ADVANCED FUNCTIONAL

Supporting Information

for Adv. Funct. Mater., DOI 10.1002/adfm. 202308678

Time Transients with Inductive Loop Traces in Metal Halide Perovskites

Enrique Hernández-Balaguera* and Juan Bisquert

Supporting Information

Time Transients with Inductive Loop Traces in Metal Halide Perovskites

Enrique Hernández-Balaguera ${ }^{1, *}$ and Juan Bisquert ${ }^{2}$
${ }^{1}$ Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
${ }^{2}$ Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain
Corresponding author e-mail: enrique.hernandez@urjc.es

Theoretical Analysis

The structure of Equation (2) exhibits the general form of a conduction/polarization system, $\quad j(t)=C_{\mathrm{g}} \mathrm{d} V(t) / \mathrm{d} t+1 / R_{\mathrm{I}} f\left(V(t), X_{1}(t)\right)+C_{\mathrm{x}}{ }^{\mathrm{d} X_{2}(t)} / \mathrm{d} t{ }^{[1,2]} \quad$ with the following small perturbation amplitude approximation:

$$
\begin{gather*}
\Delta j(t)=C_{\mathrm{g}} \frac{\mathrm{~d}(\Delta V(t))}{\mathrm{d} t}+\frac{1}{R_{\mathrm{I}}}\left(\frac{\partial f}{\partial V}\right)_{\overline{X_{1}}} \Delta V(t)+\frac{1}{R_{\mathrm{I}}}\left(\frac{\partial f}{\partial X_{1}}\right)_{\bar{V}} \Delta X_{1}(t) \tag{S1}\\
+C_{\mathrm{m}} \frac{\mathrm{~d}\left(\Delta X_{2}(t)\right)}{\mathrm{d} t}
\end{gather*}
$$

where we will consider from now on that $(\partial f / \partial V)_{\overline{X_{1}}}=f^{\prime}{ }_{V}$ and $\left(\partial f / \partial X_{1}\right)_{\bar{V}}=f^{\prime}{ }_{X_{1}}$. The current is therefore composed of several terms: (i) a static capacitive charging, (ii) a conduction current described through a resistance scale parameter R_{I} and the internal current variable denoted as $X_{1}(t)$, and (iii) a second internal voltage variable $X_{2}(t)$ that introduces a dynamical capacitance C_{m}. In terms of a physical explanation, we can additionally specify that Equation (3) represents a migration time of ions that introduces a delay of $\Delta j_{\mathrm{L}}(t)$ with respect to the external stimulus by the characteristic time constant τ_{L}. Equation (4), on the other hand, describes the voltage-controlled activation of the interfacial charging configuration, $\Delta V_{\mathrm{S}}(t) . \tau_{\mathrm{C}}$ is the relaxation time associated to the charge accumulation process. As one commonly obtains the remarkable property of $\tau_{\mathrm{L}}=$ τ_{C} which specify that the slow modes in metal halide perovskite devices exhibit the same characteristic times, ${ }^{[3-5]}$ it can be easily deduced that, stating adequate initial conditions, the transient response to a voltage step stimulation, $\Delta V(t)=V_{\text {app }}$, of both internal state variables are governed by the same rate change under small-signal conditions.

Let us consider the general nonlinear differential equation for internal state functions, $\tau_{\text {kin, } i} \mathrm{~d} X_{\mathrm{i}}(t) / \mathrm{d} t=g_{\mathrm{i}}\left(X_{\mathrm{i}}(t), V(t)\right), i=1,2, \ldots, M$, and the respective small signal expression:

$$
\begin{equation*}
\tau_{\mathrm{kin}, \mathrm{i}} \frac{\mathrm{~d}\left(\Delta X_{\mathrm{i}}(t)\right)}{\mathrm{d} t}=\left(\frac{\partial g_{\mathrm{i}}}{\partial X_{\mathrm{i}}}\right)_{\bar{V}} \Delta X_{\mathrm{i}}(t)+\left(\frac{\partial g_{\mathrm{i}}}{\partial V}\right)_{\overline{X_{\mathrm{i}}}} \Delta V(t), \quad i=1,2, \ldots, M \tag{S2}
\end{equation*}
$$

