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a b s t r a c t

We give new probabilistic results for a class of random two-dimensional homoge-
neous heat equations with mixed homogeneous Dirichlet and Neumann boundary
conditions and an arbitrary initial condition on a rectangular domain. The
diffusion coefficient is assumed to be an arbitrary second-order random variable,
while the initial condition is a stochastic process admitting a Karhunen-Loève
expansion. We then construct pointwise convergent approximations for the main
moments and the density of the solution. The theoretical results are numerically
illustrated.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In contrast to deterministic scenarios, random partial differential equations (RPDEs) consider coefficients,
boundary values, and initial conditions as random variables or stochastic processes because, in practice,
these terms are contaminated by uncertainties coming from error measurements or the partial knowledge
of phenomena they try to model. The solution (in the classical sense) is then a smooth random field,
and the primary objective is not only to obtain a solution, whether exact or approximate, but also to
determine its main probabilistic information, such as the first moments (mean and variance) and finite
distributions (fidis) [1]. To achieve this goal, a smart combination of deterministic methods for solving
PDEs and probabilistic techniques is often required. As it shall be seen later, in this paper, we will take
advantage of combining the method of separation of variables for solving certain PDEs with the Karhunen-
Loève expansion and the Random Variable Transformation technique, which are genuine probabilistic tools,
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in order to solve the following class of 2D-random heat equation on a bounded rectangle:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut = β∆u, 0 < x < l1, 0 < y < l2, t > 0,

ux(0, y, t) = ux(l1, y, t) = 0, 0 ≤ y ≤ l2, t > 0,

u(x, 0, t) = u(x, l2, t) = 0, 0 ≤ x ≤ l1, t > 0,

u(x, y, 0) = f(x, y), 0 ≤ x ≤ l1, 0 ≤ y ≤ l2.

(1.1)

ere, ∆u := uxx + uyy is the Laplacian operator. There are mixed homogeneous Dirichlet and Neumann
oundary conditions and uncertain inputs. The diffusion coefficient β is a positive random variable, and the

nitial condition f is a random field, both defined on a complete probability space (Ω , F ,P) with outcomes
∈ Ω . The solution or output, u = u(x, y, t; ω) (or u = u(x, y, t) by simply hiding the ω-notation) is

smooth random field. Throughout the paper, we will work by combining the deterministic and random
ebesgue spaces, Lp, p = 1, 2, defined on convenient sets of Rn or Rn × Ω , n = 1, 2, respectively, and
he corresponding Lebesgue measure [2]. The paper extends previous work on the one-dimensional random
eat equation and related problems to the bi-spatial dimensions [3–5]. Furthermore, the results that shall
e presented in this paper can help to deal with the rigorous analysis of heat transfer in 2D (rectangular)
omains when experimental data are available [6].

The paper is organized as follows. In Section 2, we analyze under which conditions the stochastic
roblem (1.1) has a pathwise and a mean-square solution by taking as a candidate the formal infinite series
rom the method of separation of variables. In Section 3, we construct approximations of the 1-PDF of the
olution by representing the initial condition utilizing the Karhunen-Loève expansion. It allows us to obtain
eliable approximations of its main moments. Section 4 shows an example illustrating the main theoretical
ndings. Conclusions are drawn in Section 5.

. Stochastic pathwise and mean-square solution. Mean and variance

From the method of separation of variables, it can be seen, using classical techniques, that the formal
eries solution of problem (1.1) is given by

u(x, y, t) =
∞∑

m=0

∞∑
n=1

am,ne−((m/l1)2+(n/l2)2)π2βtϕm,n(x, y),

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a0,q = 2
l1l2

∫ l1

0

∫ l2

0
f(x, y)ϕ0,q(x, y) dy dx,

q ≥ 1,

ap,q = 4
l1l2

∫ l1

0

∫ l2

0
f(x, y)ϕp,q(x, y) dy dx,

p, q ≥ 1,

(2.1)
here {ϕp,q(x, y) = cos(pπx/l1) sin(qπy/l2) : p = 0, 1, 2, . . . , q = 1, 2, . . .}.
We analyze under which conditions u is a pathwise and a mean-square solution [7,8]. Pathwise solution

eans that its sample-paths (i.e. the real functions obtained when fixing each ω ∈ Ω) are solutions in the
lassical sense. Mean-square solution means that limits, continuity, differentiability, etc., are considered in
he topology of L2(Ω ; dP). In applications, mean-square convergence approximates the expectation and the

variance of u(x, y, t).

