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(e-mail: {ipenarro,david.tenatena,rsanchis}@uji.es).

Abstract

In this work, we present a novel approach for input disturbance estimation design and implementation for dynamical
processes under the influence of unknown disturbances that present a clear periodical behaviour of a known frequency.
Both the design and the implementation are focused on simplicity. The observer consists of a set of transfer functions
fed by the process manipulated variable and the sensor measurement that are implemented through a mixture of cascade
and series connections. For the synthesis of the disturbance observer, we just need an input-output model of the process
and one tuning parameter in each of the transfer functions. We present simple rules for the design considering the
trade-off between the transient time needed to estimate changes in the behaviour of the disturbance and the robustness
against measurement noise effects. We show the benefits in using this disturbance estimation as a feed-forward signal in
both open loop and closed loop control applications, and we quantify the robustness modification when used together
with a closed loop controller. The transfer functions of the observer include both a low pass filter and a set of resonant
terms. We quantify the effect of the different terms and their parameter tuning. Our implementation method uses
standard tools available in industrial control systems and we have applied it to a real distillation column under ambient
temperature disturbances. The main contribution of this work is the simplicity of the design and implementation of the
disturbance observer, making it suitable for the process industry and to be managed by non-experts in control systems.
Another contribution is the a priori design based in intuitive engineering performance indices.
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1. Introduction

Many kinds of disturbances usually affect industrial
systems, from sensor or actuator malfunctions to environ-
mental conditions or other systems coupling. This fact
explains why feedback control is needed: its main task is
to ensure that these disturbances do not compromise the
system performance and stability [1]. Control of systems
under disturbances can be based on passive strategies—
where the controller must reject the disturbance without
using any information about the disturbance—or active
strategies—where the disturbance is measured or estimated
and then incorporated into the control action. The PID
controller is a good example of the first one. For the sec-
ond strategy, when disturbance signal is not available, we
need to estimate or observe it from the measurable vari-
ables and the knowledge of the system. The algorithm
used for disturbance estimation is typically referred to as
a Disturbance Observer (DOB) [2].

Besides its use in control, disturbance estimation is also
useful for other purposes, like fault diagnosis and actua-
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tor sizing. In fault diagnosis, the disturbance—also called
fault—estimation is combined with a decision mechanism,
so that we consider that the system is under a fault if the
fault estimation fulfils the condition determined in the de-
cision mechanism [3, 4, 5]. A widespread practice is to
use a threshold in a detection mechanism, so if the fault
estimation is beyond the threshold, we assume a fault has
occurred. Disturbance estimation can be also useful for
control actuators sizing. If we can estimate the magni-
tude of process disturbances, we would know the amount
of control action needed from the actuator and this will
help us to choose its size. Due to the mentioned relevance
of disturbance estimation in several applications, DOB de-
sign and application has emerged as an important topic in
academic research over the years [6, 7, 8, 9].

In this work we focus on periodic disturbances, which
are those expected to occur continuously and cyclically.
As we will discuss later, the estimation of these distur-
bances requires a different approach w.r.t the estimation of
faults—sudden or progressive disturbances that only occur
in abnormal situations. Previous work on the estimation
of periodic disturbances has been done for several applica-
tions, like power electronics [10, 11, 12, 13, 14], permanent
magnets motors [15], power grids [16, 17, 18], industrial
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repetitive tasks with robotic arms [19], mechanical sys-
tems under vibrations [20, 21, 22, 23] or wind turbines
[24].

Many kinds of different disturbance observers have been
proposed [2, 25, 26, 27], and particularly for periodic dis-
turbances [28, 29, 30, 31]. State space observers have been
used for fault detection [32, 33, 34] and in Active Dis-
turbance Rejection Controllers (ADRC) [35, 36, 37, 38]
handling also periodical behaviour.

Other kind of observers are based in an additive struc-
ture implemented in input-output transfer functions, whose
design consists of inverting the process model to estimate
the disturbance. To ensure the observer is proper, they
include a filter—called Q-filter—so the relative degree of
the inverted plant transfer function plus the filter is not
negative. The observed disturbance is commonly feed-
forwarded into a feedback controller and can be found in
literature as DOB (Disturbance Observer). The design
of the Q-filter is critical for the use of DOB for periodic
disturbances because the use of a simple low-pass filter—
this is the most common filter used in applications of non-
periodic disturbances—will lead to out of phase, and thus
delayed, estimation of the periodic disturbance.

Several solutions have been presented for DOB under
periodic disturbances. Some authors use the combina-
tion of a DOB for estimating low frequency components
of the disturbances and other solutions for periodic com-
ponents [29], like an infinite order DOB [39], a periodic
DOB suitable for aperiodic disturbances [40], or an adap-
tive notch filter based in the implementation of a time de-
lay [19]. On [21], a phase-lead compensator is used to en-
sure phased estimation. On [15], an adaptive mechanism
is also used to correct the phase change and magnitude
distortion caused by the Q-filter. On [13], a multiplicative
approach of several resonant filters is used. On [41], the
problem is expanded to the MIMO case and an optimal
strategy is used for the estimator tuning, by minimizing
H∞ norm of the disturbance estimation error.

In the context of process industry—such as refining,
chemical or oil&gas—, control and estimation tasks are
usually programmed in a Distributed Control System (DCS)
via so-called Function Blocks, which are pre-configured
software components ready to implement standard algo-
rithms like PID controllers, low-pass filters, lead-lag com-
pensators, etc. [42]. These Function Blocks contain en-
capsulated algorithms ready to work after plugging input
and output signals and setting some parameters. This
has somehow democratized the use of control algorithms
since they have substituted script programming—which
may require a deeper knowledge—to block selection and
plug&play programming, so far, more people can develop
tasks on control configuration, even with less control the-
ory or programming background.

Motivated by this paradigm in the context of process
industry, the aim of this work is to design a periodic dis-
turbance observer whose design—in terms of parameters
tuning—and implementation are simple and can be im-

plemented through standard tools available in Distributed
Control Systems. The objective is to find an additive
structure that can be connected or disconnected, and where
adjustment is limited to a few parameters’ calibration.
Moreover, these parameters would ideally have some phys-
ical meaning, i.e., they are related to some properties of
the process like process gains or times related to dynam-
ics of the process or the estimator. Despite the search of
simplicity in the design and implementation, this does not
prevent us of being rigorous in the analysis.

To achieve the previous statement, no state-space real-
ization is considered, because this would lead to an imple-
mentation with lots of parameters with no physical mean-
ing (specially in high order systems). We base our im-
plementation in continuous transfer functions (assuming a
DCS can to discretize them according to the corresponding
sampling period) with the lowest possible order (that de-
pends on the system model) to ensure minimum number of
tuning parameters for each application. We propose to use
a bank of multi-resonant disturbance observers, including
one for low frequency component estimation and others so
that each one estimates a frequency component. One can
add up as many transfer functions as frequencies that are
expected to be present in the periodic disturbance, and
each of them is implemented in a cascade configuration
following the previous ones.

Main contributions of the work are:

� A cascade additive-multiplicative scalable filter struc-
ture based on simple transfer functions, that allows
the easy implementation in industrial control sys-
tems, and that allows the user to easily add terms for
the estimation of new frequency components, with-
out affecting the previous ones.

� An uncomplicated design strategy to tune the small
number of tuning parameters based on straightfor-
ward relationships between those parameters and time
response performance and measurement noise effect.

This contributions are considered the advantages of ap-
plying our proposal w.r.t. other approaches in the liter-
ature as it is shown in the different comparison that are
presented.

The proposed estimator has been tested in a real distil-
lation column from a nylon manufacturing factory, which
is used to treat a 10t/h stream of cyclohexane oxidation
products. This distillation column is affected by periodical
disturbances due to the ambient temperature—climate be-
haves as a 24-hour periodic disturbance, as shown in [43].
We can accurately estimate the disturbance and determine
the control action that should be feed-forwarded to cancel
it.

The paper is structured as follows. Section 2 presents
the problem statement. On section 3, we discuss the dis-
turbance estimator structure, arguing the structure choice
and analysing its implications. Section 4 introduces first
the estimation error analysis, including the convergence
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and high frequency measurement noise attenuation, and
addresses the disturbance estimator tuning, including prac-
tical rules for the user. In section 5 we analyse the use of
this disturbance estimate in control applications as a feed-
forward signal in both open and closed loop control. In
Section 6 we compare our method with other ones present
in the literature. Section 7 consists of a numerical exam-
ple to clarify and illustrate the proposal, and to compare
it with other approaches. Section 8 presents a case study
of an industrial distillation column, where we apply the
proposed disturbance estimator to real historical operat-
ing data to estimate the effect of ambient temperature on
the column behaviour. Finally, section 9 summarizes the
conclusions of the paper.

2. Problem Statement

Let us consider a linear time-invariant process G(s)
with an available manipulable input u and a measurable
output y, which can be affected by any disturbance. We
assume that we can model the effect of disturbances as
an additive signal added to the manipulable input, acting
as an actuator disturbance signal d. The measurement is
assumed to be affected by a noise signal v, which we con-
sider high frequency and Gaussian. Therefore, the process
is modelled as

y(s) = G(s) (u(s) + d(s)) + v(s). (1)

We express the transfer function G(s) as

G(s) =
Ksnde−Ts

∏nβ

i=1(1 + βis)
∏nδ

i=1(1− δis)

sni
∏nτ

i=1(1 + τis)
, (2)

where ni = 1 if the system has an integrator and ni = 0 if
not, and nd = 1 if the system has a derivative, and nd = 0
if not. K is the process gain, βi are the time constants of
the half-left zeros in the complex plane (ℜ(βi) > 0) and δi
the ones for those in the half-right plane (ℜ(δi) > 0). T is
the dead time and τi the time constants of both the stable
and unstable poles. The complex poles are also assumed to
be represented in this general notation and, in that case,
we would have a couple of conjugate τi complex values.
We assume that the transfer function G(s) is proper (i.e.,
nβ + nδ + nd ≤ ni + nτ )

Remark 1. Note that d in model (1) can be used to also
model the effects of uncertainty on plant model G(s). If
the system can be modelled through

y(s) = (G(s) + ∆G(s)) (u(s) + w(s)) + v(s), (3)

where ∆G(s) refers to the non-modelled part of the plant,
and w to the unknown disturbances, one only needs to iden-
tify d as the variable that covers the signal

d(s) = w(s) +G(s)−1∆G(s) (u(s) + w(s)),

see [13].

