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Abstract

In this work we address the problem of energy management in a wind farm supported by an Energy Storage System (ESS)
hat operates in an electricity market with six intraday sessions and with penalty policies for imbalances between commitments
nd the energy really injected. We face it through a cascade of model predictive controllers that also require the design of
redictors for wind and electricity market price forecasts. The master controller is executed synchronously with the market
essions and decides the commitments. The slave controller is executed each hour and decides the energy that should be
old to minimize the economical penalties if the commitment is not achievable. Finally, a real-time controller decides how to
anage the energy storage in the ESS to sell the desired energy when possible. We use historical real data for the design and

alidation of the approach and show its benefits. The results show that the cascade structure helps to adequately adapt the
nergy committed in the intraday market. We also obtain the necessary prices on batteries so that their use is profitable.
2023TheAuthor(s).PublishedbyElsevierB.V.onbehalfof InternationalAssociationforMathematicsandComputers inSimulation

IMACS). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

During the year 2021, and despite the pandemic and the supply shocks suffered, renewable energies have
xperienced another record in growth of power capacity. Furthermore, the conflict in Ukraine has made clearer than
ver the importance of energy security and sovereignty, for which renewable energies also play a key role [19].
ndeed, solar and wind power provided more than 10% of the world’s electricity for the first time ever. Regarding
ind power in particular, an estimated 102 GW capacity was installed globally in 2021, making total global capacity

o surpass 845 GW [19].
However, this growth in renewables is proving increasingly difficult due to the stochastic and intermittent nature

nherent in this type of generation [10,12,23]. If not properly addressed, the variations in the power generated by
enewable sources can result in deviations in network voltage and frequency [21]. Furthermore, other technical
hallenges such as grid interconnection, power quality, reliability, protection, generation dispatch, and control also
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(I. Peñarrocha-Alós).
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rise [22]. Moreover, given that electricity transport and distribution infrastructures are not updated at such a quick
ace as the renewable technologies are increasing their share of the electric production mix, transmission system
perators (TSO) will not be able to rely on a higher interconnection capacity that would allow further power
xchanges among control areas, which is a traditional way to balance the system. Instead, alternative ways of
roviding flexibility, mainly based on energy storage systems (ESS), are being proposed and developed [8,26].

In this sense, plenty of works study how the introduction of ESS allows renewable energy sources to
aintain the injection of power committed to the electricity markets, granting precise production commitments

y periods [1–4,11,14,17].
There are also several works in the literature that address the control of wind farm with ESS in particular.

or instance, in [22] authors propose a strategy to use the ESS to smooth the power output of the wind farm.
n a second work [21], by most of the authors of the previous one, a different smoothing strategy is introduced,
ased on optimal control. The proposed algorithm tries to follow a reference given as the forecast power of the
ind farm for the next hour, which is assumed to be known with a constant error. Authors in [24] also present a

trategy for minimizing power fluctuations, considering the use of batteries together with a hydrogen conversion
ystem, introduced to overcome the limitations of the former. However, none of these proposals considers direct
articipation in electricity markets or uses a realistic forecast.

Regarding the participation of wind farms with ESS in electricity markets, some contributions have been made
n recent years. In [27] the authors introduce a similar approach to the one proposed here, with two optimization
tages, one for a daily market and one for a real-time market. However, their proposal lacks a strategy to minimize
he penalties incurred for committing deviations from the power commitments. On the contrary, [6] focuses on

aximizing the wind farm profits by minimizing deviations while also considering the cost of batteries degradation,
ut without considering the calculation of power commitments, which are assumed to be given. A different approach,
ased on reinforcement learning, is proposed in [25]. In that work, the authors consider the up/down reserve
urchase, together with the ESS charge/discharge, to achieve an optimal revenue.

This paper proposes a tool which takes advantage of the flexibility provided by an ESS to implement an
ptimization-based strategy for maximizing the benefits of a wind farm participating in daily and intraday electricity
arkets with a 48 h horizon. This strategy makes use of forecasting techniques for wind speed and electricity

rices. Furthermore, the proposed approach also addresses the minimization of future penalties, incurred because of
eviations from power commitments, with a second optimization layer. This second optimization has a 6 h horizon
hich allows the use of updated and more precise short-term wind and price forecasts. The proposed strategies

re analyzed for the Iberian electricity market (MIBEL) although they can be straightforwardly transposed to the
uropean Cross Border Intraday Market (XBID) [15].

Furthermore, this work also analyses the economic feasibility of the inclusion of the ESS in the described
ramework by determining the maximum price, in e/kWh, which would make the strategy profitable. Although the
esults are valid for any type of ESS, lithium-ion (Li-ion) batteries in particular are considered due to the tenfold
ownward trend in per kilowatt hour cost experienced by commercial battery packs in the last 10 years [5,18].

The structure of the paper is as follows. First, the statement of the problem will be presented. In Section 3, the
ve parts that make up the proposed control tool will be described. Section 4 is devoted to introducing the results
nd, finally, some conclusions will be drawn.

. Problem statement

In this work we consider the problem of maximizing the income in a wind farm supported by an ESS that operates
n a market with several sessions along the day. First, the different agents make their offers in a daily market, which
s closed by noon of the day before delivery. Therefore, at that time the agents know their production commitment for
ach hour of the delivery day. Later, these commitments can be adapted in the intraday market sessions. Furthermore,
he market has a penalty policy for productions that do not fit the previously committed values. In that sense, the
ind farm must communicate the production commitment several times a day, and, finally, it must decide how to
perate the plant in real-time in terms of the amount of energy to be fed to the grid and stored in or delivered by
he ESS, in order to maximize the incomes under the uncertainty of the wind that finally is available at each period
f time. The operation of the plant must take into account the fact that the committed values may not be feasibly
ffordable with the available power and stored energy in the ESS.
2
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Fig. 1. Block diagram of the proposed tool.

