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b Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal 
c Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal 
d Materials and Ceramic Engineering Department, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal   

A R T I C L E  I N F O   

Handling editor: Dr P. Vincenzini  

A B S T R A C T   

Spray pyrolysis is a promising method for producing thin, transparent films on glass substrates. ZnO thin films 
synthesized by this method exhibit high crystallinity, adhesion and chemical resistance. They also possess the 
ability to degrade water pollutants and exhibit antibacterial properties under UV light. The crystalline structure 
of these films has been studied using grazing X-ray diffraction (GIXRD), atomic force microscopy (AFM) and 
scanning electron microscopy (SEM), while transmission electron microscopy (TEM) has been used to investigate 
their composition and purity. Other techniques such as X-ray photoelectron spectroscopy (XPS), Raman spec
troscopy and ultraviolet–visible spectroscopy were also employed. ICP-OES was used to evaluate photocatalyst 
leaching. These transparent thin films have exceptional optical properties, with a transmittance of 95%. The 
photocatalytic degradation of 4-Nitrophenol (4-NP) by ZnO thin films showed a degradation rate of 94% in 270 
min with a kinetic constant value of 3.1 × 10− 3 mM/min. The films are also highly durable and reusable, 
exhibiting superior performance compared to other ZnO photocatalysts. The bactericidal activity of these 
transparent films was also evaluated, with a value of 60.6% being obtained using Escherichia coli after irradiating 
the films with UV light for 3 h.   

1. Introduction 

In recent years, materials transparency has become a very important 
aspect in several fields such as optics and photonics [1,2], architecture 
and construction [2,3], electronics [4,5], medicine [6,7] or aerospace 
and defence [8,9]. Transparent materials thus play a crucial role in 
many areas of modern technology and industry, and their continued 
development and improvement are essential to advance in these fields 
[10]. Zinc oxide (ZnO) is among the most researched materials that 
become transparent, and consequently it is also one of the most widely 
used oxides in photocatalysis [11,12], photovoltaic cells [13,14], pie
zoelectrics [15,16], sensors [17,18], antibacterial agents [19,20] or 
fungicides [21,22]. ZnO belongs to the n-type semiconductor with an 
exciton binding energy of 60 meV and a direct band gap of 3.37 eV.This 
bandgap value indicates its high UV absorption and its transparency 
towards the visible range [23,24]. Reactive oxygen species (ROS) such 
as superoxide anion (O2

− ●), hydroxyl radical (OH•) and singlet oxygen 

(1O2) are able to degrade different types of organisms such as 
gram-positive and gram-negative bacteria [25,26] and cancer cells [27] 
by inducing oxidative stress [28,29], as well as promoting the degra
dation of water pollutants [30]. Some of the substances described as 
water pollutants by the European Chemical Agency (ECHA) [31] are 
pharmaceuticals [32], pesticides [33], personal care products (PCPs) 
[34] or industrial by-products [35]. Moreover, there is a wide variety of 
morphologies thanks to the different methods of ZnO synthesis, whether 
in the form of nanoparticles (NPs) [36], nanotubes (NTs) [37], nano
wires (NWs) [38] or thin films [39]. The use of ZnO NPs as bactericidal 
agents is well known, with particle size, smaller particles generally 
having a higher surface area-to-mass ratio, which can enhance their 
reactivity and potentially lead to increased ROS [40]. However, ZnO 
NPs and NTs used as antibacterial agents or photocatalysts for pollutants 
in water have serious limitations, especially when used to functionalize 
a surface. First, NPs tend to aggregate, leading to a decrease in their 
antibacterial capability [41]. Although aggregation is discussed in the 
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context of NPs, this phenomenon also occurs in a large number of 
nanostructured materials, due to the strong interaction that NPs undergo 
in relation to their size, shape, surface charge or pH of the medium in 
which they are dispersed [42,43]. Another major challenge in the use of 
ZnO NPs is their relatively low stability in aqueous solutions, which 
limits their application as photocatalysts for surfaces that may come into 
contact with water [44–46]. For the generation of surfaces with anti
microbial properties, it is mandatory to ensure that ZnO NPs are firmly 
attached to the surface and that they are not released over time. 

A multitude of methods are available to obtain transparent thin 
films, such as atomic layer deposition (ALD) [47], chemical vapour 
deposition (CVD) [48], electroplating [49] or sol-gel spin coating [50]. 
In all these techniques the adaptation to industrial applications is 
severely limited because they require high levels of technical sophisti
cation or the creation of a high vacuum for the production of thin films 
[51]. However, the spray pyrolysis method has no such drawbacks 
because it is able to produce transparent thin films by simply spraying a 
precursor solution of the material onto the heated substrate. Moreover, 
it can be used on a multitude of substrates, including glass [52], metal or 
polymer [53], which is advantageous for industrial applications. 