Theorem 2.1. If f ∈ L2([0, l1] × [0, l2] × Ω), then the series (2.1) converges almost surely for t > 0 and
can be differentiated termwise. For t = 0, it converges in L2([0, l1] × [0, l2]) and also almost everywhere on
[0, l1] × [0, l2], almost surely. If, in addition, β(ω) ≥ βmin > 0 almost surely, then the series (2.1) converges

in the mean-square sense for t > 0 and can be mean-square differentiated termwise.
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Proof. By Jensen’s and Hölder’s inequalities [2],

|ap,q(ω)| ≤ 4
l1l2

∫ l1

0

∫ l2

0
|f(x, y; ω)|dy dx ≤ C∥f(x, y; ω)∥L2([0,l1]×[0,l2]), ∥ap,q∥L2(Ω) ≤ C∥f∥L2([0,l1]×[0,l2]×Ω),

(2.2)
for p = 0, 1, 2, . . ., q = 1, 2, . . ., where C > 0 is a constant independent of (p, q). In particular, the sequence
of random coefficients is uniformly bounded, almost surely and in the mean-square sense.

Due to the exponential terms e−((m/l1)2+(n/l2)2)π2β(ω)t, t > 0, the series (2.1) converges almost surely.
The series can also be differentiated termwise [9, theorem 9.14]. When β(ω) ≥ βmin > 0 almost surely, we
have

e−((m/l1)2+(n/l2)2)π2β(ω)t ≤ e−((m/l1)2+(n/l2)2)π2βmint, t > 0,

and the series (2.1) is mean-square convergent. Also, it is mean-square differentiable termwise [3, theo-
rem 3.1].

For t = 0, the Fourier series of (x, y) ↦→ f(x, y; ω) is obtained. By theory of harmonic analysis [10], it
converges in L2([0, l1] × [0, l2]) and also almost everywhere on [0, l1] × [0, l2], almost surely. □

3. Probability density function and main statistics

The approximation of the 1-PDF of u = u(x, y, t) requires a finite-dimensional random space. This may
not be the case when f is a random field. A possible way of reducing dimensionality in random space is
by means of an analytical representation. The Karhunen-Loève expansion, based on the spectrum of the
covariance integral operator of the field, is an optimal representation in the mean-square sense. If a finite-
term Karhunen-Loève expansion of f is employed, then the corresponding approximation of f will depend
on a finite number of random variables [2].

Let us denote the process by f(x, y; ω), ω ∈ Ω . Let f(x, y) be the mean of f(x, y; ω). Let {ϕi(x, y), λi} be
the set of eigenfunctions and (non-negative) eigenvalues of the covariance integral operator associated with
f , i.e., ∫ l1

0

∫ l2

0
Cov[f(x1, y1), f(x2, y2)]ϕi(x2, y2) dy2 dx2 = λiϕi(x1, y1).

The set {ϕi(x, y)} is an orthogonal basis of L2([0, l1] × [0, l2]). Then

f(x, y; ω) = f(x, y) +
∑

i

√
λi ϕi(x, y)ξi(ω), ω ∈ Ω ,

n the mean-square sense in non-random and random space, where ξi(ω) are zero-mean and pairwise
ncorrelated random variables. If f is Gaussian, then ξi are normal and independent. The truncation of
he infinite series to a finite partial sum is determined by the rapidity of convergence, which depends upon
he decay of the eigenvalues λi.

