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Abstract

The present work is concerned with the extension of modified potential operator
splitting methods to specific classes of nonlinear evolution equations. The considered
partial differential equations of Schrödinger and parabolic type comprise the Lapla-
cian, a potential acting as multiplication operator, and a cubic nonlinearity. More-
over, an invariance principle is deduced that has a significant impact on the efficient
realisation of the resulting modified operator splitting methods for the Schrödinger
case.

Numerical illustrations for the time-dependent Gross–Pitaevskii equation in the
physically most relevant case of three space dimensions and for its parabolic coun-
terpart related to ground state and excited state computations confirm the benefits
of the proposed fourth-order modified operator splitting method in comparison with
standard splitting methods.

The presented results are novel and of particular interest from both, a theoretical
perspective to inspire future investigations of modified operator splitting methods
for other classes of nonlinear evolution equations and a practical perspective to
advance the reliable and efficient simulation of Gross–Pitaevskii systems in real and
imaginary time.
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1 Introduction

Scope of applications. A wide range of relevant applications in sciences
includes the numerical integration of initial value problems for nonlinear evo-
lution equations. In many cases, the function defining the right-hand side
comprises two or more parts


d
dt u(t) = F1

(
u(t)

)
+ F2

(
u(t)

)
,

u(0) = u0 , t ∈ [0, T ] .
(1)

As prominent instances, we highlight nonlinear Schrödinger equations, more
specifically, time-dependent Gross–Pitaevskii equations that arise in the de-
scription of Bose–Einstein condensation, see [17,25]. For a comprehensive
overview of the underlying principles of quantum theory, we refer to [24].

Nonlinear Schrödinger equation (Gross–Pitaevskii equation). A fun-
damental model for the nonlinear dynamics of a single Bose–Einstein conden-
sate reads asi ∂tΨ(x, t) = −∆Ψ(x, t) + V (x)Ψ(x, t) + ϑ |Ψ(x, t)|2Ψ(x, t) ,

Ψ(x, 0) = Ψ0(x) , (x, t) ∈ Ω× [0, T ] ,
(2a)

where ∆ = ∂2x1 + · · · + ∂2xd denotes the Laplacian with respect to the spatial
variables x = (x1, . . . , xd) ∈ Rd, V : Rd → R a real-valued potential, ϑ ∈ R the
coupling constant, and Ψ : Ω× [0, T ] ⊂ Rd×R → C the space-time-dependent
complex-valued macroscopic wave function. Assigning for a regular function
v : Ω → C the linear differential and nonlinear multiplication operators

(
F1(v)

)
(x) = c∆ v(x) , c = i ,(

F2(v)
)
(x) = c̄

(
V (x) + ϑ |v(x)|2

)
v(x) , c̄ = − i ,

x ∈ Ω ,

(2b)

and setting u(t) = Ψ(·, t) for t ∈ [0, T ], we retain the general formulation (1).

Nonlinear parabolic equation. By analogy to the time-dependent Gross–
Pitaevskii equation (2a), we consider the parabolic problem

∂tU(x, t) = ∆U(x, t) + V (x)U(x, t) + ϑ |U(x, t)|2 U(x, t) ,
U(x, 0) = U0(x) , (x, t) ∈ Ω× [0, T ] ,

(3a)

for a real-valued solution U : Ω × [0, T ] ⊂ Rd × R → R. Accordingly, it
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corresponds to (2b) with different constant(
F1(v)

)
(x) = c∆ v(x) , c = 1 ,(

F2(v)
)
(x) = c̄

(
V (x) + ϑ |v(x)|2

)
v(x) , c̄ = 1 ,

x ∈ Ω ,

(3b)

and, setting u(t) = U(·, t) for t ∈ [0, T ], we obtain again the general form (1).
It is noteworthy that the parabolic equation (3a) arises in ground state and
excited state computations, see for instance [5,16].

Splitting approach. In essence, operator splitting methods rely on the pre-
sumption that the numerical approximation of the subproblems

d
dt u1(t) = F1

(
u1(t)

)
, d

dt u2(t) = F2

(
u2(t)

)
,

is significantly simpler compared to the numerical approximation of the origi-
nal problem (1). Then, within multiple scopes, for ordinary differential equa-
tions and time-dependent partial differential equations, for linear problems
as well as nonlinear problems, a variety of works has confirmed the benefits
of operator splitting methods regarding desirable features that are subsumed
under the central concepts stability, efficiency, and preservation of conserved
quantities. For general information, we refer to [23,29]. Specific studies in the
context of Schrödinger equations are given, e.g., in [6,9,12,34].

Alternative approach. In this work, we propose an approach that provides
a favourable alternative to standard operator splitting methods in situations,
where the operator F2 and an iterated commutator of F2 and F1, given by

G2(v) = F ′′
1 (v)F2(v)F2(v) + F ′

1(v)F
′
2(v)F2(v) + F ′

2(v)F
′
2(v)F1(v)

− F ′′
2 (v)F1(v)F2(v)− 2F ′

2(v)F
′
1(v)F2(v) ,

(4)

have a similar structure. As relevant nonlinear partial differential equations
with this property, we identify Schrödinger and parabolic equations such as (2)
and (3) that comprise the Laplacian, a potential acting as multiplication opera-
tor, and a cubic nonlinearity. For specifications concerning (4), we in particular
refer to Sections 3 and 4.

Formal means and objectives. Our educated guess that leads us to mod-
ified operator splitting methods relies on a formal generalisation of the linear
case, which we briefly sketch next and describe in further detail in the subse-
quent sections.

(i) Linear ordinary differential equations. The starting point is a linear
ordinary differential equation defined by non-commuting square matrices

d
dt u(t) = Au(t) +B u(t) , t ∈ [0, T ] .
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The corresponding solution value at the final time is given by the matrix
exponential, that is

u(T ) = eT (A+B) u(0) =
(
eτ(A+B)

)N
u(0) , τ = T

N
, N ∈ N .

Standard splitting methods are built on compositions of the factors ea τA
and eb τB with suitably chosen coefficients a and b. Beyond that, compo-
nents of the form

eb τB+c τ3 [B,[B,A]] ,
[
B, [B,A]

]
= B2A− 2BAB + AB2 , (5)

with certain coefficients b and c are incorporated in modified potential
operator splitting methods. The underlying idea of this approach is to
gain freedom in the adjustment of the method coefficients and, amongst
others, to overcome an order barrier valid for standard splitting methods.

