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ABSTRACT
Processmalleability can be defined as the ability of a distributedMPI

parallel job to change the number of processes on–the–fly without

stopping its execution, reallocating the compute resources origi-

nally assigned to the job, and without storing application data to

disk. MPI malleability consists of four stages: resource reallocation,

process management, data redistribution and execution resuming.

Among them, data redistribution is the most time-consuming and

determines the reconfiguration time. In this paper, we compare

different implementations of this stage using point-to-point and

collective MPI operations, and discuss the impact of overlapping

computation-communication. We then combine these strategies

with different methods to expand/shrink jobs, using a synthetic

application to emulate MPI-based codes and their malleable coun-

terparts, in order to evaluate the effect of different malleability

methods in parallel distributed applications. The results show that

the use of asynchronous techniques speeds up execution by 1.14

and 1.21, depending on the network used.
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1 INTRODUCTION
High performance computing (HPC) facilities require novel pro-

gramming techniques to take full advantage of the large number of

processors interconnected by high-speed networks. A major goal

of HPC, and exascale supercomputers in particular, is to use spe-

cial techniques to maintain high system productivity in terms of

completed jobs per unit of time.

Large computing facilities typically include Resource Manage-

ment Systems (RMS), which are responsible for monitoring avail-

able resources and allocating them following users requirements.

Therefore, when jobs request resources to the RMS, the petition

may vary depending on whether the main goal is to complete the

execution as fast as possible, or to improve productivity in the

system. Usually, from the application’s point of view, the shortest

execution times occur when allocating the number of resources

that maximize performance, even though not all of them are always

used during execution. On the other hand, the highest system pro-

ductivity can be achieved when all resources are used most of the

time. To achieve both goals, RMS must allocate the optimal number

of resources to each step of the job, reaching a trade-off between

application performance and system productivity.

On–the–fly malleability allows applications to change the ini-

tial allocation of compute resources, while the job is running and

without storing application data to disk. The benefits of its use can

be analyzed from two different points of view. For each individual

application, the benefit can come from the increase of its particular

performance when the job gets more resources, while for the global

system, the benefit can come from the increase in throughput with

the reduction of the makespan.

In a parallel job, malleability is triggered at checkpoints, specific

points where processes are synchronized throughout the execution.

Defining checkpoints at the end of a loop can be the most straight-

forward option in iterative applications, while for non-iterative

applications, a good alternative is to define a checkpoint at the

beginning of each phase.

The first task in a malleability checkpoint is to contact the RMS

to know if the application has to be reconfigured, since the RMS is

in charge of making this decision. If a reconfiguration is proposed,

the application has to perform the following tasks:

(1) Stage 1: Resources reallocation. RMS allocates new resources

and/or relinquishes assigned already resources to/from a job.

(2) Stage 2: Processes management. Spawn/terminate processes

accordingly to the RMS reconfiguration decision.
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(3) Stage 3: Data redistribution. Communicate data among initial

and final processes, so that the execution continues properly

using the final processes.

(4) Stage 4: Resuming execution. Continue the execution at the

same point as before the reconfiguration started.

This paper introduces different methodologies to complete Stage 3

of malleability, analyzing how it can be combined with a variety of

methods and strategies for Stage 2 [16].

We consider that at each malleability step, the number of pro-

cesses in a parallel job is changed from 𝑁𝑆 processes (sources)

to 𝑁𝑇 processes (targets). Moreover, processes management can

be performed in two ways: always spawning new 𝑁𝑇 targets, or

creating/terminating a number of processes equal to the positive

difference between 𝑁𝑆 and 𝑁𝑇 . In [16], these options are defined

as Baseline and Merge methods, respectively.

In turn, the data redistribution considers two types of data: Con-

stant (they do not vary during execution) and Variable (they are

modified at each stage/iteration). Both types can be redistributed

using Point-to-Point or Collective operations. Furthermore, the non-

blocking version of the operations can be leveraged for redistribut-

ing constant data, overlapping computation and communication.

In fact, overlapping techniques can be used to allow sources to

continue the execution while Stage 2 and 3 are completed. In this

regard, unlike Synchronous strategies where source processes halt

their computations, Asynchronous strategies can increase perfor-

mance of certain operations.

In this paper, we present different techniques for performing data

redistribution. Then, Stage 2 is coupled with Stage 3 by evaluating

six of the eight expand/shrink alternatives [16] combined with the

presented data redistribution methods. All the combinations have

been analyzed using a synthetic application, which allows study-

ing the behaviour of malleable applications considering different

scenarios [14, 17]. The main contributions of this paper are the

following:

• Twomethods for data redistribution, based on Point-to-Point

and Collective communications, are presented.

• Strategies to overlap computation and communication are

discussed: using non-blocking functions and threading.

• All these methods and strategies are combined with the

alternatives to spawn/shrink processes described in [16].

• These combinations are evaluated using a synthetic applica-

tion that emulates parallel malleable applications [14, 17].

The rest of this paper is organized as follows. Section 2 discusses

related work in the area of malleability and dynamic spawn of pro-

cesses inMPI applications. Section 3 describes the different methods

and strategies to perform data redistribution. Section 4 shows the

results obtained when a synthetic application is used, showing the

best alternatives in different scenarios. Section 5 summarizes the

paper and discusses future work.

