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Abstract

The control of continuous-time linear systems with binary inputs cannot benefit from existing control design techniques because 
they are based on continuous control actions. In particular, optimal control problems with binary inputs lead to combinatorial 
optimization problems, which are difficult to solve. In this article we provide an exact discretization model of the binary continuous-
time system that results in a non-linear multiple input controlled system. The non-linear model is then converted into a fuzzy 
discrete Takagi-Sugeno model, thus allowing the use of optimal control techniques based on LMI design. The modelling of the 
non-linear model by a discrete Takagi-Sugeno model is a complex process but it can be automatically performed as shown in the 
article and the code of the application examples.
© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).
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1. Introduction

A large class of systems are actuated with binary inputs because either it leads to more economical industrial 
solutions or the system is inherently binary, like in power electronic converters actuated with ON/OFF switches.

Despite the actuator simplicity and robustness of systems with binary inputs, the design of a suitable control 
algorithm is more difficult, because existing control design techniques are based on continuous control actions. Fur-
thermore, optimal control problems with binary inputs lead to combinatorial optimization problems, which are difficult 
to solve, what promotes the use of heuristic optimization algorithms [1].

An exact discretization model of the binary continuous-time system, parametrized by the duty cycle, that is, the 
ratio between the time the control action is ON and the sampling time, results in a non-linear, multiple input, binary 
controlled system. As a result, in the control of power electronic systems [2], in order to maintain the linearity of the 
original continuous-time system, the resulting non-linear model is linearised around an operating point, and the linear 
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model is used for control design. The drawback is that the model used for control is just an approximation of the 
original model, and the control may degrade when the duty cycle changes from the operating point as may happen in 
transient responses and disturbance rejections.

Another approach to deal with the non-linearity of the model is the use of multiple linearized models [3], where 
each linearized model is a local approximation of the non-linear one. However, the linearized models still has binary 
inputs that must be combined to describe the non-linear system, hence the model is not suitable to be used with 
existing controller design methodologies.

The approach taken in this article is different as we adhere to an exact discretized model of the original system. In 
this way, the resulting discrete-time model is exact and non-linear. We transform the non-linear model into a fuzzy 
discrete Takagi-Sugeno model, thus allowing to apply well-known fuzzy control design techniques [4–6]. Further-
more, the parametrization of the binary inputs in terms of the percentage of the period that the control action is ON, 
transform the binary decision variables into real bounded variables, hence avoiding integer optimization problems that 
are computationally costly.
Note for instance that in [7] a linear matrix inequality (LMI) approach to mixed-integer model predictive control 
(MPC) is proposed. As the optimization problem is not convex, the article proposes a convex relaxation that leads to 
suboptimal solutions.

In order to avoid an over-constrained controller that may led to conservative results, the more general procedures 
have been used on the LMI based design controller. [8,9]
As a result, the modelling of the non-linear model by a discrete Takagi-Sugeno model is a complex process both 
theoretically and computationally. However, previous results [10] allow to provide a code implementation that auto-
matically performs the conversion of the non-linear model as a Takagi-Sugeno model, for arbitrary order and number 
of inputs. Furthermore, the control design based on the discrete Takagi-Sugeno model is also provided. The code can 
be found in https://github.com /Mas -T /Binary.

The structure of the article is as follows: In section 2 we state the problem and the notation used. Section 3
explains the discretization method. Section 4 presents the transformation of the exact discretized non-linear model 
into a discrete Takagi-Sugeno model and section 5 shows two application examples of the discretization process. 
Then, section 6 presents the proposed controller design approach and finally, section 7 shows other two application 
examples for the controller.

2. Problem statement

Given the system ẋ = Ax + Bu, with x ∈ Rn, A ∈ Rnxn and B ∈ Rnxr , and multiple binary inputs u ∈ Dr , with 
D = {0, 1}, the main goal of this paper is the exact discretization of that system through the conversion into a discrete 
Takagi-Sugeno model, so it can be later analysed or controlled.
The continuous-time system is discretized with constant sampling period T and, for each sample k done at time 
t = kT , the i-th control action ui(t) is triggered to one from the beginning of the period t = kT for a time interval 
μi(k) and then remaining inactive for the rest of the period, as can be see in Fig. 1. Hence, the discrete control action 
may be defined as the portion of the period that is triggered δi(k) = μi(k)/T , with δi(k) ≤ 1. 
The discretized model obtained is therefore a discrete non-linear system where the control actions are δi(k). In order to 
systematically perform analysis and controller design, the non-linear model is converted into a Takagi-Sugeno fuzzy 
model using the non-linear sector technique. This type of non-linear model, being the interpolation of multiple linear 
models, has a multitude of theoretical developments which allow the design of robust controllers [4].