derived from the first-order Taylor expansion around a steady-state value. Note that $\Delta X_{\mathrm{i}}(t)$ represents the dominant internal variable of the perovskite (with an initial state of $\left.\Delta X_{0, \mathrm{i}}\right), \tau_{\text {kin, }}$ is the associated relaxation time, and $g_{\mathrm{i}}\left(\Delta X_{\mathrm{i}}(t), \Delta V(t)\right)$ is the slow recovery function expressed in Equation (S3) by using partial derivatives (small perturbation methods). Note that we will henceforth consider $g_{\mathrm{X}, \mathrm{i}}^{\prime}=\left(g_{\mathrm{i}} / \partial X_{\mathrm{i}}\right)_{\bar{V}}$ and $g_{\mathrm{V}, \mathrm{i}}^{\prime}=$ $\left(\partial g_{\mathrm{i}} / \partial V\right)_{\overline{X_{\mathrm{i}}}}$. Thus, the analytical solution of Equation (S3) may be generalized as:

$$
\begin{equation*}
\Delta X_{\mathrm{i}}(t)=-\frac{g_{\mathrm{V}, \mathrm{i}}^{\prime}}{g_{\mathrm{x}, \mathrm{i}}^{\prime}} V_{\mathrm{app}}+\left(\Delta X_{0, \mathrm{i}}+\frac{g_{\mathrm{V}, \mathrm{i}}^{\prime}}{g_{\mathrm{x}, \mathrm{i}}^{\prime}} V_{\mathrm{app}}\right) \exp \left[\frac{g_{\mathrm{x}, \mathrm{i}}^{\prime}}{\tau_{\mathrm{kin}, \mathrm{i}}} t\right], \quad i=1,2, \ldots, M \tag{S3}
\end{equation*}
$$

Here, $M=2$ and thus, the memory variables $\Delta X_{1}(t)=\Delta j_{\mathrm{L}}(t)$ or $\Delta X_{2}(t)=\Delta V_{\mathrm{s}}(t)$ are delayed by characteristic times τ_{L} or τ_{C} ($\tau_{\text {kin, } 1}$ and $\tau_{\text {kin,2 }}$) owing to slow coupling ionicelectronic effects in organic-inorganic perovskites. The adaptation functions, $g_{1}\left(\Delta V(t), j_{\mathrm{L}}(t)\right)$ or $g_{2}\left(\Delta V(t), \Delta V_{\mathrm{s}}(t)\right)$, are also separated to additive components, where $g^{\prime}{ }_{\mathrm{X}, 1}=-1$ and $g_{\mathrm{V}, 1}^{\prime}=1 / R_{\mathrm{a}}$ or $g_{\mathrm{X}, 2}^{\prime}=-1$ and $g_{\mathrm{V}, 2}^{\prime}=1$ for Equations (3) or (4), respectively. As indicated Equation (S3), the metal halide perovskite device importantly operates under stable conditions because $g_{\mathrm{x}, \mathrm{i}}^{\prime}<0$ and logically $\tau_{\text {kin,i }}>0$ (decreasing exponentials). In the steady-state situation, the slow memory variables indeed take the generalized value of $-g_{V_{i, i}} V_{\text {app }} / g_{\mathrm{X}, \mathrm{i}}^{\prime}$. The values of the equivalent circuit elements, in terms of the model parameters, have the following
 $-{ }^{\tau_{\mathrm{kin}, 2}} / C_{\mathrm{m}} g_{\mathrm{V}, 2}^{\prime}$, and $C_{\mathrm{x}}=-C_{\mathrm{m}} g_{\mathrm{V}, 2}^{\prime} / g_{\mathrm{X}, 2}^{\prime}$. This theory allows to consider the general electrical charge coupling or further scenarios $\left(\tau_{\text {kin, } 1} \neq \tau_{\text {kin, } 2}\right)$ in perovskite semiconductors.