(ii) Linear partial differential equations. Advantages of this approach be-
come apparent in the context of the imaginary time integration of linear
Schrödinger equations comprising the Laplacian and a potential. There,
the operator arising in (5) reduces to a multiplication operator, which is
defined by the potential and its gradient.

(iii) Nonlinear partial differential equations. The guide line for the exten-
sion to nonlinear evolution equations (1) is provided by the calculus of
Lie derivatives, see [35] for a detailed exposition. In order to make our
contribution accessible to a broader readership, we do not presume the
knowledge of this formal calculus and explain the required elementary
means on occasion. Basically, the operators F1 and F2 take the roles of
the matrices A and B, and (5) is replaced by the solution to

d
dt u(t) = b F2

(
u(t)

)
+ c τ 2G2

(
u(t)

)
, t ∈ [0, τ ] ,

see also (4). This formalism is expedient with regard to the design of
novel higher-order time integration methods for nonlinear partial differ-
ential equations. Though, it is then equally of importance to concretise
formal considerations and to confirm that the resulting modified operator
splitting methods are indeed practicable and beneficial.

(iv) Main objectives. In this work, for the sake of concreteness, we focus
on the extension of a famous fourth-order modified potential operator
splitting method by Chin [14] to the Gross–Pitaevskii equation (2) and
the parabolic equation (3). So far, this scheme has been introduced and
studied merely for the linear case.

Outline. The present manuscript is organised as follows. In Section 2, we
review fundamental concepts for operator splitting methods. In Sections 3
and 4, we state the formal generalisation of a fourth-order modified potential
operator splitting method to the nonlinear case and substantiate it for the
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Gross–Pitaevskii equation (2) and its parabolic analogue (3). A fundamen-
tal invariance principle that includes a known result for standard splitting
methods as a special case is deduced in Section 5. In Section 6, we detail
the implementation of the novel modified operator splitting method based
on a Fourier spectral space discretisation and provide numerical comparisons
with standard splitting methods. Additional information on a publicly acces-
sible Matlab code is found in Appendix A. The observed order reduction
of Yoshida’s fourth-order complex splitting method (8d) is analysed in Ap-
pendix B.

2 Survey of standard and modified potential splitting methods

Linear case. As an illustrative example, we state the simplest representative
of standard splitting methods, the first-order Lie–Trotter splitting method, for
a system of linear differential equations

d
dt u(t) = Au(t) +B u(t) ,

u(0) = u0 , t ∈ [0, T ] ,
(6)

defined by non-commuting time-independent complex matrices A,B ∈ CM×M .
For a positive integer number N ∈ N with associated time increment and
equidistant grid points

τ = T
N
, tn = n τ , n ∈ {0, 1, . . . , N} ,

numerical approximations to the exact solution values are obtained by the
recurrence

un+1 = eτB eτA un ≈ u(tn+1) , n ∈ {0, 1, . . . , N − 1} .

Higher-order splitting methods for (6) involve the action of several matrix
exponentials on the current approximation and can be cast into the format

un+1 = ebsτB easτA · · · eb1τB ea1τA un ≈ u(tn+1) , n ∈ {0, 1, . . . , N − 1} ,

with real or complex coefficients (aj, bj)
s
j=1, respectively.

Nonlinear case. Their generalisation to nonlinear evolution equations (1) is
based on the composition of the solutions to the subproblems defined by F1

and F2. We henceforth employ the compact notation

d
dt u1(t) = αF1

(
u1(t)

)
, Eτ,αF1

(
u1(tn)

)
= u1(tn + τ) ,

d
dt u2(t) = βF2

(
u2(t)

)
, Eτ,βF2

(
u2(tn)

)
= u2(tn + τ) ,

α, β ∈ C , t ∈ [tn, tn + τ ] ,

(7a)
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so that a higher-order splitting method applied to (1) reads as

un+1 =
(
Eτ,bsF2 ◦ Eτ,asF1 ◦ · · · ◦ Eτ,b1F2 ◦ Eτ,a1F1

)
(un) ≈ u(tn+1) ,

n ∈ {0, 1, . . . , N − 1} .
(7b)

Schemes. In view of numerical comparisons, we introduce the coefficients of
the first-order Lie–Trotter splitting method

s = 1 , a1 = 1 , b1 = 1 , (8a)

and the second-order Strang splitting method

s = 2 , a1 = 0 , a2 = 1 , b1 =
1
2
= b2 . (8b)

The well-known fourth-order splitting method by Yoshida [36] involves four
stages

s = 4 , a1 = 0 , a2 = 1− 2 b2 = a4 , a3 = 4 b2 − 1 ,

b1 =
1
2
− b2 = b4 , b2 =

1
6

(
1− 3

√
2− 1

2

3
√
4
)
= b3 .

(8c)

Reconsidering its construction based on a triple jump composition of the
Strang splitting method, a corresponding fourth-order splitting method with
complex coefficients is obtained

s = 4 , a1 = 0 , a2 = 1− 2 b2 = a4 , a3 = 4 b2 − 1 ,

b1 =
1
2
− b2 = b4 , b2 =

1
6

(
1 + 1

2

3
√
2 + 1

4

3
√
4
)
+ i

√
3

12

(
1
2

3
√
4− 3

√
2
)
= b3 ,

(8d)

see also [8,11,18].

Stability issues. In connection with the time integration of dissipative sys-
tems and parabolic equations as well as the imaginary time propagation of
Schrödinger equations, operator splitting methods are subject to additional
stability constraints. In order to explain this matter of fact, we recall that the
application of a splitting method with real coefficients (aj, bj)sj=1 to the Gross–
Pitaevskii equation (2) in imaginary time and to the parabolic equation (3)
involves the subproblems

∂tU(x, t) = aj ∆U(x, t) , (x, t) ∈ Ω× [tn, tn + τ ] , j ∈ {1, . . . , s} .

Evidently, requiring well-posedness of these subproblems or stability of the
resulting splitting method, respectively, implies

aj ≥ 0 , j ∈ {1, . . . , s} .

This positivity condition, however, excludes higher-order schemes, since any
splitting method that exceeds a second-order barrier necessarily comprises
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negative coefficients, see for example [7,30,31]. Specifically, this holds true for
the fourth-order splitting method by Yoshida

a3 ≈ − 1.7 < 0 ,

see (8c). A feasible remedy to this issue is the design of splitting methods with
complex coefficients (aj, bj)

s
j=1 such that

ℜ(aj) ≥ 0 , j ∈ {1, . . . , s} ,

see, e.g., [13,19]. The fourth-order scheme (8d) indeed fulfills these constraints

a1 = 0 , ℜ(a2) = ℜ(a4) ≈ 0.3 > 0 , ℜ(a3) ≈ 0.4 > 0 .