Remark 2. Note that d in model (1) can be used to also
model the effects of a disturbance that enters in a differ-
ent channel somewhere between the input and output. For
instance, if the system can be modelled through

y(s) = Gy(s) (Gu(s)u(s) +Gw(s)w(s)) + v(s), (4)

where w refers to the unknown disturbances, one only needs
to identify d as the variable that covers the signal

d(s) =
Gw(s)

Gu(s)
w(s),

and G(s) the system composed by G(s) = Gy(s)Gu(s).

We assume that the disturbance is persistent and cyclic
with a given periodicity. We assume this disturbance as an
uncertain signal, but we model its behaviour for analysis
and design purposes as a slow time-varying term plus nω

oscillatory terms

d(t) = d0(t) +

nω∑
i=1

di sin(ωi t+ θi)

The term d0(t) can be assumed to be the addition of a con-
stant term and a ramp with low slope (d0(t) = c0 + c1t).
We assume that the frequencies are ordered in increasing
order (ωi < ωi+1). If the signal has only one dominant
frequency, the terms ωi must be interpreted as the har-
monic frequencies of the Fourier Series of the signal (i.e.,
ωi = i · ω1, and ω1 would be the main frequency).

The main objectives of this paper are

– To build a model-based estimator of the disturbance
d(t) using continuous transfer functions and few tun-
ing parameters.

– To develop an implementation strategy that allows
to easily add new oscillatory terms to the observer,
to estimate different frequency components.

– To provide explicit relationships between tuning pa-
rameters and performance indices.

3. Disturbance Estimator Structure

In this Section we present our proposal for the Distur-
bance Observer (DO) and we justify the reasons that led
us to adopt its structure, based in the fulfilment of the
performance requirements defined below. We propose the
general DO of the figure 1, composed of the transfer func-
tions Hu(s) and Hy(s), so that the disturbance estimation
is

d̂(s) = Hu(s)u(s) +Hy(s)y(s), (5)

where Hu(s) and Hy(s) are to be defined. Considering (1),
we can express this estimation as

d̂(s) = Hy(s)G(s)d(s) + (Hu(s) +Hy(s)G(s))u(s) +

+Hy(s)v(s), (6)
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Figure 1: System with disturbance Estimator

where we observe the influence of input, disturbance, and
noise on the estimation.

We define the disturbance estimation error as d̃(s) =

d(s)− d̂(s) so

d̃(s) = [1−Hy(s)G(s)] d(s)−
− [Hu(s) +Hy(s)G(s)]u(s)−
−Hy(s)v(s). (7)

For optimal disturbance estimation, the objective is to
minimize the disturbance estimation error d̃ for a given
metric. In presence of disturbance d, this means that we
want ideally d̂ = d. In presence of noise v and no distur-
bance, this means ideally d̂ = 0. This approach is slightly
different to the residual approach commonly used in fault
detection, where the objective is to maximize residual sen-
sitivity to disturbance d and minimize residual sensitivity
to noise v.

3.1. Initial analysis

The choice of a structure for Hu(s) and Hy(s) is based
on the fulfilment of some desirable requirements for the
DO. We define the following indicators to evaluate the per-
formance of the DO with respect to the three exogenous
signals of the system: the disturbance d, the input u and
the noise signal v.

The proposed indicators are the following1:

A1. The steady-state disturbance estimation error versus
step disturbance, defined as

lim
t→∞

d̃(t) = lim
s→0

(1−Hy(s)G(s)) (8)

A2. The steady-state disturbance estimation error under
sinusoidal disturbances, defined as the frequency re-
sponse of [1 − Hy(s)G(s)] evaluated at each of the
frequencies that define the periodic signal, i.e., the
set

1−Hy(j ωi)G(j ωi), i = {1, . . . , N}.
If Hy(s) fulfils 1 − Hy(j ωi)G(j ωi) = 0, the steady
state error under sinusoidal disturbances of frequency
ωi is null.

1We use the final value theorem: limt→∞ x(t) = lims→0 sX(s)

A3. The noise effect, which according to (7) and assuming
the noise as a high frequency signal is approximated
by

lim
s→∞

−Hy(s).

A4. The sensitivity from the system input u(s), defined
with the H∞ norm

∥Hu(s) +Hy(s)G(s)∥∞ .

We look for a simple structure for Hu(s) and Hy(s)
that achieves a satisfactory performance in terms of the
previous indicators. Specifically, the next requirements
must be fulfilled:

B1. Hu(s) and Hy(s) must be stable, proper, and causal
(realizable). This also ensures a finite noise amplifi-
cation, according to A3.

B2. Considering (7), [1−Hy(s)G(s)] and [Hu(s) +Hy(s)G(s)]
must be stable. This ensures a stable response of the
disturbance observer from disturbances and manipu-
lable inputs.

B3. Hy(s) must fulfilHy(0)G(0) = 1 andHy(j ωi)G(j ωi) =
1 (i = {1, . . . , N}) to ensure null steady-state distur-
bance estimation error under step and sinusoidal like
signals, according to A1 and A2.

B4. The sensitivity from the system input must be bounded,
i.e., ∥Hu(s) +Hy(s)G(s)∥∞ ≤ ϵ, ϵ ∈ R+, according
to A4.

In the next section, the selection of the structure of Hu(s)
and Hy(s) is justified, considering the previous require-
ments.

3.2. Structure choice

Considering the dynamics of the disturbance error ex-
pressed in (7), we could achieve

– perfect disturbance estimation if 1−Hy(s)G(s) = 0;

– perfect input decoupling if Hu(s) +Hy(s)G(s) = 0;

– perfect high frequency noise attenuation if Hy(∞) =
0.

Obtaining perfect disturbance estimation through setting

Hy(s) = G(s)−1

is incompatible with several of the requirements indicated
before. As G(s) is usually strictly proper, Hy(s) would be
non-proper; if G(s) has right half plane zeros, Hy(s) would
be unstable; if G(s) has some delay, then Hy(s) would be
non-causal.

On the other hand, obtaining perfect noise attenuation
would imply Hy(s) being strictly proper, which is incom-
patible with perfect disturbance estimation, as G(s)−1 will
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never be strictly proper. We see here that in the design
of the transfer function Hy(s) there is a trade-off between
achieving perfect disturbance estimation and noise atten-
uation.

However, once Hy(s) is designed, achieving perfect in-
put decoupling is possible by setting Hu(s) to be

Hu(s) = −Hy(s)G(s). (9)

With the same goal of input decoupling, one can explore
the design of Hu(s) and then set Hy(s) to fulfil

Hy(s) = −Hu(s)G(s)−1.

In any case, Hu(s) and Hy(s) fulfilling (9) and require-
ment B3, implies that Hu(s) must satisfy{

Hu(0) = −1,

Hu(jωi) = −1, i = 1, . . . , nω.

Note that onceHy(s) andHu(s) are set to fulfilHu(s)+
Hy(s)G(s) = 0 and the estimator is implemented, the dy-
namics of the disturbance estimation and estimation error
are reduced to

d̂(s) = Hy(s)G(s)d(s) +Hy(s)v(s), (10)

and

d̃(s) = [1−Hy(s)G(s)] d(s)−Hy(s)v(s). (11)

Writing these expressions in terms of Hu(s), one obtains

d̂(s) = −Hu(s)d(s)−Hu(s)G(s)−1v(s), (12)

d̃(s) = [1 +Hu(s)] d(s) +Hu(s)G(s)−1v(s).

Considering the fulfilment of (9), we discuss in the
following section the structure for each transfer function
Hu(s) and Hy(s) to achieve an implementation that allows
the estimation of each frequency component of the distur-
bance signal and that uses comprehensive tuning parame-
ters.

3.3. Decomposition for implementation

To achieve a simpler implementation based on the use
of series and cascade operations with transfer functions
that include recognizable terms, we propose to implement
Hu(s) as

Hu(s) = −1 +

nω∏
i=0

(1 +Hu,i(s)), (13)

where each Hu,i(s) (i = 0, . . . , nω) will be defined to ful-
fil Hu,i(jωi) = −1 (i.e., to ensure null steady state error
for each of the frequency components of d), to be stable,
proper, and causal (with the aim of being implementable).
Note that if each Hu,i(s) leads to −1 at s = jωi, for ev-
ery ωi of interest, then, Hu(s) will lead to −1, as desired,

when s = jωi for each ωi of interest. On the other hand,
we decide to implement Hy(s) as

Hy(s) =

nω∑
i=0

Hy,i(s) ·
nω∏

j=i+1

(1 +Hu,j(s))

 (14)

where each Hy,i(s) will be defined to be stable, proper,
and causal. When i = nω, the term in the product must
be interpreted as 1. Figure 2 shows the block diagram
that implements the proposed disturbance observer with
simple transfer function blocks. It is straightforward to
demonstrate that the proposed term decomposition satis-
fies Hu(s) +G(s)Hy(s) = 0, i.e., null process input sensi-
tivity.

To define with more detail each termHu,i(s) andHy,i(s)
that conforms Hu(s) and Hy(s), let us now decompose
G(s) as

G(s) = GI(s)GN (s),

where

GI(s) =
K
∏nβ

i=1(1 + βis)

sni
∏nτ

i=1(1 + τis)
,

GN (s) = snde−Ts
nδ∏
i=1

(1− δis).

GI(s) contains the part of G(s) whose inverse leads to
an stable and causal system, and GN (s) the part whose
inverse leads to an unstable or non-causal system.

We propose to use a set of transfer functions Hu,i(s)
(i = 0, . . . , nω) defined as

Hu,i(s) = −Fi(s)GN (s), (15)

and a set of transfer functions Hy,i (i = 0, . . . , nω) defined
as

Hy,i(s) = Fi(s)G
−1
I (s), (16)

where Fi(s) is the filter such that

−Fi(jωi)GN (jωi) = −1.