The use of an ESS can help the wind farm to (i) feed the grid in the periods with higher electricity prices in
order to maximize the benefit, and (ii) to avoid penalties when the available wind power does not adjust to the
power that had previously been committed to inject.

To face this problem, we assume that we have access to databases that store values of past wind speed
measurements and that offer some wind forecast, which may have some systematic errors, and where their policy
to forecast and to update those values is not known for the final user. We also assume that we have access to the
historical data of prices of the market where we are operating.

With these scenarios, the problem is how to develop a control scheme that decides the future commitments to be
communicated to the market operator, the real energy that is finally fed to the grid, and how to manage the charge
and discharge of the ESS. These decisions must be taken considering the different physical limitations (in terms of
rated powers and ESS capacity) and taking into account the time varying scenario in terms of available historical
or future data at each instant of time, and the different instants of time along day where the commitments must be
done.

In this work, we particularize our problem in the operation of a wind farm near Valencia, in the east of Spain,
and assume that it is supported with an ESS and connected through a substation. The wind farm is made up of a
total of 23 2.1 MW wind turbines with a tower height of 114 m.

3. Proposed control tool

In order to address the stated problem, we propose, in general terms, a cascade of controllers that are based on
predictors and follow a Model Predictive Control strategy. The designed control tool can be divided into a total of
five parts depending on its main function, as depicted in the block diagram shown in Fig. 1, which are:

• Wind data (measurements and forecasts).
• Electricity market prices (actual and forecast).
• Controller C1. Energy sale commitment calculation.
• Controller C2. Imbalance penalty minimization.
• Simulator.

The list of variables used in the control tool are shown in Table 1.
3
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Table 1
List of variables used in the control tool.

Variable Description Unit

Cbat Battery capacity MWh
I (t) Resulting income e
Pcom (t) Power commitment of each hour MW
Psale(t) Power finally sold each hour MW
P̂+

wind (t + i |t) Power that would be generated with speed v̂+(t + i |t) MW
P̂c

wind (t + h|t) Power that would be generated with speed v̂c(t + h|t) MW
pe(t) Electricity price e/MWh
pe,ni (t) Negative imbalance price e/MWh
pe,pi (t) Positive imbalance price e/MWh
pe(t + i |t) Already known prices of the active market session e/MWh
p̂e(t + h|t) Calculated market price forecasts e/MWh
SOC(t) State of charge %
v0(t) Average of the measured wind speed stored in the database m/s
v̂−

0 (t + i |t) Wind speed forecasts offered by the database m/s
v(t) v0(t) adapted to the height of the wind turbine m/s
v̂−(t + i |t) v−

0 (t + h|t) adapted to the height of the wind turbine m/s
v̂+(t + i |t) Static correction of v̂−(t + i |t) m/s
v̂c(t + h|t) Wind speed predictor m/s
δt Sampling period (one hour) h
ηc Battery efficiency for charge %
ηd Battery efficiency for discharge %

3.1. Wind data

This block is responsible for providing, on the one hand, the real wind measurements and, on the other hand,
he wind generation forecast necessary in both controllers.

We split this block in several subsystems, where the main functions are:

• Access to a wind speed database that includes both historical values and forecasts.
• Height adaptation of the wind speed.
• Static correction to address the systematic error between the forecasts and finally measured wind speed in the

database.
• Dynamic prediction to improve the forecasts with respect to the ones provided in the database and in order to

achieve larger horizons that the ones available in the database.
• Wind speed to power conversion.

In this work we use the OpenWeatherMap One Call API (application programming interface) [16] to obtain
istorical data and initial forecasts. This API shares historical values of hourly measured wind data in a given
ocation and at the height of the instrument measurement (hmeas = 10 m) up to the hour of access, and also offers

hourly forecasts of the wind speed values with a 48-hour horizon. In this work we use t to specify time index,
and we use discrete time indices.1 In that sense, t refers to the hour in absolute terms, i.e., extracting the absolute
number of accumulated hours in an absolute time index as Unix timestamp. Let us call v0(t) the average value of

ind speed between t − 1 and t that is measured and stored in the database at t , and available since that time t .
et us call v̂−

0 (t + i |t) (i = 1, . . . , 48) the offered forecast values in the database at time t for the next 48 h to
ome. The API only offers the most updated forecasts, i.e., when you access to the database at t + 1, you will
nd the forecasts v̂−

0 (t + i |t + 1) (i = 2, . . . , 48) that do not necessarily match the previously forecasts v̂−

0 (t + i |t)
i = 2, . . . , 48) that were found at t and that cannot be found when you access at t + 1 as they are replaced by the
ewer forecasts v̂−

0 (t + i |t + 1).