3. Exact system discretization

First, a system with an unique control action is considered for discretization. Each discrete state xk+1 will be a 
progression from the previous instant xk , meaning that the state at each inter-period time δ(k)T within any xk and 
xk+1 can be represented as [11]:

x(kT + δ(k)T ) = eAT δ(k)xk + (eAT δ(k) − I )A−1B (1)

Since the state evolution from kT + δ(k)T ≤ (k + 1)T to a time (k + 1)T can be solved as:
2
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Fig. 1. The continuous-time system is discretized with constant sampling period T . For each sample k done at time t = kT , the control action 
ui(t) is triggered during time μi(k). Given the percentage of the period that is triggered δi (k) = μi(k)/T , the triggering time can also be given as 
μi(k) = δi (k)T . As a result, the control actions are δi (k).

x((k + 1)T ) = eAT (1−δ(k))x(kT + δ(k)T ) (2)

The evolution of space state at instant T (k + 1) can be defined as:

xk+1 = eAT xk + eAT (I − e−AT δ(k))A−1B (3)

Note that, in order to compute this discrete model, A−1 is needed. But its existence is not guaranteed as the system 
can have an integrator. In that case, the inverse of A does not exits. However, (3) can be computed if some details are 
taken into account. The procedure is detailed in Section 4.1.
To this point, only one control action has been modelled into its discrete form but, taking into consideration the super-
position principle to every action ui , when each action triggers for a time μi ≤ T and i ≤ r , the discrete equivalent of 
the system is:

xk+1 = eAT xk +
r∑

i=1

eAT (I − e−AT δi(k))A−1bi (4)

where bi is the column i of the matrix B . Since this system is not yet linear dependent of the duty cycle of the control 
actions, it is artificially introduced multiplying bi by δi (k)

δi (k)
then defining �k ∈ Rr×1, �k = (δ1(k), . . . , δr (k))T and 

rearranging the terms in order to make the system linearly dependant to �k.

xk+1 = eAT xk +
r∑

i=1

eAT I − e−AT δi(k)

δi(k)
A−1Bi�k (5)

where Bi is a matrix Rn×r where the column i is bi but the rest of elements are 0 and δi(k) is the i-element of the 
duty cycle � at instant k.
Further development of the problem will require the manipulation of the eigenvalues from the state matrix A. To 
better accommodate this situation, the above expression can be rewritten with the state matrix in a diagonal form 
where A = V DV −1, so all the eigenvalues become isolated within the main diagonal of D to be operated individually 
later on. The remaining expression from where the next steps will be developed, will be this one:

xk+1 = eAT xk +
r∑

eAT V
I − e−DT δi(k)

δi(k)
D−1V −1Bi�k (6)
i=1

3
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4. Fuzzification process

In this section, a fuzzification process is performed using non-linearity methodology that obtains an exact Takagi-
Sugeno fuzzy model [12]. This fuzzy modelling methodology is based on the non-linear combination of a set of linear 
models. This combination is done with the membership functions. This method treats every non-linearity of the system 
as a fuzzy term so the result takes shape as a Takagy-Sugeno model [13].

Since the matrix D already is a diagonal matrix, therefore the non-linear term I−e−DT δi (k)

δi (k)
D−1 is also diagonal. So this 

algorithm steps all of terms in the diagonal, one by one, in order to find its independent “sector non-linearity”.

4.1. Sector non-linearity on real poles and origin

When D is a real matrix, the first step is straightforward. If λj are A eigenvalues disposed in a diagonal form 

within D, the expression I−e−DT δi

δi
D−1, found in (6), can be defined in a diagonal form. Then each of the values are 

λj dependant and treated as the non-linear term above mentioned. The resulting matrix will be this one:

I − e−DT δi

δi

D−1 = diag

(
1 − e−λ1T δi

λ1δi

, . . . ,
1 − e−λj T δi

λj δi

, . . . ,
1 − e−λnT δi

λnδi

)
(7)

where δi for simplification is only referring to one period k (i.e. δi = δi(k)). Let us define the j diagonal element of 

(7) as Dj (δi) = 1−e
−λj T δi

λj δi
.

