script to calculate the trends for 
the raster images from Abdi et al. (2019) to be used with the 
Openair MK–TS. It should be noted that a 12-year dataset 

http://www.qa4ecv.eu
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is presumably of limited duration for the detection of cli-
matological trends because, traditionally, at least 30 years’ 
worth of records are needed to identify a genuine trend in 
climate. Nevertheless, we considered that the statistically 
significant changes detected, even within this relatively short 
timeframe, could provide valuable supplementary insights.

Results and discussion

Meteorological parameters

Section S3 presents the results of the analyses concerning 
meteorological parameters that could have influenced  O3 
concentrations during the warm season. Most of the vari-
ations observed within the national territory for the period 
2008–2019 did not exhibit statistical significance (Fig-
ure S3.1), probably due to the relatively short duration of 
the dataset when viewed from a meteorological/climatologi-
cal standpoint. Thus, we cannot disregard the importance 
of exploring other potentially significant trends that could 
involve examining additional meteorological parameters, 
employing different and/or less strict statistical approaches, 
considering alternative temporal aggregations, or extending 
the analysis over longer timeframes.

Firstly, we briefly discuss the (non-statistically signifi-
cant) variations in meteorological parameters (see central 
panels in Fig. 2 and Figure S3.1). A temperature increase 
was observed practically all over the country (Fig. 2b), 
consistent with the findings of Borge et  al. (2019) for 
1993–2017. Moreover, there was a general increase in solar 
radiation (Figure S3.1b and e), in line with Pfeifroth et al. 
(2018), and with greater intensity in areas of the south-west, 
the Mediterranean coast, and northern parts of the coun-
try, in logical consonance with the decrease in cloud cover 
observed over these areas (Figure S3.1 h).

The thickness of the planetary boundary layer (PBL) 
increased, especially in the interior of the country (Fig-
ure S3.1 k), which may have had an effect on the amount 

of stratospheric and free tropospheric  O3 influencing the 
ground-level  O3 concentrations. An increase in evaporation 
was also observed over much of the interior (Figure S3.1q), 
especially in Castilla-La Mancha and eastern Andalucia. 
Precipitation showed a decrease throughout the country, in 
agreement with Borge et al. (2019) for 1993–2017, except 
in dispersed areas of the north and north-east and inland 
(Figure S3.1w). The surface wind showed no clear spatial 
patterns, with regions of the Mediterranean Sea exhibiting 
decreases, but with no variation, or with slight increases, 
in inland areas (Figure S3.1n). Azorin-Molina et al. (2016) 
found wind speed decreases for 1961–2011 in Spain, in line 
with Garrido-Perez et al. (2018, 2019), that indicated that 
stagnation, which is an important  O3 driver, increased in 
Southern Europe in 1998–2015.

Most of the observed variations in the meteorological 
parameters for the interior and central areas may have been 
favorable for  O3 production (Jacob and Winner 2009; von 
Schneidemesser et al. 2015; Otero et al. 2016; Coates et al. 
2016; Lefohn et al. 2018; Wei et al. 2022). This may be 
consistent with the general increase in  O3 concentrations in 
central Spain found in Massagué et al. (2023). The extent to 
which such non-statistically significant variations (or others) 
could have influenced the  O3 concentrations during the study 
period requires further analysis.

Although the overall temperature increase across the 
country was not statistically significant, it should be noted 
that this parameter exhibited a statistically significant 
increase in most parts of the Madrid region, as well as in 
some large areas of western CastillaLa Mancha and other 
dispersed regions (Fig.  2c). This is consistent with the 
results of Borge et al. (2019) who reported a temperature 
increase across the country (1993–2017) during the warm 
season, with the central regions experiencing the greatest 
rate of increase.

Temperature is the meteorological parameter with the 
greatest potential impact on ground-level  O3, as supported 
by studies conducted by Jacob and Winner (2009), Pusede 
et al. (2015), and Wei et al. (2022). Thus, ground-level  O3 

Fig. 2  April–September surface temperatures at 2 m altitude. a Present-day (2015–2019); b variation (2008–2019); and c statistically significant 
trends (calculated from ERA5 monthly averaged data). See Section S3 for the rest of the meteorological parameters
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is strongly correlated with surface temperature, particularly 
in highly polluted areas (Porter and Heald 2019). Increasing 
temperatures can enhance  O3 concentrations by accelerating 
chemical reactions, thereby increasing emissions of biogenic 
VOCs (BVOCs) (Sillman and Samson 1995; Coates et al. 
2016) or through other mechanisms (see Porter and Heald 
2019 and reference therein). It should also be considered 
that, although anthropogenic VOCs (AVOCs) are usually 
not temperature dependent, evaporative emissions of certain 
AVOCs can increase with rising temperatures (Rubin et al. 
2006). Furthermore, Borge et al. (2019) also determined 
that weather changes consistent with our findings, includ-
ing temperature increase, caused increments in  O3 (and other 
pollutants) in Spain.

O3 precursors

Present‑day  O3 precursors

The present-day distribution of ground-level NO and  NO2 
in April–September is shown in Figure S1.3. As expected, 
the highest concentrations were found in high-traffic envi-
ronments, especially in large metropolitan areas, such as 
Barcelona and Madrid, and, to a lesser extent, in northern 
industrial locations. The lowest concentrations were found 
in rural, and especially regional, background sites (Fig-
ure S1.3a, b, e, and f). Although these concentrations were 
evaluated during April–September—naturally lower than 
during colder months—the  NO2 concentrations at many 
stations were still above the annual  NO2 limit of both the 
Directive (40 µg·m−3) (EC 2008) and, obviously, the latest, 
stricter annual WHO Guideline (10 µg·m−3) (WHO 2021), 
with 65% of the AQMSs recording exceedances of this.