For further considerations in the context of the imaginary time propagation of
the linear Schrödinger equation by complex splitting methods, we refer to [4].

Modified potential splitting methods. Reviving former work by Ruth
and Suzuki, see for instance [28,31,32], a favourable alternative to standard
operator splitting methods was proposed by Chin. In a seminal work [14],
he developed a famous fourth-order scheme of splitting type that comprises
positive coefficients and hence overcomes the second-order barrier for standard
splitting methods with real coefficients. Expressed in his own words, the basic
idea is to incorporate an additional higher order composite operator so that the
implementation of one algorithm requires only one evaluation of the force and
one evaluation of the force and its gradient. For linear evolution equations (6),
the resulting scheme takes the form

un+1 = e
1
6
τB e

1
2
τA e

2
3
τB− 1

72
τ3[B,[B,A]] e

1
2
τA e

1
6
τB un ≈ u(tn+1) ,

n ∈ {0, 1, . . . , N − 1} .
(9)

Here, the iterated commutator of complex matrices A,B ∈ CM×M is given by

[B,A] = BA− AB ,
[
B, [B,A]

]
= B2A− 2BAB + AB2 , (10a)

see also (5). More generally, for linear differential and multiplication operators

(Av)(x) = c∆ v(x) ,

(B v)(x) = c̄ V (x) v(x) ,

x ∈ Ω , c ∈ C ,
(10b)

retained from (2) and (3) for the special choice ϑ = 0, a straightforward cal-
culation yields a linear multiplication operator that depends on the Euclidean

7



norm of the gradient of the potential

[
B, [B,A]

]
v(x)

= c̄ |c|2
((
V (x)

)2
∆ v(x)− 2V (x)∆

(
V (x) v(x)

)
+∆

((
V (x)

)2
v(x)

))

= 2 c̄ |c|2
(
∇V (x)

)T
∇V (x) v(x) , x ∈ Ω .

(10c)

This explains the common notion force-gradient operator splitting method or
modified potential operator splitting method for the scheme (9) and related
splitting methods in the context of classical or quantum many-body problems
and beyond. More recent contributions that exploit (9) for linear ordinary and
partial differential equations are, e.g., [2,15,26,27].

Generalisations to specific classes of nonlinear evolution equations.
We point out that the operator B defined in (10b) and the iterated com-
mutator (10c) are of the same nature. This structural similarity explains the
efficiency of Chin’s scheme (9) for partial differential equations comprising
the Laplacian and a potential acting as multiplication operator. Anticipating
the detailed expositions in Sections 3 and 4, we stress that the generalisa-
tions to the time-dependent Gross–Pitaevskii equation (2) and its parabolic
analogue (3) maintain this feature, even though the iterated commutators are
more involved.

3 Modified operator splitting method

Formal generalisation. Our educated guess to formally generalise the mod-
ified potential operator splitting method (9) to the significantly more involved
case of a nonlinear evolution equation (1) is

un+1 =
(
Eτ, 1

6
F2

◦ Eτ, 1
2
F1

◦ Eτ, 2
3
F2− 1

72
τ2G2

◦ Eτ, 1
2
F1

◦ Eτ, 1
6
F2

)
un ≈ u(tn+1) ,

n ∈ {0, 1, . . . , N − 1} .
(11a)

That is, we replace the matrices A and B by the nonlinear operators F1 and F2

as well as the iterated commutator of matrices by the following operator

G1(v) = F ′
2(v)F1(v)− F ′

1(v)F2(v) ,

G2(v) = F ′
2(v)G1(v)−G′

1(v)F2(v) ,
(11b)
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see (4) and (5). We determine the Gâteaux derivatives generalising directional
derivatives through

H ′(v)w = lim
ε→0

1
ε

(
H(v + εw)−H(v)

)
, (12)

see also [20], and presume well-definedness of the arising operators on suitably
chosen domains. According to (7), the decisive operator is associated with a
nonlinear evolution equation that comprises the time increment as parameter

d
dt ũ2(t) = β1F2

(
ũ2(t)

)
+ β2 τ

2G2

(
ũ2(t)

)
, t ∈ [tn, tn + τ ] ,

Eτ, β1F2+β2τ2G2

(
ũ2(tn)

)
= ũ2(tn + τ) , β1, β2 ∈ R .

(13)

Specification and implementation. In the subsequent sections, we com-
plete the remaining tasks. We first specify the iterated commutator (11b) for
the time-dependent Gross–Pitaevskii equation (2) and contrast it to the re-
sult obtained for the parabolic counterpart (3). Then, we deduce an invariance
principle that has a substantial impact on the efficiency of the modified oper-
ator splitting method (11) when applied to the Gross–Pitaevskii equation (2).
Implementation issues as well as strategies to reduce the computational cost
for parabolic equations are finally discussed in Section 6.

4 Iterated commutators

Generally speaking, the appropriate framework for the extension of iterated
commutators for matrices or linear operators, see (10a), to nonlinear opera-
tors is provided by the formal calculus of Lie-derivatives. In the present work,
we concretise and verify the heuristic characterisation (11) for relevant ap-
plications, the time-dependent Gross–Pitaevskii equation (2) and the related
parabolic equation (3). In the context of Schrödinger equations, the arising
functions v, w : Ω → C take complex values, whereas it suffices to consider
real-valued functions v, w : Ω → R for parabolic problems. In both cases,
suitable regularity requirements apply. For notational simplicity, we omit the
dependence on the spatial variable.

Derivatives. The Gâteaux derivatives of the linear differential and nonlinear
multiplication operators defined in (2) and (3) are given by

F1(v) = c∆v ,

F ′
1(v)w = c∆w ,

F2(v) = c̄
(
V + ϑ |v|2

)
v = c̄

(
V v + ϑ v2 v̄

)
,

F ′
2(v)w = c̄

(
V w + 2ϑ v̄ v w + ϑ v2w

)
,

9



see also (12).