Experimental

Fabrication. Fluorine-doped tin oxide (FTO) glass sheets were etched with Zn powder and diluted HCl . Then, the etched substrates were cleaned in an ultrasonic bath with Hellmanex ${ }^{\circledR}$, acetone, and ethanol for 15 min and finally were immediately dried with dry air. Compact $\mathrm{TiO}_{2}\left(\mathrm{c}-\mathrm{TiO}_{2}\right)$ solution was prepared with titanium diisopropoxide bis(acetylacetonate):acetylacetone:ethanol $=0.6: 0.4: 9$ (v:v) and then were sprayed onto FTO substrates at $450{ }^{\circ} \mathrm{C}$. Mesoporous $\mathrm{TiO}_{2}\left(\mathrm{~m}-\mathrm{TiO}_{2}\right)$ paste was prepared with titanium paste:ethanol=1:6 (w:w), and was spin coated to $\mathrm{c}-\mathrm{TiO}_{2}$ substrates at 5000 rpm for 20 s and then annealed at $450^{\circ} \mathrm{C}$ for 30 min . After that, the as-prepared $\mathrm{FTO} / \mathrm{c}-\mathrm{TiO}_{2} / \mathrm{m}-\mathrm{TiO}_{2}$ substrates were quickly transferred to a N_{2} filled glove box for perovskite and spiroOMeTAD deposition. The triple-cation halide perovskite $\mathrm{Cs}_{0.05} \mathrm{MA}_{0.15} \mathrm{FA}_{0.80} \mathrm{~Pb}_{1.05}\left(\mathrm{Br}_{0.15} \mathrm{I}_{0.85}\right)_{3}$ was prepared as follows. Briefly, first 1.5 M stock solution of (1) CsI (DMSO), (2) PbBr_{2} (DMSO:DMF=1:4), and (3) PbI_{2} (DMSO:DMF=1:4) were prepared, respectively. Then, 1.5 M (4) (MABr) $\left(\mathrm{PbBr}_{2}\right)$ ($\mathrm{DMSO}: \mathrm{DMF}=1: 4$) and (5) $(\mathrm{FAI})\left(\mathrm{PbI}_{2}\right)(\mathrm{DMSO}: \mathrm{DMF}=1: 4)$ were freshly prepared by dissolving MABr or FAI power in solution (2) and (3), respectively. After that, the solutions were mixed at a ratio of (4):(5):(1):(3)=150:800:50:100 (v:v) in sequence. The perovskite spin coating process was carried out at 2000 rpm for 10 s , and then 6000 rpm for 30 s . Initially, $50 \mu \mathrm{~L}$ perovskite solution was dropped on a $1.5 \times 2.5 \mathrm{~cm}^{2} \mathrm{FTO} / \mathrm{c}-$ $\mathrm{TiO}_{2} / \mathrm{m}_{-}-\mathrm{TiO}_{2}$ substrate. During the second step of spin coating, $100 \mu \mathrm{~L}$ chlorobenzene was dropped at 15 s before ending. The samples were annealed at $100^{\circ} \mathrm{C}$ for 1 h on a hot plate for crystallization. Hole transporting layer was prepared by dissolving 0.12 g spiroOMeTAD in $1130 \mu \mathrm{~L}$ chlorobenzene and then doped with $47.3 \mu \mathrm{~L}$ TBP and $23.5 \mu \mathrm{~L} \mathrm{Li}-$ TFSI (1.8 M in acetonitrile). The spin coating was conducted at 4000 rpm for 20 s with $50 \mu \mathrm{~L}$ solution. The finished devices were placed inside a dry air box for 12 h to fully oxidize the spiro-OMeTAD. Finally, 80 nm Au was deposited as the front electrode by thermal evaporation. The evaporation rate was controlled in different stages to limit the damage to the spiro-OMeTAD layer.

Characterization. Electrical measurements were carried out with a PGSTAT302N Potentiostat/galvanostat, equipped with an impedance and ultra-fast sampling module, FRA32M and ADC10M, respectively, from Metrohm AutoLab. Impedance measurements were carried out by configuring the AutoLab to apply sinusoidal signals of 10 mV amplitude from 1 MHz to 1 Hz at 1 V . On the other hand, chronoamperometric
experiments were developed, immediately after frequency resolved measurements, by applying a constant signal of 1 V and, after a long time, a voltage-excited step of 10 mV . A sampling rate of 1 MHz was used to record the current responses of CsMAFAPbIBrbased perovskite solar cells. All the experiments at room temperature were carried out under ambient atmosphere with the dry-air flow.

References

[1] E. Ghahremanirad, A. Bou, S. Olyaee, J. Bisquert, J. Phys. Chem. Lett. 2017, 8, 1402.
[2] A. Guerrero, J. Bisquert, G. Garcia-Belmonte, Chem. Rev. 2021, 121, 14430.
[3] F. Ebadi, N. Taghavinia, R. Mohammadpour, A. Hagfeldt, W. Tress, Nat. Commun. 2019, 10, 1574.
[4] C. Gonzales, A. Guerrero, J. Bisquert, J. Phys. Chem. C 2022, 126, 13560.
[5] E. Hernández-Balaguera, D. Martín-Martín, Fractal Fract. 2023, 7 (7), 516.