2 BACKGROUND
MPI process malleability made its first steps taking advantage of

checkpoint/restart (C/R) techniques based on the principle of stor-

ing the state of a job in a non-volatile memory device, in order

to load it when required. In this regard, on-disk reconfiguration

in malleability halts executions in order to resume them with a

different shape. Processes are responsible to store and load the

appropriate data depending on the number of processes [3, 4, 6, 12]

Traditional C/R solutions show a low performance because of

the costly disk access when writing and reading. More modern mal-

leability solutions rely on in-memory data redistribution. Dynamic

in-memory mechanisms distribute data among processes without

accessing the disk. Data are always stored in volatile memory which

accelerates its manipulation.

Malleability frameworks that support in-memory data redistribu-

tion have developed different strategies to address this stage. In [8]

data redistributions are categorized in three ways: Automatic, Semi-

automatic, and Manual. Following, these categories are described

together with some malleability tools that utilize those techniques

with different implementations:

• Automatic, where the user data communication patterns

among processes is not explicitly codified. For example, Flex-

MPI [13] provides generalist automatic data redistribution

using data structure registers, while DMR API [9] leverages

data dependencies.

• Semiautomatic defines the methods that provide automatic

data redistribution for specific scenarios. For instance, AMPI [7]

is based on unique virtual memory addresses, while DMR-

lib [10] provides predefined redistribution patterns.

• In the manual mode, users are fully responsible for defining

the communication pattern among processes. Thus, coders

directly implement data redistribution with point to point or

collective functions. For example, Elastic MPI [1] does not

provide any data redistribution assistance.

In this paper, the authors explore manual in-memory data re-

distribution since it is the most versatile and flexible approach to

tackle any communication pattern in any application. Optimizing

and reducing the time spent in this stage of the malleability is cru-

cial to constraint reconfiguration overheads. Particularly, this paper

explores the effect of asynchronous data redistribution during a

reconfiguration operation. To the best of the authors knowledge,

malleability data redistribution has not been previously studied in

such a detail, for this reason, novel approaches for manual redistri-

bution in malleability are presented and analyzed in this work.

3 DATA REDISTRIBUTION TECHNIQUES
Redistributing data is one of the most important stages in malleabil-

ity since it is responsible for the major overhead.

The communications use the communicator that connects source

and target processes and can be carried out in different ways: de-

pending on the type of communication used (point-to-point or

collective); and whether it is possible to overlap communication

and computing to reduce the cost of this operation.

In malleability, data redistribution can not be taken as an iso-

lated task, so the actions performed in Stage 2 should be taken

into account together with Stage 3. In [16], eight different expan-

sion/shrinkage alternatives are evaluated, always going from 𝑁𝑆

to 𝑁𝑇 , grouped into two main methods. Baseline method, which

always spawns 𝑁𝑇 new processes, which will continue the exe-

cution as "targets", while all sources finalize. And Merge method,

where some sources continue the execution after the reconfigura-

tion: spawning only 𝑁𝑇 − 𝑁𝑆 new processes and persisting 𝑁𝑆
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sources to expand, or stopping 𝑁𝑆 − 𝑁𝑇 sources to shrink, while

𝑁𝑇 sources persist. The chosen MPI functions in [16] determine

that Baseline method uses inter-communicators to redistribute data,

while the Merge method generates intra-communicators.

Note that the processes which finalize their execution, they do

so after data redistribution. In Baseline, all sources finalize when

the targets have their data, whereas shrinking in Merge require

halting some sources when the other sources (targets) have their

data. For expansion in Merge, sources and new processes have to

be synchronized before continuing with the execution.

Below, we describe the different communication methods which

can be used to complete data redistribution and the different strate-

gies analyzed to overlap computation and communication.

3.1 How to redistribute the data
In general, the communication pattern depends on the features

of data to be redistributed and the algorithm to execute. The first

consideration is that each source should inform the targets of the

size of the data to be received, from which the targets can create

the internal structures, and then the communication is completed

by sending the data. The second comment is related to the content

of the data to be redistributed, composed of vector and matrices,

and distinguishing two types of matrices: dense and sparse.

When a static block data partition is used for dense data distri-

bution, only the dimension of vectors and matrices is sufficient for

sources and targets to calculate the size of the data to send/receive

and the destination/origin of each chunk. In addition, most of the

time, these values define the communication pattern of several ob-

jects. For sparse matrices, targets can not calculate from the matrix

dimensions how many non-zeros elements will receive from each

source. In this case, each source must calculate and send to each

target the number of non-zeros it will receive before the redistri-

bution begins. Note that the communication pattern need not to

be complete, since the data communication between some sources

and some targets can be empty.

The use of Point-to-PointMPI functions (P2P) is initially based

on MPI_Send and MPI_Recv. Although both of them execute the

blocking mode, deadlock is never reached when the intersection of

sources and targets is null, that is, using the Baseline method. But

using the Mergemethod, some processes can be sources and targets

at the same time, and therefore deadlocks are possible. The use of

the buffered mode of MPI_Send can solve in part this problem, but

the safest solution is to use non-blocking MPI functions, combining

MPI_Isend/MPI_Irecv with MPI_Wait/MPI_Test functions.
Algorithm 1 describes how these communications will be per-

formed, usingmyId to identify the rank of each process: the sources

are in [𝑓 𝑟𝑠𝑆𝑟𝑐, 𝑙𝑠𝑡𝑆𝑟𝑐] and the targets are in [𝑓 𝑟𝑠𝑇𝑟𝑔𝑡, 𝑙𝑠𝑡𝑇𝑟𝑔𝑡]. The
code for the sources involves a single loop in which each one sends

the size and the values to each target via a pair of MPI_Isend, using
different tags. But if a process is both source and target, a memcpy is

used instead. The targets first execute a MPI_Irecv for each source,

waiting for the sizes. When a size arrives, the internal structures are

created and a new MPI_Irecv is executed, waiting for the values.
In the targets, 𝑛𝑢𝑚𝑅𝑐𝑣 is initialized by the number of sources (first

loop) and later informs on how many messages with values remain

pending to be received (second loop). MPI_Waitany is used by the

Algorithm 1 Redistribution of data using P2P MPI functions.