The present-day  NO2 tropospheric column spatial dis-
tribution (OMI data), often used as a proxy for NOx emis-
sions (Liu et al. 2016), is shown in Fig. 3a. The highest 
concentrations were recorded in large urban areas, such as 
Madrid, followed by Barcelona (up to approximately 4 ×  1015 
molecules·cm−2), and, with levels below half, Valencia–Cas-
tellón and Sevilla. Significant tropospheric  NO2 levels were 
also recorded in the Gibraltar Strait and the Alborán Sea, 
probably caused by heavy maritime traffic (Nunes et al. 
2020), a large maritime area in the south of Marseille, and 
in the northern industrial areas of Oviedo–Gijón, Coruña, 
and Bilbao.

To partly overcome the lack of detailed in situ VOC 
measurements, we here briefly discuss the variability in 
the HCHO tropospheric columns obtained from the OMI 
(Fig. 3d). HCHO is a frequent by-product of the oxidation 
of VOCs, and is thus sometimes used as a proxy for the total 
VOC reactivity (Martin et al. 2004). A common issue of 
current space-based HCHO observations lies in their rela-
tively weak signal-to-noise ratio, which greatly limits their 

interpretation, except in regions of the world with strong 
HCHO levels (e.g., the tropics, eastern USA, and Asia). 
However, when focusing on April–September (the seasonal 
maximum for HCHO), some spatial variability can still 
be observed over the Iberian Peninsula, with tropospheric 
columns ranging between 5 and 10 ×  1015 molecules·cm−2. 
The lowest values were observed over the central Pyrenees 
and in specific rural areas, whereas highest values occurred 
predominantly over northeastern Spain and Portugal. The 
highest HCHO in the northeast was probably a combina-
tion of high isoprene emissions and the transport of aged 
high-O3 air masses from the coast. Overall, no clear HCHO 
hotspots were observed over the main Spanish urban areas, 
which suggests a predominantly biogenic origin (including, 
for instance, the oxidation of biogenic isoprene), although 
some smaller and/or weaker hotspots could be hidden by 
the aforementioned signal-to-noise ratio (and the still-coarse 
spatial resolution of the OMI observations).

Given the weaker spatial variability of HCHO compared 
to  NO2, the HCHO/NO2 tropospheric column ratio tended 
to follow a similar spatial distribution as 1/NO2 tropospheric 
columns (Fig. 3g). Although this ratio is sometimes used 
as an indicator of the  O3 sensitivity regime (NOx-limited 
versus VOC-limited) (Li et al. 2021), the threshold distin-
guishing both regimes can vary substantially in time and 
space, and undefined regimes can prevail over a rather large 
range of HCHO/NO2 values, which limits its interpretability 
(Souri et al. 2020, 2022). Nonetheless, the present-day mean 
April–September HCHO/NO2 values ranged between 2 and 
11, suggesting a predominantly NOx-limited regime over 
Spain, with NOx most strongly limited over the Spain–Por-
tugal and Spain–France (Pyrenees) border regions. Lower 
values of this ratio were logically found over large  NO2 hot-
spots. It is worth noting that these results were obtained 
in the early afternoon (the OMI overpass being at around 
13:45 h local solar time), thus not during the morning rush 
hours when BVOC emissions tend to be lower and NOx 
emissions higher, and thereby causing the HCHO/NO2 val-
ues to significantly change.

Trends of  O3 precursors

The assessment of ground-level NO and  NO2 (April–Sep-
tember) trends is shown in Figure S1.3. The results showed 
that a relevant proportion (39%) of the AQMSs recorded 
downward NO trends across the country in 2008–2019 
(Figure S1.3c), with the largest absolute decreases mostly 
occurring in northern locations and a few specific sites in 
Barcelona, especially in the urban and high-traffic environ-
ments (Figure S1.3d). In the Madrid area and in eastern and 
southern areas (including Sevilla and Valencia), the abso-
lute average NO decreases were weak. However, a detailed 
comparison between Madrid and Barcelona (Table S1.3) 
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showed that, on average, the NO absolute decreases were 
similar (− 0.5 µg·m−3·year−1), although, in relative terms, the 
NO decreases were more intense in Madrid (− 5.0%·year−1) 
than in Barcelona (− 3.5%·year−1), considering all types of 
AQMSs, and also only traffic. Similarly to the NO, 40% of 
the stations recorded downward  NO2 trends (Figure S1.3 g), 
most of them located in the northern half of the country. The 
largest absolute decreases were also mostly recorded in the 
northern areas, including Barcelona. In Madrid, a large pro-
portion of AQMSs did not record significant trends. Again, 
in absolute terms, the average decreases were similar in 
Madrid and Barcelona (− 0.8 µg·m−3·year−1) (Table S1.3), 
although in relative terms, the  NO2 decreases were more 
intense in Madrid (− 3.0%·year−1) than in Barcelona 
(− 2.4%·year−1). Throughout the Mediterranean coastal area 
(except in Catalonia), practically no  NO2 downward trends 

were recorded. In Sevilla and along the Guadalquivir Valley, 
several AQMSs recorded  NO2 downward trends, but these 
were of very low intensity. As for NO, the strongest  NO2 
decreases were mainly driven by changes in traffic (either 
quantity or type), as these were observed especially at traffic 
stations (Figure S1.3 h and Table S1.3).

Figure 3b shows the variation in the April–September 
tropospheric  NO2 for 2008–2019, while Fig. 3c provides an 
estimation of the statistically significant trends (p < 0.05) 
(see Figure S1.4 for relative variations). The Oviedo–Gijón 
and León areas in northwestern Spain have been histori-
cally highly industrialized, with the highest density of 
coal-powered plants in the country (indicated in Fig. 3b). 
These plants were associated with high tropospheric  NO2 
levels (Cuevas et al. 2014). In the last decade, many of these 
plants have reduced/stopped their operations or have applied 