Note that the proposed set of transfer functions satisfies

Hu,i(s) +G(s)Hy,i(s) = 0

for each i = 0, . . . , nω, i.e., Hy,i(s) can be rewritten as

Hy,i(s) = −Hu,i(s)G(s)−1.

With these definitions, Hy(s) in (14) can be rewritten
with the operations detailed in Appendix Appendix A as

Hy(s) = −
nω∑
i=0

G(s)−1Hu,i(s)

nω∏
j=i+1

(1 +Hu,i(s))

= G(s)−1

(
1−

nω∏
i=0

(1 +Hu,i(s))

)
(17)
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as each Hy,i(s) fulfils Hy,i(s) = −G(s)−1Hu,i(s) by the
proposed structure. With this, we have demonstrated that
the proposed structure fulfils the perfect input decoupling
condition Hu(s) + G(s)Hy(s) = 0. As seen in figure 2,
our proposal allows to implement the observer as indepen-
dent transfer functions, which makes it suitable to be eas-
ily implemented in industrial control systems. Note that
each group marked in grey in the figure, corresponding to
each term of the observer composed of the pair Hu,i(s)
and Hy,i(s), can be included independently so that the
user can plug as many terms as required, to estimate new
frequency components, without any consideration on the
already implemented terms.

Once we have discussed the internal structure of Hu(s)
and Hy(s) that leads to fulfilment of (9), next we discuss
the construction of filters Fi(s) for implementability and
estimation of each frequency term in d(s).

3.4. Filter choice

In the following we define filters Fi(s) (included in
Hu,i(s) and Hy,i(s)) to achieve disturbance estimation at
the frequencies of interest, as well as ensuring that transfer
functionsHu,i(s) andHy,i(s) are realizable (stable, proper,
and causal).

If the relative degree of GI(s) (given by dI = ni+nτ −
nβ) is greater than zero, its inverse will not be proper.
This will commonly happen with usual transfer functions
(with more order in the denominator than half left plane
zeros). On the other hand, the order of the numerator
of GN (s), nδ + nd will be usually lower or equal than dI .
Therefore, the order of Fi(s) must be at least

nF = max(dI , nδ + nd) (18)

to guarantee that both Hy,i(s) and Hu,i(s) are realizable.
The most common case in practice will be

nF = dI = ni + nτ − nβ . (19)

3.4.1. Low pass term

First, we define the filter for i = 0 (ω0 = 0, i.e., to
observe the steady state or average value of signal d). To
achieve a proper transfer function Hy,0(s), we propose to
include a pole with multiplicity nF , i.e.,

F0(s) =
1

(1 + α s)nF
. (20)

With this, Hy,0(s) is defined by

Hy,0(s) =
GI(s)

−1

(1 + αs)
nF

=
sni
∏nτ

i=1(1 + τis)

K (1 + αs)
nF
∏nβ

i=1(1 + βis)
, (21)

and Hu,0(s) by

Hu,0(s) =
−GN (s)

(1 + αs)
nF

=
−snde−Ts

∏nδ

i=1(1− δis)

(1 + αs)
nF

. (22)

Note that α is the unique tuning parameter in this term,
to be defined.

3.4.2. Resonant terms

Next, we define the filters for i = 1, . . . , nω (i.e., to ob-
serve the oscillatory components d). We propose initially

Fi(s) =

[
Ai +Bis

s2 + 2ξiwis+ w2
i

]nF

,

with Ai, Bi, 0 < ξi < 1 and wi to be defined next. Then,
in order to satisfy Fi(jωi)GN (jωi) = 1 + 0j and that the
magnitude of the frequency response of Fi(s)GN (s) has a
maximum at s = jωi, i.e.,∣∣∣∣∂|Fi(jω)GN (jω)|

∂ω

∣∣∣∣
ω=ωi

= 0,

the values for wi, Ai and Bi are chosen as

wi = ωi, Ai =
2ξiω

2
i sin ϕi

|GN (jωi)|
1

nF

, Bi =
2ξiωi cos ϕi

|GN (jωi)|
1

nF

,

being ϕi the angle

ϕi =
1

nF
arg(GN (jωi)). (23)

Note that ξi is the tuning parameter corresponding to
the i-th resonant term, to be defined. With these consid-
erations, Hy,i(s) is defined by

Hy,i(s) =
GI(s)

−1(Ai +Bis)
nF

(s2 + 2ξiwis+ w2
i )

nF
=

=
(Ai +Bis)

nF sni
∏nτ

i=1(1 + τis)

K (s2 + 2ξiwis+ w2
i )

nF
∏nβ

i=1(1 + βis)
, (24)

and Hu,i(s) by

Hu,i(s) =
−GN (s)(Ai +Bis)

nF

(s2 + 2ξiwis+ w2
i )

nF
=

=
−(Ai +Bis)

nF snde−Ts
∏nδ

i=1(1− δis)

(s2 + 2ξiwis+ w2
i )

nF
. (25)

The tuning of each resonant term only requires setting a
single parameter, ξi.

3.4.3. First order plus time delay case

In the case of a first order plus time delay model (FOTD),
a model commonly used in process industry, where

G(s) =
Ke−Ts

1 + τs
,

the previous transfer functions become explicitly

Hy,0(s) =
1

K

(1 + τs)

(1 + αs)
, Hu,0(s) =

−e−Ts

1 + αs
,

Hy,i>0(s) =
(1 + τs)2ξiωi(sin(−ωiT )ωi + cos(−ωiT )s)

K(s2 + 2ξiωis+ ω2
i )

,

Hu,i>0(s) =
−e−Ts2ξiωi(sin(−ωiT )ωi + cos(−ωiT )s)

(s2 + 2ξiωis+ ω2
i )

.

Note that in the FOTD case nF = 1.
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Figure 2: Block diagram of the proposed additive-cascade structure for the multi-resonant observer

3.5. Sequential interpretation

The proposed implementation can be interpreted as a
sequence of simple disturbance observers where each of
them is devoted to estimate a given frequency component
of the disturbance, using those components already esti-
mated. For interpretation issues, let us assume that the
implementation is done in increasing terms of frequency
(i.e., each filter Hu,i(s) and Hy,i(s) refers to an increasing
frequency as i grows).

Let us decompose the disturbance to be estimated as
a summation of signals

d(s) = d0(s) + d1(s) + d2(s) + · · ·+ dnω
(s).

where d0 refers to the low frequency component of the
signal (i.e., constant or slow ramp-like variations), and di
(i = 1, . . . , nω) refers to the oscillatory component with
frequency ωi. In its first stage, the proposed implemen-
tation can be interpreted as an estimator for d0 from the
known input u and measured output y, i.e.,

d̂0(s) = Hu,0(s)u(s) +Hy,0(s)y(s).

Once we have an estimate for d0, in a second stage, we can
interpret that we estimate d1 from inputs u (known) and
d0 (estimated in the previous stage), and y, i.e.,

d̂1(s) = Hu,1(s)(u(s) + d̂0(s)) +Hy,1(s)y(s).

With this, any following stage can be interpreted as an
estimation of di from inputs u (known) and d0, . . . , di−1

(estimated) and output y, i.e.,

d̂i(s) = Hu,i(s)

u(s) +

i−1∑
j=0

d̂j(s)

+Hy,i(s)y(s).

Finally, the estimate for disturbance d will be the summa-
tion of each of the estimated components, d̂(s) =

∑N
i=0 d̂i(s).

The idea is that the estimator for component d0 will be
designed to assure proper steady state estimation under
step and ramp disturbances, and the rest of the filters
will be devoted to estimate each of the frequencies that
were not contemplated by the previous filter (each of the
frequencies of the oscillatory disturbances).

4. Disturbance estimator tuning

In the previous section we have proposed a structure
for the transfer functionsHy(s) andHu(s). In this section,
we analyse how to tune the different parameters α and ξi.

4.1. Disturbance estimator error analysis

First, let us rewrite the disturbance estimation error
dynamics (7) including the proposed disturbance estimator
structure, given by (21) and (22). Disturbance estimation
error becomes

d̃(s) =

[
nω∏
i=0

(1 +Hu,i(s))

]
d(s)− (26)

−

 nω∑
i=0

Hy,i(s) ·
nω∏

j=i+1

(1 +Hu,j(s))

 v(s),

where we appreciate the cancellation of the effect of input
u over the disturbance estimation error, and that the poles
defining dynamics of the disturbance estimation error are
the ones included in the filter terms (s = −1/α for the low
pass term and s = −ξiωi ± j

√
ξ2i − 1ωi for the resonant

terms, both with multiplicity nF ).
To present expressions that help to the filter design,

now we assume the following assumptions. First, we as-
sume that each component of the product defining the
estimation error due to disturbances (see (26)) implies
both a transitory and steady-state behaviour for any sig-
nal. We also assume that the frequency response of each
component will be negligible for other frequencies, i.e., for
i = 0, . . . , nω,{

Fi(jω)GN (jω) = 1 + 0j, ω = ωi

0 ≤ |Fi(jω)GN (jω)| ≪ 1, |ω − ωi| > ϵ
(27)

for some ϵ, and where ω0 must be understood as frequency
zero (referring to the term estimating the constant term
of the disturbance).
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4.1.1. Convergence of the estimation error

Given the previous fact, we use the dynamics of the
transient part of the estimation error signal to assess the
behaviour of each component of the estimator. The dis-
turbance estimation error due to disturbances can be ex-
pressed as

d̃(s) =

[
nω∏
i=0

(1− Fi(s)GN (s))

]
d(s). (28)

On one hand, we can obtain some metrics of the perfor-
mance from the assessment of system and signal norms
in the previous expression (see Appendix B the detail
on some discarded performance indices). Due to the os-
cillatory nature of the signals, and due to the complex
expressions that may be derived for high order, we avoid
the assessment with this method.