Note that some λj can be in origin. This is a well known issue that has to be studied since it is a problem which 
derives from the non-existence of A−1. This study can be done finding the limit of any Dj (δi) when λj −→ 0. It can 
be proven that:

lim
λj −→0

1 − e−λj T δi

λj δi

= 1 (8)

Therefore, if there is any λj = 0 then this j -element Dj (δi) can be substituted by 1.
Now, if λj is real and not zero, we have the certainty that the range that each diagonal term Dj can take, will be always 
constrained within the values of that term when δ is at its limits. This is know because the expression takes the shape 
of a monotonically decreasing function and, since the duty cycle δ can only take values from 0 to 1, the extremes for 
the range in each term are known just by finding those limits.

dj1 = lim
δi−→0

1 − e−λj T δi

λj δi

= 1, (9)

dj2 = lim
δi−→1

1 − e−λj T δi

λj δi

= 1 − e−λj T

λj

(10)

being dj1 the upper limit and dj2 the lower limit for Dj .
Then, following sector non-linearity Takagi-Sugeno modelling technique, the membership functions for those expres-
sions have to meet the following criteria:

Dj (δi) = αj1(Dj (δi))dj1 + αj2(Dj (δi))dj2 (11)

where αj1(Dj (δi)) + αj2(Dj (δi)) = 1 and Dj (δi) = 1−e
−λj T δi

λj δi

This can easily be rewritten into the following equations in order to find both membership functions:

αj2(Dj (δi)) = Dj (δi) − dj1

(dj2 − dj1)
, αj1 = 1 − αj2 (12)

All the above procedure casts all the information needed to model each of the real eigenvalues into a Takagi-Sugeno 
model. Later on, it is explained how those membership functions will be used to deliver the completed model.
4
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4.2. Sector non-linearity on complex poles

If D has complex values, the above procedure cannot be used straightforward. To avoid numerical problems using 
complex terms in the expression Dj (δi), block diagonalization is used on D. So each complex-conjugate pair (λj =
aj + ibj

1) “throws” its complex part out of the main diagonal in its adjacent position rearranging both terms into 2x2 
matrices as:

Dj =
[

aj bj

−bj aj

]
(13)

Taking that into account, the equivalent of the equation (6) on real poles, will apply for D′
j as this:

D′
j =

(
I − eDj,j+1T δi

)
D−1

j,j+1 (14)

Then, the above expression can be simplified into two functions, one for each of both diagonal terms in D′
j .

D′
j = 1

a2
j + b2

j

(( −aj bj

−bj −aj

)
Dj (δi) +

(
bj aj

−aj bj

)
Dj+1(δi)

)
(15)

For each of those blocks, the same sector non-linearity can be applied. In this case, the function is not a monotonically 
decreasing one. The following expression have to be used to find its maximum and minimum values on each of the 
conjugate eigenvalues sectors:

Dj (δi) = e
−aj T δi cos

(
bj T δi

)−1
T δi

,Dj+1(δi) = e
−aj T δi sin

(
bj T δi

)
T δi

(16)

With both of those functions, the maximum and minimum values can be found by scooping δ range with an iterative 
or analytic procedure. This is necessary due to the oscillatory nature of this function and the uncertainty of both limits 
being on ends of the range. Once both limits are known, the membership functions α can be solved in a similar way 
than the previous case. Let dj1 be the minimum value for Dj (δi) and dj2 the maximum value, and dj+1,1 the minimum 
value and dj+1,2 the maximum value for Dj+1(δi), then the membership functions will be:

αj2(Dj (δi)) = Dj (δi )−dj1
(dj2−dj1)

, αj1 = 1 − αj2

αj+1,2(Dj+1(δi)) = Dj+1(δi )−dj+1,1
(dj+1,2−dj+1,1)

, αj+1,1 = 1 − αj+1,2

(17)

4.3. Final model

Now that every membership function is calculated, along with each of the sector limits, the model can be fully 
constructed for all of the λj as a Takagi-Sugeno fuzzy system.
The final step comes with the construction of a new diagonal matrix Di ∈Rn×n where it takes a Takagi-Sugeno fuzzy 
form [14] such as:

Di =
∑
l∈B

αl(δi)dl (18)

where

B = {l / l ∈ {0,1}m, l2p−1 + l2p = 1,p = 1 . . . n} (19)

and α(δi) is a vector with all the membership functions:

α(δi) = (α11(δi), α12(δi), α21(δi), α22(δi), . . . , αn1(δi)) (20)

Then αl(δi) is defined as 
∏2n

p=1 α
lp
p (δi) where αp is the p element of vector α, finally dl is a block diagonal matrix 

such as:

1 Being i = √−1.
5
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dl =

⎡
⎢⎢⎢⎣

D1 0 . . . 0
0 D2 . . . 0
...

...
. . .

...

0 0 . . . Dn

⎤
⎥⎥⎥⎦ (21)

being Dp = d
l2p−1
p,1 d

l2p

p,2 if the p-eigenvalue is real, Dp = 1 if the p-eigenvalue is 0 and Dp is a 2x2 matrix if the 
eigenvalue p is complex ap ± bp which is defined as:

Dp = 1

a2
p + b2

p

(( −ap bp

−bp −ap

)
d

l2p−1
p,1 d

l2p

p,2 +
(

bp ap

−ap bp

)
d

l2p+1
p+1,1d

l2p+2
p+1,2

)
(22)

In that case, Dp+1 does not exist as columns p and p + 1 are included in Dp .
Finally, the initial equation (6) can be rewritten as:

xk+1 = eAT xk +
r∑

i=1

eAT VDiV
−1Bi�k (23)

Substituting Di by expression (18):

xk+1 = eAT xk +
r∑

i=1

eAT V

(∑
l∈B

αl(δi)dl

)
V −1Bi�k (24)

Then, taken into account that all the membership functions αij are scalar, it can be rearranged as:

xk+1 = eAT xk +
r∑

i=1

∑
l∈B

αl(δi)e
AT V dlV

−1Bi�k (25)

Defining Bl,i = eAT V dlV
−1Bi , a Takagi-Sugeno model is obtained:

xk+1 = eAT xk +
r∑

i=1

∑
l∈B

αl(δi)Bl,i�k (26)

The implementation of this process is showcased on the next examples, where an exact discretization is displayed for 
various systems with distinct number of control actions and with real and complex eigenvalues.

4.4. Fuzzification example

To better understand how this fuzzification process works, a brief example is exposed:
Suppose a system such as A ∈ R2×2 with two real eigenvalues, that only has one control action is discretized with 
period T = 0.3s.

A =
[ −4 5

2 −3

]
, B =

[ −10
0

]
(27)

being A = V DV −1

V =
[ −0.8798 −0.8037

0.4754 −0.5950

]
, D =

[ −6.7016 0
0 −0.2984

]
(28)

and following the procedure explained above, there’s a point where the sector limits can be computed following (10). 
For this example, the four sector limits are:

d11 = d21 = 1 (29)

d12 = 1 − e−λ1T

λ1
= 3.2166 (30)

d22 = 1 − e−λ2T

= 1.0461 (31)

λ2

6
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and the four membership functions (α11, α12, α21, α22):

α12(D1(δ)) = Dj (δ)−1
3.2166−1 , αj1 = 1 − αj2

α22(D2(δ)) = Dj+1(δ)−1
1.0461−1 , αj+1,1 = 1 − αj+1,2

(32)

with:

D1(δ) = 1−e−λ1T δ

λ1δ
= 1−e2.0105 δ

−6.7016δ
(33)

D2(δ) = 1−e−λ2T δ

λ2δ
= 1−e0.0895 δ

−0.2984δ
(34)

Note that in these equations δ is used instead of δ1 as there is only one control action. Then, the fuzzy form for D on 
this system will be:

D =
[

α11d11 + α12d12 0
0 α21d21 + α22d22

]
(35)

This matrix can also be rewritten, artificially introducing the remaining alphas on each term, taken into account that 
αi1 + αi2 = 1:

D =
[

(α11d11 + α12d12)(α21 + α22) 0
0 (α21d21 + α22d22)(α11 + α12)

]
(36)