1 Variable t denotes the absolute number of hours in Unix time. In this work, the sampling period for each of the estimations, forecasts
nd optimizations is one hour (δt = 1). Therefore, t can also be seen as the discrete-time index, being an integer value. Expressions as t −1

or t + 1 refer both to one sample before or after, or one hour before or after.
4
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As our aim is to estimate available wind power, we first adapt all measurements and forecasts data of the
forementioned API to the height of the wind turbine tower, that is, htop = 114 m. We use Hellman’s power

law for that height adaptation, which leads to the wind speed at the rotor through

v(t) = v0(t)
(

htop

hmeas

)α

(1a)

v̂−(t + i |t) = v̂−

0 (t + i |t)
(

htop

hmeas

)α

(1b)

here htop refers to the height of the rotor (114 m), hmeas the height where the measurements are taken (10 m) and
= 0.15 depends on the geographical surroundings of the wind farm location.
Then, we analyze the accuracy of the offered forecasts. In order to perform that analysis, we have automated

ourly access to the database for 34 days (from 24/04/2021 to 27/05/2021). We have stored at each t (with
t = t0, . . . , t0 + N , with N = 34 · 24 = 816 and t0 the absolute Unix hour of the initialization date of data
cquisition) the available wind measurement v(t) and forecasts v̂−(t + i |t) (after height adaptation through ). In
rder to quantify the quality of the available forecasts we have compared the measurements with their different
redictions, i.e., each v(t + i) with all the possible predictions v̂−(t + i |t) with i = 1, . . . , 48, leading to an average
ind speed error (bias) of 0.8 m/s, an average of the absolute error of 1.76 m/s, a maximum registered error of
.58 m/s, and a standard deviation of 2.25 m/s. In this sense, a systematic error is found, probably due to the fact
hat this data source is not a predictor intended specifically for wind generation.

In order to overcome the systematic error inherent to the selected database, we propose to use a static correction
hrough a second-degree polynomial function of the form

v̂+(t + i |t) = a + b v̂−(t + i |t) + c v̂−(t + i |t)2 (2)

here v̂+(t + i |t) refers to the corrected forecast. In order to obtain the coefficients, we try to fit equation

v(t + i) =
[
1 v̂−(t + i |t) v̂−(t + i |t)2

] ⎡⎣a
b
c

⎤⎦
or t = t0 + i, . . . , t0 + N − i and i = 1, . . . , 48 in the mean square sense. Then, using a least squares regression,
e obtain the coefficients a = 0.7232, b = 0.7034 and c = −0.0338. With this we obtain an average wind speed

rror (bias) of 0.01 m/s, an average of the absolute error of 1.4 m/s, a maximum registered error of 7.1 m/s, and a
tandard deviation of 1.8 m/s, showing an improvement in the forecast values initially supplied from the database.

Once the inherent systematic forecast errors are corrected, we try to improve short-term forecasts used by
ontroller C2 with the goal of avoiding penalties.

This controller needs wind speed forecasts for the next 6 h. A dynamic correction is applied to the forecast for
he following 6 h by using a different predictor for each of the horizons (i.e., a bank of predictors). Each predictor
stimates at instant t the future wind speed at the rotor height at a future instant t + h as a function of v̂+(t + h|t)
the wind speed predicted from the app, adapted by and corrected by (2)), as well as v(t − j) (the registered wind
peed at previous instants adapted by ), and the wind speed that was estimated for that previous periods in previous
orecasts (i.e., v̂+(t − j |t − j), where v̂+(t − j |t − j) refers to the newest forecast that is available, but where the
nstant of update in the API is unknown but before t − j). This leads to a set of 6 different predictors, one for each
ime horizon h = 1, . . . , 6 as follows

v̂c(t + h|t) = ah + bh v̂
+(t + h|t) +

6∑
j=1

ch, j v̂
+(t − j |t − j) + dh, jv(t − j). (3)

ote that h is used in this case for both pointing to a future instant of time and enumerating the used predictor
rom the set of predictors, while t − j is used to point at an instant of time previous to the time of executing the
rediction (at t). The coefficients ah , bh , ch, j and dh, j of the six predictors are obtained through a linear regression
hat tries to fit the corrected predictions with the measured data in a given time window in a mean square sense. In
rder to obtain the coefficients, we try to fit, in the mean square sense, equations
v(t + h) = φ(t, h)θ (h), h = 1, . . . , 6

5
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Fig. 2. Comparison between the measured wind data (v(t)), predictions coming from OpenWeatherMap (v̂−(t |t − h)) and after its correction
(v̂c(t |t − h)), for horizon h = 1.

with

φ(t, h) =[
1 v̂+(t + h|t) v̂+(t − 1|t − 1) · · · v̂+(t − 6|t − 6) v(t − 1) · · · v(t − 6)

]
and

θ (h)T
=

[
ah bh ch,1 · · · ch,6 dh,1 · · · dh,6

]
for t = t0 + 6, . . . , t0 + N − 6 and h = 1, . . . , 6.

The improvement in prediction can be seen in Fig. 2, where we can appreciate the forecast supplied by the API
during a week for horizon h = 1 (i.e., using predictor number h = 1 from the set of 6 predictors), and its static
and dynamic corrections (i.e., we are showing the wind values v̂−(t |t − 1), v̂+(t |t − 1) and v̂c(t |t − 1)). We also
how the wind that was finally measured (and known a posteriori) to see how the dynamic correction helps us in
he short-term predictions.