On the other hand, we can assess the time response via
the poles effect. The time expression of the error signal
d̃(t) will be composed of a summation of terms related to
each of the denominators of the elements (1−Fi(s)GN (s)).
Since GN (s) has no poles, the denominator coincides with
the one in Fi(s). The elements in GN (s) (time delay and
non-minimum phase terms) will imply a delay in the esti-
mation in the order of

td =
∑

δi + T. (29)

We see then that we can consider the transient time due
to Fi(s) as the metric to asses the behaviour of each of the
filters, since the effect of the non invertible part is common
to each of the terms. In that sense, we will assume that
the settling time of each component i is in the order of
magnitude

ts,i ⪅
1.4 + 2.53n0.8

F

σi
, (30)

where σi refers to the absolute value of the real part of the
poles (see Appendix C). This approximated equation has
been obtained from the step response of several multiple
poles transfer functions, computing the settling time and
fitting a function of nF . In the case of the low-pass filter,
this is σ0 = 1

α , and in the resonant terms, this is σi>0 =
ξiωi (for ξ < 1).

4.1.2. Attenuation of the measurement noise

On the other hand, the absolute value of the high fre-

quency response of the transfer function d̂(s)
v(s) ≡ Hy(s) is

determined by the limit

lim
s→∞

Hy(s) = lim
s→∞

 nω∑
i=0

Hy,i(s) ·
nω∏

j=i+1

(1 +Hu,j(s))

 =

=

nω∑
i=0

(Hy,i(∞)) , (31)

where lims→∞ Hu,j(s) = 0 has been considered. The pre-
vious limit exists as Hy(s) is strictly proper, i.e., it has di-
rect gain, due to the value selected in nF (see (18) and (19)).

Assuming that the noises are high frequency signals, we
use the previous limit as the indicator for noise amplifica-
tion, and the variance of the estimation due to measure-
ment noises is

σ2
d =

(
lim
s→∞

Hy(s)
)2

σ2
v (32)

where σ2
d = var(d̂) and σ2

v = var(v).

4.1.3. Summary of error analysis

Here we summarize several indicators for both steady
state and transient error that are useful for design pur-
poses.

� Steady state error under a step in d:

lim
t→∞

d̃(t) = 0.

� Steady state error under a ramp in d:

lim
t→∞

d̃(t) = (33)

=
(
nF α+

∑
δi + T

) nω∏
i=1

(
1− (2ξi sin(ϕi))

nF

|GN (jωi)|

)
.

� Steady state error for sinusoidal d of frequency ωi:

lim
t→∞

d̃(t) = 0.

� Settling time of the term related to frequency ω0 = 0
(applying equation (30)):

ts,0 ⪅ (1.4 + 2.53n0.8
F )α+

∑
δi + T. (34)

� Settling time of the term related to frequency ωi:

ts,i ⪅
1.4 + 2.53n0.8

F

ξiωi
+
∑

δi + T. (35)

� High frequency measurement noise amplification (re-
lated to high frequency noise v):

lim
s→∞

Hy(s) =

=

∏
τi

K
∏

βi

(
1

αnF
+

nω∑
i=1

(2ξiωi cos(ϕi))
nF

|GN (jωi)|

)
. (36)

The value of the tuning parameters α and ξi have an im-
pact on the measurement noise amplification as well as on
the transient tracking error of the disturbance estimation.

4.2. Tuning rules

From the previous metrics we realize that a high value
of α reduces the noise effect but, under step disturbances,
slows the disturbance signal tracking, while a lower α speeds
up the disturbance signal tracking but increases the noise
effect. In the same sense, we get less harmful effect from
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noise if we use lower values of ξi but that slows down dis-
turbance tracking under sinusoidal disturbances. In the
same sense, under ramp-like disturbances, we have lower
error when using lower α and higher ξi values. Therefore,
there is a trade-off between tracking speed and noise effect
and the tuning aims at achieving a compromise between
those two factors. Therefore, the tuning can be based
in deciding the noise amplification effect or the tracking
speed ( tracking error in the case of expected ramp-like
disturbances).

The right number of resonant terms to include in the
multi-resonant observer is related with the disturbance na-
ture, i.e., the periodic signal in terms of the number of sig-
nificant harmonics. Since we suppose d is unknown, this
may be difficult to know, so we recommend trying different
options in a training dataset.

The tuning procedure can be based in deciding a to-
tal noise amplification N or a settling time ts. According
to (36), a certain noise amplification can be achieved with
several combinations of α and ξi. The settling time, ac-
cording to (34) and (35), can be set differently for each
frequency component of the disturbance. Since the am-
plitude of each frequency component present in the dis-
turbance signal is unknown, we propose in the following
several alternatives. The proposed tuning procedure is as
follows:

1. Gather a data set X = (u(t), y(t)) (t ∈ [0, T ]) around
a given operating point with sufficient excitation in
input u(t) for identification purposes.

2. Identify the process to obtain a model G(s) of the
form (2).

3. From a modelG(s), factorize it intoGI(s) andGN (s),
so that GI(s) contains the part of G(s) whose inverse
leads to an stable and causal system, and GN (s) the
part whose inverse leads to an unstable or non-causal
system.

4. Compute nF = max(dI , nδ + nd), according to (18).

5. Obtain the main frequency ω1 of the disturbance sig-
nal. For instance, if it is related to some natural daily
phenomena, ω1 = 2π

24·3600 rad/s.

6. Select a number nω of resonant terms, ideally small
for simplicity, and compute the frequencies ωi. Nor-
mally, if there is no information on the frequency
spectrum of the disturbance signal, the harmonic fre-
quencies are chosen w.r.t. ω1, i.e., ωi = i · ω1, i > 1.

7. Compute ϕi = n−1
F arg(GN (jωi)) for i = 1, . . . , nω,

according to (23).

8. Decide a target for either total noise amplification N
or a settling time ts.

9. Select one of the following three alternatives:

(Alt. a) Set a noise weighting Ni for each term such
that

∑nω

i=0 Ni = N and set

α =

(
1

Ni

∏
τj

K
∏

βj

) 1
nF

, (37)

ξi =

(
Ni

K
∏

βj∏
τj

|GN (ωij)|
(2ωi cos(ϕi)nF )

) 1
nF

, i > 0

If no information on how to weight each term is avail-
able, one can set, for instance, an equitable noise
weighting by choosing Ni = N

nω+1 for all the terms
(i = 0, . . . , nω).

(Alt. b) Set a settling time ts,i for each term such
that ts,i ≤ ts and set

α =
1

(1.4 + 2.53n0.8
F )

[
ts,i −

∑
δj − T

]
, (38)

ξi =
(1.4 + 2.53n0.8

F )

ωi

[
ts,i −

∑
δj − T

]−1

, i > 0

Again, if no information on how to tune each term
is available, one can apply an equitable settling time
weighting by choosing ts,i = ts for all the terms (i =
0, . . . , nω).

(Alt. c) If some input-output data set is available to
perform a simulation of the observer, one can apply
an optimal weighting. Here, α and ξi are obtained by
performing an optimization over the dataset trying
to minimize some norm of the estimated output error
with the constraint of either total noise amplification
lower than a given N or either a settling time lower
than a given ts for each of the filter terms. First,
one must construct the observer with the proposed
structure and apply it over the data set to obtain
the estimated disturbance. Let us call the data set
Y = (u(t), y(t)) (t ∈ [0, T ]), let us assume that it
covers several oscillations of the main frequency ω1

(at least three complete oscillations, i.e., T > 3 · 2π
ω1

),
and let us write the disturbance estimate as

d̂(s) = Hu(s)u(s) +Hy(s)y(s)

leading to a data set of estimated disturbance values
d̂(t). Then, one must reconstruct the output with

ŷ(s) = G(s)(u(s) + d̂(s)),

leading to a data set of estimated output values ŷ(t).
Note that this reconstructed output can be rewritten
as

ŷ(s) = [G(s)(1 +Hu(s))]u(s) + [G(s)Hy(s)]y(s),

and, therefore, it can be obtained just adding the
simulated output of the linear systemsG(s)(1+Hu(s))
and G(s)Hy(s) using the acquired datasets u(t) and

9



y(t), respectively, as inputs. With this, one can per-
form a search of the parameters α and ξi by mini-
mizing, for instance∫ T

0

(y(t)− ŷ(t))2 dt,

to minimize the integral of the squared error, where
y(t)− ŷ(t) represents the difference between the out-
put measurements and the reconstructed output (that
considers both known input u and estimated un-
known input d̂). Another index can be, for instance∫ T

0
|y(t)− ŷ(t)| dt to minimize the integral of the ab-

solute error.

Note that data set Y must be acquired only once
to validate the design, and it is independent of the
number of resonant terms nω being explored.

10. Return to step 6 and include one extra resonant
term. Repeat all the steps and compare with pre-
vious results. Do this until acceptable performance
is achieved.

To achieve a faster response time of those terms whose
weight in terms of amplitude is larger in the disturbance
signal, we should use low values of α (if the slow dynamics
is dominant), or high values in the ξi whose frequencies
are dominant. To achieve this, we allow more noise am-
plification in those terms. In this sense, optimal weight-
ing depends on the amplitude of each component in the
disturbance signal. Since this may be unknown, this op-
timization can be performed through simulations over the
application data, by setting aside a training dataset. In
all the cases, we must satisfy α > 0 and ξi > 0. With
respect the selection of the number of resonant terms, one
must notice from equation (36) the existing trade off be-
tween the achievable noise attenuation and the inclusion
of resonant terms. Each new resonant term will lead to
more noise amplification. Or, in other words, if we want
to include a new resonant term while keeping a given noise
attenuation, we will have a slower estimator response, as
it will require well increasing α or decreasing some of the
ξi values.

4.3. Addressing nonlinear systems

One of the limitations of the proposed approach is that
it assumes a fixed operating point where a linear model can
be obtained. This is the case for most real applications,
where the operating point usually do not change over time.
However, when the operating point changes over time it
changes usually amongst a short finite set of different (and
close) operating points. Furthermore, if that change is
slower than the achievable dynamics in the estimator, one
approach to overcome this limitation is to design a differ-
ent disturbance observer at each operating point and run
in parallel a bank of observers. Then, the valid disturbance
estimate will be the one obtained with the model of the

actual operating point. This approach would lead to re-
sults similar to those ones developed by means of nonlinear
models, specially those ones that mainly model the chang-
ing static gain of the process along the operating points.
In order to apply this bank of estimators technique, one
should modify the tuning rules repeating all the steps for
each operating point.