if (𝑚𝑦𝐼𝑑 ≥ 𝑓 𝑟𝑠𝑆𝑟𝑐 &&𝑚𝑦𝐼𝑑 ≤ 𝑙𝑠𝑡𝑆𝑟𝑐) then
// Send sizes and values

for ( 𝑖 = 𝑓 𝑟𝑠𝑡𝑇𝑟𝑔𝑡 ; 𝑖 ≤ 𝑙𝑠𝑡𝑇𝑟𝑔𝑡 ; i++ ) do
if ( 𝑖 ==𝑚𝑦𝐼𝑑 ) then

Local copy using memcpy
else

MPI_Isend:𝑚𝑦𝐼𝑑 → 𝑖 , 𝑡𝑎𝑔 = 77 // Send size

MPI_Isend:𝑚𝑦𝐼𝑑 → 𝑖 , 𝑡𝑎𝑔 = 88 // Send values

end if
end for

end if
if (𝑚𝑦𝐼𝑑 ≥ 𝑓 𝑟𝑠𝑡𝑇𝑟𝑔𝑡 &&𝑚𝑦𝐼𝑑 ≤ 𝑙𝑠𝑡𝑇𝑟𝑔𝑡 ) then

// Recv sizes

𝑛𝑢𝑚𝑅𝑐𝑣 = 0

for ( 𝑖 = 𝑓 𝑟𝑠𝑆𝑟𝑐; 𝑖 ≤ 𝑙𝑠𝑡𝑆𝑟𝑐; i++ ) do
if ( 𝑖 ≠𝑚𝑦𝐼𝑑 ) then

MPI_Irecv:𝑚𝑦𝐼𝑑 ← 𝑖 , 𝑡𝑎𝑔 = 77

𝑛𝑢𝑚𝑅𝑐𝑣 + +
end if

end for
// Recv values

while ( numRcv > 0 ) do
MPI_Waitany: 𝑡𝑎𝑔 , 𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑠𝑖𝑧𝑒/𝑣𝑎𝑙𝑢𝑒𝑠
if ( 𝑡𝑎𝑔 == 77 ) then

Create internal structures: 𝑠𝑖𝑧𝑒 for 𝑠𝑜𝑢𝑟𝑐𝑒

MPI_Irecv:𝑚𝑦𝐼𝑑 ← 𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑡𝑎𝑔 = 88

else // Reception from 𝑠𝑜𝑢𝑟𝑐𝑒 is completed

𝑛𝑢𝑚𝑅𝑐𝑣 − −
end if

end while
end if
if (𝑚𝑦𝐼𝑑 ≥ 𝑓 𝑟𝑠𝑆𝑟𝑐 &&𝑚𝑦𝐼𝑑 ≤ 𝑙𝑠𝑡𝑆𝑟𝑐) then

// sources verify that the operations have been completed

MPI_Waitall: 𝑡𝑎𝑔 = 77 , 𝑡𝑎𝑔 = 88

end if

Algorithm 2 Redistribution of data using Collective MPI functions.

// Send/Recv sizes

MPI_Alltoall: 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 → 𝑡𝑎𝑟𝑔𝑒𝑡𝑠

if (𝑚𝑦𝐼𝑑 ≥ 𝑓 𝑟𝑠𝑡𝑇𝑟𝑔𝑡 &&𝑚𝑦𝐼𝑑 ≤ 𝑙𝑠𝑡𝑇𝑟𝑔𝑡 ) then
Create internal structures

end if
// Send/Recv values

MPI_Alltoallv: 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 → 𝑡𝑎𝑟𝑔𝑒𝑡𝑠

targets to get the source and the tag of the last received message,

and determine the next behaviour. Finally, MPI_Waitall is used by

the sources to ensure that all messages have been sent.

Collective MPI functions (COL) are free of deadlocks, therefore

the use of blocking functions, as MPI_Alltoall or MPI_Alltoallv,
is a good alternative. The corresponding code is simpler than the

previous one, because many of the aspects that programmers have

to manage when using P2P functions are solved, such as the lo-

cal copy or the non-null intersection of source and target groups.

Algorithm 2 shows the operations to perform.
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3.2 Overlapping data redistribution and
application execution

Data redistribution and application execution in sources can over-

lap, allowing the final execution time to be faster than the sum of

the individual execution times. But, the communicator used for data

redistribution and the one used for the application should be dif-

ferent to avoid communication deadlocks. This overlapping is only

possible when redistributing constant data, which is maintained

throughout the execution of the application, since redistributing

variable data requires the sources to halt their execution.

There are different alternatives to ensure that sources continue

computing while the communication of constant data is completed:

using non-blocking MPI operations or creating auxiliary threads to

manage the communication as a background task.