The vector l is now introduced. On this case l is a vector with four terms one for each membership function αij where 
every term lp represents if the corresponding membership function is in the coefficient. In this case, following (19)
the possible values of l are B = [(1010), (1001), (0110), (0101)] on this example.
Then, the above equation can be rewritten into:

D=
α1

11α
0
12α

1
21α

0
22

[
d1

11d
0
12 0

0 d1
21d

0
22

]
+ α1

11α
0
12α

0
21α

1
22

[
d1

11d
0
12 0

0 d0
21d

1
22

]

+α0
11α

1
12α

1
21α

0
22

[
d0

11d
1
12 0

0 d1
21d

0
22

]
+ α0

11α
1
12α

0
21α

1
22

[
d0

11d
1
12 0

0 d0
21d

1
22

] (37)

Note that every block has each element powered to 1 or 0 following the four combinations on l.
In other words, terms dl can be defined as:

d1010 =
[

1 0
0 1

]
, d1001 =

[
1 0
0 1.0461

]
, d0110 =

[
3.2166 0

0 1

]
, d0101 =

[
3.2166 0

0 1.0461

]
(38)

Then, Bl = eAT V dlV
−1B can be calculated. As there is only one control action B is used instead of B1.

B1010 =
[ −4.6320

−2.4377

]
, B1001 =

[ −4.8099
−2.5693

]
, B0110 =

[ −6.3481
−1.5104

]
, B0101 =

[ −6.5260
−1.6421

]
(39)

Finally, the Takagi-Sugeno fuzzy model is obtained with:

xk+1 = eAT xk +
∑
l∈B

αl(δ)Bl�k (40)

For simplicity, this example only takes an order two system with one control action into account. Extending it to 
a multiple actions is straightforward. More complex cases occur when the system order is increased and complex 
eigenvalues do exist in it. The reader can check the github repository if there is interest on these cases. Also detailed 
explanation of this notation can be reed in [14].
7
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Fig. 2. Buck converter, with its binary controller (a switch).

5. Exactly discretized, Takagi-Sugeno fuzzy model examples

In this section, the full fuzzification process is applied to two example systems that need to be exactly discretized 
and converted into Takagi-Sugeno models.
The continuous system is transformed into a discrete system using the general procedure explained in Section 3 and 
then finally transformed into a fuzzy system following the steps on Section 4.
Once the system has taken shape of a Takagi-Sugeno fuzzy model, it will allow the use of controller techniques based 
on LMIs [4,6]. These last procedures are further explained on next sections 6 and 7.

5.1. Example: buck converter

The process above explained has on the buck converter one great example.
This circuit, shown in Fig. 2, opens and closes its switch to give and output voltage that is a fraction of the input given 
[2]. This reduction on voltage is done by switching on periodically the full input for a time μ ≤ T and cutting that 
input for the rest of the time, being T the full duration of those periods.
During the time that the input is triggered, the output voltage rises while charging the capacitor and, when its shut 
down, that same capacitor keeps supplying the output while uncharging.
If a constant trigger time μk < T is maintained through every k period on the input voltage, when stabilizes, the output 
would oscillate near the average between the time that it has been on and off so Vavg = Vi

μk

T
+ Vzero(1 − μk

T
). Since 

μk

T
= �k and the second part of the expression is always null, the above expression can be simplified as Vavg = Vi�k , 

only on this case where the activation triggers with a regular frequency.
Note that the output has been mentioned as an average since it will always have some ripple due to the on/off cycle 
and the measured value is not the average value it is some value near the minimum.
For this specific scenario, some values are assigned to each of the parts on this circuit:
L = 100 mH, C = 1 mF, R = 10 �, Vi = 200 V
The state and input matrices that define such system are:

A =
⎡
⎣ 0 − 1

L

1
C

− 1
RC

⎤
⎦ , B =

⎡
⎣ Vi

L

0

⎤
⎦ (41)

If a 50 V average output is wanted, then a constant � = 0.25 would stabilize around that value since the input is 200 V 
and it will be bucked down to a quarter of it. This can be seen in Fig. 3, where there is a clear ripple around the 50 V 
marker instead of rising to match the 200 V input. Note that, since the system has a fixed delta and it is not controlled, 
the response from an uncharged system overshoots the 50 V marker to almost reach 60 V and then it stabilizes on the 
target value.
The remaining ripple obviously oscillates with the same frequency as the switch cycles, in this case, T = 0.01s. 
Now, to prove that the above algorithm to discretize that system matches the continuous response, the result of that 
discretization, for a time T that matches the trigger frequency, is overlapped with dots over the continuous response 
displaying a perfect coincidence.
Further analysis of this system, out from the main goal of this study, is done later on in Section 7, where a controller 
is implemented.
8
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Fig. 3. Buck converter, discrete-continuous overlap.