We present in Table 2 different metrics for the wind forecast errors for the considered horizons (from h = 1 to 6
or v̂−(t +h|t), v̂+(t +h|t) and v̂c(t +h|t)), that are computed with the data set of 34 days with 24 real values v0(t)
er day and 6 different forecasts v̂−

0 (t + h|t) given by the OpenWeatherMap tool for each hour. We present average
alues (denoted as µ(·)), average absolute values (µ(| · |)) maximum absolute values (| · |max) and standard deviation
σ (·)) for the errors in the provided forecast by the API (denoted as e− and meaning e−

≡ v(t + h) − v̂−(t + h|t)
or each horizon h), the errors after applying the static correction (e+

≡ v(t + h) − v̂+(t + h|t)), and after applying
he dynamic one (ec

≡ v(t + h) − v̂c(t + h|t)). As the parameters of the different correction approaches have been
btained through least squares, the standard deviation is the index that shows a better performance in all cases.
e have also achieved an improvement of the errors in absolute terms for the dynamic correction for low horizons

h = 1 and h = 2), which will be profitable for the controller that tries to avoid penalties for not fulfilling the
ommitment (controller C2). The validation of this approach leads, for instance, to average absolute errors that go
rom 1.18 m/s (for h = 1) to 1.38 m/s (for h = 6). This dynamic correction leads to maximum prediction errors of
.4 m/s and 7 m/s for low horizons (h = 1 and h = 2, respectively), showing an improvement with respect to the
nitial static correction (see Table 2).

Once this wind speed is obtained, we apply the power curve of a commercial wind turbine to obtain the generated
ower, that is,

P = f (v). (4)
wind

6
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Table 2
Metrics to assess wind forecasts errors (in m/s) for different horizons.

h µ(e−) µ(e+) µ(ec) µ(|e−
|) µ(|e+

|) µ(|ec
|) |e−

|max |e+
|max |ec

|max σ (e−) σ (e+) σ (ec)

1 −0.8044 0.0072 0.0647 1.7630 1.3925 1.1789 9.5798 7.1745 5.4082 2.2498 1.7933 1.5117
2 −0.8042 0.0088 0.0900 1.7638 1.3924 1.2814 9.5798 7.1745 7.0853 2.2510 1.7936 1.6570
3 −0.8063 0.0083 0.1018 1.7645 1.3935 1.3332 9.5798 7.1745 7.1492 2.2514 1.7945 1.7276
4 −0.8069 0.0095 0.1054 1.7661 1.3939 1.3613 9.5798 7.1745 7.1735 2.2526 1.7952 1.7600
5 −0.8115 0.0065 0.1078 1.7644 1.3925 1.3802 9.5798 7.1745 7.7222 2.2495 1.7940 1.7772
6 −0.8151 0.0048 0.1053 1.7636 1.3923 1.3835 9.5798 7.1745 7.6679 2.2482 1.7943 1.7848

Table 3
Intraday market session characteristics.

Intraday market Gate closure Horizon

Session 1 15:00 24 h
Day D: 0:00–23:59

Session 2 17:50 28 h
Day D–1: 20:00–23:59
Day D: 0:00–23:59

Session 3 21:50 24 h
Day D: 0:00–23:59

Session 4 01:50 20 h
Day D: 4:00–23:59

Session 5 04:50 17 h
Day D: 7:00–23:59

Session 6 09:50 12 h
Day D: 12:00–23:59

As the wind turbine is assumed to be under control, that function includes the fact that the generated power is
limited to the rated power at high wind speeds. We compute P̂+

wind (t + i |t) for controller C1 using f (v̂+(t + i |t))
nd P̂c

wind (t + i |t) for controller C2 using f (v̂c(t + i |t)), i.e.,

P̂+

wind (t + i |t) = f (v̂+(t + i |t)), i = 1, . . . , 48

P̂c
wind (t + h|t) = f (v̂c(t + h|t)), h = 1, . . . , 6

.2. Electric market prices

This part of the tool is responsible for obtaining electricity market prices and processing them in order to obtain
forecast of the market prices for later use in both controllers.
The simulations of this work have been carried out for the Iberian electricity market, which is part of the European

roject called Price Coupling Regions (PCR), and that works as explained schematically in Fig. 3 and explained in
he following.

The day-ahead spot market is the main market, where agents submit 24 hourly energy purchase and sale offers
or the delivery day (denoted as day D) by 12:00 (gate closure) of the day before (D − 1). Each offer consists of
nergy, in MWh, and prices, in e/MWh.

In addition, already within D − 1 and during D, agents can adjust their contractual positions by purchasing
nd selling energy in the intraday market. This allows wind generators to reschedule their production with updated
orecasts. Instead of being continuous, this market is divided into six sessions, shown in Table 3 and Fig. 3, where
ew market operations are agreed as the delivery day (D) progresses. Fig. 4 shows the prices that are fixed during
he different sessions, where a dot indicates the instant of time from which those prices are applied, and the duration
f the prices correspond to the Horizon indicated in Table 3, as well as the red bar indicated in Fig. 3. These prices
re known at the times indicated as Gate closure in Table 3, and indicated with a green circle in Fig. 3.

Note that, as previously discussed, the purchase and sale bids in the day-ahead and intraday markets consist of
wo quantities: energy amount and minimum price to be accepted. However, in this work we omit the latter because

he minimum acceptable price for the wind farm, as for other renewable sources, is always set to 0 in order to assure

7
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Fig. 3. Sequencing of day-ahead and intraday markets scheduling.

Fig. 4. Prices of day-ahead and intraday markets (24 May 2021).

the participation in the market at whichever price it closes, avoiding the opportunity cost of not generating when
there is enough wind speed. Furthermore, the final market price is the result of bargaining. In this sense, the offers
made by the wind farm could potentially change the market results. In this work, however, we consider that the
total power of the wind farm is not high enough to affect the market result and, therefore, the wind farm is a price
taker. In the literature there are different approaches for the market strategy of a wind farm when it is considered
a price maker based, for instance, in game theory [20].