Non-blocking versions can be used in both P2P and COL MPI

functions. Algorithm 1 already employs Non-blocking P2P opera-

tions, but the use of MPI_Waitall forces the sources to wait until

communication is finalized. The alternative for sources would be

to verify the completion of the communication using MPI_Testall
instead of MPI_Waitall. For collective communications, nothing

changes for targets but sources should use either MPI_Ialltoall
or MPI_Ialltoallv in Algorithm 2, whereas the verification of the

function completion also requires the use of MPI_Testall.
Algorithm 3 shows how the sources overlap data redistribution

and application execution using non-blocking communications.

Basically, a series of conditions are added at the beginning of the

iteration checking if: a redistribution is being performed (redistStart

== true); a reconfiguration is scheduled (checkPoint(...) == true); or

the iteration has to continue normally. When redistStart equals true,

the sources call Test_Redistribution function to verify if the

communications have been completed. When the reconfiguration

in sources is complete, the iteration is terminated by executing the

break statement. However, if the calling source is also a target,

it will create internal structures for receiving data, and the iter-

ation will continue when the reconfiguration is complete. When

redistStart is false, checkPoint function will contact RMS to know if

a reconfiguration has been started and then a new redistribution

stage should be performed, setting redistStart to true.

At the end of the loop, the value of endLoop determines whether

the loop has ended due to a malleability step (is false), or because

loopControl has decided that the loop should terminate (is true).

The main goal of the creation of auxiliary threads is to relieve
sources of the responsibility of data redistribution. This way, the

auxiliary threads handle the communication, while the main ones

continue computing. Comparing Algorithms 3 and 4 shows that

in the first, a MPI_Testall is executed by the sources to check the

completion of the communication. In the second, a new thread is

created for each source to execute the MPI communication func-

tions. The sources know that the communication has finalized when

the corresponding auxiliary thread activates the shared boolean

variable endThread, in the checkPoint function.

The auxiliary threads often execute Algorithm 1 or Algorithm 2,

since they are the best alternative for communicating information.

In fact, there is no reason to use a non-blocking strategy with

threads because their only objective is to complete the data redis-

tribution as fast as possible. Additionally, this is a good strategy to

Algorithm 3 Code for sources that overlap data redistribution and

application execution using non-blocking operations.

endLoop = false; redistStart = false;

while ( not endLoop ) do
// Begin malleability code

if ( redistStart ) then
if ( Test_Redistribution ( . . . ) ) then

redistStart = false;

if ( not ( is_target (𝑚𝑦𝐼𝑑 ) ) then
break;

end if
end if

else if ( checkPoint ( . . . ) ) then
redistStart = true;

Start data redistribution using non-blocking functions

end if
// End malleability code

Code related to an iteration

endLoop = loopControl( . . . );

end while
Code to conclude the program

improve performance when there are enough unused CPUs in the

node, but it can overload the system when all CPUs are busy. The

reason is that MPI_Waitall is implemented as a polling loop, wast-

ing CPU-time. The best alternative would be an implementation of

MPI_Waitall, based on a blocking loop, reducing its impact on the

CPU usage.

Algorithm 4 Code for sources that overlap data redistribution and

application execution creating auxiliary threads.

endLoop = false; redistStart = false; endThread = false;

while ( not endLoop ) do
// Begin malleability code

if ( redistStart ) then
if ( endThread ) then

redistStart = false; endThread = false;

if ( not ( is_target (𝑚𝑦𝐼𝑑 ) ) then
break;

end if
end if

else if ( checkPoint ( . . . ) ) then
redistStart = true; endThread = false;

Create a new thread, which performs the communication

end if
// End malleability code

Code related to an iteration

endLoop = loopControl( . . . );

end while
Code to conclude the program

4 RESULTS
This section presents the experiments performed to compare the

methods described in Section 3 to redistribute data in a reconfigu-

ration, which can be performed using the methods and strategies
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defined in [16]. The results were obtained using a synthetic iterative

application [15, 17], in which the computation time and the commu-

nications pattern executed in each iteration can be parameterized.

In this section, first we shortly describe the synthetic application

used to emulate the behaviour of the application. Next, we describe

the main features of the emulated application, both the algorithm

and the managed data. Finally we present the performance analysis.

4.1 Synthetic application
The authors in [15, 17] described a synthetic application, which

allows configuring benchmarks to analyze the effect of malleabil-

ity in applications. This tool allows to emulate and monitor the

computational behaviour of scientific MPI iterative applications.

Additionally, it also provides the possibility of being reconfigured

during its execution, emulating the RMS demands, in which the

number of processes of a job is expanded or shrunk. The executions

of the tool are parameterized through a configuration file, which

includes the main features of the computational behaviour and the

communication pattern of the emulated application, as well as the

description of the reconfiguration stages.

This tool includes five main modules: Initialization, Application,

Malleability, Monitoring and Completion. Each of them is briefly

described below.

Initialization module is in charge of starting the execution of

the emulations. The main task of this module is to read the parame-

ters from the configuration file and copy them to the new processes

after each reconfiguration. This is performed by the first group of

processes (those that start execution), which is also responsible for

initializing the other modules of the synthetic application. Then,

the first group will start the execution of the emulated application

in the Application emulation module.