5.2. Example: multiple input binary system

Now, the buck converter example only shows part of the potential for the discretization algorithm. As said at the 
beginning of this text, the goal for this process is to be able to discretize a system with independence of the type of 
poles or the quantity of inputs.
For instance, the following system is exposed:

A =

⎡
⎢⎢⎣

−5 −9 −5 0
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1 0
0 1
0 0
0 1

⎤
⎥⎥⎦ (42)

This system has not only two complex poles as the buck converter does, but two complex poles, a pole in the real axis 
and one in the origin itself. Also, more than one control action applies to it, as can be seen on the number of columns 
for the B matrix. On this case, each of the columns, from now on Bi , can trigger with independent deltas, but the 
process to find the equivalent discretized system remains the same as explained on sections 2 and 4.
In this example a �1 = 0.25 is applied to B1 and �2 = 0.50 applies to B2, giving the continuous free response of the 
system shown in Fig. 4. As with the Buck converter example, the discretized response of that system is also shown in 
the same figure, displaying the expected coincidence marked with dot symbols all along the continuous response.

6. Controller design

Although the main subject of this study has been already exposed, this section has been added in order to fully 
comprehend the nature of this discretized model and to give support if the target system was to be controlled.
Since the remaining model has a TS fuzzy discrete form, the techniques explained on “Fuzzy Control Systems Design 
and Analysis: A Linear Matrix Inequality Approach” by Kazuo Tanaka and Hua O. Wang [4], can be implemented 
straightforward into our system. For instance, if a stable fuzzy controller has to be implemented on that system, the 
following process, which is based on LMI conditions [15], can be used to do so:
The first step, the state matrix and the input matrix for the discrete system xk+1 = Axk +Bu have to be identified. It 
is already known that:
9
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Fig. 4. Overlap of responses with various control actions.

xk+1 = eAT xk +
r∑

i=1

∑
l∈B

αl(δi)Bl,i�k (43)

So the u dependant part will be the input matrix and the non dependant part, the state matrix. Like this:

A = eAT , B =
r∑

i=1

∑
l∈B

αl(δi)Bl,i (44)

Then, following the simultaneous Lyapunov stability conditions, if there is an existing P ∈Rnxn such as:

P > 0, AT PA− λ2P < 0. (45)

The system will be stable with a decay rate of λ.
This condition is not guaranteed, and the ultimate goal is to stabilize the system. For that, an state feedback controller 
is proposed following the PDC structure [4]:

�k = Fxk =
r∑

i=1

∑
s∈B

αs(δi)Fs,ixk (46)

If the controller turns the system quadratically stable with λ decay rate, the following Matrix Inequality must hold 
[15]:

r∑
i=1

∑
l∈B

∑
s∈B

αs(δi)α
l(δi)(X{A−Bl,iFs,i}T X−1{A−Bl,iFs,i}X − λ2X) < 0 (47)

Where X = P −1.
A new matrix Ms,i = Fs,iX is defined, following Tanaka and Wang guidelines, so that for X > 0 applies to the 
equation as Fs,i = Ms,iX

−1. Then the inequality can be rewritten, by applying Schur complement, as:

X > 0 (48)
r∑∑∑

αs(δi)α
l(δi)

[
λ2X

(
AX −Bl,iMs,i

)T

AX −Bl,iMs,i X

]
> 0 (49)
i=1 l∈B s∈B

10
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Note that (49) can be rewritten as an homogeneous matrix polynomial in the form:
r∑

i=1

∑
l∈B2

αs(δi)Gl,i > 0, B2 = {l / l ∈ {0,1}m, lp + ln+p = 2,p = 1...n} (50)

This is a matrix polynomial expression on the positive variables α(δi). So in order to prove (50) is positive, it is 
enough checking if all its different coefficients are positive. Less conservative results can be obtained applying the 
Polya theorem [8] and non-quadratic Lyapunov functions following [16–18]. Therefore checking if all coefficients 
Gl,i are positive definite is a sufficient condition that ensures stability with a decay rate of λ.