Fixed ω ∈ Ω , the initial condition f(x, y; ω) may be expanded as a Fourier series in L2([0, l1] × [0, l2]), in
erms of {ϕp,q(x, y) = cos(mπx/l1) sin(nπy/l2) : m = 0, 1, 2, . . . , n = 1, 2, . . .}:

f(x, y; ω) =
∞∑

m=0

∞∑
n=1

am,n(ω)ϕm,n(x, y), ω ∈ Ω .

his is a Karhunen-Loève expansion of f when the Fourier coefficients {am,n} are pairwise uncorrelated
andom variables. For many applications, one considers random coefficients {am,n} that are independent.

When a closed-form solution exists, with a finite number of random inputs, the 1-PDF of a random
ifferential equation may be obtained by means of the random variable transformation technique [11,12].
n our case, we have an infinite series. The random dimensionality needs to be reduced by truncating the
eries. So, let

uN (x, y, t) =
N∑ N∑

am,ne−((m/l1)2+(n/l2)2)π2βtϕm,n(x, y) (3.1)

m=0 n=1

3
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be the Nth partial sum of (2.1). Let gN (u; x, y, t) be its 1-PDF, evaluated at u ∈ R. It can be computed
y using the random variable transformation technique. Intuitively, gN (u; x, y, t) ≈ g(u; x, y, t) for N large

enough, where g(u; x, y, t) is the 1-PDF of the exact solution u(x, y, t) (2.1). Later, we will provide sufficient
conditions to guarantee this convergence.

Lemma 3.1. Suppose that the random variable β, the random variable a0,1 and the random vector
(ap,q : (p, q) ∈ DN ) are absolutely continuous and independent, where DN = {(p, q) : p = 0, 1, 2, . . . , N, q =
1, 2, . . . , N, (p, q) ̸= (0, 1)}. Then

gN (u; x, y, t) = 1
sin(πy/l2)E

⎡⎣ga0,1

⎛⎝ eπ2βt/l2
2

sin(πy/l2)

⎧⎨⎩u −
∑

(m,n)∈DN

am,ne−((m/l1)2+(n/l2)2)π2βtϕm,n(x, y)

⎫⎬⎭
⎞⎠ eπ2βt/l2

2

⎤⎦ ,

(3.2)
or 0 < x < l1, 0 < y < l2 and t > 0, where ga0,1 is the PDF of a0,1.

roof. Let (x, y, t) be arbitrary but fixed in (0, l1) × (0, l2) × (0, ∞). Then, we apply the random variable
ransformation technique with the following transformation mapping

G(a0,1, (ap,q : (p, q) ∈ DN ), β) = (uN (x, y, t), (ap,q : (p, q) ∈ DN ), β) .

he inverse mapping, H, is given by

H(u, (ap,q : (p, q) ∈ DN ), β) =

⎛⎝ eπ2βt/l22

sin(πy/l2)

⎧⎨⎩u −
∑

(m,n)∈DN

am,ne−((m/l1)2+(n/l2)2)π2βtϕm,n(x, y)

⎫⎬⎭ ,

(ap,q : (p, q) ∈ DN ), β

⎞⎠ .

he Jacobian of the inverse mapping H is

J(H(u, (ap,q : (p, q) ∈ DN ), β)) = eπ2βt/l22

sin(πy/l2) > 0, 0 < y < l2,

ince the corresponding matrix of partial derivatives is triangular. Then, by the random variable transfor-
ation technique, the PDF of the random vector (uN , ap,q, β)(ω) := (uN (x, y, t), (ap,q : (p, q) ∈ DN ), β)(ω)

s given by

g(uN ,ap,q ,β)(u, ap,q, β) = g(a0,1,ap,q ,β)(H(u, ap,q, β))JH(u, ap,q, β)

= ga0,1

⎛⎝ eπ2βt/l22

sin(πy/l2)

⎧⎨⎩u −
∑

(m,n)∈DN

am,ne−((m/l1)2+(n/l2)2)π2βtϕm,n(x, y)