Fig. 3  Spatial distribution of  NO2 and HCHO tropospheric columns 
for April–September measured by OMI-NASA and HCHO/NO2 ratio. 
Each pixel covers an area of 13 × 24  km2. a, d, g Present-day (2015–
2019) spatial variability; b, e, h absolute trends for 2008–2019; and 
c, f, i absolute trends for 2008–2019, showing only pixels with sta-

tistically significant (p < 0.05) trends. Gray pixels––p ≥ 0.05. Relative 
variations (in %) can be found in Figure  S1.4 in the Supplemental 
Information. Map 3b shows the locations of the power plants opera-
tional in 2018 (from Byers et al. 2021)
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measures to reduce their atmospheric emissions (e.g., Direc-
tive 2010/75/EU) (REE 2021), potentially contributing to 
two outcomes: firstly, the clear decrease as shown in Fig. 3b 
in the northwest (similar to findings by Castellanos and 
Boersma 2012), probably statistically insignificant because 
of sudden changes in NOx emissions (e.g., from the closure 
of large power plants). Secondly, the explanation for why 
these areas do not appear as  NO2 hotspots in the present-day 
(2015–2019) (Fig. 3a). Additionally, decreases in the  NO2 
tropospheric columns were recorded in highly industrialized 
and/or high-traffic areas, such as Barcelona–Tarragona, the 
entire Ebro Valley, País Vasco–Santander, and the eastern 
coastal strip, likely as a result of implemented control meas-
ures. According to the European Environmental Agency’s 
Emission Inventory Report (EEA 2022), NOx declining 
emissions in Spain were driven by three key sectors: (i) the 
energy sector through the adoption of renewable energy, 
abatement techniques in thermal power plants, and transi-
tioning to combined cycle gas plants; (ii) road transport, due 
to Euro standards implementations; and (iii) the industry 
sector, driven by abatement techniques and a shift to natural 
gas, particularly in non-metallic minerals. For detailed infor-
mation on NOx and other  O3 precursor emissions in Spain, 
see MITERD (2023), and refer to Section S4 for relevant 
emissions abatement policies.

Most of the downward tropospheric  NO2 trends were 
statistically significant. The most marked declines were 
mainly found in/around Madrid, both in absolute (Fig. 3c) 
and relative (Figure S1.4 a, b) terms. To a lesser extent, 
similar declines were observed in/around Barcelona, with a 
maximum absolute decreasing rate approximately 30% lower 
than that in Madrid. This pattern was followed by industrial/
urban areas like Oviedo, País Vasco and Cantabria, and part 
of the Ebro Valley (that includes a major coal-fired plant), 
with maximum absolute decreasing rates roughly 60% lower 
than in Madrid. Statistically significant downward trends on 
tropospheric  NO2 were also detected in Sevilla and Puertol-
lano, in this latter area despite the reduced area of the closed 
basin and the relatively coarse spatial resolution of OMI. It 
is relevant that, in Barcelona city, the decreases found were 
weaker than in other areas with similar present-day levels of 
tropospheric  NO2, such as Madrid (Fig. 3a).

At first glance, the variations in satellite-based and 
ground-level  NO2 show similarities. For example, in quali-
tative terms, the tropospheric  NO2 decreases in large areas 
of the north, the Ebro Valley, and the large urban areas of 
Madrid and Barcelona are consistent with those from the 
ground-level measurements. However, over large parts of 
the Mediterranean coast, where tropospheric column  NO2 
levels also clearly declined (Figs. 3c, S1.4b), the AQMSs 
mostly did not detect any  NO2 trends (Figure S1.3 g). The 
measurements obtained using these different tools are not 

directly comparable here, but are complementary (Bechle 
et al. 2013), since their spatial and temporal representa-
tiveness are different. For instance, ground-based observa-
tions provide concentrations at specific locations that can 
be highly influenced by nearby sources, whereas satellite-
based observations measure average concentrations inte-
grated over specific land areas (several square kilometers) 
and in the vertical. Similarly, satellite-based observations 
have a daily frequency, typically in the afternoon (subject 
to cloud cover limitations and associated biases), while 
ground-based observations are daily averages derived from 
24-h data. In any case, to support the interpretation of  O3 
trends, a wider representation of the  NO2 load in a large air 
mass is desirable.

Over the same period, the statistically significant trends 
affecting the HCHO tropospheric columns were mostly posi-
tive, albeit scarce and dispersed over the peninsula, with no 
clear spatial patterns discernable (Fig. 3f). The aforemen-
tioned noise affecting these measurements added uncertain-
ties, making it difficult to detect significant trends over the 
relatively short time period of 12 years. The highest positive 
HCHO trends were observed in northwestern Spain. Simi-
larly, the significant HCHO/NO2 ratio trends were dispersed 
and mostly positive (Fig. 3i). In large cities like Madrid or 
Barcelona, this increase might have been partially driven by 
the reduction in  NO2, whereas in northwestern Spain, it is 
likely to have been driven by the increase in HCHO. Over-
all, under the assumption that HCHO tropospheric columns 
are a reliable proxy for total VOC reactivity, these results 
suggest that, at least in the early afternoon when the OMI 
observations are available, NOx tends to play an increasingly 
important, albeit perhaps not entirely limiting, role in the 
formation of  O3 over Iberia.

The mostly increasing HCHO trends are qualitatively con-
sistent with those of Opacka et al. (2021), who found posi-
tive isoprene and HCHO trends over Iberia (2001–2016), 
attributing them to changes in the land cover. However, as 
background  O3 concentrations have increased (Sicard 2021), 
and HCHO can be generated from VOCs (including iso-
prene) (Wolfe et al. 2016) by  O3 oxidation, it is plausible that 
this global  O3 increase contributed to the HCHO increase.

Trends in emissions of the main  O3 precursors

Although inventories only consider emissions of anthro-
pogenic origin, it should be noted that biogenic emissions 
of precursors can have a large impact on  O3 (Monks et al. 
2015). For instance, among the most important  O3 precur-
sors, and at a global scale, 90% of atmospheric VOCs are 
biogenic, isoprene, and monoterpenes being the greatest 
contributors (Guenther et al. 1995), or 15% of global NOx 
emissions originate from soils, which can be a significant 
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source of the NOx budget outside the cities (Weng et al. 
2020). However, at local/regional scales, these contributions 
can change dramatically (Sartelet et al. 2012), for instance, 
in situations where  O3 pollution episodes occurr in Spain, 
mostly in and around highly populated and/or industrialized 
conurbations (Querol et al. 2016).