One of the problems faced by the algorithm to optimize the committed energy (controller C1) is that the price
curves are not known at the moment when the commitment is made, since they are published after the gate closure.

For this reason, it is necessary to carry out a prediction of the market price curves, making use of historical
price data that can be found on the e·sios website [9], which belongs to the Spanish TSO. For this prediction, more
than the exact price for each hour, it stands out to know the hours in which the price reaches its maximum and its
minimum, since the controller C1 is in charge of trying to discharge the ESS in the hours of higher prices (to sell
the stored energy) and in charge of trying to send the wind acquired energy to the ESS in the hours of lower prices
(to sell later this stored energy in higher prices periods), and thus maximize the benefit of the wind farm. In this
sense, we can understand the ESS as a system to time-coupling the energy selling curve to the electricity market
prices curve as much as possible.
8
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Fig. 5. Comparison of real market prices and the prediction for h = 24.

In order to predict the prices for the next 48 h, needed by controller C1, the following set of predictors
h = 1, . . . , 48) is proposed

p̂e(t + h|t) = ah + bh pe(t + h − 48) +

4∑
j=1

ch, j pe(t + h − i · 7 · 24) (5)

where p̂e(t + h|t) refers to the predicted price for instant t + h computed at instant t using predictor numbered
h from the set of available 48 predictors, pe(t) refers to the registered prices in e·sios for the daily market, and
j is used to enumerate the past week whose recorded values are used for the prediction. Note that, at time t , all
he terms in the right hand side refer to past known values: prices of the previous 4 weeks at the same time and
eek day that is being predicted (the time index t + h − j · 7 · 24 with j = 1, . . . , 4), and the price of the same

ime of the day 48 h ago (the time index t + h − 48). Also note that for some instants of time t + h, the price may
e already known and may be different depending on the market (day-ahead or intraday). However, even if values
re known, we still make a prediction for those prices as our aim is to capture the price dynamics, not its exact
alue. The coefficients ah , bh and ch, j of each of the 48 predictors have been obtained using data from a 5-month
ime window and using least squares to fit the predicted prices to the finally registered ones, as detailed in the wind
redictors. As an example, Fig. 5 shows the real prices and one of the 48 forecasts (for h = 24) during seven
ays.

In order to assess the goodness of the set of predictors p̂e(t + h|t) in (5) for the different considered horizons
from h = 1 to 48) we use the data set of 5 months with 24 real values pe(t) per day. With these prediction errors
e compute the mean absolute error leading to 12.7 e/MWh.
Although this error is not negligible, it can be seen how we capture the evolution throughout the day for most of

he time (mainly the higher and lower peaks within a day), which helps the predictive controller to decide storing
r injecting energy depending on the relative prices between periods.

The Iberian market also has a two-price system for settling imbalances. The imbalance price is the same as the
arket price for producers who do not contribute to the net imbalance of the system and a price with a penalty

n the market price for those who do contribute. As an example, Fig. 6 shows the prices for a given day for the
ay-ahead market as well as positive and negative imbalances. Notice the negative imbalance price can never be
ower than the day-ahead whereas the positive imbalance can never be higher. In this work we use notation pe(t)
or normal price, and pe,pi (t) and pe,ni (t), for positive and negative imbalances, respectively. Therefore, from the
revious statement it follows that

p (t) ≤ p (t) ≤ p (t).
e,pi e e,ni

9
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Fig. 6. Prices of the daily market and the positive and negative imbalances (24 May 2021).

We use the average value of those imbalance prices in relative terms with respect to the normal price as an
stimation for the penalties in the imbalances, leading to p̂e,pi (t) = 0.9 pe(t) and p̂e,ni (t) = 1.1 pe(t). Thus the
esulting income of a generator is its power commitment multiplied by the electricity price and, in the case of
mbalance (Psale ̸= Pcom) its either added its overproduction multiplied by the price of the positive imbalance is or
ubtracted its underproduction multiplied by the price of the negative imbalance.

.3. C1 controller

This block takes as its starting point the wind forecasts given by the OpenWeatherMap API, with the previously
ntroduced height adaptation, static correction (v̂+(t + i |t)) and translation to power units (with P̂+

wind (t + i |t) =

f (v̂+(t +i |t))), the calculated market price forecasts ( p̂e(t +h|t)), (both with a horizon up to 48 h) and the measured
ctual state of charge of the battery SOC(t) in percentage of the battery capacity Cbat . The aim of this controller
s to obtain market commitments for the energy generated, so that, depending on the battery charge level at each
alculation instant, the pertinent computations will be carried out in order to obtain the amount of energy that is
xpected to be fed to the grid and the amount to be stored in (or taken from) the battery. This calculation will be
ade prior to the close of each electricity market (daily or intraday).
C1 controller consists of a model predictive controller which, at each instant it is executed, requires the following

ptimization problem to be solved:

max
Pcom ,PC1

bat ,SOCC1

48∑
i=1

( p̂e(t + i |t) · Pcom(t + i)) (6)

subject to SOCC1(t) ≡ SOC(t)
subject for i = 1, . . . , 48 to

Pcom(t + i) + PC1
bat (t + i) ≤ P̂+

wind (t + i |t)