⎫⎬⎭
⎞⎠

× gap,q (ap,q)gβ(β) eπ2βt/l22

sin(πy/l2) ,

here we have applied the independence assumption for the inputs a0,1, (ap,q : (p, q) ∈ DN ) and β. By
arginalizing with respect to (ap,q : (p, q) ∈ DN ) and β, the density gN (u; x, y, t) is obtained. Finally,

observe that this marginal density can be written via an expectation of random variables (ap,q : (p, q) ∈ DN )
and β, by the independence. □

Now, we give sufficient conditions in order to guarantee the probability density function, gN (u; x, y, t),
computed in Lemma 3.1 converges pointwise and in L1(R; du).
4
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Theorem 3.2. Suppose that the random variable β, the random variable a0,1 and the random vector
(ap,q : (p, q) ∈ DN ) are absolutely continuous and independent, where DN = {(p, q) : p = 0, 1, 2, . . . , N, q =
1, 2, . . . , N, (p, q) ̸= (0, 1)}. Assume that f ∈ L2([0, l1] × [0, l2] × Ω), ga0,1 is almost everywhere continuous
on R, bounded on R, and E[eπ2βt/l22 ] < ∞. Then

lim
N→∞

gN (u; x, y, t) = g(u; x, y, t)

or almost every u ∈ R, where 0 < x < l1, 0 < y < l2 and t > 0. The limit also holds in L1(R; du).

Proof. The sequence

ΛN (ω) = eπ2β(ω)t/l22

sin(πy/l2)

⎧⎨⎩u −
∑

(m,n)∈DN

am,n(ω)e−((m/l1)2+(n/l2)2)π2β(ω)tϕm,n(x, y)

⎫⎬⎭
converges almost surely to Λ(ω) = ΛN=∞(ω) (recall that the sequence of random coefficients, am,n(ω), is
uniformly bounded, see (2.2)). Since ga0,1 is almost everywhere continuous on R,

ga0,1(ΛN (ω)) N→∞−→ ga0,1(Λ(ω))

almost surely, by the continuous mapping theorem [13, page 7, theorem 2.3]. Since ga0,1 is bounded on R
and E[eπ2βt/l21 ] < ∞, the dominated convergence theorem [14, result 11.32, page 321] applies:

gN (u; x, y, t) = 1
sin(πy/l2)E

[
ga0,1(ΛN (ω))eπ2βt/l22

]
N→∞−→ 1

sin(πy/l2)E
[
ga0,1(Λ(ω))eπ2βt/l22

]
= g(u; x, y, t).

his proves the pointwise convergence. Finally, convergence in L1(R; du) follows from Scheffé’s lemma [15]
this lemma states that, for PDFs, pointwise convergence implies convergence in L1(R; du)). □

For applications, one considers the density function gN (u; x, y, t) as an approximation of g(u; x, y, t). The
xpectation that defines gN (u; x, y, t) can be computed using

E[r(u(x, y, t))] ≈ E[r(uN (x, y, t))] =
∫
RN2+N

r(u)gN (u; x, y, t) dβ dap,q, (p, q) ∈ DN . (3.3)

If r(z) = zi, i = 1, 2, one obtains the approximations of the first two moments E[(u(x, y, t))i], and hence of
the variance of u(x, y, t).

Higher one-dimensional moments can be calculated similarly by taking r(z) = zl, l = 3, 4, . . .. The
foregoing integrals often require quadrature rules of integration. In practice, they are computable when the
random dimensionality is low or moderately large. The expectation should be estimated by Monte Carlo
techniques for large random dimensionality.