5. Control applications of the disturbance observer

5.1. Application in pure feed forward control

One of the main applications of the disturbance esti-
mation is its use to manipulate the actuator to reject the
disturbance effect on an output signal of interest. For in-
stance, one can obtain the control action as the summation
of a given open loop control action uc (to have some aver-
age value in the output, for instance), minus the estimate

d̂ leading to
u(t) = uc(t)− d̂(t). (39)

The measured output is then given by

y(s) = G(s)uc(s)+G(s) (1+Hu(s)) d(s)+(1+Hu(s))v(s)

where the fact Hu(s) + G(s)Hy(s) = 0 has been applied.
Noting that (1 + Hu(s)) d(s) represents the disturbance
estimation error, we see that its effect over the output is

ỹ(s) = G(s) (1 +Hu(s)) d(s) = G(s) d̃(s).

Therefore, the lower the disturbance estimation error, the
lower its effect over the output, or the better the distur-
bance rejection in the output. Concisely, as the proposed
disturbance observer has been demonstrated to estimate
slow disturbances as well as the periodical components in-
cluded in the observer terms, we can conclude that the
feedforward of the disturbance estimation can significantly
mitigate those disturbance terms on the output. In the
case of ramp-like disturbances, the estimation error given
by (33) in section 4.1.3, leads to a tracking error equal to
(assuming unitary ramp)

lim
t→∞

ỹ(t) = (40)

K
(
nF α+

∑
δi + T

) nω∏
i=1

(
1− (2ξi sin(ϕi))

nF

|GN (jωi)|

)
.

5.2. Application in disturbance observer control

The other main useful application of disturbance ob-
servers is its use within a closed-loop control through a
feed-forward term, what is called Disturbance Observer
Control (DOB). In that case, the control algorithm be-
comes

d̂(s) = Hu(s)u(s) +Hy(s)y(s), (41a)

uc(s) = C(s) (r(s)− y(s)) , (41b)

u(s) = uc(s)− d̂(s). (41c)
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where C(s) represents the controller transfer function (for
instance, a PID controller), uc represents the control ac-
tion computed by the controller, and u is the total applied
control action, that includes the feedforward term −d̂(s)
to mitigate the disturbance effect on the system output.
In this case, the measured output can be expressed as

y(s) =
G(s)C(s)

1 +G(s)C(s)
r(s) +

G(s) (1 +Hu(s))

1 +G(s)C(s)
d(s)+

+
1 +Hu(s)

1 +G(s)C(s)
v(s) (42)

or, equivalently (with D(s) = 1 +G(s)C(s))

y(s) =
G(s)C(s)

D(s)
r(s) +

G(s)

D(s)
d̃(s) +

1 +Hu(s)

D(s)
v(s) (43)

From this transfer function it can be demonstrated (see [44,
45]) that this control structure is able to track without
steady state error constant setpoints, constant and ramp-
like disturbances, as well as sinusoidal disturbances (if
the components are included in the disturbance observer).
This is the main advantage of using this control structure.
On the other hand, the sensitivity S(s) function is

S(s) = S0(s)(1 +Hu(s)), (44)

S0(s) =
1

1 + C(s)G(s)
, (45)

where S0(s) denotes the conventional sensitivity function
(when there is no estimated disturbance feedforward term).
The robustness and oscillatory behaviour of the closed
loop system can be assessed by means of the H∞ norm of
S(s), i.e., the peak of the frequency response, ∥S(s)∥∞ =
maxω |G(jω)|. From this fact one can obtain the bound

∥S(s)∥∞ ≤ ∥S0(s)∥∞ · ∥1 +Hu(s)∥∞ (46)

where ∥S0(s)∥∞ represents the sensitivity peak of the ini-
tial controller C(s), and where the term ∥1 + Hu(s)∥∞
represents the robustness worsening that can generate the
use of the feedforwad term. The work [44] shows the trade-
off between noise attenuation, disturbance mitigation and
closed loop robustness in the case of disturbance observers
that only include low pass filter terms. One of the con-
clusions is that, for a set of observers that have the same
measurement noise attenuation, the higher the disturbance
mitigation, the higher the sensitivity peak ∥S(s)∥∞, i.e.,
better disturbance mitigation properties are at the cost of
losing robustness. In fact, for the FOTD case, [44] shows
the peak increase as a function of the ratio between the
time constant α of the filter in Hu(s) and the delay in the
non-invertible part (T ), i.e., α

T , shown in table 1. Consid-
ering (13) we have that

∥1 +Hu(s)∥∞ ≤
nω∏
i=0

∥1 +Hu,i(s)∥∞, (47)

i.e., we can consider that each term can worsen the robust-
ness if ∥1 +Hu,i(s)∥∞ > 1. In the numerical example we
will show the value ∥1+Hu(s)∥∞ to asses the disturbance
estimation use as a feed forward in a closed loop system.

α
T ∥1 +Hu(s)∥∞
0.1 1.95
1 1.4
10 1.1
100 1.01

Table 1: Increase in the sensitivity peak in DOB.

6. Comparison with other methods

Other approaches based on state space methods are
based on obtaining first an augmented state space model
that includes the system dynamics and the proposed dis-
turbance dynamics (integrator to assume constant terms,
and resonant one for oscillatory behaviour, see [46, 47]).
From the initial system model

ẋ = Ax+B (u+ d); y = C x (48)

and the disturbance model d(t) = d0(t) +
∑nω

i=1 di(t) gen-
erated by

ż = Az z; d = Cz z (49)

where z = [zT0 zT1 · · · zTnω
]T , and

Ad =


A0 0

A1

·
0 Anω

 , Cd =
[
C0 C1 · · · Cnω

]

being A0 = 0, Ai>0 =

[
0 1

−ω2
i 0

]
, C0 = 1, Ci>0 =

[
1 0

]
An extended model including internal dynamics and dis-
turbance generation is expressed as

ξ = Ā ξ + B̄ u; y = C̄ ξ; d = C̄z ξ

being ξ = [xT zT ]T and

Ā =

[
A BCz

0 Az

]
, B̄ =

[
B
0

]
, C̄ =

[
C 0

]
, C̄z =

[
0 Cz

]
and where C̄z allows to extract the disturbance value.
With this, a disturbance observer can be defined as

˙̂
ξ = Ā ξ̂ + B̄ u+ L(y − C̄ ξ̂) (50)

d̂ = C̄z ξ̂ (51)

To apply this method in systems with delays, model(48)
must include an approximation by means of Pade. In this
case, if delays are approximate, the constraint Hu(s) +
G(s)Hy(s) = 0 cannot be assured. On the other hand, the
implementation through the resulting transfer functions
will not allow access to the tuning parameters or online
fine readjustment.

In the state space approach, several techniques are
available to design the disturbance observer: pole place-
ment, linear quadratic estimator, or optimization-based
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approaches. In the case of linear quadratic estimator, one
must fix matrices W and V representing the covariance of
the state and measurement noises, respectively. These can
be used as tuning parameters. If no information is known
about W , one can set it as W = γ C̄T

z C̄z (see [46]), being
γ the unique tuning factor. Then, matrix P = PT > 0
solving the algebraic Riccati equation

P ĀT + Ā P − P C̄T V −1 C̄ +W = 0

must be obtained, leading to gain matrix L = P C̄T V −1.
On the optimization based approach [47], linear matrix
inequalities must be developed to obtain a tractable nu-
merical approach, leading to a more complex problem.

In the case of Pade approximation of the delays, one
can evaluate the control action decoupling by evaluating
the H∞ norm of Hu(s) +G(s)Hy(s).

7. Numerical example

To clarify and illustrate previous results, in this section
we present a numerical example where we can observe the
estimation performance of the proposed observer.

Let us consider a FOTD process that can be modelled
as

G(s) =
1

(1 + s)
e−0.5s, (52)

i.e., with K = 1, τ = 1 and T = 0.5, and with time units
expressed in seconds.

We want to test the performance of an observer config-
ured by a low pass filter and one resonant term (nω = 1),
suitable to estimate periodic disturbances with a period
of 5 seconds, i.e., ω1 = 1.2566 rad/s is the unique consid-
ered frequency. Considering the FOTD (nF = 1) process
model,

GI(s) =
1

(1 + s)
, GN (s) = e−0.5s,

|GN (jω1)| = 1, ϕ1 = arg(GN (jω1)) = −1.5270 rad.

The transfer functions of the observer are defined by

Hy,0(s) =
1

K

(1 + τs)

(1 + αs)
=

1 + s

(1 + αs)
, (53)

Hu,0(s) =
−e−Ts

1 + αs
=

−e−0.5s

(1 + αs)
,

Hy,1(s) =
(1 + τs)2ξ1ω1(sin(−ω1T )ω1 + cos(−ω1T )s)

K(s2 + 2ξ1ω1s+ ω2
1)

=
(1 + s)ξ1(−1.856 + 2.033s)

s2 + 2.5132ξ1s+ 1.579
,

Hu,1(s) =
−e−Ts2ξ1ω1(sin(−ω1T )ω1 + cos(−ω1T )s)

(s2 + 2ξ1ω1s+ ω2
1)

=
(−e−0.5s)ξ1(−1.856 + 2.033s)

s2 + 2.5132ξ1s+ 1.579
.

To test the effect of the observer tuning in its perfor-
mance, we have used two different values for α and ξ1.
First, in the low pass filter term, for a settling time of 20
seconds, using equation (34) one obtains α = 5, and for
ts = 80 one obtains α = 20. Second, in the resonant term,
for ts = 13, using equation (35) one obtains ξ1 = 0.25, and
for ts = 32 one obtains ξ1 = 0.1. We have numbered the
different options as

α1 = 5, α2 = 20, ξ1,1 = 0.1, ξ1,2 = 0.25.

The dynamics of disturbance estimation d̂, under dis-
turbance d, according to (12), defined by −Hu(s), can be
obtained by substituting the previous values for Hu,0(s)
and Hu,1(s) in (13).

Figure 3 shows the Bode diagrams for the four combi-
nations of α and ξ from the disturbance to the disturbance
estimation. The behaviour of −Hu(s) matches −Hu,0(s)
for the low frequencies and, as well as −Hu,1(s), ensures a
magnitude of 1 and a phase of 0o in the desired frequency
ω. We see how the value of α affects the low frequency
response and the value of ξ1 determines the peak width
around ω1. A wider peak implies better estimation for
disturbance signals that are slightly different than the de-
sign frequency. Therefore, ξ1 also influences the robust-
ness against frequency value accuracy. Here we can see
the degree of compliance of the assumption that the fre-
quency response of each component is negligible for other
frequencies (see (27)), i.e., the degree of interaction be-
tween frequency components of the observer.