First commutators. On the one hand, by performing differentiation twice,
we obtain

F ′
1(v)F2(v)

= |c|2∆
(
V v + ϑ v2 v̄

)
= |c|2

(
∆V v + 2 (∇V )T ∇v + V∆v

)
+ |c|2 ϑ

(
2∆v v̄ v +∆v̄ v2 + 2 (∇v)T ∇v v̄ + 4 (∇v)T ∇v̄ v

)
.

On the other hand, a simple replacement yields

F ′
2(v)F1(v) = |c|2

(
V∆v + 2ϑ v̄ v∆v

)
+ c̄2 ϑ v2∆v̄ .

As a consequence, the difference is given by

G1(v) = F ′
2(v)F1(v)− F ′

1(v)F2(v)

= − |c|2
(
∆V v + 2 (∇V )T ∇v

)
+
(
c̄2 − |c|2

)
ϑ∆v̄ v2 − 2 |c|2 ϑ

(
(∇v)T ∇v v̄ + 2 (∇v)T ∇v̄ v

)
.

For the parabolic case (3) with c = 1 this implies

G1(v) = −∆V v − 2 (∇V )T ∇v − 6ϑ (∇v)T ∇v v ,

and the analogous result for the Schrödinger case (2) with c = i is

G1(v) = −∆V v − 2 (∇V )T ∇v − 2ϑ
(
∆v̄ v2 + (∇v)T ∇v v̄ + 2 (∇v)T ∇v̄ v

)
.

Iterated commutators. The iterated commutator associated with the
parabolic equation (3) results from straighforward but lengthy calculations

G2(v) = 2
(
(∇V )T (∇V ) + ϑ G̃2(v)

)
v ,

G̃2(v) = −∆V v2 + 6 (∇V )T (∇v) v + 6
(
V + 2ϑ v2

)
(∇v)T (∇v) ,

(14)

and for the Gross–Pitaevskii equation (2), we instead arrive at

G2(v) = − 2 i
(
(∇V )T (∇V )− 2ϑ

(
G̃21(v) + ϑ G̃22(v)

))
v ,

G̃21(v) = |v|2∆V ,

G̃22(v) = |v|2
(
2ℜ(v̄∆v) + 3 (∇v̄)T (∇v)

)
+ ℜ

(
v̄2 (∇v)T (∇v)

)
.

(15)

For the special case of linear multiplication operators, i.e. ϑ = 0, we indeed
recover (10c). It is also noteworthy that the operator in (15) involves ∆v and
hence implies stronger regularity requirements on v compared to the operator
in (14), which only comprises the gradient ∇v.

10



5 Invariance principle

Invariance principle. For the purpose of illustration, we introduce the non-
linear Schrödinger equationi ∂tΨ(x, t) = −∆Ψ(x, t) + |Ψ(x, t)|2Ψ(x, t) ,

Ψ(x, 0) = Ψ0(x) , (x, t) ∈ Ω× [0, T ] ,

retained from (2) for vanishing potential V = 0 and normalised constant ϑ = 1.
Any standard operator splitting method (7) relies on the time integration of
the subproblem involving the Laplaciani ∂tΨ1(x, t) = −α∆Ψ1(x, t) , α ∈ R ,

Ψ1(x, tn) given , (x, t) ∈ Ω× [tn, tn + τ ] ,

which we perform by means of a Fourier spectral space discretisation, see
Section 6. Moreover, we make use of the fact that the subproblem comprising
the cubic nonlinearityi ∂tΨ2(x, t) = β1 |Ψ2(x, t)|2Ψ2(x, t) , β1 ∈ R ,

Ψ2(x, tn) given , (x, t) ∈ Ω× [tn, tn + τ ] ,
(16a)

satisfies the fundamental invariance principle

|Ψ2(x, t)|2 = |Ψ2(x, tn)|2 , (x, t) ∈ Ω× [tn, tn + τ ] .

This identity follows by means of differentiation with respect to time and
substitution of the time derivative by the nonlinearity

∂t |Ψ2(x, t)|2 = 2ℜ
(
Ψ2(x, t) ∂tΨ2(x, t)

)
= − 2 β1ℜ

(
i |Ψ2(x, t)|4

)
= 0 ,

(x, t) ∈ Ω× [tn, tn + τ ] .

It implies that the exact solution to the nonlinear subproblem satisfies the
reduced problemi ∂tΨ2(x, t) = β1 |Ψ2(x, tn)|2Ψ2(x, t) , β1 ∈ R ,

Ψ2(x, tn) given , (x, t) ∈ Ω× [tn, tn + τ ] ,
(16b)

and hence can be determined by pointwise multiplication

Ψ2(x, t) = e− iβ1 |Ψ2(x,tn)|2 Ψ2(x, tn) , (x, t) ∈ Ω× [tn, tn + τ ] . (16c)

For the numerical realisation, equidistant grid points are chosen accordingly
to the Fourier spectral space discretisation, see also Section 6.
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Generalisation. In this section, we establish a substantial extension of the
above stated result (16) that has important implications concerning the effi-
cient implementation of the modified operator splitting method (11) for the
time-dependent Gross–Pitaevskii equation (2), see also (13) and (15). Further-
more, the obtained invariance principle for the evolution operator

Eτ, β1F2+β2τ2G2
, τ, β1, β2 ∈ R ,

is connected with the significance of the modified operator splitting method
as a geometric integrator, see [18,21] and references given therein.

Notation. With regard to a compact formulation as abstract evolution equa-
tion, we again omit the dependence of the potential and a regular complex-
valued function v : Ω → C on the spatial variable. Besides, for accomplishing
relations of the form

F2(v) = c̄ f1(v) v , G2(v) = c̄ f2(v) v ,

it is convenient to introduce the abbreviations

f(v) = β1 f1(v) + β2 τ
2f2(v) ,

f1(v) = V + ϑ g1(v) , f2(v) = 2 (∇V )T (∇V )− 4ϑ g6(v) ,

g1(v) = |v|2 , g2(v) = ℜ(v̄∆v) ,
g3(v) = (∇v̄)T (∇v) , g4(v) = ℜ

(
v̄2 (∇v)T (∇v)

)
,

g5(v) = ϑ
(
2 g2(v) + 3 g3(v)

)
, g6(v) = g1(v)

(
∆V + g5(v)

)
+ ϑ g4(v) .

(17)

Theorem (Invariance principle). The solution to the subproblem


d
dt ψ(t) = − i f

(
ψ(t)

)
ψ(t) ,

ψ(0) = ψ0 , t ∈ [0, τ ] ,

with defining function introduced in (17) satisfies the invariance principle

f
(
ψ(t)

)
= f(ψ0) , t ∈ [0, τ ] .