The inventories showed that, in 2008–2019, emissions of 
the main anthropogenic precursors of  O3 evolved differently 

in the EU-28 and Spain (Fig. 4a, b). In the EU-28, all com-
pounds declined (− 1.3 to − 2.9%·year−1). However in Spain, 
NOx steadily declined (− 3.4%·year−1), but AVOCs, CO, and 
 CH4 increased from 2014, probably indicating a rebound 
of emissions after the financial crisis (Pacca et al. 2020), 
although they slightly declined overall in 2008–2019, fol-
lowing no statistically significant trends (only p < 0.1 for 
 CH4). The AVOC/NOx ratio in Spain significantly increased 

Fig. 4  a, b Emissions of the main  O3 precursors (NOx, AVOCs, and 
CO in Gg,  CH4 in  ktCO2 eq.) from the EU-28 and Spain, 2000–2019. 
In the top right table, estimation of 2008–2019 trends by region and 
compound. Trend magnitudes are significant at p < 0.001 (***), 
p < 0.01 (**), p < 0.05 (*), and p < 0.1 ( +); blank––no statistical sig-
nificance (p ≥ 0.1). c–f Emissions of the main  O3 precursors by sector 
in Spain for 2000–2019. Only the top five sectors are shown. RCI––
residential/commercial/institutional. f For  CH4, the sectors have a 
different classification because they came from a different database 

(EEA 2021c). Note that the secondary (right) y-axis shows the emis-
sions sectors (dotted lines––industry, residential, and energy supply) 
plotted one order of magnitude below agriculture and waste on the 
primary y-axis. In the bottom right table, estimation of 2008–2019 
trends by compound and sector in Spain. Only the top five sectors are 
plotted in the charts. In the table, these are highlighted in gray and in 
bold, while the others are  retained for reference. NOx, AVOCs, and 
CO data from EEA (2021b)
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during this period, by 1.6 times from 2007 to 2019, which 
is in general agreement with the trends observed for the 
HCHO/NO2 ratio (Fig. 3i). A breakdown of the variations 
in emissions by region is unavailable at present, but informa-
tion on the emissions sectors at the national level is acces-
sible (Fig. 4c–f).

In 2008–2019, three of the top five NOx-emitting sectors 
in Spain (industry, energy, and road transport) significantly 
decreased their NOx emissions (− 4.3 to − 5.2%·year−1). Emis-
sions from agriculture slightly decreased (− 0.8%·year−1), and 
those from non-road transport showed no significant trend, 
albeit they increased from 2014 (Fig. 4c).

The most relevant AVOCs-emitting sectors are indus-
try (including emissions from solvents), followed by agri-
culture (representing less than half the industrial emis-
sions), and residential/commercial/institutional (RCI), 
road transport, and waste, all representing less than 15% 
of the industrial emissions. The AVOCs emissions from 
the industrial sector did not follow a trend, although, after 
2013, they clearly increased. Agricultural emissions weakly 
increased (+ 1.0%·year−1) along the period, while RCI and 
waste AVOCs emissions did not follow any trends. Finally, 
road transport emissions of AVOCs strongly decreased 
(− 7.6%·year−1) (Fig. 4d).

The top five CO-emitting sectors are waste, then RCI, 
industry, road transport, and agriculture. Road transport CO 
strongly decreased (− 6.1%·year−1) and RCI emissions also 
decreased, but only slightly (− 0.7%·year−1). Conversely, the 
CO from industry did not change during the studied period, 
whereas that from the agricultural and waste sectors clearly 
increased (+ 3.5 and + 3.9%·year−1, respectively) (Fig. 4e).

The most relevant  CH4-emitting sector is agriculture, fol-
lowed by waste management, then, more than an order of 
magnitude below, by industry, RCI, and energy. The agricul-
tural sector showed no trend for 2008–2019, but did steadily 
increase from 2013, whereas waste management (represent-
ing about half the agricultural sector emissions) decreased 
by − 1.4%·year−1 (Fig. 4f).

Interpretation of  O3 trends in specific areas

Massagué et al. (2023) found statistically significant  O3 
trends in the Spanish  O3 hotspots for 2008–2019. However, 
these trends were observed in only a relatively small 
proportion of the AQMSs, in line with the findings of 
other studies in which similar time periods were analyzed 
(Fleming et al. 2018; Mills et al. 2018; EEA 2020). This 
is partly attributed to the meteorological sensitivity of  O3, 
which varies from year to year, thereby complicating the 
detection of trends on relatively short timescales (Colette 
et al. 2016; Fleming et al. 2018). Moreover, depending on the 
part of the  O3 distribution under consideration, an individual 
time series may show opposite trends, potentially leading to 

differing conclusions in the evaluation of emissions control 
strategies (Lefohn et al. 2017, 2018; Yan et al. 2019). For this 
reason, Massagué et al. (2023) employed a variety of metrics 
associated with different  O3 concentration levels. Moderate 
 O3 concentrations were evaluated using the annual mean  O3 
concentrations (O3YR), while mid to high  O3 concentrations, 
by means of the well-established SOMO35, AOT40, and 93.2 
percentile (P93.2) of the maximum daily 8-h average (MDA8). 
Furthermore, peak  O3 concentrations were evaluated using the 
fourth highest MDA8 within a year (4MDA8) and the number 
of exceedances of Europe’s hourly information threshold (IT) 
(180 µg·m−3). This approach allowed for the assessment of a 
wide range of the distribution of  O3 concentrations.

The main hotspots followed contrasting  O3 trends (Fig. 1b). 
The Madrid area had mostly upward  O3 trends for all the 
metrics and, in many cases, the highest increasing rates. The 
interior of the Valencian Community had a mixed variation 
pattern, depending on the specific  O3 metric considered. The 
area north (downwind) of Barcelona, the Puertollano Basin, 
and the Guadalquivir Valley revealed almost no variations, 
and Sevilla was the only major Spanish city where  O3 mostly 
decreased and, in many cases, with the highest decreasing 
rates. Multiple causes might explain these contrasting  O3 
trend behaviors in Spain, some of which are discussed below.