Remark 3.3. Here, we give an alternative approach to obtain an explicit expression for the approximation of
the expectation and the covariance (hence, the variance) of uN (x, y, t) taking advantage of the representation
(3.1). Indeed, using the linearity of the expectation operator and the independence between am,n and β, one
gets

E[uN (x, y, t)] =
∑

(m,n)∈DN

E[am,n]E[e−((m/l1)2+(n/l2)2)π2βt]ϕm,n(x, y), (3.4)

where ϕm,n(x, y) is defined after (2.1). Now, recall that the covariance field is given by
Cov[uN (x, y, t1)uN (x, y, t2)] = E[uN (x, y, t1)uN (x, y, t2)] − E[uN (x, y, t1)]E[uN (x, y, t2)]. (3.5)
5
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Clearly, the two last expectations can be calculated evaluating (3.4) at t = t1 and t = t2, respectively, while
he first expectation can be expressed as

E[uN (x, y, t1)uN (x, y, t2)] =
∑

(m,n),(p,q)∈DN

E[am,nap,q]E[e−((m/l1)2+(n/l2)2+(p/l1)2+(q/l2)2)π2βt]

× ϕm,n(x, y)ϕp,q(x, y),

here

E[am,nap,q] =
(

4
l1l2

)2 ∫ l1

0

∫ l2

0

∫ l1

0

∫ l2

0
E[f(x, y)f(w, z)]ϕm,n(x, y)ϕp,q(w, z) dx dy dw dz,

m, n, p, q = 1, . . . , N,

E[a0,nap,q] =
( √

8
l1l2

)2 ∫ l1

0

∫ l2

0

∫ l1

0

∫ l2

0
E[f(x, y)f(w, z)]ϕ0,n(x, y)ϕp,q(w, z) dx dy dw dz, n, p, q = 1, . . . , N,

E[am,na0,q] =
( √

8
l1l2

)2 ∫ l1

0

∫ l2

0

∫ l1

0

∫ l2

0
E[f(x, y)f(w, z)]ϕm,n(x, y)ϕ0,q(w, z) dx dy dw dz, m, n, q = 1, . . . , N,

nd

E[a0,na0,q] =
(

2
l1l2

)2 ∫ l1

0

∫ l2

0

∫ l1

0

∫ l2

0
E[f(x, y)f(w, z)]ϕ0,n(x, y)ϕ0,q(w, z) dx dy dw dz, n, q = 1, . . . , N.

Notice that by symmetry E[am,na0,q] = E[a0,nap,q]. Consequently, putting t1 = t2 = t in (3.5), one obtains
he variance of uN (x, y, t).

. Numerical simulations

This section is aimed at illustrating the time evolution of the mean, the variance fields, and the 1-PDF
f the solution to the random heat Eq. (1.1), taking advantage of the results obtained in Section 3. All
imulations and graphics have been obtained using Matlab® software.

Let B̃(t, ω) := B(t, ω) − t
T B(T, ω) denote a Brownian bridge process in the interval [0, T ], T > 0, where

B(t, ω) is the Brownian motion. This process has the following properties [2, Lemma 5.2.2]

E[B̃(t, ·)] = 0, CovB̃(t1, t2) = E[B̃(t1, ·)B̃(t2, ·)] = min(t1, t2) − t1t2

T
.

he following relation gives the Karhunen-Loève expansion of the Brownian bridge [2, Example 5.30]:

B̃(t, ω) =
∞∑

j=1

√
2T

jπ
sin

(
jπ

T
t

)
ξj(ω), ξj ∼ N(0; 1), (4.1)

here {ξj} form an orthonormal basis of uncorrelated standard Gaussian variables in L2(Ω , dP). However,
ince dealing with infinite random variables is not computationally feasible, we shall consider truncating the
revious series. Specifically, we take two Brownian bridges, one in the x direction (taking T = l1) and other
n the y direction (taking T = l2), with their corresponding truncated Karhunen-Loève expansions:

f(x, y) = B̃(x, ω)B̃(y, ω) =
N∑

i,j=1

2
√

l1l2
π2ij

sin
(

iπx

l1

)
sin

(
jπy

l2

)
ξiηj ,

here the two Brownian bridges are assumed to be uncorrelated; that is, the basis functions {ξiηj}i, j verify
[ξiηj ] = 0 for any i, j, being ξi, ηj ∼ N(0; 1). For the diffusion coefficient, which must be positive, we will
ssume a positive truncated Gaussian distribution, β ∼ N (0.3; 0.01).
[0,+∞)

6
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Fig. 1. PDF evolution of the heat distribution at the center of the plate.