Application emulation module simulates the execution of an

iterative application with a specific computational behaviour and

and the communication pattern at each level of the process hi-

erarchy. The main features of the emulation are defined in some

parameters included in the configuration file. The most important

features include the number of iterations to be performed by the

active processes at each level of the hierarchy, the operation type

(communication/computation) executed in each iteration of the

emulation, the time spent for completing an iteration, the memory

consumed in the emulated application, and the number of bytes

transferred in both P2P and COL operations. From these parame-

ters, some others must be computed, such as the number of times

the operation type must be executed to achieve the time spent to

complete an iteration. Furthermore, this module is responsible for

ensuring that a emulation step is computed as many times as the

specified number of iterations.

Malleability module is in charge of modifying the number of

active processes during the emulation. Two main tasks are involved:

creating/terminating processes (Processes management stage) and

redistributing data from source to target processes (Data redis-

tribution stage). For the first task, eight different expand/shrink

alternatives defined in [16] are evaluated, always going from 𝑁𝑆

sources to 𝑁𝑇 targets. Two main methods are considered: Baseline

method (always spawning 𝑁𝑇 new processes) or Merge method

Figure 1: Flowchart of the synthetic application. The colour
of each task corresponds to the related module, green for
Initialization, yellow for Application emulation, purple for
Reconfiguration, blue forMonitoring, and red forCompletion.

(creating/terminating a number of processes equal to the positive

difference of 𝑁𝑆 and 𝑁𝑇 ).

Monitoring module keeps track of the different parts of the

emulation timings. These values are stored in intermediate output

files when each level of the hierarchy finalizes its execution.

Completion module has two main tasks. On the one hand, it

finalizes processes at the end of each level of the process hierarchy.

On the other hand, it is also responsible for writing the timings

monitored into the intermediate files for further analysis.

Figure 1 shows a workflow diagram of this synthetic application.

4.2 Emulated application description
Our tests with the synthetic application emulate the execution of

the Conjugate Gradient (CG), solving a sparse linear system defined

by the sparse matrix Queen_4147
1
.

CG is the most common solver for the resolution of positive-

definite sparse linear systems (𝐴𝑥 = 𝑏). This is an iterative method

in which the solution is obtained as the projection of an initial

vector on a Krylov subspace defined by the coefficient matrix and

the residual [19]. In each iteration, a sparse matrix-vector product

(SpMV), two Dot products and three Axpy(-like) operations are

computed. Given its relevance, a High Performance Conjugate

Gradient benchmark
2
has been ultimately defined as a complement

of the High Performance LINPACK, which is currently used to rank

the TOP500
3
computing systems.

1
http://sparse.tamu.edu/Janna/Queen_4147

2
https://hpcg-benchmark.org

3
https://www.top500.org
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Assuming that a row-block distribution is used for sparse matrix

and vectors, the parallelization of CG requires a proper implemen-

tation of its operations:

• Parallel computation of SpMV . Each process needs a full

version of the distributed vector before the local computa-

tion has to be performed, and therefore MPI_Allgatherv
function has to be executed.

• Parallel computation of Dot product. The Dot products com-

pute some scalars which are required in all processes, there-

fore after the local computations using the distributed vec-

tors, MPI_Allreduce function should be executed.

• Parallel computation of Axpy . Since the same distribution is

applied to all vectors, this computation is fully parallel, so

there is no communication.

As a summary, we conclude that the parallel CG is composed of

three communication operations: one MPI_Allgatherv and two

MPI_Allreduce.
Thus, the emulation of the parallel CG needs to define 6 differ-

ent stages in the synthetic application. Three of them based on

intensive matrix computation, two for an MPI_Allreduce of one
double each, and one MPI_Allgatherv of 𝑁 doubles. The variable

𝑁 is the number of rows in the matrix, which for the sparse matrix

Queen_4147 is 4∗106 elements, so each process uses approximately

33 MB to store the full version of the distributed vector.

4.3 Hardware and software setup
The experiments were executed on a cluster of eight servers with

two 10-core Intel Xeon 4210 processors for a total of 160 cores.

The nodes are interconnected with an EDR Infiniband network

of 100GB/s and also with an Ethernet 10GB/s. Two different MPI

versions have been used to compile and link the sources. MPICH

4.0.3 [21] was compiled with CH4:OFI netmod (Infiniband)
4
and

MPICH 3.4.1 was compiled with CH3:Nemesis netmod (Ethernet).

The study only considers a single reconfiguration stage per ex-

periment, doing it from 2, 10, 20, 40, 80, 120 and 160 processes to

any of the same numbers, having 42 different pairs depending on

the number of sources and targets. The number of occupied nodes

in each execution will be computed as ⌈𝑁 /20⌉, where 𝑁 will be the

maximum between the number of sources (𝑁𝑆) and targets (𝑁𝑇 ),

to minimize the resources allocated by the RMS.

Since only one reconfiguration is considered, two groups of

processes are defined, sources and targets, and the malleability

stage starts in iteration 500 out of 1000.

The sparse matrix and the vectors are distributed by row blocks

among the processes of a group, so that the application allocates

3.947 GB of memory, approximately. This is the number of bytes

that will be redistributed during the reconfiguration and 96.6% of it

can be redistributed asynchronously.

In the definition of configuration files, both Baseline and Merge

methods are included, and for data redistribution all the methods

described in Section 3 are used. A total of 12 different configurations

are analyzed, because when an asynchronous strategy is activated

for the spawn method, the same strategy is also activated for data

redistribution.