In this work, the deposition of ZnO on glass to form a thin transparent 
film has been achieved using the spray pyrolysis method. The trans
parent ZnO thin films exhibit high crystallinity and adhesion to glass 
substrates, as well as high resistance in neutral and basic aqueous media. 
The study of this material as a photocatalyst was also carried out using a 
UV lamp, revealing that it has a high capacity for the photodegradation 
of a pollutant such as 4-NP. In addition, it was demonstrated that these 
thin films, when exposed to this type of light, can function as antibac
terial surfaces. 

2. Experimental section 

2.1. Chemicals 

Zinc acetate (Zn(CH3COO)2• 2H2O ≥ 99.5% PanReac AppliChem, 
ethanol (EtOH, Scharlau), ammonia (NH3, 30% w/w, Pan
ReactAppliChem), 4-nitrophenol (4-NP, ≥98%, Sigma-Aldrich), sodium 
hydroxide (NaOH, pearls 1–2 mm, ≥98%, Labkem), hydrochloric acid 
(HCl, 37%, PanReactAppliChem) and deionized water, with pH 7.1 ±
0.2 and a resistivity of 17.9 MΩ-cm (Ultramatic Plus, Wasserlab, Spain) 
were used. Tert-butyl alcohol (t-BuOH), formic acid (HCOOH) and 1,4- 
Benzoquinone (C6H4O2) (99%, purity) were purchased from Sigma- 
Aldrich. 

2.2. Instrumentation 

The transparent ZnO thin films were examined to determine their 
crystalline structure using grazing incidence X-ray diffraction (GIXRD). 
To conduct the analysis, a Cu K radiation source-equipped Burker-ASX 
X-ray diffractometer, specifically the D4 Endeavour model, was 
employed. The scanning process involved stepping from 10◦ to 90◦ 2θ, 
with a step size of 0.05◦ 2θ and a counting duration of 3 s per step. The 
incident angle of the measurements, approximately 1◦, was determined 
experimentally. For the investigation of surface characteristics, 
morphology, and thickness of the coatings, scanning electron micro
scopy (SEM) was performed using a JEOL 7001 F instrument. SEM-EDS 
mappings were obtained using an acceleration voltage of 10 kV and a 
beam current of 0.6 nA. To ensure accurate spectral recordings, drift 
correction was applied, with a step size of 0.3 μm and a minimal dwell 
time of 0.3 msec. The EDS analyses were conducted using Aztec 4.3 
software developed by Oxford Instruments in the United Kingdom. To 
measure the thickness of the layers, micrographs of cross-sections were 
utilized. The crystallite sizes were determined by applying the Debye- 
Scherrer equation (Equation (1)) to the XRD data [52]. 

D=
kλ

β cos θ
(1) 

The Debye-Scherrer equation (Equation (1)) utilizes various pa
rameters to determine the crystallite sizes. In the equation, the Scherrer 
constant (k) is typically 0.9 for spherical particles, the X-ray wavelength 
(λ) is 1.5405 Å, the peak width at half-maximum (β) represents the 
width of the peak at half of its maximum intensity, and θ corresponds to 
the Bragg diffraction angle [55]. To examine the surfaces of the trans
parent thin films, an atomic force microscopy (AFM) operating in con
tact mode was used. Specifically, a JSPM-5200 JEOL Scanning Probe 
Microscope was used for this purpose. For Transmission Electron Mi
croscopy (TEM), a JEOL JEM-1010 EM-24830 FLASH digital camera 
equipped with a CMOS sensor was utilized. This camera offers a reso
lution of 2k × 2k and facilitated the TEM analysis. The microscope also 
featured an Oxford STEM DF/BF image acquisition system with a drift 
silicon sensor, an 80 mm2 window and 127 eV resolution for the Mn K 
line. Before TEM analysis, a drop (8 μL) of a suspension of the removed 
thin film diluted in ethanol was deposited on a copper grid with an 
amorphous carbon film and allowed to dry. The thin film’s composition 
and purity were examined using X-ray photoelectron spectroscopy (XPS) 
on a Sage 150 photoelectron spectrometer, which is part of a 
multi-technique surface analysis system. The electron-energy detection 
was performed using a Mac 2 Cameca Riber double stage cylindrical 
mirror detector. The X-ray source utilized was a dual anode Cameca 
SCX700. In all cases, a non-monochromatic Al K X-ray source (energy =
1486.6 eV) was employed for excitation. Raman scattering measure
ments were carried out using a Hobiba Jobin-Yvon FHR-640 mono
chromator coupled with a CCD detector in a backscattering 
configuration. Gas (325 nm) and solid-state (532 nm) lasers with 
respective power densities ~10 and ~50 W/cm2 were used to excite the 
samples. The spectral alignment was adjusted by setting the primary 
peak of a monocrystalline silicon sample to 520 cm-1. Diffuse reflec
tance spectroscopy (DRS) was conducted on a UV–Vis spectrophotom
eter (JASCO U-560). The spectra of the materials were obtained using a 
Bruker Optics Tensor 27 spectrometer connected to a horizontal atten
uated total reflectance (ATR) cell, with 256 scans performed at a reso
lution of 4 cm− 1. To analyze the leaching of the photocatalyst, a Jobin 
Yvon Activa M ICP-OES instrument was utilized. 