Increasing  O3 trends in the Madrid area

This  O3 hotspot (Fig. 1a), located on a continental plateau 
(700 m a.s.l.), is frequently affected by high  O3 episodes 
caused by intense  NO2 emissions, mainly from traffic coupled 
with high BVOCs. During the typical summer anticyclonic 
conditions, the surrounding mountain ranges enhance stagnant 
conditions and trigger recirculations, which lead to acute  O3 
episodes (see Querol et al. 2016 and references therein).

As previously mentioned, the Madrid area experienced a 
statistically significant upward trend in temperature during 
the study period, which might have enhanced the  O3 levels, 
albeit to a limited extent, through various mechanisms (Porter 
and Heald 2019 and references therein). These mechanisms 
include an increase in BVOC emissions (Sillman and Samson 
1995) and, to a minor degree, emissions from specific AVOCs 
(Rubin et al. 2006). The variations in other meteorological 
parameters observed in the interior areas, which can be 
conducive to  O3 production, such as increasing solar 
radiation, an increase in PBL thickness, and a decrease in 
cloud cover, although lacking statistical significance, might 
still have contributed to the observed increase in  O3 levels 
(see the “Meteorological parameters” section). Furthermore, 
as depicted in Figure  S3.1j, the Madrid area typically 
reaches high PBL thicknesses due to the intensive convective 
circulations that give rise to the usual Iberian thermal low 
(Millán et al. 1997, 2002). These high convective flows may 
account for a greater influence of stratospheric and free 
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tropospheric  O3 (which is globally increasing, depending 
on the location) (Monks et al. 2015) via mixing down to the 
surface and impacting ground-level concentrations.

In terms of emissions of  O3 precursors, the road transport 
sector in Madrid stands as the largest contributor to the 
share of NOx emissions (Borge et al. 2014). Additionally, it 
contributes significantly more to NOx emissions in Madrid 
than in Barcelona (Valverde et al. 2016), where other sectors 
account for significantly higher proportions (Guevara et al. 
2014; Soret et al. 2014) (see Figure S1.5a). Assuming that 
the national 50% reduction in NOx emissions from road 
transport (Fig. 4c) applies similarly to both metropolitan 
areas for 2008–2019 (or potentially even higher in Madrid, 
as suggested by the ground-level measurements, Table S1.3), 
this would explain the substantial decrease in tropospheric 
 NO2 observed by the OMI over the Madrid area, while 
Barcelona experienced a less pronounced decline. Because 
local  O3 production depends on the VOC/NOx ratio, in urban 
or industrialized areas with high NOx concentrations, such 
as Madrid (and Barcelona), the VOC/NOx ratio is low, and 
 O3 formation tends to be VOC-limited (Sillman et al. 2003), 
as also suggested by the lowest national HCHO/NO2 ratios 
reported in Fig. 3, especially for the Madrid area. Under these 
(VOC-limited) conditions, a reduction in NOx emissions might 
cause an increase in  O3 (Monks et al. 2015). In this context, the 
marked NOx decreases over Madrid, as observed by the OMI 
and mainly related to road transport, partially might explain 
the generalized upward trends in  O3 in this area for 2008–2019. 
Additionally, as Saiz-Lopez et al. (2017) also proposed for 
the same area during 2007–2014, it is likely that a portion of 
the observed increasing  O3 trends, particularly in the case of 
moderate  O3 metrics like O3YR or SOMO35 (Lefohn et al. 
2017; Fleming et al. 2018), can be attributed to a reduction in 
the NO titration effect (Sicard et al. 2013, 2016; Simon et al. 
2015). This is supported by the fact that these  O3 trends were 
detected in urban and/or traffic stations, which also recorded 
large NO decreases (as documented in Table S1.3).

The clear increase in industrial AVOC emissions since 2013, 
with this sector being the largest contributor to AVOC emissions 
in Spain (Fig. 4) and bearing the dominant responsibility for the 
largest share of AVOC emissions in Madrid (Figure S1.5b), 
coupled with significant increases in emissions from other 
sectors, may also have contributed to the general upward trend 
in  O3 levels in the Madrid area. Increases in VOC emissions, 
which are known to cause increases in  O3 under VOC-limited 
conditions, may have been particularly influential in this regard, 
according to previous research (Jacob et al. 1995; Sillman 1999; 
Sillman and He 2002; Sillman et al. 2003).

Finally, it is worth mentioning the case of two AQMSs 
located in Castilla La Mancha, 40 km north-east of central 
Madrid, in an area likely prone to be in NOx-limited conditions. 
These stations, which are affected by the pollution plume from 
the Madrid area and typically experience high levels of  O3, 

recorded statistically significant decreasing trends for certain 
 O3 metrics, contrasting with the generalized increasing trends 
observed nearer to the urban area (Massagué et al. 2023). This 
situation illustrates how NOx reductions can impact  O3 trends, 
depending on different  O3 formation regimes. 

Absence of  O3 trends in the northern Barcelona area

The Vic Plain (located downwind of Barcelona) (Fig. 1a) is 
an important  O3 hotspot in Spain, partly due to the high pre-
cursor emissions transported from the Barcelona metropoli-
tan area (Diéguez et al. 2009; Querol et al. 2016, 2017). This 
region is affected by the large-scale WMB recirculations (see 
Querol et al. 2016 and references therein). Its proximity to 
the sea causes a thinner PBL in this area compared to the 
interior areas, such as the Madrid region (Figure S3.1 k), 
which likely means Barcelona is less affected by air masses 
from the free troposphere.