Proof. In order to demonstrate that the invariance principle holds, we deter-

12



mine the Gâteaux derivatives of the defining functions

f ′(v)w = β1 f
′
1(v)w + β2 τ

2f ′
2(v)w ,

f ′
1(v)w = ϑ g′1(v)w , f ′

2(v)w = − 4ϑ g′6(v)w ,

g′1(v)w = 2ℜ(v̄ w) , g′2(v)w = ℜ(∆v̄ w) + ℜ(v̄∆w) ,
g′3(v)w = 2ℜ

(
(∇v̄)T (∇w)

)
,

g′4(v)w = 2ℜ
(
v̄ w (∇v)T (∇v)

)
+ 2ℜ

(
v̄2 (∇v)T (∇w)

)
,

g′5(v)w = 2ϑ g′2(v)w + 3ϑ g′3(v)w ,

g′6(v)w =
(
∆V + g5(v)

)
g′1(v)w + g1(v) g

′
5(v)w + ϑ g′4(v)w ,

where suitable regularity requirements apply to v, w : Ω → C. Observing
that the potential V and the basic components g1, g2, g3, g4 define real-valued
functions, we have

(
gj(v)

)
(x) ∈ R , j ∈ {1, . . . , 6} ,(

fk(v)
)
(x) ∈ R , k ∈ {1, 2} ,

(
f(v)

)
(x) ∈ R , x ∈ Ω .

Evidently, this implies that the following composition vanishes

g′1(v)
(
i f(v) v

)
= 2ℜ

(
i |v|2 f(v)

)
= 0 .

Certain contributions originating from the iterated commutator, however, re-
quire a closer examination, namely

g′2(v)
(
i f(v) v

)
= ℜ

(
i f(v)ℜ

(
v̄∆v

))
+ ℜ

(
i |v|2∆f(v)

)
+ 2ℜ

(
i v̄
(
∇f(v)

)T
∇v

)
= 2ℜ

(
i v̄
(
∇f(v)

)T
∇v

)
,

g′3(v)
(
i f(v) v

)
= 2ℜ

(
i v
(
∇f(v)

)T
∇v̄

)
+ 2ℜ

(
i f(v) (∇v̄)T ∇v

)
= 2ℜ

(
i v
(
∇f(v)

)T
∇v̄

)
,

g′4(v)
(
i f(v) v

)
= − 2ℜ

(
i f(v) v̄2 (∇v)T ∇v

)
+ 2ℜ

(
i |v|2 v̄

(
∇f(v)

)T
∇v

)
+ 2ℜ

(
i f(v) v̄2 (∇v)T ∇v

)
= 2ℜ

(
i |v|2 v̄

(
∇f(v)

)T
∇v

)
.
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On the basis of these identities, we conclude(
g1(v)

(
2 g′2(v) + 3 g′3(v)

)
+ g′4(v)

)) (
i f(v) v

)
= 12ℜ

(
i |v|2

(
∇f(v)

)T
ℜ
(
v̄∇v

))
= 0 .

This proves that any composition of the special form

f ′(v)
(
i f(v) v

)
= ϑ

(
β1 − 4 β2 τ

2
(
∆V + g5(v)

))
g′1(v)

(
i f(v) v

)
− 4ϑ2β2 τ

2
(
g1(v)

(
2 g′2(v) + 3 g′3(v)

)
+ g′4(v)

) (
i f(v) v

)
= 0

vanishes. As a consequence, the time-derivative of the decisive function is equal
to zero

d
dt f

(
ψ(t)

)
= f ′

(
ψ(t)

)
d
dt ψ(t) = − f ′

(
ψ(t)

) (
i f
(
ψ(t)

)
ψ(t)

)
= 0 , t ∈ [0, τ ] ,

and hence, the desired identity follows

f
(
ψ(t)

)
= f(ψ0) , t ∈ [0, τ ] .

Summary. In view of Section 6, we summarise our considerations for the
modified operator splitting method (11) applied to the time-dependent Gross–
Pitaevskii equation (2). On the one hand, the realisation of

ψn+1 =
(
Eτ, 1

6
F2

◦ Eτ, 1
2
F1

◦ Eτ, 2
3
F2− 1

72
τ2G2

◦ Eτ, 1
2
F1

◦ Eτ, 1
6
F2

)
ψn ,

n ∈ {0, 1, . . . , N − 1} ,

relies on the numerical integration of the linear Schrödinger equation

d
dt ψ(t) = iα∆ψ(t) , t ∈ [tn, tn + τ ] , Eτ,αF1

(
ψ(tn)

)
= ψ(tn + τ) ,

for α ∈ R. On the other hand, it reduces to the pointwise evaluation of the
solution representation

Eτ, β1F2+β2τ2G2
(ψ0) = e− i τ(β1f1(ψ0)+β2τ2f2(ψ0)) ψ0 , τ ∈ R , (18)

for appropriate choices of β1, β2 ∈ R, see (17) for the definitions of f1 and f2.
We recall that the known identity (16) for the particular case β2 = 0 is estab-
lished by a simplified argument.

14



6 Numerical results

In the following, we illustrate the stability and global error behaviour of the
novel modified operator splitting method (11) for the time-dependent Gross–
Pitaevskii equation (2) and its parabolic analogue (3). The numerical tests,
performed in one, two, and three space dimensions, in particular confirm the
theoretical considerations of Sections 3 to 5. For the purpose of comparison, we
in addition include the corresponding results for widely-used standard split-
ting methods. Further information on a publicly accessible Matlab code to
reproduce Figures 1–4 is found in Appendix A.

Implementation. The practical realisation of standard operator splitting
methods such as (8) and of the modified operator splitting method (11),
respectively, requires the time integration of the subproblems involving the
Laplacian and the nonlinear multiplication operator. In our implementation,
we make use of fast Fourier techniques, which are based on the following con-
siderations.

(i) Space grid. With regard to the employed Fourier spectral space dis-
cretisation, we replace the underlying unbounded domain by a Cartesian
product of sufficiently large intervals

a = 10 , x ∈ [− a, a]d ⊂ Ω ,

and choose the total number of equidistant spatial grid points according
to the dimension

d = 1 : M = 512 , d = 2 : M = 1282 , d = 3 : M = 643 .