Figure 4 presents the observer time response under a
step disturbance in the four cases. The value of α af-
fects the estimation speed, so that low values get faster
responses compared with higher values. Due to the inclu-
sion of a resonant estimator, we can see an overshooting
response caused by −Hu,1(s). The higher the value of ξ1,
the bigger the amplitude of the overshoot, but its damp-
ening is faster.

Finally, figure 5 displays the observer time response
under a sine disturbance with period 5s, also in the four
cases. The value of α has an impact on how the low pass
term of the estimator, −Hu,0(s), reacts to the periodic
disturbance; more reaction is expected for low values of
α. The value of ξ1 affects the estimation speed. Faster
estimation is achieved in the second case, with a higher
value for ξ1, but as we have seen in the previous sections,
a drawback is that noise amplification is higher in that
case.

Table 2 summarizes the obtained settling time versus
step and ω1 sine disturbances, the Integral Absolute Er-
ror (IAE) and the noise amplification. Best results for
each indicator are highlighted in green. We can observe
the trade-off between the indicators related to the track-
ing speed and those related with noise amplification. We
also show the value ∥1 + Hu(s)∥∞ as a measure of the
robustness worsening index as indicated in (46). We can
appreciate that the best results w.r.t. noise amplification
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Figure 3: Bode diagrams from d to d̂ in the numerical example

Table 2: Performance indicators depending on the observer tuning

α1, ξ1,1 α1, ξ1,2 α2, ξ1,1 α2, ξ1,2
Settling time (step) 24.2 21.5 79.1 78.4

IAE (step) 6.21 7.16 19.3 22.9
Settling time (sine) 24.3 10 24.5 10.1

IAE (sine) 6.1 2.9 5.77 3.11
Noise amplification 0.33 0.52 0.18 0.37
Sensitivity peak incr. 1.17 1.29 1.13 1.29

coincide also with the lowest deterioration of closed loop
robustness (the worsening is at most of 13% with α2, ξ1,1),
while the best results in settling time or IAE lead to a
higher sensitivity peak (i.e., worse robustness), as it is in-
creased in the order of 29 % (cases α1, ξ1,2 and α2, ξ1,2)

7.1. Control applications of the observer

Figure 6 shows the application of a control system to
attenuate the effect of disturbances following the strate-
gies explained in Section 5. We have tested the system
under low frequency disturbances, being a unitary ramp
(shown in the top plots) and a unitary sinusoidal signal of
frequency ω1 = 1.2566 rad/s (shown in the lower plots).
First, we show in the left the response of the system when
a pure feed-forward strategy is applied (pure FF, see (39)).
We show the ability of the proposal to mitigate sinusoidal
signals, and the ability to attenuate the effect of ramp-
like disturbances. In the case of ramp disturbances the
achieved steady state error is given by (40), whose values
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are shown in Table (3) and fit those obtained in the simu-
lation. In the right part we show the use of the disturbance
observer together with a PI controller

C(s) = Kp +
Ki

s
,

leading to a disturbance observer control strategy (DOB,
see (41)). The controller is a PI controller designed to
guarantee a sensitivity peak ∥S0(s)∥∞ = 1.2 in (45) while
maximizing the integral gain Ki, leading to

C(s) = 0.377 +
0.42

s
.

The sensitivity peak of the closed loop system is increased
when used with the disturbance observer, as shown in Ta-
ble 3. We see in Figure 6 that the DOB strategy is able
to mitigate the effect of ramp disturbances (as a benefit
w.r.t. a simple PI control scheme). We see that the use
of α1 leads to better results than α2 when mitigating the
ramp disturbance both in pure FF and DOB. On the other
hand, we also see that sinusoidal disturbances can be elim-
inated when using the disturbance observer, both in pure
FF and in DOB. We see that the use of ξ1,2 leads to better
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Table 3: Performance indicators in control applications

α1, ξ1,1 α1, ξ1,2 α2, ξ1,1 α2, ξ1,2
SS error (ramp, FF) 6.15 7.11 22.9 26.5

IAE (sine, FF) 19.6 10.7 18.9 11.8
∥S(s)∥∞ 1.38 1.47 1.30 1.40

IAE (ramp, DOB) 73.3 84.9 267.3 309.3
IAE (sine, DOB) 23.0 11.6 21.8 11.1
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Figure 6: Disturbance rejection: output response of the system when
disturbance estimation is used as a control signal to avoid the effect
of the disturbance on the controlled output. Pure FF and DOB
under ramp and sinusoidal signals is shown.

results than ξ1,1 when facing sinusoidal disturbances. In
all, the combination α1 and ξ1,2 leads to better transient
and steady state results in any case at the cost of a higher
noise amplification and a slight sensitivity peak increase.

7.2. Comparison with other methods

To compare the approach with a state space one de-
signed through liner quadratic estimator, we first approx-
imate the delay with Pade and obtain the state space rep-
resentation defined by

A =

[
−5 2
2 0

]
, B =

[
2
0

]
, C =

[
−0.5 1

]
and define disturbance generation matrices

Az =

0 0 0
0 0 1

0 −
(
2π
5

)2
0

 , Cz =
[
1 1 0

]
.

With this, if we set γ = 10−2 we obtain the gain L =
[−0.0063, 0.1505, 0.1000, 0.0104, −0.1250]T and the re-
sponse under step and sinusoidal disturbances shown in fig-
ure 7. Figure 8 shows the diagram Bode of Hy(s)G(s), i.e.,
the disturbance tracking ability for γ=10−3, 10−2, 10−1,
100, 101. Furthermore, figure9 shows the resulting esti-
mated settling time ts as a function of γ together with the
resulting H∞ norm of Hu(s) +Hy(s)G(s), that evaluates
the control action coupling due to the delay approxima-
tion, where we can observe a trade-off between tracking
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speed and decoupling ability. The settling time has been
estimated as ts = −(1.4+2.53 (1)0.8)/λmax = −3.93/λmax,
being λmax the maximum real part of the eigenvalues of
(Ā−L C̄), by assuming a pair of complex dominant poles,
and using expression (30).

As a difference with the proposed approach, with the
state space approach we cannot easily modify a given de-
sired frequency range while keeping the frequency response
at other ranges. On the other hand, we see that with the
state space approach, the input decoupling performance
deteriorates if a fast response is required, due to the delay
approximation. Furthermore, we cannot assure that the
magnitude at the desired frequency is a local maximum as
we achieve with our approach.

8. Case study

We have tested the multi-resonant disturbance observer
proposed in this work in a chemical industry distillation
column, which is depicted in figure 10 . Specifically, this
distillation column allows the separation of a 10t/h stream
containing around 70% of cyclohexanone (ONE) and 30%
of cyclohexanol (OL), both components obtained from cy-
clohexane oxidation. ONE is used in downstream pro-
cesses to obtain caprolactam, which is lately used to pro-
duce nylon (case study and plant dataset were provided
by UBE Corporation Europe).

8.1. Process description

Distillation process in this case study works as follows.
A mixture stream (ONE and OL) is fed to the column T-3.
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Figure 10: ONE/OL distillation column (the one in the middle of
five)

Through the re-boiler E-9, which uses water steam as the
heating source, product in the column is heated and then
evaporated. These vapours ascend along the column and
then they are condensed in a condenser train E-7, com-
posed by a series of heat exchangers that use vented air,
cooling water, and brine in various stages. The condensed
stream, which contains the product with lower evaporation
temperature (in our case, ONE), is collected in the tank
D-4, usually named accumulator. Part of this product is
fed back to the column T-3. This stream, called reflux, en-
hances product separation so that if reflux is increased, the
effect is that both top product (called distillate) and bot-
tom product become purer; the amount of product with
higher evaporation temperature (in our case, OL) in the
distillate flow is reduced, as well as the amount of product
with lower evaporation temperature (in our case, ONE)
in the column bottom flow. The rest of the accumulator
product is extracted as the final top product, called distil-

late. On the other hand, the liquid product in the bottom
of the column, which contains the product with higher
evaporation temperature (in our case, OL), is extracted
through a bottom pipeline.

In this process, top product must have a maximum
OL composition of 500ppm, being a high purity product.
However, this composition is hard to measure online. In
fact, the composition is known through several chemical
analysis that can take around 3 hours to give a composition
measurement. Due to this, only one measurement every 8
hours is taken in the real plant. One indirect measurement
of this composition for a given pressure is the temperature
in the column, that can be easily measured online, and
whose value is related to the resulting composition. In
this particular column we have that a variation of 1oC
corresponds, approximately, with a variation of 100 ppm
in the OL composition. Therefore, even small variations of
temperatures in the column have a great impact in product
composition.

The maximum OL composition is an important con-
straint because this OL will generate by-products in the
downstream caprolactam production process, leading to a
final product out of specification. Bottom product usually
has an amount of ONE around 5%. Although having ONE
in the bottom product is not critical for further processes,
it will have an impact on global process efficiency, since
this ONE in the bottom product is recovered downstream
and fed back to the distillation column at hand. Therefore,
to evaporate again the fed back ONE, we should spend
more energy, i.e., more steam in the re-boiler.

Considering previous premises, composition of the dis-
tillate flow is considered critical and then must be con-
trolled tightly, while composition of the bottom flow is
not as critical in terms of product quality but affects pro-
duction efficiency.

In fact, the ambient temperature causes oscillations in
the column temperature in the order of 1oC (peak-to-peak
value), leading to OL composition oscillations in the or-
der of 100 ppm, resulting in a poor quality final product
if no compensating action is taken. In this case study we
develop our disturbance observer and quantify the poten-
tial reduction of the OL composition oscillations if control
strategies in section 5 are applied.

8.2. Control scheme

The control scheme, which is implemented in the plant
Distributed Control System (DCS), is depicted in figure 11.
The column has four control valves, considering the feed is
determined by an upstream unit and therefore it is given.
All the level and flow controllers represented in the figure
are standard PID controllers.