SOCC1(t + i) =

{
SOCC1(t − 1 + i) +

100 ηc
Cbat

PC1
bat (t + i) δt , PC1

bat (t + i) ≥ 0

SOCC1(t − 1 + i) +
100

Cbat ηd
PC1

bat (t + i) δt , PC1
bat (t + i) < 0

SOCC1(t + 48) =
SOCmin + SOCmax

2
SOC ≤ SOCC1(t + i) ≤ SOC
min max

10
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ST F − Pcom(t + i) ≥ 0

− PbatN < PC1
bat (t + i) < PbatN

here t is the time in which the calculations are made, p̂e(t + i |t) is the market price forecast for hour t + i
alculated at instant t (that is obtained with predictor number h = i in (5)), Pcom(t + i) is the power commitment
uring hour t + i , PC1

bat (t + i) is the charge or discharge power of the battery during the hour t + i , P̂+

wind (t + i |t)
s the wind power generation forecast during hour t + i , SOCC1(t + i) is the expected state of charge (SOC) at
he end of hour t + i , Cbat is the capacity of the battery in Wh, SOCmin is the minimum SOC , SOCmax is the

aximum SOC , ST F is the transformer power rating, and PbatN is the nominal charging and discharging power
f the battery. δt refers to the sampling period (one hour), and ηc and ηd refer to the battery efficiency for charge
nd discharge, respectively. The decision variables Pcom , PC1

bat , SOCC1 must be understood as the set of variables
Pcom(t + i)}, {Pbat (t + i)}, {SOCC1(t + i)} with i = 1, . . . , 48, plus SOCC1(t) that is used just for coherence in
he notation (and is equal to the measured SOC(t)).

Note that this algorithm is executed during the periods indicated with a green circle in Fig. 3, i.e., a total of
even times during the day. Therefore, for each of the sessions, we must understand that we send to the market
perator the commitments subset {Pcom(t + i)} where t + i includes the periods of time indicated with a red bar
n Fig. 3 for each of the sessions and indicated as Pcom(t) in Fig. 1.

Note also that we have chosen a horizon of 48 h although the applied values will be only a subset of the computed
alues, as the market requires updates in different sessions. However, we use this horizon to prevent the system
f further high deviations of wind or prices, and in order to set a long-term desire of achieving an intermediate

SOC in the battery after 48 h of the computation. This constraint prevents the algorithm from falling in extreme
ituations such as trying to sell all the stored energy in the battery at the end of the horizon.

The proposed optimization problem is non-linear due to the expression of SOC update, which changes depending
n the sign of the power (charge or discharge process during the period). This kind of non-linearity can be addressed
s a Sequential Least Square Program (SLSQP), for which there are efficient solvers available in Python [13], used
n this work for the implementation.

With the assumption of a unitary battery efficiency for both charge and discharge, the SOC update equation
educes to

SOCC1(t + i) = SOCC1(t − 1 + i) +
100
Cbat

PC1
bat (t + i) δt

nd, with this, problem (6) can be formulated as a Linear Program (LP) [7], for which there are also many available
olvers in Python.

Furthermore, problem (6) can also be reformulated as a Linear Program even with non-unitary efficiency by
efining two different power sequences (charging and discharging) and taking advantage of the fact that, because
f the formulation of the problem itself, one of the two values will always be zero. Details are omitted here for
revity but a very similar strategy can be found in [17].

.4. C2 controller

This second controller is responsible for calculating the charge or discharge of energy that the battery will perform
or the next hour. This way, this controller is the one that decides the amount of energy that is in fact sold and the
mount that goes to the battery at each hourly period. The goal of this controller, when deciding how to act in the
ind farm, is to overcome previous prediction errors and, thus, wrong decisions (commitments previously given to

he market operator during the computation of C1). In that sense, this controller uses a lower time horizon (6 h),
nd it is executed periodically each hour.

To do this, the controller will take as its starting point the wind forecasts together with the measurement records
or each of the last 6 h and it will use them to make a dynamic forecast correction for the following 6 h, as
xplained in Section 3.1. This will be used with the turbine manufacturer equation to calculate a new generation
orecast of the wind farm which will be compared with the commitment previously given by C1 controller (Pcom)
nd the measured SOC at the instant of calculation, i.e. SOC(t). In this way, it is calculated a new sequence of
ower values, Psale, which is intended to minimize the penalties due to deviations between the expected and actual
eneration. If the wind and prices predictions used during the execution of C1 fit the real values, the output of
11
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his controller Psale will keep the previously computed target values for Pcom . If that is not the case, this controller
considers the cost of imbalances to decide the optimal deviation from Pcom that assures the higher profit.

In Fig. 3 we appreciate with a black square the commitments Pcom that act as an input for C2 controller depending
on the hour of the day when it is executed. The following optimization problem is proposed for that purpose

max
Psale,PC2

bat ,SOCC2

6∑
i=1

(pe(t + i |t) · Pcom(t + i) + π (t + i) · d(t + i)) (7)

subject to SOCC2(t) ≡ SOC(t)

subject for i = 1, . . . , 6 to

d(t + i) = Psale(t + i) − Pcom(t + i)

π (t + i) =

{
p̂e,pi (t + i), d(t + i) > 0

p̂e,ni (t + i), d(t + i) < 0

Psale(t + i) + PC2
bat (t + i) ≤ P̂c

wind (t + i |t)