(ii) Derivatives. The iterated commutator arising in the modified operator
splitting method (11) for (2) and (3) involves the gradient ∇V and the
Laplacian ∆V of the space-dependent potential, which we may assume
to be known analytically. Otherwise, we employ the approach described
subsequently. The numerical computation of the spatial derivatives ∇v
and ∆v, where v represents the current value of the time-discrete solu-
tion, is traced back to a fast Fourier transform, pointwise multiplications,
and an inverse fast Fourier transform. Denoting by (Fm)m∈Zd the Fourier
functions with periodicity domain [− a, a]d, by (µm)m∈Zd the purely imag-
inary eigenvalues associated with the first spatial derivatives, and by
(λm)m∈Zd the corresponding real eigenvalues of the Laplace operator

Fm(x) = (2 a)−
d
2 e iπm1 (

x1
a
+1) · · · e iπmd (

xd
a
+1) ,

∇Fm = µmFm , µm = iπm
a

∈ Cd×1 ,

∆Fm = λmFm , λm = − π2|m|2
a2

∈ R ,
m = (m1, . . . ,md) ∈ Zd , x = (x1, . . . , xd) ∈ [− a, a]d ,
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the following formal representations hold

v =
∑
m∈Zd

vmFm , vm =
∫
[− a,a]d

v(x)F−m(x) dx , m ∈ Zd ,

∇v =
∑
m∈Zd

µm vmFm , ∆v =
∑
m∈Zd

λm vmFm .

Their realisation relies on a suitable truncation of the infinite index set
M ⊂ Zd so that |M| = M and quadrature approximations by the
trapezoidal rule.

(iii) Linear subproblem. Formally, the solution to the linear subproblem is
given by a Fourier series

d
dt u1(t) = αF1

(
u(t)

)
= c α∆u1(t) , t ∈ [tn, tn + τ ] , α ∈ R ,

Eτ,αF1

(
u(tn)

)
= Eτ,αF1

( ∑
m∈Zd

u1,m(tn)Fm

)
=

∑
m∈Zd

e c α τλm u1,m(tn)Fm ,

see also (2), (3), and (7). Again, the application of fast Fourier techniques
permits the efficient computation of approximations to the spectral coef-
ficients and the evaluation of finite sums on the equidistant spatial grid
points covering the underlying domain

ũ1,m,n ≈ u1,m(tn) , m ∈ M ,∑
m∈M

e c α τλm ũ1,m,nFm(x) , x ∈ [− a, a]d .

(iv) Nonlinear subproblem (Schrödinger equation). In the context of the
Gross–Pitaevskii equation (2), we make use of the fact that the solu-
tion to the nonlinear subproblem (13) satisfies the invariance principle
deduced in Section 5. Consequently, it simply remains to evaluate the
representation (18) on the equidistant grid.

(v) Nonlinear subproblem (Parabolic equation). In the case of the parabolic
equation (3), we additionally apply an explicit Runge–Kutta method of
order four. Due to the stiffness of the problem, the time stepsize has to
be adjusted to the spatial grid width to ensure stability. Alternative ap-
proaches with improved stability properties and reduced computational
costs are detailed below.

Numerical results. In our numerical tests, we perform the time integration
of the Gross–Pitaevskii equation (2) and the parabolic equation (3), comparing
the nonlinear case with ϑ = 1 to the simplified linear case with ϑ = 0. We
prescribe the Gaussian-shaped initial state

u0(x) = e−
1
2
(x21+···+x2d) , x = (x1, . . . , xd) ∈ Rd ,
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as well as the two polynomial potentials

V (x) = C0Cq
d∑
j=1

xqj ,

C2 = 1 , C4 =
1
24
, q ∈ {2, 4} , x = (x1, . . . , xd) ∈ Rd ,

for which the required first- and second-order derivatives are known analyti-
cally. For the special case of a quadratic potential with prefactor C0 ∈ {1,− 1}
chosen accordingly to the type of the equation and ϑ = 0, the knowledge of
the exact solution

u(x, t) = ed c̄ t u0(x) , (x, t) ∈ Rd × [0, T ] ,

permits the validation of the Fourier spectral space discretisation and the
time-splitting approach. In the general case, we instead determine a numerical
reference solution based on a refined time stepsize. The global errors of the
modified operator splitting method (11) at final time T = 1, measured in
a discrete L2-norm, are compared to those obtained by the standard Lie–
Trotter, Strang, and Yoshida splitting methods of non-stiff orders one, two,
and four, see also (8). The obtained results, displayed in Figures 1–4, confirm
the favourable behaviour of the modified operator splitting method.

Energy conservation. In order to complement our numerical comparisons
regarding the stability and global error behaviour of standard and modi-
fied operator splitting methods, we perform the time integration of the one-
dimensional Gross–Pitaevskii equation (2) on the interval [0, T ]. We determine
approximations to the values of the energy at equidistant time grid points

E(tn) =
∫
Ω

(
−∆Ψ(x, tn) + V (x)Ψ(x, tn) + ϑ |Ψ(x, tn)|2Ψ(x, tn)

)
×Ψ(x, tn) dx , n ∈ {0, 1, . . . , N} ,

(19a)

and their deviations with respect to the minimal value

E(tn)−min
{
E(tℓ) : ℓ ∈ {0, 1, . . . , N}

}
, n ∈ {0, 1, . . . , N} . (19b)

The obtained results confirm the favourable geometric properties of the mod-
ified operator splitting method (11), see Figure 6.

Computational cost. In general, an expedient measure for the computa-
tional cost of the modified operator splitting method (11) for the Gross–
Pitaevskii equation (2) and the parabolic equation (3), respectively, is the
number of fast Fourier transforms and their inverses. Evidently, the numerical
solution of two linear subproblems per time step amounts to two fast Fourier
transforms and two inverse fast Fourier transforms. Besides, the time integra-
tion of the nonlinear subproblem requires the computation of space derivatives
via Fourier transforms.
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(i) For nonlinear Schrödinger equations such as (2), the validity of the in-
variance property permits to significantly reduce the cost related to the
evaluation of Eτ, 2

3
F2− 1

72
τ2G2

. Due to the fact that the spectral coefficients
of the current numerical solution v are available, the computation of
gradient ∇v and Laplacian ∆v results in d+1 inverse fast Fourier trans-
forms.