Massagué et al. (2023) found no statistically significant 
 O3 trends in this hotspot, thus the intense reduction in NOx 
emissions in the Barcelona area, as evidenced by both sat-
ellite-based (Fig. 3c) and ground-level (Figure S1.3) meas-
urements, likely had a limited or no impact on the  O3 levels 
at this location. The decrease in tropospheric  NO2 in the 
Barcelona area was less intense than in Madrid, probably 
because NOx emissions from sectors other than road trans-
port (industry, harbor, energy, among others), which con-
tribute more to the NOx share in Barcelona than in Madrid 
(Guevara et al. 2014; Soret et al. 2014), decreased less than 
those from road transport, or even increased (Fig. 4c).

The absence of significant meteorological variations likely 
also contributed to the lack of change in  O3 levels in this area, 
in contrast to central Spain and, therefore, the Madrid area. 
However, a few rural background sites not located in the Vic 
Plain, but also affected by the Barcelona area’s pollution 
plume, recorded slight downward trends for the high and peak 
 O3 metrics (P93.2 and 4MDA8), consistent with the findings 
of Lefohn et al. (2018) and Yan et al. (2019) who indicated 
that, at most stations in Europe,  O3 in the upper end of the dis-
tribution decreased due to effective NOx abatement measures.

In Barcelona city, only some urban traffic sites recorded 
increasing trends for several  O3 metrics in 2008–2019 (Mas-
sagué et al. 2023), pointing to the effect of lower titration 
by NO (Simon et al. 2015; Sicard et al. 2013, 2016), which 
is supported by the marked ground-level NO decreases 
recorded during that period at those same sites (Figure S1.3).

Mixed  O3 trends in the Valencian Community

The  O3 phenomenology in the Valencian Community 
(Fig. 1a) resembles that of Barcelona–Vic Plain because 
this region lies in the WMB and is also affected by large-
scale recirculations, where  O3 episodes occur inland due 
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to high urban (Alicante and Valencia) and urban-industrial 
(Castellón) emissions that are transported inland by meso-
meteorological circulations (e.g., Millán et al. 1997, 2000).

According to Massagué et al. (2023), the Valencian Com-
munity was the  O3 hotspot with the second highest number 
of positive trends after Madrid. Trends in the metrics based 
on moderate and mid to high concentrations were mostly 
positive, found in coastal locations, and, to a lesser extent, 
in the interior. In addition, a few rural and regional AQMSs 
recorded downward trends for peak  O3 in the north-west.

Levels of tropospheric column  NO2 decreased only 
in Valencia and Alicante (Fig. 3c), where road transport 
prevails as a main NOx source. However, no statistically 
significant trends were found for Castellón, where high 
industrial emissions, mainly from the ceramics cluster, a 
petrochemical plant, and a power plant (Minguillón et al. 
2013), likely moderated the NOx reductions from road trans-
port. Although there is no data available on the share of 
 O3 precursor emissions in the Valencian Community, it is 
known that the industrial and agricultural economic sectors 
are (relatively) more important there than in Madrid (INE 
2022). Therefore, the relative weight of the emissions from 
these (and other) sectors might have been expected to be 
greater in the Valencian Community, and these emissions 
showed minor decreases, stability or even increases in the 
period studied (Fig. 4c, d, e).

The absence of evident variations in meteorological 
parameters may indicate that the dominant increasing  O3 
trends in the region (mostly occurring in the coastal cit-
ies) are probably due to the decrease in NOx emissions in a 
VOC-limited regime and/or by a lower NO titration effect 
(Simon et al. 2015; Sicard et al. 2013, 2016). However, 
the decreasing  O3 trends for peak  O3 (4MDA8) in regional 
background sites located north of the Valencian Commu-
nity (probably in NOx-limited conditions) might be attribut-
able to the significant reduction in nearby NOx emissions 
(observed in the tropospheric column) (Figs. 3c and S1.4b). 
This reduction in NOx emissions,  is due to the gradual 
reduction in the operational activities of one of Spain’s larg-
est coal-fired power plants (1050 MW), which formerly had 
a notable impact on the air quality of this region. The plant’s 
activity began to diminish in 2010 and eventually ceased 
operations in 2020.

Absence of  O3 trends in Puertollano

In Puertollano, the coexistence of large industrial sources 
with specific orographic features and atmospheric condi-
tions, such as thermal inversion and stagnation, have resulted 
in this location having one of the poorest dispersion char-
acteristics among the inland areas of Spain (Diéguez et al. 
2009, 2014). The large industrial plant in Puertollano is the 
main source of NOx and AVOC emissions in the region 

(Querol et al. 2016 and references therein), and concentra-
tions of hydrocarbons there have been found to be higher 
than in other large industrial facilities (Diéguez et al. 2009), 
thus the  O3 formation regime should tend to be NOx-limited. 
Episodes of  O3 in this closed basin are characterized by their 
acute nature, where exceedances of Europe’s IT are recorded 
multiple times every year, but only at two closely located 
AQMSs. However, when considering  O3 metrics indica-
tive of chronic pollution, the AQMSs in Puertollano tend 
to register lower values than other AQMSs in nearby areas 
(Massagué et al. 2023).

Satellite observations have shown a slight decrease in 
 NO2 levels in Puertollano, possibly due to a reduction in 
industrial NOx emissions (Fig. 3c). However, unlike other 
cities that experienced a significant reduction in ground-
level NOx due to decreased road traffic, Puertollano did not 
show any decrease (Figure S1.3). This difference may have 
caused the absence of positive trends in moderate  O3 metrics 
in Puertollano, as reported in Massagué et al. (2023), which 
were observed in most cities and are likely due to the effect 
of reduced NO titration.

According to the inventories, AVOC emissions from the 
industrial sector did not show a clear trend for the whole 
period (Fig. 4d), but have clearly increased since 2013–2014, 
likely due to the rebound effect after the 2008 financial cri-
sis (Pacca et al. 2020). These changes in AVOC emissions 
may have had a limited effect on  O3 levels in NOx-limited 
conditions (Sillman 1999; Sillman and He 2002; Sillman 
et al. 2003).

