

Supporting Information

for Adv. Funct. Mater., DOI 10.1002/adfm.202308678

Time Transients with Inductive Loop Traces in Metal Halide Perovskites

Enrique Hernández-Balaguera* and Juan Bisquert

Time Transients with Inductive Loop Traces in Metal Halide Perovskites

Enrique Hernández-Balaguera^{1,*} and Juan Bisquert²

¹ Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain

² Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain *Corresponding author e-mail:* enrique.hernandez@urjc.es

Theoretical Analysis

The structure of Equation (2) exhibits the general form of a conduction/polarization system, $j(t) = C_g \frac{dV(t)}{dt} + \frac{1}{R_I} f(V(t), X_1(t)) + C_x \frac{dX_2(t)}{dt} + \frac{1}{dt}$ with the following small perturbation amplitude approximation:

$$\Delta j(t) = C_{\rm g} \frac{\mathrm{d}(\Delta V(t))}{\mathrm{d}t} + \frac{1}{R_{\rm I}} \left(\frac{\partial f}{\partial V}\right)_{\overline{X_1}} \Delta V(t) + \frac{1}{R_{\rm I}} \left(\frac{\partial f}{\partial X_1}\right)_{\overline{V}} \Delta X_1(t) + C_{\rm m} \frac{\mathrm{d}(\Delta X_2(t))}{\mathrm{d}t}$$
(S1)

where we will consider from now on that $\left(\frac{\partial f}{\partial V}\right)_{\overline{X_1}} = f'_V$ and $\left(\frac{\partial f}{\partial X_1}\right)_{\overline{V}} = f'_{X_1}$. The current is therefore composed of several terms: (i) a static capacitive charging, (ii) a conduction current described through a resistance scale parameter R_1 and the internal current variable denoted as $X_1(t)$, and (iii) a second internal voltage variable $X_2(t)$ that introduces a dynamical capacitance C_m . In terms of a physical explanation, we can additionally specify that Equation (3) represents a migration time of ions that introduces a delay of $\Delta j_L(t)$ with respect to the external stimulus by the characteristic time constant τ_L . Equation (4), on the other hand, describes the voltage-controlled activation of the interfacial charging configuration, $\Delta V_s(t)$. τ_c is the relaxation time associated to the charge accumulation process. As one commonly obtains the remarkable property of $\tau_L = \tau_c$ which specify that the slow modes in metal halide perovskite devices exhibit the same characteristic times,^[3-5] it can be easily deduced that, stating adequate initial conditions, the transient response to a voltage step stimulation, $\Delta V(t) = V_{app}$, of both internal state variables are governed by the same rate change under small-signal conditions.

Let us consider the general nonlinear differential equation for internal state functions, $\tau_{kin,i} \frac{dX_i(t)}{dt} = g_i(X_i(t), V(t)), \ i = 1, 2, ..., M$, and the respective small signal expression:

$$\tau_{\rm kin,i} \frac{d(\Delta X_i(t))}{dt} = \left(\frac{\partial g_i}{\partial X_i}\right)_{\overline{V}} \Delta X_i(t) + \left(\frac{\partial g_i}{\partial V}\right)_{\overline{X_i}} \Delta V(t), \quad i = 1, 2, \dots, M$$
(S2)

derived from the first-order Taylor expansion around a steady-state value. Note that $\Delta X_i(t)$ represents the dominant internal variable of the perovskite (with an initial state of $\Delta X_{0,i}$), $\tau_{kin,i}$ is the associated relaxation time, and $g_i(\Delta X_i(t), \Delta V(t))$ is the slow recovery function expressed in Equation (S3) by using partial derivatives (small perturbation methods). Note that we will henceforth consider $g'_{X,i} = \left(\frac{\partial g_i}{\partial X_i}\right)_{\overline{V}}$ and $g'_{V,i} = \left(\frac{\partial g_i}{\partial V}\right)_{\overline{X_i}}$. Thus, the analytical solution of Equation (S3) may be generalized as:

$$\Delta X_{i}(t) = -\frac{g'_{V,i}}{g'_{X,i}}V_{app} + \left(\Delta X_{0,i} + \frac{g'_{V,i}}{g'_{X,i}}V_{app}\right)\exp\left[\frac{g'_{X,i}}{\tau_{kin,i}}t\right], \quad i = 1, 2, ..., M$$
(S3)