SOCC2(t + i) =

{
SOCC2(t − 1 + i) +

100 ηc
Cbat

PC2
bat (t + i) δt , PC2

bat (t + i) ≥ 0

SOCC2(t − 1 + i) +
100

Cbat ηd
PC2

bat (t + i) δt , PC2
bat (t + i) < 0

SOCmin ≤ SOCC2(t + i) ≤ SOCmax

ST F − Psale(t + i) ≥ 0

− PbatN < PC2
bat (t + i) < PbatN

here Psale(t + i) is the decided sale to the market at each time, pe(t + i |t) are the already known prices for the
ctive session in which controller C2 is being executed, P̂c

wind (t + i |t) is the wind power generation forecast during
our t+i that makes use of the dynamic correction (P̂c

wind (t+i |t) must be understood as the prediction P̂c
wind (t+h|t)

sing predictor number h = i in (3) to generate the wind speed forecasts that generates that power value). Value d(t)
efers to the deviation between commitment and the injected power, and π (t) is the estimated penalty cost that may
e different depending on the sign of the deviation (with costs p̂e,pi (t) and p̂e,ni (t), as explained in Section 3.2).
he decision variables Psale, PC2

bat , SOCC2 must be understood as the set of variables {Psale(t + i)}, {Pbat (t + i)},
SOCC2(t + i)} with i = 1, . . . , 6, plus SOCC2(t) that is used just for coherence in the notation (and is equal to the
easured SOC(t)). From this set of values, we must understand that we finally only apply the value Psale(t + 1),

s a moving horizon strategy is applied. The output of this controller fits the real-time control of the wind farm
ncluded in the simulator block in Fig. 1, where this C2 controller output is denoted as Psale(t).

In this case, because of the non-linearity of the penalty cost function π and the consideration of the charge and
ischarge efficiency, we have again a non-linear optimization problem that can be formulated as a Sequential Least
quare Program, or, analogously to Section 3.3, it can be translated into a Linear Program using the same ideas as

n [17].
In this work we have used SLSQP to solve the above presented optimization problems, and each problem (at

ach sampling time) is solved in less than one second for the selected time horizons.

.5. Simulator

This block is in charge of performing the calculations of the energy fed to the grid and updating the SOC
ssuming that the wind farm is operating with a wind equal to the measured one (after applying Hellman’s law).
n this sense, the block does not correspond to any specific control algorithm, but this update is carried out during
he execution of the algorithms of both controllers to assess the proposal in a simulation framework and in order to
chieve a realistic situation in which the decided power values to sell or store may in fact be unfeasible and, thus, a
orrection in the time of application must be done. In that sense, in the simulator, the injected Psale or stored Pbat

nergy are modified with respect to the one decided in the controller C2. We call the finally applied values Papp
sale

nd Papp
bat . The correction will try to fit the finally injected power to the one that was decided to sell (Psale) in C2
s far as the available wind power and charge of the battery allows it.

12
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The simulation and correction algorithm works as follows. At instant t the simulator is in charge of updating
he real value for the battery SOC(t) and it has as inputs the values for power injection during t decided in C2
t t − 1 (i.e. Psale(t)), the real available wind power by means of v(t) and Hellman’s law, leading to Pwind (t), the
ommitted power for that period decided in controller C1 (Pcom(t), used for the computation of the real income),
nd the real electricity prices pe(t), pe,pi (t) and pe,ni (t) (see Fig. 1).

In this block we first compute the decision for the battery power injection or absorption to be applied (Papp
bat )

nd the power injection to the grid (Papp
sale ). Then, we update the SOC of the battery with Papp

bat and compute the
ncome with Papp

sale . In the following we detail those computations.
First, the actual room for battery charge or discharge is computed as

Pbat,max(t) = min
(

Cbat

100 ηc δt
(SOCmax − SOC(t − 1)), PbatN

)
, (8a)

nd

Pbat,min(t) = max
(

Cbat ηd

100 δt
(SOCmin − SOC(t − 1)), −PbatN

)
, (8b)

respectively, where the available room as well as the nominal power value for the battery have been used for both
positive and negative limits.

Then, the required use of battery to fulfill the desired power injection to the grid Psale is computed as

Pbat,req (t) = Pwind (t) − Psale(t). (8c)

With the required battery use and its limits, the power that is ultimately injected into or extracted from the battery
is computed as

Papp
bat (t) =

⎧⎪⎨⎪⎩
Pbat,min(t), Pbat,req (t) ≤ Pbat,min(t),
Pbat,req (t), Pbat,min(t) < Pbat,req (t) < Pbat,max(t),
Pbat,max(t), Pbat,req (t) ≥ Pbat,max(t).

(8d)

ere, if the battery has room for the required energy injection or absorption, the required power is the applied one,
f not, we apply the maximum or minimum possible value (depending on the sign of Pbat,req ). The final sale for
ower injection is given by

Papp
sale (t) =

⎧⎪⎨⎪⎩
Pwind (t) − Pbat,min(t), Pbat,req (t) ≤ Pbat,min(t),
Psale(t), Pbat,min(t) < Pbat,req (t) < Pbat,max(t),
Pwind (t) − Pbat,max(t), Pbat,req (t) ≥ Pbat,max(t),

(8e)

hat is, a value that depends on the available wind power and the power interchange with the battery.
Finally, with the previous decided values, the SOC is updated as

SOC(t) =

{
SOC(t − 1) +

100 ηc
Cbat

Papp
bat (t) δt , Papp

bat (t) ≥ 0

SOC(t − 1) +
100

Cbat ηd
Papp

bat (t) δt , Papp
bat (t) < 0

(8f)

nd the resulting income I (t) during hour t is computed as

I (t) =

⎧⎪⎪⎨⎪⎪⎩
[

pe(t)Pcom(t) + pe,ni (t)(Papp
sale (t) − Pcom(t))

]
δt , Papp

sale (t) < Pcom(t),[
pe(t)Papp

sale (t)
]
δt , Papp

sale (t) = Pcom(t),[
pe(t)Pcom(t) + pe,pi (t)(Papp

sale (t) − Pcom(t))
]
δt , Papp

sale (t) > Pcom(t),

(8g)

here the penalties have been taken into account.