4
Netmod OFI supports dynamic processes only for MPICH but not for UCX [21].

For each configuration and pair of process group, five executions

are performed, computing the median of execution times. Then, the

Shapiro-Wilk [20], Kruskal-Wallis [11] and Post hoc Connover [2]

statistical tests are used to characterize the different configurations

related to each pair of process group.

All configurations reject the null hypothesis (H0) of Shapiro-Wilk

that data comes from a normal distribution, and therefore medians

and non-parametric tests should be used. With the test Kruskal-

Wallis, we check the H0 of the 12 configurations that have the same

median. For pair of groups rejecting H0, the Post hoc Connover is

performed to discover which configurations are different.

For all these analysis, Python 3.9.7 was used along with the

modules Numpy 1.20.3 [5], Pandas 1.4.1 [18], SciPy 1.7.3 [23] and

Scikit_posthocs 0.6.7 [22].

The next analysis are mainly focused on results of reconfigura-

tions which scale from 160 sources or to 160 targets, since showing

all the cases complicates the reading of the plots and the conclu-

sions of the others reconfigurations are similar. In this regard, data

from the execution of 42 pairs of process groups are shown and

compared to determine the best configurations.

4.4 Evaluation of the reconfiguration
techniques in isolation

This section studies the reconfiguration times of the different meth-

ods in isolation, without taking into account the executed appli-

cation. This time is measured from the sources start spawning

processes until the data has been fully received in the targets.

First, blocking reconfigurations (Synchronous methods) will be

analyzed. Then, asynchronous reconfigurations (Asynchronous

methods) are studied. These last ones are able to overlapmalleability

Stages 2 and 3 with the application execution. Finally, the two

approaches are compared.

4.4.1 Synchronous methods.
Figure 2 shows the reconfiguration time, in seconds, for synchro-

nous methods when reconfiguring from 160 sources (top) or to 160

targets (bottom) in an Ethernet-based network.

In both plots, Merge reconfigurations always outperform Base-

line strategies. Only when the Baseline method is implemented

using P2P for expansion, its performance is barely the same to that

of the Merge reconfigurations, with a difference of less than one

second. When shrinking, this difference increases as the number

of targets grows, since the Merge method does not spawn new

processes.

COL-based implementation of Baseline methods underperforms

in relation to the P2P-based counterparts, with a difference greater

than 2 seconds. This is because in all executions that use blocking

functions, there is oversubscription of 𝑁𝑆 + 𝑁𝑇 processes during

the reconfiguration.

Figure 3 shows the reconfiguration times, in seconds, for the

synchronous methods when shrinking from 160 sources (top) or

expanding up to 160 targets (bottom) in the Infiniband setup.

The analysis of these plots shows again that Merge reconfig-

urations are preferred, but in this case the minimum difference

between the worst and the best case is only a second. Now, the
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Figure 2: Reconfiguration times for synchronous methods
using Ethernet. Shrinkage (top), Expansion (bottom).

oversubscription affects both Baseline implementations, perform-

ing worse when using COL operations. Additionally, the behaviour

of both Merge reconfigurations is very similar.

Comparing Figures 2 and 3, we can observe that the execution

time ofMerge reconfigurations is lowwhen the number of processes

grows, regardless of the communication network. Moreover, there

is a reduction of the reconfiguration time for Infiniband, for all

cases, since it is a faster network.

Therefore, Merge reconfigurations are preferred for both net-

works as they avoid the oversubscription scenarios. But there is no

criterion to choose one or the other (P2P or COL).

4.4.2 Asynchronous methods.
In this subsection, the asynchronous methods are compared to

their synchronous counterpart. For each synchronous method there

are two asynchronous, one based on non-blocking MPI calls and

another one based on auxiliary threads.

To complete this comparison, we define 𝛼 as the quotient of

asynchronous and synchronous time. Thus, if 𝛼 is greater than one,

this indicates that the asynchronous method is more expensive

than the synchronous method.

Figure 4 shows 𝛼 values when reconfiguring from 160 sources

(top) or to 160 targets (bottom) using Ethernet. In the legend, config-

urations ending with the character S, refer to synchronous methods,

while configurations ending with the character A, refer to data re-

distribution with MPI non-blocking functions, and configurations

ending with T use auxiliary threads.

When shrinking two major annotations can be made. On the one

hand, some values are below 1, needing less time than the synchro-

nous version even though the reconfiguration is being overlapped

with application execution. On the other hand, values of 𝛼 above 1

Figure 3: Reconfiguration times for synchronous methods
using Infiniband. Shrinkage (top), Expansion (bottom).

show an increment on the interval of 1% and 45% with the exception

of Baseline configurations with P2P redistributions.

The first observation will be explained later, as also occurs for

expansions on Infiniband network. With respect to the increment of

the 𝛼 values, it is a consequence of overlapping the reconfiguration

with the application execution. Also we can conclude that Merge

configurations provide more stable values than the Baseline ones

as there is no oversubscription.

When expanding, Merge configurations produce even more sta-

ble 𝛼 values, while Baseline configurations are more disperse. In

the case of baseline P2P configurations, as more sources participate,

the oversubscription is higher, producing also larger 𝛼 values.

For the Merge configurations, when using 10 or more sources,

they are hardly affected by overlapping tasks as the 𝛼 ranges from

1% to 20% with the exception of the Merge P2P with an increase of

50%.