The temperature changes conducive to  O3 production, 
together with other non-statistically significant mete-
orological changes observed in Puertollano in the studied 
period, are similar to those observed in the Madrid region 
(Figs. 2c and S3.1). However, it appears that temperature 
and other meteorological parameters may have a compara-
tively smaller influence on  O3 levels in the Puertollano area 
than in other  O3 hotspots because  O3 episodes in Puertollano 
can occur throughout the year, including winter, rather than 
being limited to the typical  O3 season (Diéguez et al. 2009).

Decreasing  O3 trends in Sevilla and absence of trends 
in the Guadalquivir Valley

The urban area of Sevilla, located in the Guadalquivir Valley 
and downwind of the large petrochemical area of Huelva 
(Fig. 1a), frequently experiences acute  O3 episodes (Diéguez 
et al. 2009; Querol et al. 2016), with 1-h concentration-
based thresholds being exceeded. However, in inland areas 
of the Guadalquivir Valley, located downwind of Sevilla 
and Huelva,  O3 pollution exhibits chronic behavior, where, 
instead of high hourly threshold exceedances, MDA8 
concentration-based thresholds are exceeded for several days 
during summer (Massagué et al. 2021, 2023).
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No AQMSs in this basin recorded any  O3 trends except 
for in the city of Sevilla, which showed clear and widespread 
downward trends for most of the  O3 metrics (Massagué 
et al. 2023). The reason behind the distinctive decreasing 
 O3 trends in Sevilla city may be attributable to the relatively 
high urban NOx concentrations that interact with the high 
AVOC concentrations emitted from the large industrial 
petrochemical area in Huelva, located upwind (although not 
evident in Fig. 3d, as no HCHO hotspots were detected). 
This unique scenario in Spain might have transformed the 
typical urban VOC-limited regime into one that tends to be 
NOx-limited (Diéguez et al. 2009). Therefore, changes in 
the emissions in Sevilla (decrease in NOx, as observed by 
the OMI) (Fig. 3c) and/or Huelva (which were not observed 
in this study) may have played a part in causing the overall 
 O3 decrease in this city.

Importantly, only the low  O3 concentration metrics (in 
this case annual  O3) increased in this city, which supports 
the possibility of a reduced NO titration effect (Simon et al. 
2015; Sicard et al. 2013, 2016) being the primary cause, 
similarly to most of the cities studied here, as evidenced 
by the decrease in ground-level NO concentrations 
(Figure S1.3c).

The highest national temperatures recorded during the 
 O3 season were observed along the Guadalquivir Valley 
(Fig. 2a), which may trigger BVOC emissions from the 
large forested and planted areas. However, no significant 
trends in temperature or other evaluated meteorological 
parameters were found in the analysis. The national 
inventories showed an increase in agricultural AVOCs, 
which likely had relevance in Andalucia (and therefore in 
the Guadalquivir Valley, where most crops are located, as 
shown in Figure S1.1b), since this sector plays an important 
role in the local economy (INE 2022). Although increases 
in HCHO were observed in the Guadalquivir Valley, which 
would be consistent with the increase in AVOCs from 
agriculture, these are not clearly distinguishable likely due to 
the aforementioned signal-to-noise ratio. However, it should 
be noted that in NOx-limited environments—likely most of 
the Guadalquivir Valley (also suggested by the HCHO/NO2 
ratio) and also Sevilla (Diéguez et al. 2009)—an increase in 
VOC emissions has a limited effect on  O3 (Sillman 1999; 
Sillman and He 2002; Sillman et  al. 2003), although it 
contributes to maintaining the area in a NOx-limited regime.

Other considerations for  O3 trends

Other considerations need to be taken into account when 
interpreting  O3 trends:

• Concentrations of  CH4 have increased globally in the last 
decade (Saunois et al. 2020), causing increases in the 
background  O3 (Archibald et al. 2020) and counterbal-

ancing, to some degree, the decline in European emis-
sions of  O3 precursors (EEA 2020). Thus, non-European 
sources of  CH4 (and other  O3 precursors) may play a 
relevant role in ground-level  O3 levels in Europe. How-
ever their influence tends to be more pronounced on the 
annual mean  O3 levels compared to other metrics like 
SOMO35, which mainly depends on high summer  O3 
concentrations and is more influenced by European pre-
cursor emissions (Jonson et al. 2018; Turnock et al. 2018; 
EEA 2020). At a local/regional level,  CH4 emissions 
also need to be considered because their contribution 
to regional  O3 formation is nowadays considered to be 
higher than previously reported (Van Dingenen et al. 
2018; IPCC 2021), although in the urban atmosphere, 
its contribution can be relatively small, where reactive 
organic compounds and CO dominate  O3 production 
(Archibald et al. 2020). Despite the lack of data on the 
relative by-region  CH4 emissions weights in Spain, these 
might have had an influence on the  O3 trends because, 
for example, during this period, national emissions 
from agriculture and waste management (one order of 
magnitude larger than the other  CH4 emissions sectors 
considered) increased from 2013, or slightly decreased 
(Fig. 4f). Furthermore, very high  CH4 emissions have 
been recently detected seeping from Madrid landfills 
(ESA 2021; Tu et al. 2022) that have probably been 
underestimated in the inventories, and these might have 
had a positive influence on the  O3 levels in and around 
Madrid, as well as other areas during the period.

• It is possible that other emissions relevant to  O3, such as 
those from agricultural and biomass burning for power 
generation (e.g., In 't Veld et al. 2021), might not have 
been considered or may have been underestimated in the 
inventories used here. Shipping emissions also need to 
be considered because they may increase  O3 along the 
Spanish coastal regions (Jonson et al. 2020; Nunes et al. 
2020). For example, emissions in the area between conti-
nental Spain and the Balearic Islands—probably relevant 
to the  O3 in Cataluña and the Valencian Community—
might have increased, as port traffic (and other shipping 
metrics) strongly increased during the study period (Fig-
ure S1.6). However, the  NO2 tropospheric columns did 
not show a clear pattern, with increases recorded in the 
area around the Balearic Islands, but decreases along 
the Catalan coast (Fig. 3). In this context, to illustrate 
the significance of these emissions, the abrupt reduc-
tions in shipping traffic, particularly from cruises and 
ferries, (and air traffic emissions) caused by the COVID-
19 restrictions in 2020 and 2021 (Guevara et al. 2022; 
Puertos del Estado 2022), likely played a role in prevent-
ing the European Union’s established  O3 thresholds from 
being exceeded for the first time in the Spanish Medi-
terranean coastal areas (Querol et al. 2021; Targa et al. 
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2022). This is because the relatively low reductions in 
road transport emissions observed in summer, when  O3 
levels are at their highest, may not fully account for the 
large improvement in  O3 levels (Oliveira et al. 2023).