Now, let us obtain the PDF of u. To this end, we will apply Lemma 3.1. Let us first observe that

a0,1(ω) = 2
l1l2

∫ l1

0

∫ l2

0
f(x, y, ω) sin

(
πy

l2

)
dydx

= 4√
l1l2π2

N∑
i, j=1

ξi(ω)ηj(ω) 1
ij

∫ l1

0
sin

(
iπx

l1

)
dx

∫ l2

0
sin

(
jπy

l2

)
sin

(
πy

l2

)
dy,

here the two above integrals can be easily calculated

∫ l1

0
sin

(
iπx

l1

)
dx =

⎧⎪⎨⎪⎩
0 if i = 2k, k = 1, 2, . . . ,

2l1
iπ

if i = 2k + 1, k = 0, 1, . . . ,

∫ l2

0
sin

(
jπy

l2

)
sin

(
πy

l2

)
dx =

⎧⎪⎨⎪⎩
0 if j ̸= 1,

l2
2 if j = 1.

Therefore, we obtain

a0,1(ω) = 2
l1l2

η1(ω)
⌊ N−1

2 ⌋∑
k=0

l1l2
π(2k + 1)

2
√

l1l2
π2(2k + 1)ξ2k+1(ω) = η1(ω)Z(ω), Z ∼ N

⎛⎝0; 16l1l2
π6

⌊ N−1
2 ⌋∑

k=0

1
(2k + 1)4

⎞⎠ .

otice that to deduce the distribution of Z(ω), we have used that ξ1, . . . , ξ⌊ N−1
2 ⌋ ∼ N(0; 1) and mutually

ncorrelated (so, independent because they are Gaussian). Now, knowing the distribution of η1(ω) and Z(ω),
he distribution of a0,1(ω) can be obtained by applying the method of transformation of variables

ga0,1(u) =
∫
R\{0}

gη1

(u

v

)
gZ (v)

⏐⏐⏐⏐1
v

⏐⏐⏐⏐ dv = EZ

[
gη1

( u

Z

) ⏐⏐⏐⏐ 1
Z

⏐⏐⏐⏐] .

Figs. 1(a) and 1(b) show the PDF of the stochastic process {u10(t, 0.5, 0.5, ω)}t≥0, ω ∈ Ω . Note that, in
his case, the temperature can be either positive or negative. However, as expected from the tensor product
f two Brownian bridges, all temperature values are very close to 0, resulting in very peaked PDFs. Although
t is difficult to perceive in Fig. 1(a), the PDF is slightly smoothed out as time passes by, and it becomes
arrower as the variance decreases when the temperature converges to the null Dirichlet boundary condition.
his latter fact is better seen in Fig. 1(b).

. Conclusion

In this paper, we have introduced a probabilistic analysis of initial–boundary value problems for the
wo-dimensional heat equation on a rectangular domain. The main contributions of our study are twofold.
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Firstly, we have directly considered the diffusion parameter as a random variable with an arbitrary density,
allowing for a wider range of probability distributions. This approach provides more flexibility in real-
world applications compared to traditional deterministic models or alternative stochastic approaches that
model this parameter via perturbations driven by specific stochastic processes having nice mathematical
properties, such as the white noise, which is Gaussian, so unbounded, that may be unrealistic from a
practical standpoint. Secondly, the paper focuses on approximating the first probability density function
of the solution, which is a significant advancement as previous works typically focused only on calculating
the first moments. By extending this methodology to more complex formulations and higher dimensions, the
paper may help to open new avenues and insights not only in the mathematical analysis of the heat equation
but also in its real-world applications within the setting of transfer processes in Engineering.
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