In general, P2P configurations always produce higher 𝛼 values

in relation to their COL counterpart. This denotes P2P communi-

cations are more affected by overlapping tasks than the collective

operation COL.

In all cases, both expansion and shrinkage, the methods that use

auxiliary threads(T) for the reconfiguration produce higher values

of 𝛼 than their counterparts which use non-blocking MPI functions.

This occurs as a result of oversubscription of the auxiliary threads.

Figure 5 shows the 𝛼 values for the asynchronous methods with

the same previous reconfigurations, shrinking (top) and expanding

(botton) using Infiniband.

When shrinking, the ranges of 𝛼 differ from −44% to 374%.

The highest values come from configurations which use auxiliary
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Figure 4: Reconfiguration𝛼 values for asynchronousmethods
using Ethernet. Shrinkage (top) and Expansion (bottom).

threads(T), which always provide higher values than their non-

blocking(A) counterpart.

With the Infiniband network, all the configurations obtain higher

𝛼 values than the obtained in Figure 4, growing with the number

of targets. This denotes that overlapping affects more to the recon-

figuration task than with Ethernet. Additionally, Baseline configu-

rations usually have higher 𝛼 values than the Merge ones due to

oversubscription.

When expanding, the highest 𝛼 values are produced by the Base-

line P2PT and COLT configurations, due to oversubscription. Nev-

ertheless, this is not the case for the Baseline COLA, based on

non-blocking MPI functions, in which the behaviour is closer to

Merge configurations.

In the case of the Merge configurations, the values become closer

to 1 with a maximum of 96% increase. Among the Merge configura-

tions the ones based on non-blocking functions(A) produce lower

values of 𝛼 and their counterpart based on auxiliary threads(T)

always have higher values.

Some 𝛼 values in Figures 4 and 5 are less than 1, but this would

be counter-intuitive, as it would imply that the asynchronous re-

configuration would take less time than the synchronous one, even

though it overlaps the computation/communication stages of the

execution. Moreover, all cases with values with a negative difference

greater than 5% are related to non-blocking MPI Baseline-COLA

configurations.

This is due to the different algorithms of MPI_Alltoallv when

using inter- or intra-communicators in MPICH [21]. On the one

hand the algorithm for the method COLS is PairWise Exchange,
which is based on serialized synchronous communications with

Figure 5: Reconfiguration𝛼 values for asynchronousmethods
using Infiniband. Shrinkage (top), Expansion (bottom).

MPI_Sendrecv. On the other hand, the remainder of options dis-

cussed in Section 3 are at least partially based on asynchronous

communications, which explains the appearance of similar or lower

values for 𝛼 . Therefore, the usage of blocking inter-communicators

with MPI_Alltoallv is not recommended in MPICH.

4.4.3 Overall evaluation.
Figure 6 shows graphically the best method for each pair (NS

sources, NT targets) to perform a redistribution for the Ethernet

network (left) and Infiniband network (right). The name of the axes

determines that the upper triangular part of the matrix is related to

expansion, whereas the lower part is related to shrinkage. Moreover,

the number in each cell, along with the colour, identifies the fastest

method for each pair according to the tests Kruskal-Wallis and the

Post hoc Connover. In case of a tie, the remaining cells will be

checked to see which method of this cell appears more often, and

this will be selected.

For expansions (upper triangle) with the Ethernet network, the

preferred configuration is the Merge spawn with the COLS redistri-

bution. There are four exceptions with the Merge P2PS and Baseline

P2PS. The same occurs for Infiniband, where the Merge COLS is the

preferred method with three exceptions for those previous methods.

These exceptions appear as a result of similar reconfiguration

times between Merge COLS, Merge P2PS and Baseline P2PS as can

be seen at Figures 2 and 3.

For shrinking (lower triangle) with the Ethernet network, the

preferred configuration is again Merge COLS with exceptions for

Merge P2PS and Merge P2PA. When using the Infiniband network

all except one cell indicate Merge COLS as the preferred method.
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Figure 6: Preferred methods to reconfigure depending on the
number of NS and NT. Ethernet (left), Infiniband (right).

Shrinking from 160, 120, 40 sources to 2 or 10 targets, which

prefers the asynchronous alternative is a result of overlapping tasks

without oversubscripting the processors.

Therefore, the fastest method to reconfigure data is Merge COLS

regardless of expanding or shrinking, or the type of network used.

4.5 Evaluation of reconfiguration techniques
The second analysis compares the time required to execute an appli-

cation that performs a single reconfiguration. The main difference

between this analysis and the one presented at Section 4.4 is to show

how the behaviour of the application is changed by overlapping it

with the reconfiguration operation.

Figure 7 shows the reconfiguration time in seconds for Baseline

COLS (right axis) and the speedup time against that configuration

(left axis), when reconfiguring from 160 sources (top image) or to

160 targets (bottom image) using the Ethernet network.

Shrinking and expanding based on Baseline P2PS or Merge con-

figurations, provide a speedup which increases with the number

of processes. The speedup reaches its top at 1.14x for Merge P2PT.

However, the asynchronous baseline configurations perform simi-

larly or worse than the Baseline COLS. This is because they increase

the cost of the iterations from a 20% to up to 7000% when expanding

to 160 processes.