(ii) For the parabolic equation (3), a favourable approach is based on the
following considerations. The presence of the additional factor τ 2 in con-
nection with the double commutator permits to use an approximation
by means of the the second-oder Strang splitting method, that is

Eτ, 2
3
F2− 1

72
τ2G2

≈ E 1
2
τ, 2

3
F2

◦ Eτ,− 1
72
τ2G2

◦ E 1
2
τ, 2

3
F2
.

For linear ordinary differential equations of the form

d
dt u(t) = B u(t) + τ 2C u(t) , t ∈ [0, τ ] ,

defined by complex matrices B,C ∈ CM×M , elementary calculations
based on series expansions of matrix exponentials confirm that this ap-
proach leads to a fourth-order approximation

eτ(B+τ2C) = e
1
2
τB eτ

3C e
1
2
τB +O

(
τ 5
)
.

The rigorous generalisation of the argument to (3) is part of a future
convergence analysis. On the one hand, an explicit representation of the
evolution operator associated with the nonlinear ordinary differential
equation

d
dt u(x, t) =

(
V (x) + ϑ |u(x, t)|2

)
u(x, t) , x ∈ Ω , t ∈ [0, τ ] ,

is known. More precisely, fixing x ∈ Ω, the distinction of cases yields

u(x, t) =


u(x,0)√

e−2 t V (x)+ϑ (e−2 t V (x)−1)/V (x) (u(x,0))2
, V (x) ̸= 0 ,

u(x,0)√
1−2 t ϑ (u(x,0))2

, V (x) = 0 ,
t ∈ [0, τ ] .

On the other hand, for the time integration of the nonlinear subprob-
lem involving the double commutator, it suffices to apply the first-order
explicit Euler method. Numerical tests confirm the enhanced stability,
accuracy, and efficiency of the resulting approach, in particular, in case
of a fourth-order polynomial potential, see Figure 5.

7 Conclusions

In the present work, we have introduced a general framework for the extension
of Chin’s fourth-order modified potential operator splitting method (9) to
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nonlinear evolution equations. To the best of our knowledge, this matter is
novel and of major interest from theoretical and practical perspectives.

Moreover, we have specified the resulting fourth-order modified operator split-
ting method (11) for the time-dependent Gross–Pitaevskii equation (2) and
its parabolic counterpart (3). It seems likely that our approach and the drawn
conclusions also extend to Schrödinger equations involving nonlinear and pos-
sibly nonlocal terms of the form g(|Ψ(x, t)|)Ψ(x, t) .

Due to the fact that our numerical tests have confirmed the favourable per-
formance of the proposed fourth-order scheme in comparison with standard
real and complex splitting methods of order four, it is natural to extend our
considerations in various respects.

Proceeding our recent work [10] for linear evolution equations of parabolic and
Schrödinger type, we find it promising to design high-order modified opera-
tor splitting methods for nonlinear evolution equations that are optimal with
regard to a preselected criterium such as efficiency. In contrast to the linear
case, we have to take into account the additional costs for the evaluation of
second iterated commutators and that higher-order iterated commutators will
not vanish, in general, see (10c) as well as (14) and (15). Nonetheless, based on
the successful strategies for the efficient implementation of the fourth-order
scheme (11), it suggests itself to address an in-depth analysis of similarly
structured modified operator splitting methods.

A desirable feature of the proposed fourth-order modified operator splitting
method is the positivity of the coefficients. Concerning the design of high-order
schemes, in light of contributions on the linear case, see for instance [3,15],
this will necessitate further deliberations on the appropriate format. Evidently,
positivity is intrinsically related to the issue of well-posedness and stability
for parabolic problems. Besides, it affects aliasing effects on truncated space
domains and the incorporation of artificial boundary conditions, which is of
particular interest in the context of nonlinear Schrödinger equations, see for
example [1] and references given therein.

Furthermore, we intend to carry out a rigorous convergence analysis of
modified operator splitting methods applied to the time-dependent Gross–
Pitaevskii equation and its parabolic analogue. We point out that the study
for the linear case [22] together with the formal calculus of Lie-derivatives pro-
vides a guiding principle. However, the accomplishment for specific nonlinear
evolution equations involving unbounded operators requires careful calcula-
tions and investigations, see also [33].
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Fig. 1. Time integration of the Gross–Pitaevskii equation (2) involving a quadratic
potential by standard splitting methods and the novel modified operator splitting
method. Global errors versus time stepsizes in space dimensions d ∈ {1, 2, 3}. Nonlin-
ear (ϑ = 1) versus simplified linear (ϑ = 0) case. Due to the validity of the invariance
principle, the application of an explicit Runge–Kutta method is not needed (RK0).
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Fig. 2. Time integration of the parabolic problem (3) involving a quadratic potential
by standard splitting methods and the novel modified operator splitting method.
Global errors versus time stepsizes in space dimensions d ∈ {1, 2, 3}. Nonlinear
(ϑ = 1) versus simplified linear (ϑ = 0) case. In order to resolve the nonlinear sub-
problem, a fourth-order explicit Runge–Kutta method is applied (RK4). Depending
on the stiffness of the equation, stability is ensured for sufficiently small time step-
sizes. For a naive implementation of the Yoshida splitting method with complex
coefficients, an order reduction is observed, see Appendix B.
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Fig. 3. Corresponding results for the time-dependent Gross–Pitaevskii equation (2)
involving a fourth-order polynomial potential.
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Fig. 4. Corresponding results for the parabolic problem (3) involving a fourth-order
polynomial potential.
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Fig. 5. Time integration of the one-dimensional parabolic equation (3) involving
a quadratic potential (left) or a fourth-order potential (right), respectively, by the
modified operator splitting method (11). Global errors versus time stepsizes. The
original approach is based on the application of an explicit fourth-order Runge–Kutta
method for the numerical solution of the nonlinear subproblem involving the dou-
ble commutator (cf. Eτ, 2

3
F2− 1

72
τ2G2

). Alternative approaches are based on the Strang
splitting method (cf. E 1

2
τ, 2

3
F2

◦ Eτ,− 1
72
τ2G2

◦ E 1
2
τ, 2

3
F2

). Here, a reduced number of (in-
verse) fast Fourier transforms is required and an improved accuracy is observed.
Furthermore, the knowledge of the exact solution to a component (cf. E 1

2
τ, 2

3
F2

) en-
hances the stability behaviour of the resulting time integration method for larger
time increments.