The two main control loops for mass balancing the col-
umn are the level controls: one in the accumulator (LC12)
and the other in the column bottom (LC10). The latter
is controlled with the bottom control valve, as usually in
most distillation columns. The accumulator level can be
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controlled with any of the D-4 outlet valves: reflux or dis-
tillate. If it is controlled with the reflux valve, the control
scheme is called DV configuration (if bottom level control
is handled by the bottom valve), while if the accumulator
level were handled by the distillate valve, that would be a
LV configuration [48].

Choosing between DV and LV configuration has sev-
eral implications regarding the column dynamics and dis-
turbance rejection [49, 50]. In a DV configuration, re-
flux flow is expected to vary due to external disturbances
(such as disturbances in the condenser train E-7 or pres-
sure drops in the steam supply), while distillate flow is
expected to remain steadier. Therefore, disturbances may
affect the separation achieved in the column T-3. On the
other hand, in a LV configuration, reflux is expected to be
steadier while distillate flow will vary, which can affect a
downstream process that receives this stream.

In our case study, the distillation column is controlled
in a slight variation of a typical DV configuration.

� The bottom level in column T-3 is controlled by
LC10, that uses the level measurement and a given
setpoint (not shown in the figure) to decide how to
manipulate the bottom flow valve VB .

� The level in accumulator D-4 is controlled by LC12,
that uses the level measurement and a setpoint (not
shown in the figure) to manipulate the reflux valve
VR.

� The distillate flow is controlled by controller FC12,
that uses the flow measurement and the flow setpoint
(that is given by controller RY 12) to manipulate the
distillate valve VD

� The setpoint of the distillate flow controller FC12
is set through a distillate to feed ratio (RY 12). The
ratio gain u2 is decided by the plant operator regard-
ing the laboratory sample analysis of distillate and
bottom compositions, performed every 8 hours and
once a day, respectively.

� The steam flow entering re-boiler E-9 is controlled
by FC10, that uses the steam flow measurement and
the setpoint that is given by controller FC13 to de-
cide how to manipulate the steam valve VS .

� The reflux flow entering in the top of the column is
controlled by FC13. This controller uses the mea-
surement of the reflux flow and a given setpoint u1

fixed by the operator, and it decides the setpoint
value in controller FC10. Note that FC10 is the
slave and FC13 the master controller in a cascade
configuration. The change in steam flow affects the
inlet flow of tank D4, and level controller LC12 con-
trols the reflux flow to match the D4 inlet flow and
maintain level. Therefore, a change in steam flow
setpoint results in a change in reflux flow, what makes
controller FC13 feasible.

� Top pressure is not regulated by any controller in this
column since the condenser train runs permanently
at its maximum capacity, but there are mechanisms
like manual valves, which ensure that it is set be-
tween acceptable operating limits.

This control scheme has some advantages that makes
it suitable for this column context:

� Due to the distillate to feed ratio control (RY 12),
variations in the feed stream (which are quite com-
mon since it comes from the bottom flow of another
upstream distillation column) are not affecting the
mass balance of the column in terms of distillate to
bottom ratio, whose variation would have strong ef-
fects in top product composition (because it is a high
purity product).

� Due to the cascade control of reflux flow (FC13)
and steam flow control (FC10), we can expect that
pressure drop disturbances in the steam supply will
be rejected by the steam flow controller FC10 and,
therefore, they will not affect the reflux flow (FC13).
Disturbances in the condenser train E-7 rebounding
in reflux flow must be rejected by the reflux flow
controller (FC13).

As we have started to mention before, main distur-
bances in this distillation column are feed variation, steam
supply pressure drops and condenser train E-7 disturbances.
Feed variation effect is handled by the ratio control (RY 12).
Steam pressure drops are handled by the steam flow con-
trol loop (FC10) in cascade configuration. Nevertheless,
condenser train E-7 disturbances, since it runs always at
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maximum capacity and no pressure regulation in the col-
umn is available,must be rejected by the reflux flow con-
troller (FC13), which is a slow control loop due to the also
slow distillation column dynamics. The condenser train
E-7, as mentioned before, is composed of a series of heat
exchangers. The first set of exchangers is based in air con-
vection, with six big fans boosting ambient air through the
tubes where the evaporated product flows. The second set
are heat exchangers using cooling water, which is water in
a closed circuit, cooled in refrigeration towers. The third
and last set of condensers use brine. First and second set
of condensers are very dependent on climate conditions
and ambient temperature. Therefore, ambient tempera-
ture is a major disturbance for the distillation column,
and it must be rejected by the reflux flow PID controller
(FC13), which is not a fast controller.

8.3. Model identification

As explained before, distillate composition is the main
control target of the column. Since it is not directly mea-
sured, we find a good indicator of this composition in one
of the column temperature sensors that is sensitive to the
distillate composition, TI11. We consider this tempera-
ture as our process output, y. Figure 12 shows a period of
several days, where the effect of ambient temperature in
the output can be appreciated.

We consider the system model

y(s) = G1(s)(u1(s) + d(s)) +G2(s)u2(s) (54)

where d is the input disturbance to be estimated. If we
want to relate this disturbance with the ambient temper-
ature, we can model the system as

y(s) = Gy(s) (Gu(s)u(s) +GT (s)∆Tamb(s))

where

d(s) =
Gy(s)GT (s)

G1(s)
∆Tamb(s)

being Gy(s) and GT (s) unknown transfer functions that
cannot be identified with the measurable signals.

The two control actions, which are the set points of
the base layer control loops, consist of the reflux (FC13)
set-point, u1, and the distillate to feed ratio (RY 12) gain,
u2. Our objective is to develop an observer of the main
disturbance, i.e., the ambient temperature effect on the
distillate composition, considered as an input disturbance
in the same channel as u1, named d.

The models of G1 and G2, which are G1,m and G2,m re-
spectively, were identified from plant tests where u1 and u2

were excited independently while the other input remained
constant. Figures 14 and 15 show the identification test.

Figure 13 shows the block diagram of the multi-resonant
observer in this application, considering the system model.

As a result of the identification, we obtained

G1,m(s) =
∆y(s)

∆u1(s)

∣∣∣∣
u1=1000

=
0.00115(1 + 286s)

1 + 149.5s+ 5586s2
e−10s,

G2,m(s) =
∆y(s)

∆u2(s)

∣∣∣∣
u2=0.7

=
48.3

1 + 135.4s
, (55)

where time is expressed in minutes, y in oC, u1 in kg/h
and u2 is non-dimensional in the range [0, 1]. Based on the
model G1, the multiplicity of the filters is nF = 1.

8.4. Disturbance observer design

Here we discuss the procedure followed for the multi-
resonant disturbance observer design (what we refer as
MRF for the multi-resonant terms and the low pass filter
term), i.e., the selection of the number of resonant terms,
and the tuning of the parameters α and the correspond-
ing ξi. As we stated before, the best number of resonant
terms to include depend on the number of harmonics in
the disturbance signal. Also, if we follow the proposed
tuning procedure consisting in settling the amount of to-
tal noise amplification, we need to decide how to distribute
it among the different terms.

For this case study we have compared the following two
tuning strategies:

� Equitable noise weighting, i.e., same noise amplifica-
tion for each term of the MRF observer, according
to (37).

� Optimal weighting according to the sampled data.

For the optimal weighting, we have minimized along
the dataset the cumulative absolute output error, defined
by ∫

|ỹ(t)|dt =
∫

|y(t)− ŷ(t)|dt, (56)

being ŷ the estimated output using the models and the
estimated disturbance, i.e.

ŷ(s) = G1,m(s)(u1(s) + d̂(s)) +G2,m(s)u2(s). (57)
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In both strategies we have set a total noise amplifica-
tion of 300 according to (36), and we have done simulations
for different number of resonant terms nω. Given that the
measurement noise amplitude is most of the time in the or-
der of 0.1oC, this means that the noisy part of d̂ will have
an amplitude in the order of 30kg/h, and, considering that

the expected values for d̂ are in the order of magnitude of
u1 (from 0 to 1.2 · 104 kg/h) this means only a 0.25% for

the total range of u1. After applying our technique, d̂ has
resulted to be in the range from 0 to 1000 and thus, the
amplitude in d̂ due to noise is in the order of 3% w.r.t. its
range (see Figure 21).

Due to the daily periodicity of the disturbance, we set
the frequency of the resonant terms for a corresponding
period of 24 hours and their consequent harmonics. To
make it more intuitive, the performance result in each case
is given in terms of the Average Absolute Error (AAE) of
the output estimation in consonance with (56) and (57),
which is in units of oC. Figure 16 shows these results.
If no disturbance observer is included, i.e., d̂ = 0 in (57),
AAE = 0.455oC. This result is useful to give insight about
the contribution of the disturbance observer (best case in
figure 16 achieves AAE = 0.106oC, which means a 75%
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Figure 15: Step test for G2,m identification

reduction of the average absolute estimation error w.r.t.
the case where d̂ = 0).

Supported by these results, we decide to set the number
of resonant terms to nω = 5. To evaluate the performance
of the proposed MRF, in the next section we compare it
with an observer that only has the low-pass filter, without
any resonant terms, which we refer to as LPF observer.
For the tuning of the parameter α of the LPF observer, we
set the same noise amplification as for the MRF observer,
according to (36). The tuning parameters obtained for the
LPF observer and the MRF with both tuning strategies are
presented in table 4.

As stated in the section of control application of the
disturbance observer, one possible use of this estimate d̂ is
to modify input u1 as u1− d̂ in order to mitigate the effect
of the ambient temperature over temperature y. Unfortu-
nately it has not been possible to test this strategy in the
real plant. However, with the theoretical development, we
can predict that the variations of the temperature y, that
are in the order of 1 degree in absolute value, would be
reduced to a value equal to the one obtained in the recon-
struction error ỹ shown in the figures, that is in the order
of 0.3 degrees. This could mean an approximate reduction
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Table 4: Observers tuning

Noise
Observer Parameter ts(min) ampl.
LPF α = 56.4 232 300
MRF α = 339.6 1345 50
(Eq.) ξ1 = 0.338 2675 50

ξ2 = 0.17 2659 50
ξ3 = 0.113 2667 50
ξ4 = 0.086 2628 50
ξ5 = 0.069 2621 50

MRF α = 126.7 508 134
(Opt.) ξ1 = 0.492 1841 72.8

ξ2 = 0.088 5127 26
ξ3 = 0.077 3909 34
ξ4 = 0.021 10730 12.3
ξ5 = 0.030 6014 21.7

of 70 ppm in the composition fluctuation due to the dis-
turbances (according to the approximate relation between
temperature and composition changes), if a feed-forward
control scheme as stated in section 5.1 is implemented.