Here, M = 2 and thus, the memory variables $\Delta X_1(t) = \Delta j_{\rm L}(t)$ or $\Delta X_2(t) = \Delta V_{\rm S}(t)$ are delayed by characteristic times τ_L or τ_C ($\tau_{kin,1}$ and $\tau_{kin,2}$) owing to slow coupling ionicorganic-inorganic The electronic effects perovskites. in adaptation functions, $g_1(\Delta V(t), j_L(t))$ or $g_2(\Delta V(t), \Delta V_s(t))$, are also separated to additive components, where $g'_{x,1} = -1$ and $g'_{v,1} = \frac{1}{R_a}$ or $g'_{x,2} = -1$ and $g'_{v,2} = 1$ for Equations (3) or (4), respectively. As indicated Equation (S3), the metal halide perovskite device importantly operates under stable conditions because $g'_{X,i} < 0$ and logically $\tau_{\text{kin},i} > 0$ (decreasing exponentials). In the steady-state situation, the slow memory variables indeed take the generalized value of $-\frac{g'_{V,i}V_{app}}{g'_{Y,i}}$. The values of the equivalent circuit elements, in terms of the model parameters, have the following expressions: $R_{\rm b} = \frac{R_{\rm I}}{f'_{\rm V}}, \quad R_{\rm a} = -\frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm V,1}}, \quad L_{\rm a} = \frac{R_{\rm I}\tau_{\rm kin,1}}{f'_{\rm X}g'_{\rm V,1}}, \quad R_{\rm x} = \frac{R_{\rm I}\tau_{\rm kin,1}}{f'_{\rm X}g'_{\rm V,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}, \quad R_{\rm x} = \frac{R_{\rm I}g'_{\rm X,1}}{f'_{\rm X}g'_{\rm X,1}}$ $-\frac{\tau_{\text{kin},2}}{C_{\text{m}}g'_{\text{V},2}}$, and $C_{\text{x}} = -\frac{C_{\text{m}}g'_{\text{V},2}}{g'_{\text{X},2}}$. This theory allows to consider the general electrical charge coupling or further scenarios $(\tau_{kin,1} \neq \tau_{kin,2})$ in perovskite semiconductors.

Experimental

Fabrication. Fluorine-doped tin oxide (FTO) glass sheets were etched with Zn powder and diluted HCl. Then, the etched substrates were cleaned in an ultrasonic bath with Hellmanex®, acetone, and ethanol for 15 min and finally were immediately dried with dry air. Compact TiO₂ (c-TiO₂) solution was prepared with titanium diisopropoxide bis(acetylacetonate):acetylacetone:ethanol=0.6:0.4:9 (v:v) and then were sprayed onto FTO substrates at 450 °C. Mesoporous TiO₂ (m-TiO₂) paste was prepared with titanium paste:ethanol=1:6 (w:w), and was spin coated to c-TiO₂ substrates at 5000 rpm for 20 s and then annealed at 450 °C for 30 min. After that, the as-prepared FTO/c-TiO₂/m-TiO₂ substrates were quickly transferred to a N₂ filled glove box for perovskite and spiro-OMeTAD deposition. The triple-cation halide perovskite Cs_{0.05}MA_{0.15}FA_{0.80}Pb_{1.05}(Br_{0.15}I_{0.85})₃ was prepared as follows. Briefly, first 1.5 M stock solution of (1) CsI (DMSO), (2) PbBr₂ (DMSO:DMF=1:4), and (3) PbI₂ (DMSO:DMF=1:4) were prepared, respectively. Then, 1.5 M (4) (MABr)(PbBr₂) (DMSO:DMF=1:4) and (5) (FAI)(PbI₂) (DMSO:DMF=1:4) were freshly prepared by dissolving MABr or FAI power in solution (2) and (3), respectively. After that, the solutions were mixed at a ratio of (4):(5):(1):(3)=150:800:50:100 (v:v) in sequence. The perovskite spin coating process was carried out at 2000 rpm for 10 s, and then 6000 rpm for 30 s. Initially, 50 µL perovskite solution was dropped on a 1.5×2.5 cm² FTO/c-TiO₂/m-TiO₂ substrate. During the second step of spin coating, 100 µL chlorobenzene was dropped at 15 s before ending. The samples were annealed at 100 °C for 1 h on a hot plate for crystallization. Hole transporting layer was prepared by dissolving 0.12 g spiro-OMeTAD in 1130 µL chlorobenzene and then doped with 47.3 µL TBP and 23.5 µL Li-TFSI (1.8 M in acetonitrile). The spin coating was conducted at 4000 rpm for 20 s with 50 µL solution. The finished devices were placed inside a dry air box for 12 h to fully oxidize the spiro-OMeTAD. Finally, 80 nm Au was deposited as the front electrode by thermal evaporation. The evaporation rate was controlled in different stages to limit the damage to the spiro-OMeTAD layer.

Characterization. Electrical measurements were carried out with a PGSTAT302N Potentiostat/galvanostat, equipped with an impedance and ultra-fast sampling module, FRA32M and ADC10M, respectively, from Metrohm AutoLab. Impedance measurements were carried out by configuring the AutoLab to apply sinusoidal signals of 10 mV amplitude from 1 MHz to 1 Hz at 1 V. On the other hand, chronoamperometric

experiments were developed, immediately after frequency resolved measurements, by applying a constant signal of 1 V and, after a long time, a voltage-excited step of 10 mV. A sampling rate of 1 MHz was used to record the current responses of CsMAFAPbIBr-based perovskite solar cells. All the experiments at room temperature were carried out under ambient atmosphere with the dry-air flow.

References

- [1] E. Ghahremanirad, A. Bou, S. Olyaee, J. Bisquert, J. Phys. Chem. Lett. 2017, 8, 1402.
- [2] A. Guerrero, J. Bisquert, G. Garcia-Belmonte, *Chem. Rev.* 2021, 121, 14430.
- [3] F. Ebadi, N. Taghavinia, R. Mohammadpour, A. Hagfeldt, W. Tress, *Nat. Commun.* **2019**, *10*, 1574.
- [4] C. Gonzales, A. Guerrero, J. Bisquert, J. Phys. Chem. C 2022, 126, 13560.
- [5] E. Hernández-Balaguera, D. Martín-Martín, Fractal Fract. 2023, 7 (7), 516.