Therefore, oversubscription in asynchronous Baseline configu-

rations increases the iteration time making it impossible to outper-

form their blocking counterparts.

Figure 8 shows the reconfiguration time, in seconds, for the

Baseline COLS (right axis), and the speedup time against that con-

figuration (left axis), when reconfiguring from 160 sources (top) or

to 160 targets (bottom) using the Infiniband network.

As with the Ethernet network, Baseline P2PS and all Merge

configurations for shrinking or expanding provide an speedup in

most situations, which increases even more with the number of

processes. The maximum speedup reached is 1.21x for Merge P2PA.

For the asynchronous Baseline configurations, they still have the

same issue with the iteration cost increasing from 80% up to 6800%.

Figure 9 shows graphically the best method for each pair (NS

sources, NT targets) to execute the emulated application for the

Ethernet network (left) and Infiniband network (right). The name of

the axes, vertical for NS and horizontal for NT, determines that the

upper triangular part of the matrix is related to expansion, whereas

the lower part is related to shrinkage. The number in each cell is

selected by the same criteria than in Figure 6.

Figure 7: Application execution times using Ethernet. Right
axis shows the time for the Baseline COLS and left axis shows
the speed up of the other methods against the basic method.
Shrinkage (top), Expansion (bottom).

For the Ethernet network, the preferred method is the Merge

COLT, which appears in 29 out of 42 cells. This is the result of having

values of 𝛼 near 1 whereas the number of iterations performed

during the reconfiguration is between 10 to 80. Therefore, with

a similar reconfiguration time to the synchronous methods, but

with more iterations performed during resizing, the targets have to

perform fewer iterations.

Some exceptions are found when expanding from 2 processes

using Baseline P2PS or synchronous Merge configurations. This

occurs because the 𝛼 values grow in the range of 25% to 50% in

that row, and the number of overlapped iterations, between 10

and 20, is not enough iterations to compensate for the execution

time of synchronous configurations. A similar situation happens

with Merge P2PT strategy, since they perform a higher number of

iterations than Merge COLT.

When shrinking, it is preferable to perform as many iterations

as possible before reconfiguring, due to using more processes de-

creases the iteration time, so the longer it takes to reconfigure to a

lower number of processes, the more iterations will be executed.

For the Infiniband network, the preferred method are the Merge

COLA and P2PA, which are in 36 out of 42 cells. The first one was

chosen for the color-map as it is considered a simpler implementa-

tion.

Both have 𝛼 values in the range 1% to 30% with some exceptions

when expanding from 2 processes. Furthermore the number of

overlapped iterations is in the range of 5 to 10 iterations. Then, as

the reconfiguration time is similar to the synchronous methods,

just a few iterations are enough to overcome them.
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Figure 8: Application execution times using Infiniband. Right
axis shows the time for Baseline COLS and left axis shows
speed up of the other methods against the basic method.
Shrinkage (top), Expansion (bottom).

Figure 9: Preferred methods to reconfigure an emulated CG
application depending on NS and NT. Ethernet (left), Infini-
band (right).

Additionally, 6 exceptions are found where 4 of them are related

to 2 or 10 sources. The reason is the same than with the Ethernet

network, where the𝛼 values are higher and the performed iterations

are not enough to overcome the synchronous methods.

When comparing both networks, the Ethernet network favours

the use of auxiliary threads, while the Infiniband network prefers

non-blocking methods.

5 CONCLUSIONS
The stages of a reconfiguration in an application when applying

malleability have been studied. This paper examines different meth-

ods for performing reconfiguration in an application when using

malleability. Two initial methods for data redistribution (Stage 3)

are introduced (P2P and COL), on which two additional asynchro-

nous strategies can be applied (non-blocking MPI functions and

auxiliary threads). In addition, each method can be affected by how

the previous spawn stage has been performed, using either Baseline

or Merge method [16] (Stage 2). All these options generate twelve

different options to perform a reconfiguration.

All of them have been evaluated by using a synthetic application

configured to simulate a CG application, which is executed in a

cluster with eight nodes using either an Ethernet or Infiniband

network. The analysis compared all options, taking into account

either the reconfiguration time or the application execution time.

For the reconfiguration time, the fastest option is to use the syn-

chronous Merge COL independently of the network used. In more

detail, asynchronous methods are not preferred since they increase

the reconfiguration time when they overlap with the execution of

iterations, while among the synchronous methods the Merge-based

ones reduce the spawn time in more than a second.

For the execution time with Ethernet, the Merge COL with the

aid of auxiliary threads is preferred in 29 out of 42 cases, while

for Infiniband, the non-blocking Merge COL is preferred in 36 out

of 42 cases. These methods provide an speedup of 1.14 and 1.21,

respectively, over the synchronous Baseline COL method.

The main difference among the Ethernet and Infiniband network

is the use of auxiliary threads. Infiniband is able to take profit of

the characteristics of the network, so that the negative impact of

oversubscription can be avoided, while for Ethernet is better to

dedicate threads to communication during the reconfiguration.

Future work will extend the experiments to analyse the be-

haviour of other methods, such as RMA for data redistribution.

Furthermore, a strategy to minimize data transfers during the data

redistribution stage when using the Merge method will be explored.

The basic idea is to ensure that processes, which are source and

target, keep as much of their data as possible

Finally, contact with the Slurm resourcemanager to request/assign

resources will also be included. Thus, it will be possible to study

how malleability affects the real makespan of a system.
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