. Results

In this section we present the results of applying the control strategy to the given wind farm for 37 days, between
1/05/2021 and 26/06/2021, when using a Cbat = 48960 kWh battery with a nominal power of 24 MW for a 48.3
W wind farm. We propose the use of a battery that assures a 20-year lifespan (according to manufacturers), which
13
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Fig. 7. Energy commitment with battery (14 June 2021).

Fig. 8. Actual and predicted daily market prices (14 June 2021).

implies using states of charge between SOCmin = 20% and SOCmax = 80% with respect to the capacity Cbat . That
eans that the battery can store the equivalent of 0.6 h of the generation of the wind farm at its rated power. For

he numerical example we also neglect the effect of the charging and discharging efficiencies (ηc = ηd = 1), which
oes not fundamentally change the results or the conclusions.

Both proposed controllers need the wind power and price forecasts given by the predictors introduced and
ssessed in previous sections of the work to support the theoretical explanations. In this section we omit the details
bout these forecasts to focus our attention on the coordinated work of the two controllers. The simulator is used to
ssess the behavior in terms of decisions about power commitment, sale or storage, and its influence in the reached
ncome.

Figs. 7 and 8 show, respectively, the resulting commitment when applying C1 controller and the actual and
orecast prices for the daily market. Fig. 9 shows the real wind speed for the same day, where we can appreciate
hat the available wind power and the evolution of market prices have different dynamics that must be faced through
he use of the ESS. We see how in the period from 00:00 to 05:00 the controller decides to store energy to be able
o sell it (discharging the battery) from 7:00, where the profits are higher, which demonstrates the effectiveness of
14
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Fig. 9. Measured and predicted wind (14 June 2021).

Fig. 10. Battery state of charge correction through controller C2.

the controller. In a comparable way, we see that at 15:00 the prices are lower and then the sale commitment is
lower at that period, storing the energy available from the wind in order to sell it around 20:00, when the prices
are higher.

In order to check the real effectiveness of the proposal, a simulation with the real measured wind is performed
and assessed with the real price for that day. Fig. 10 shows the predictions for the battery state of charge during the
optimization procedure in C1 (internal variable SOCC1 in C1), together with the estimated one to store internally
in the computation of C2, i.e., SOCC2, and the one finally obtained in the simulated system, (i.e., SOC), where the
eal measured wind has been used, showing the effectiveness of the two layers optimization. Here we appreciate
hat C2 takes into account a strong variation of the wind speed with respect to the initial forecasts used in C1), and,
herefore, modifies the decision for power sell with respect to the initially committed values taking into account the
enalties for power imbalance.

The proposed strategy has also been evaluated without the use of a battery to assess the benefits of including it
running the proposed algorithm with SOCmin = 50% and SOCmax = 50%). The economic return in the simulated
eriod without batteries has been 661 678 e, and with batteries, 691 215 e. In order to make this approach feasible
ith a return time of 20 years, the battery should have a price lower than 119.03 e/kWh.
15
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The previous simulations have also been evaluated with a battery of 5100 kWh (equivalent to around 6 min
apacity), leading to a benefit of 667 149 e. In that case, the price needed for the batteries to have a 20-year return
ould be 211.65 e/kWh.

. Conclusions

In this work we have addressed the problem of controlling a wind farm with energy storage when facing an
lectricity market with time-varying prices in several daily and intraday sessions with penalty policies for power
mbalance between previous commitments and injected energy. The control strategy decides the power commitment
ransmitted to the market operator, the amount of available wind energy that is injected to the grid, and the

anagement of the ESS in terms of storing wind energy or selling stored energy.
The controller structure includes predictors for wind power and electricity prices, and a cascade of two model

redictive controllers. The master controller is the one devoted to deciding the commitment that is transmitted to the
arket operator, and it is executed when the electricity market requires it in the different daily or intraday sessions.
he slave controller is executed hourly and tries to maximize the benefit by means of using better estimations of

he fore-coming wind speed and taking into account the penalties for power imbalance.
We have developed several predictors for wind power estimation taking into account the different needed horizons

nd the instants of time when they are needed. We have presented two optimization problems that must be solved
t different instants of time and that use different inputs and outputs, and we have finally presented how to simulate
he real behavior to assess the proposal.

With this, the tool has been proven useful to maximize the profit of a wind farm equipped with a battery. The
dequate estimation achieved for both wind and electricity prices, especially in the short-term, together with a
orrect programming of both controllers, allows a good adjustment of energy commitments in the intraday market,
o minimize penalties. However, the proposal shows that, even with the proposed structure, the use of batteries
ould only be beneficial for small capacities and with a price per kWh which has been estimated to be lower

han what lithium-ion technology currently has. For this reason, alternative uses for batteries other than minimizing
mbalances are being sought, such as the provision of ancillary services. Future research includes the use of batteries
or these services, and design of predictors for power imbalance prices as well as for ancillary services prices.
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