Fig. 6. Long-term integration of the one-dimensional Gross–Pitaevskii equation (2)
by standard and modified operator splitting methods. Computation of numerical
approximations to the values of the energy at time grid points tn = n τ for τ = 10−3

and n ∈ {0, 1, . . . , 105} as well as corresponding deviations with respect to the
minimal values, see also (19). The obtained results confirm the favourable geometric
properties of the modified operator splitting method (11).
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A Matlab code

A Matlab code that illustrates the practical implementation of modified op-
erator splitting methods as outlined in Section 6 and reproduces the numerical
results displayed in Figures 1–4 is available at

doi.org/10.5281/zenodo.7945624.

By default, the space dimenson is set equal to one such that the overall com-
putation time amounts to a few minutes. For dimensions two and three, re-
spectively, the computational effort will increase accordingly to the complexity
of the problem.

Structure of the code. The underlying process carries out the time inte-
gration of the Gross–Pitaevskii equation (2) and the related parabolic equa-
tion (3) by the standard splitting methods with coefficiens specified in (8) and
the novel modified operator splitting methods (11) with iterated commutators
given in (14) and (15), respectively. The space discretisation is based on the
Fourier spectral method and realised by fast Fourier transforms and their in-
verses. In loops over the selected space dimensions and the different test cases
(parabolic / Schrödinger equation, polynomial potential of degree two / four,
linear case ϑ = 0 / nonlinear case with ϑ = 1), the global errors are computed
for certain sequences of time stepsizes. In order to make similarities apparent
and contrast differences, several auxiliary functions are defined.

• Core. Selection of time integration methods. Definition of problem data
(initial and final time, initial state, potential and its derivatives). Choice of
sequences of time stepsizes. Performance of time integration. Computation
of global errors.

• PrecomputationFourier. Computation of underlying space grid and eigen-
values associated with Laplacian.

• FourierReal2Spectral, FourierSpectral2Real. Fast Fourier transform and its
inverse.

• PartA. Numerical solution of linear subproblems associated with Laplacian
based on Fourier transforms.

• BWithoutU, B, TimeStepRKM124B, PartB. Numerical solution of nonlin-
ear subproblems in the context of standard operator splitting methods.

• DoubleCommutator, BModifiedWithoutU, BModified, TimeStepRKM124-
BModified, PartBModified. Numerical solution of nonlinear subproblems
in the context of modified operator splitting methods.

• TimeIntegration. Time integration by standard and modified operator
splitting methods

• MyTestCases. Definition of decisive quantities characterising different test
cases.
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• MyPlot. Visualisation of obtained results.

Specialisation and improvements. The main purpose of the elementary
structured Matlab code is the systematic comparison of the procedures re-
quired for the novel schemes with those for standard operator splitting meth-
ods, on the one hand for Schrödinger equations and on the other hand for
parabolic equations. We point out that a significant improvement of the per-
formance will be achieved by separating the different types of evolution equa-
tions as well as time integrators and reconciling auxiliary functions. Further
enhancements in particular in connection with the more costly fast (inverse)
Fourier transforms concern the distinction of real and complex arithmetics
as well as the avoidance of redundancies, e.g., by reordering the eigenvalues
associated with the Laplacian instead of the solution values and omitting ad-
ditional scaling constants.

B Order reduction of complex splitting methods

In order to explain the observed order reduction for the complex splitting
method (8d), it suffices to study a nonlinear ordinary differential equation of
the form (1) with F1 = 0 and F2(u) = |u|2 u on a single subinterval of length
(0, τ). More precisely, we consider the nonlinear subproblems

 d
dt u(t) = F

(1)
2

(
u(t)

)
=
(
u(t)

)3
,

u(0) = u0 ∈ R , t ∈ (0, τ) ,


d
dt u(t) = F

(2)
2

(
u(t)

)
= |u(t)|2 u(t) ,

u(0) = u0 ∈ R , t ∈ (0, τ) ,

with coinciding real-valued solutions

E
τ,F

(1)
2
(u0) = u(τ) = E

τ,F
(2)
2
(u0) .

On the one hand, using the Taylor series expansion

u(τ) = u(0) + τ u′(0) + 1
2
τ 2 u′′(0) + 1

6
τ 3 u′′′(0) + 1

24
τ 4 u′′′′(0) +O

(
τ 5
)

in combination with the differential equation and derivatives thereof implies

u(τ) =
(
1 + τ u20 +

3
2
τ 2 u40 +

5
2
τ 3 u60 +

35
8
τ 4 u80

)
u0 +O

(
τ 5
)
.

As a consequence, for any real number b ∈ R, the relation

b ∈ R : u(b τ) =
(
1+ b τ u20 +

3
2
b2 τ 2 u40 +

5
2
b3 τ 3 u60 +

35
8
b4 τ 4 u80

)
u0 +O

(
τ 5
)
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is valid. For complex numbers, however, the more general expansion

b, u0 ∈ C : E
τ,bF

(2)
2
(u0) =

(
1 + b τ |u0|2 +

(
b2 + 1

2
|b|2

)
τ 2 |u0|4

+
(
b3 + (7

6
b+ 1

3
b) |b|2

)
τ 3 |u0|6

+
(
b4 + 1

24
(46 b2 + 6 b

2
+ 29 |b|2) |b|2

)
τ 4 |u0|8

)
u0

+O
(
τ 5
)

is obtained by decomposing the solution and accordingly the defining function
into real and imaginary parts. In order to reproduce the approximation that
corresponds to the Yoshida splitting, we impose the basic symmetry and order
conditions

b4 = b1 , b3 = b2 , b1 + b2 + b3 + b4 = 1 ,

and then perform the fourfold composition

uSplitting(τ) =
(
E
τ,b1F

(2)
2

◦ E
τ,b2F

(2)
2

◦ E
τ,b2F

(2)
2

◦ E
τ,b1F

(2)
2

)
(u0) .

Requiring this expansion to coincide with the expansion of the exact solution

uSplitting(τ)− u(τ) = C(u0)ℑ(b1)
(
1−ℜ(b1)

)
τ 3 +O

(
τ 4
)

leads to a condition that obviously contradicts the order conditions for split-
ting methods and explains the observation of local order three and global order
two. Similar arguments apply to evolution equations of Schrödinger type such
as the Gross–Pitaevskii equation. But, in this context, the invariance principle
permits to avoid the application of a fourth-order Runge–Kutta method to the
arising nonlinear subproblem

d
dt u(t) = F

(2)
2

(
u(t)

)
= − i |u(t)|2 u(t) , t ∈ (0, τ) .
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