For the MRF observer tuned with optimal weighting,
figure 17 shows the Bode diagram from d to d̂ for each
term of the observer. We can check how, for the targeted
frequencies, the magnitude is equal to 1 and the phase is
equal to 0o at ω = ωi,∀i ∈ {1, ..., 5}. Figure 18 shows the
Bode diagram from noise signal v to disturbance estima-
tion d̂. We see how the noise effect on the MRF observer
adds up the noise effect of each of the terms.

8.5. Results

Since disturbance d is not measured, and therefore it is
impossible to compare with the disturbance estimation d̂,
to illustrate the goodness of the obtained results we have
reconstructed an output estimation ŷ from the inputs u1

and u2 and the disturbance estimation d̂, considering the
input-output models available according to (56) and (57),
and then we have compared it with the real output y.

Figure 19 compares the real output y (as its increment
from the beginning of the sampled data) with the predic-
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Figure 17: Bode diagram from d to d̂.
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Figure 18: Bode diagram from v to d̂

tion obtained with both the LPF and the MRF filter. In
figure 20, we can see the output error ỹ for both observers.
We also show in the figure the difference between the out-
put error obtained with the LFP and the MRF observer,
to see how a smaller error is obtained with the MRF. The
MRF achieves a better performance especially in the areas
where y presents more abrupt changes.

Figure 21 shows the disturbance estimation in both
LPF and MRF cases. Again, we appreciate a faster esti-
mation over disturbance changes in the case of the MRF
observer. Finally, in figure 22 we can evaluate the in-
dividual response of each observer included in the MRF
observer, according to the sequential interpretation men-
tioned in section 3.5 (see figure 13).

9. Prospect for practitioners

As we have seen in the numerical example and case
study section, the techniques explained in this work are
suitable to improve the performance of industrial processes
if the next conditions are fulfilled:
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� The process faces oscillatory disturbances that have
a main frequency in the order of the dynamics of the
open loop process, or higher.

� The disturbance cannot be measured, or if its dy-
namics effect on the output cannot be identified.

� The effect of the disturbances is significant and can-
not be rejected with standard feedback control.

If previous conditions are met, we can develop an observer
following section 4.2, and implement a pure feed-forward
scheme (see section 5.1) or in combination with a feedback
controller (see section 5.2). This can be summarized as
follows:

1. Gather a data set X with enough excitation in signal
u(t) to identify a model of the process G(s).

2. Gather a data set Y long enough to show the effect
of oscillatory disturbances on output y(t).

3. Design an observer according the rules in section 4.2,
leading to Hu(s) and Hy(s) in (13) and (14) whose
terms Hu,i(s) and Hy,i(s) are detailed in (21), (22),
(24) and (25).
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Figure 21: Disturbance estimation with LPF and MRF observers.
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Figure 22: Disturbance estimation components of LPF and MRF
observers.

4. Implement a control scheme including the observer
either as a pure feed forward control (see (39)), or to-
gether with a standard feedback controller (see (41)).
In this last case, the effect on the closed-loop robust-
ness must be considered as quantified in (46) for the
design of both the controller and the observer.

10. Conclusions

In this work we have proposed a multi-resonant distur-
bance observer to estimate periodic disturbances, and its
application to periodic ambient temperature disturbances
in an industrial distillation column. The structure of the
proposed observer is a cascade additive-multiplicative scal-
able one, based on simple transfer functions, that allows
the easy implementation in industrial control systems. It
allows the user to easily include the desired terms to esti-
mate not only the low frequency component but also the
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required periodic components of the disturbance. Further-
more, the proposal allows the user to easily add new res-
onant terms for the estimation of new frequency compo-
nents, without affecting the previous ones.

The number of tuning parameters is small, and a un-
complicated design strategy is proposed to tune those pa-
rameters, based on straightforward relationships between
those parameters and some physically meaningful perfor-
mance indices, as settling times or high frequency mea-
surement noise amplification.

The estimated disturbance signal can be directly used
in an open loop feed forward scheme, that is the situation
of the real case study. In that case the improvement of dis-
turbance rejection is evident. The estimated disturbance
can also be used in a feed-forward closed loop scheme. In
that case it affects the closed-loop robustness, and we show
how to quantify this effect to take it into account in the
disturbance observer design.

We present a numerical example to clarify the proposed
observer structure and the effect of the tuning parameters.
Finally, we study a real case for a distillation column that
operates in a chemical plant. We estimate a periodic dis-
turbance caused by ambient temperature, showing the re-
sults according to several tuning strategies and comparing
them with the estimation results obtained with an observer
that only has a low-pass filter, without any resonant terms.
With that, we conclude that the multi-resonant distur-
bance observer presents a better performance in this case
study. The real plant implements an open loop scheme and
the implementation of the open loop feed forward strategy
with the estimated disturbance is expected to reduce the
fluctuation of the column temperature in around 0.7 de-
grees (equivalent to 70 ppm en distillate composition).
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Appendix A. Product demonstration

In this appendix we demonstrate that given a sequence
{x0, x1, . . . , xn}, the following equivalence holds

−
n∑

i=0

xi

n∏
j=i+1

(1 + xi) = 1−
n∏

i=0

(1 + xi). (A.1)

Let us first expand the expression
∏n

i=0(1 + xi)

n∏
i=0

(1 + xi) = (1 + x0)

n∏
i=1

(1 + xi) (A.2)

= x0

n∏
i=1

(1 + xi) +

n∏
i=1

(1 + xi)

= x0

n∏
i=1

(1 + xi) + x1

n∏
i=2

(1 + xi) +

n∏
i=2

(1 + xi)

= x0

n∏
i=1

(1 + xi) + x1

n∏
i=2

(1 + xi)

+ x2

n∏
i=3

(1 + xi) + · · ·+ xn−1(1 + xn) + (1 + xn).

We see then that we can state the following equality

n∏
i=0

(1 + xi) = 1 +

n∑
i=0

xi

n∏
j=i+1

(1 + xi), (A.3)

that, reordering, leads to (A.1).

Appendix B. Other performance indices

Some indicators that explain the transient behaviour
can be obtained with tractable expressions as

� Cumulative error under a step in d if only the low
pass term was present (with no resonant terms):

lim
t→∞

∫ t

0

d̃(t)dt = nFα+
∑

δi + T. (B.1)

� Cumulative error for sinusoidal d of frequency ωi if
only the oscillatory term for ωi was present:

lim
t→∞

∫ t

0

d̃(t)dt =
1

ωi

(
1− (2ξi sin(ϕi))

nF

|GN (jωi)|

)
. (B.2)

� Cumulative squared error for each of the terms for its
design frequency under the assumption of GN (s) = 1
and nF = 1. In the case of the low pass filter term,
it leads to

lim
t→∞

∫ t

0

d̃(t)2dt =
α

2
,

and, for the oscillatory terms

lim
t→∞

∫ t

0

d̃(t)2dt =
1

4ξiωi
.

This can be obtained computing, respectively the H2

norm of the systems(
1− 1

1 + α s

)
1

s
,

(
1− 2ξiωis

s2 + 2ξiωis+ ω2

)
ω

s2 + ω2
.
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However, one must take care with the expression for the
cumulative error for the resonant terms of the estima-
tor (B.2). Due to the oscillatory nature of these terms,
and the sign variation of the signal, that index is not a
representative metric for the goodness of the estimator.
For instance, if the cumulative error is zero, that implies
that the signal has the same error in positive terms as in
negative along time. On the other hand, the H2 norm has
complex expressions for systems presenting non-invertible
dynamics (GN (s) ̸= 1) or that lead to nF > 1. Thus, the
proposal is to use the approximated settling time expres-
sions derived from the poles as they have easy to under-
stand physical meanings, and are in comparable magni-
tude for both low pass filter and resonant terms.

Appendix C. Settling time approximation

In this section we show the steps followed to obtain the
expression (30) for settling time approximation. First, we
define the settling time (ts) as the time elapsed from input
change to the time needed to reach a value that is within
98% and 1.02% of the final value. In figure C.23 we show
the time response for transfer function

G(s) =
1

(1 + 1 s)n

under unitary step input for different values of n in the set
{1, 2, . . . , 7}. We include a mark ’·’ to indicate the mea-
sured settling time when crossing that 98% band. Then,
in figure C.24 we show the measured settling times for
each n in circles and, for comparison purposes, we also in-
clude with symbol × the value predicted by the proposed
expression

ts ≈ 1.4 + 2.53n0.8, (C.1)

showing the goodness of the approximation. As the times
are scalable in the aforementioned transfer function, the
general expression to approximate the settling time in a
function as

G(s) =
1

(1 + αs)n

is
ts ≈ (1.4 + 2.53n0.8)α. (C.2)
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dustrial 18 (3) (2021) 201–217.

[39] H. Muramatsu, S. Katsura, Design of an infinite-order distur-
bance observer enhancing disturbance suppression performance,
IEEJ Journal of Industry Applications 6 (3) (2017) 192–198.

[40] H. Muramatsu, S. Katsura, An enhanced periodic-disturbance
observer for improving aperiodic-disturbance suppression per-
formance, IEEJ Journal of Industry Applications 8 (2) (2019)
177–184.

[41] M. Zheng, X. Lyu, X. Liang, F. Zhang, A generalized design
method for learning-based disturbance observer, IEEE/ASME
Transactions on Mechatronics 26 (1) (2020) 45–54.

[42] R. Lewis, Modelling control systems using IEC 61499: Applying
function blocks to distributed systems, no. 59, IET, 2001.

[43] M. Chaabene, Measurements based dynamic climate observer,
Solar Energy 82 (9) (2008) 763–771.
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