X > 0, Gl,i > 0 (51)

If there exist an X and Ms,i so the above LMI holds, the state feedback gain is defined, as stated before, as Fs,i =
Ms,iX

−1.
With this process, the input gain control is fully defined but the final result could be not a realizable one since those 
LMI do not take into account the restrictions that system may have.
For instance, it is know that � can’t reach values above 1 on the binary system since, by definition � = t

T
and that 

would mean than the control action takes place for more time than the actual period T , which is not possible.
To avoid that situation, the control input can be constrained if the initial condition x(0) is known. To do so, the 
following conditions can be added:[

1 x (0)T

x (0) X

]
≥ 0,

[
X Ms,i i

T

Ms,i I

]
≥ 0

(52)

Then, if the LMIs hold, the input will be constrained to ||�k|| ≤ 1.

6.1. Note on controller implementation

Obtaining a controller this way, will cast a solution where the state feedback is �k = ∑r
i=1

∑
s∈B αs(δi)Fs,ixk as 

shown in (46). As also previously stated, αs(δi)) is the vector with all the controller membership functions which are 
δi dependant.
This means that, in order to know the required � for a given gain on the system for a moment k, all the individual δi

have to be known previously, thus giving no other choice to implement this controller than using an iterative procedure 
for each of the periods involved on any analysis.

6.2. Linear controller design

The issues presented above, lead us to considerer the design of a simple linear controller for the Fuzzy model:

�k = Fxk (53)

In this case, the Matrix Inequality that ensures quadratic decay rate is:
r∑

i=1

∑
l∈B

αl(δi)(X{A−Bl,iF }T X−1{A−Bl,iF }X − λ2X) < 0 (54)

And a LMI that ensures decay are:

X > 0 (55)[
λ2X

(
AX −Bl,iM

)T

AX −Bl,iM X

]
> 0 (56)

for all l ∈ B and i = 1 . . . r .
If this linear controller exist, for the required decay rate λ, it will be preferable than the fuzzy controller, because both 
controllers have the same performance but also the Linear controller has simpler implementation.
11
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7. Controller implementation examples

7.1. Case 1

This section proposes the control of the Buck converter described on Section 5.1, which will be forced to have a 
voltage drop to 25 V from an initial voltage of 50 V. It seems to be obvious that, since the input is 200 V, the initial 
�(0) of that buck converter is operating at � = 0.25 and, when stabilized after the drop, the remaining 25 V would be 
an indicator that the final � has settled at � = 0.125. But it is not true for the discretized model. Because the measure 
of the voltage is done after the period T. This � = 0.125 is a well know result where output voltage is assumed to be 
constant during the inter-period time. In order to obtain the final operation point �f and xf we follow the well known 
procedure for the steady state in discrete linear system applied to this Takagi-Sugeno model. That is:

xf = Axf +B�f (57)

xf = (I −A)−1B�f (58)

yf = C(I −A)−1B�f (59)

�f = (C(I −A)−1B)−1yf (60)

Therefore, if yf = 25V then �f = 0.1326 and xf = [1.4941 25]T . The controller is calculated following the proce-
dure of Section 6 with decay rate λ = 0.8 and without constraints on the control action. The controller gains are:

F1010 = [−0.0937 − 0.0019], F0110 = [−0.0463 − 0.000867] (61)

F1001 = [−0.0705 − 0.0014], F0101 = [−0.0401 − 0.000781] (62)

Finally de applied control action is:

�k = F(xk − xf ) + �f (63)

To better compare the result of this fuzzy controller from other well known approaches, the system has also been 
modelled into a discrete average model [19] and then controlled using the same LMI technique to achieve a unique 
controller gain for the same system F = [−0.0743 − 0.0016]. For this model the obtained steady state is �f = 0.125
and xf = [2.5 25]T .
Next, Fig. 5 represents the system response with a period of time T = 0.01s. On this figure, the buck converter con-
trolled using the fuzzy controller is shown in blue, the system response controlled with the average model controller, 
is displayed in red.
It can clearly be seen on Fig. 5 that the fuzzy controller deploys a faster response than the other controller. And there 
is not a steady state error for the fuzzy controller.
This is due to the average model based controller has been design over an approximation then the stability and perfor-
mance design λ = 0.8 are not guaranteed, as the average model may differ too much from the real system. In fact, if 
the period is reduced to T = 0.001s then the average controller archives the performance design λ = 0.8. In order to 
avoid the steady state error an integrator can be added to the control design.