• It is important to acknowledge that other factors operating 
at different spatial and temporal scales than those consid-
ered in this study may also have contributed to the observed 
trends in  O3. These factors, among others, include the fol-
lowing: (i) the long-range transport of  O3 and its precursors, 
although the two stations that best represent the regional 
 O3 behavior in Spain (located on the western Atlantic coast 
and in the Balearic Islands) (Diéguez et al. 2009) did not 
capture any  O3 trends during the period (Massagué et al. 
2023); (ii) the exchange of  O3 between the stratosphere and 
troposphere; and (iii) climate variability at both high and 
low frequencies. For instance, climate phenomena, such 
as the El Niño–Southern Oscillation or the North Atlantic 
Oscillation, as well as global warming, can modulate the 
tropospheric  O3 burden. These factors are interconnected 
with each other as well as with the other factors considered 
in this study. To fully understand their impact on surface  O3 
trends, complex modeling tools are necessary.

Conclusions

A related study (Massagué et al. 2023) revealed contrasting 
surface ozone  (O3) trends among the  O3 hotspots in Spain 
from 2008 to 2019. Specifically: (i) the Madrid metropolitan 
area showed generalized upward trends, often with the highest 
increasing rates; (ii) the interior of the Valencian Community 
area had a mixed variation pattern; (iii) the area downwind of 
Barcelona, the Puertollano Basin, and the Guadalquivir Valley 
showed no variations; and (iv) Sevilla was the only major 
urban area in Spain that recorded general decreasing trends.

While understanding the drivers behind these contrasting 
 O3 trends requires the use of highly complex models, this 
study aimed to make progress toward this goal by employing 
a simplified methodology and observational data. Its ultimate 
purpose is to assist in the planning of future advanced studies 
for designing a mitigation plan for  O3 in Spain. To this end, 
relevant  O3 precursors, such as nitrogen oxides (NOx) and 
volatile organic compounds (VOCs), among other species, 
along with meteorological parameters associated with  O3, 
were analyzed from different data sources, including ground-
level measurements and satellite observations, emissions 
inventory estimates, and meteorological reanalysis datasets.

The  O3 hotspots with the most opposing behaviors regard-
ing  O3 trends were, at both ends, the Madrid area and the 
city of Sevilla. These act as both emissions sources of  O3 
precursors and receptor areas. Madrid is impacted mainly by 
its own emissions, whereas Sevilla is affected by a large pet-
rochemical area located downwind, while also contributes 

to the emission of pollutants that impact the interior of the 
Guadalquivir Valley (Querol et  al. 2016 and references 
therein). The results suggest that, in the Madrid area, the 
generalized increasing  O3 trends may be mostly driven by 
major NOx decreases attributed to the road transport sector 
in this urban VOC-limited environment. Additionally, and 
to a lesser extent, an increase in surface temperature and 
other variations in meteorological parameters conducive to 
 O3 production may be at play. Conversely, the generalized 
decreasing  O3 trends in Sevilla city probably resulted from 
declining NOx emissions in a peculiar urban NOx-limited 
regime caused by AVOC contributions from a large petro-
chemical area located upwind (Diéguez et al. 2009), and 
increases in BVOCs associated with increased agricultural 
emissions and favorable meteorological conditions.

The other  O3 hotspots, including the interior of the 
Guadalquivir Valley, areas north of Barcelona, the closed 
Puertollano Basin, and the interior of the Valencian Community 
are receptor areas (located downwind of major emissions 
sources). Notably none of these areas exhibited  O3 trends, 
except for the interior of the Valencian Community, which 
displayed a less evident pattern. All of these hotspots are partly 
or entirely impacted by industrial, or other sector, emissions, 
apart from those from the road transport sector, as opposed to 
the Madrid area, where this is the primary contributor. The 
absence of clear trends in emissions from sectors other than 
road transport, and in some cases, increased emissions from 
specific sectors and precursors (possibly linked to the economic 
recovery following the 2008 financial crisis), coupled with the 
absence of significant meteorological variations conducive to 
 O3 production, seem to have contributed to the overall stability 
of  O3 concentrations in these hotspots.

Furthermore,  in all the urban areas analyzed here, 
with the exception of Puertollano, surface NOx decreases 
attributed to the road transport sector and increases in  O3 
(especially in the lower part of the  O3 distribution) were 
detected for the study period, pointing to a decrease in the 
titration effect as the main cause of these  O3 variations.

The findings from this study show that the parameters 
influencing  O3 vary distinctively across the different Spanish 
atmospheric regions—or  O3 hotspots—and that the causes 
underlying the contrasting  O3 trends differ significantly. 
This emphasizes the necessity of adopting an independent 
regional/local approach in planning  O3 mitigation measures.

In this study, we relied on satellite-based observations 
of formaldehyde (HCHO) as a proxy for VOCs emissions. 
However, the utility of these measurements in relation to  O3 is 
limited due to the presence of noise, low data frequency, and 
the fact that HCHO can be either primary or secondary. To 
improve on the available information, VOCs measurements 
with high temporal resolution, NOx/VOC sensitivity studies 
using both experimental and modeling methods, and higher 
disaggregation and temporal resolution in the VOCs and NOx 
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inventories are required. We believe that future studies should 
pursue these directions to advance our understanding of the 
complex relationships between  O3 and its precursors.
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