7.2. Case 2

On this final section, the same system that has been shown on previous sections is used. In this case, in order to 
test in a practical implementation an integrator is added to both controllers. This avoids the necessity of xf , �f and 
avoid the steady state error over disturbances (Fig. 6). Moreover the average controller can reach the reference, which 
was really complicated due to the difficulties for obtaining �f . The design has been done following the well known 
techniques for discrete linear systems to our Takagi-Sugeno fuzzy model. That is:

uk = Fxk + Fi

k∑
i=1

(yref − Cxi)T (64)

Where F = ∑
s∈B αs(δ)Fs , and Fi = ∑

s∈B αs(δ)F is being Fis the fuzzy gains for integral error. In order to obtain 
the gains, an integral state Ik+1 = Ik + (yref − Cxk) is add to fuzzy system definition:
12



C. Ariño, L. Mas and P. Balaguer Fuzzy Sets and Systems 472 (2023) 108696
Fig. 5. Controlled responses, case 1. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. Evolution of the control action (duty cycle �), case 1.

x̂k+1 =
(

A 0
−C 1

)
x̂k +

(
B

0

)
uk +

(
0
1

)
yref (65)

Note that, multiplying by T is unnecessary as it can be included in the controller gain. Then following Section 6 a 
Fuzzy controller can be computed. For a decay rate of λ = 0.9, obtained control gains are:

F1010 = [−0.0953 − 0.0126 0.0104], F0110 = [−0.0461 − 0.0058 0.0050] (66)

F1001 = [−0.0712 − 0.0092 0.0077], F0101 = [−0.0402 − 0.0051 0.0044] (67)

In this example, as in general, the implementation of fuzzy controller can require quite a few resources, a linear 
controller is also designed for the fuzzy model following Section 6.2. As in previous design, parameter λ is set to 
0.9 the LMIs holds and linear controller is find with gain F = [−0.0573 − 0.0063 0.0058]. The same procedure is 
done for the avg. model Favg = [−0.0761 − 0.0086 0.0072]. Fig. 7 shows the output responses with the same colour 
basis used on the previous figure. The red line represents the avg. controller, the blue line fuzzy controller and now 
the yellow is the linear controller for the fuzzy model. As it can be seen, the response with the controller based on 
an averaged model, has quite more settling time in comparison with the fuzzy modelled. In fact the avg. controller 
do not holds the decay rate design condition. This is due to the system approximation is not valid for this discretized 
time of T = 0.01. But in this case a zero steady state error is obtained (Fig. 8). Moreover changing λ to 0.8 makes the 
13
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Fig. 7. Output Controlled responses, case 2.

Fig. 8. Evolution of the control action (duty cycle �), case 2.

avg. controller response unstable. On the other hand the linear controller for the fuzzy model and the fuzzy controller 
present the same dynamic behaviour, this is the expected as both hold the LMIs with the same design parameters for 
the fuzzy model, which is an exact representation of the nonlinear one. Therefore, the linear controller will be the 
most appropriate since it controls the system properly and its implementation is much simpler.

8. Conclusions

A novel method to transform a non-linear, multiple input, binary controlled system, into a fuzzy discrete Takagi-
Sugeno model has been presented. This model is an exact representation of the original non-linear system. The model 
is a Takagi-Sugeno fuzzy model, so all the previous developments in control for this kind of system can be used. In 
the final sections, some of them have been presented showing that the use of controller techniques based on LMI can 
archive better results than other well known techniques.
Although the process to convert such system into a Takagi-Sugeno model and the develop of controllers for this 
system may seem tedious or complex using the instructions above, further material has been upload to a repository 
which allows an easy way to convert any system that meets the criteria here exposed.
14
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9. Resources

All the examples shown above, along with the code necessary to be implemented can be freely downloaded from:
Github repositori: https://github.com /Mas -T /Binary
It may be necessary to add third party add-ons to Matlab, such as Yalmip and Mosek, to fully run the code.
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