The optical bandgap value for the thin film was derived from the 
absorption coefficient (α) value, which was calculated using Lambert’s 
Law in the following Equation (2) [53]: 

A=
1
t

ln
(

1
T

)

(2)  

where T is the transmittance, and t is the film thickness. The optical 
bandgap of thin films could be calculated by extrapolating (αhν)2 versus 
hν using Equation (3). 

αhυ=A
(
hυ − Eg

)1
2 (3)  

where A is a constant, hv is the photon energy, and Eg is the optical 
bandgap. 

2.3. Preparation of transparent ZnO thin films 

For the preparation of the transparent ZnO thin films, 0.5 mol of Zn 
(CH3COO)2⋅2H2O were dissolved in EtOH (40 mL). This mixture of 
precursors was stirred for 1 h to ensure the homogeneity of the solution. 
Using a 100 mL capacity atomizer with a fine grade of spraying (CAT 
NUMBER: 34 48 51) connected to a compressed air pump at a pressure of 
0.9 bar (Fig. S1), transparent thin coatings were manually deposited 
onto a soda-lime glass (2.5 × 2.5 cm) previously heated to 400 ◦C 
(Fig. 1). Prior to heating, the glass was cleansed in a 30% (w/w) NH3 
solution followed by ultrasonication for 15 min. The deposited thin 
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coatings were then heated to 500 ◦C on a hot plate under atmospheric 
pressure to remove any organic residue. Fig. S2 shows the appearance of 
the transparent ZnO thin films on the glass substrate. 

2.4. Experiments for the screening of photocatalytic activity 

The photocatalytic efficiency of the ZnO thin film was examined for 
its ability to degrade 4-Nitrophenol (4-NP) under UV light exposure at 
room temperature. In a typical procedure, the samples were immersed in 
a glass vessel containing 30 mL of an aqueous solution of 4-NP (6.95 mg/ 
L). Prior to irradiation, the solution was left in darkness for 30 min to 
establish an adsorption/desorption equilibrium. A UV light source 
(SUPRATECH HTC 150–211 UV, Osram) with a nominal power rating of 
150 W, emitting 22 W in the UVA region (315–400 nm) and 6 W in the 
UVB region (280–315 nm), was employed. The light intensity measured 
was 0.105 W/cm2. Refer to Fig. S3 for a depiction of the experimental 
setup for the photocatalysis. At regular intervals, samples of the reaction 
mixture were withdrawn, and a NaOH pellet was promptly added to 
each of them to induce the formation of 4-nitrophenolate ions, which 
exhibit maximum absorption at 410 nm (Fig. S4). The concentration of 
4-NP was monitored using UV–Vis spectroscopy at 410 nm, employing 
Equation (4): 

η (%)=

(

1 − Ct

C0

)

× 100 (4)  

where C0 represents the initial 4-NP concentration and Ct refers to the 
real-time concentrations of 4-NP, respectively. The kinetics of 4-NP were 
performed using the expression presented in Equation (5): 

kapp = −
C − C0

t
(5)  

where kapp (mM/min) represents the reaction rate constant in mM at 
time t (min). 

To determine the stability of the as-prepared ZnO thin film, it was 
recovered and subjected to four additional photodegradation cycles 
under the same conditions. To clarify the photocatalytic reaction 
mechanism, the degradation of 4-NP was carried out in the presence of 1 
mM of tert-butyl alcohol (t-BuOH), formic acid (FA), and 1,4-Benzoqui
none (1,4-BQ), which are known as scavenger species, for capturing 
hydroxyl radicals (OH•), holes (h+) and superoxide radicals (O2–●), 
respectively [54,55]. 

2.5. Determination of antibacterial activity 

The antibacterial activity of ZnO thin films was evaluated using a 
modified version of the standard method test Jisz 2801_2000 as 
described previously [56]. Briefly, Escherichia coli ATCC 25922 cells 
were used to test for the antibacterial activity of ZnO thin films with or 
without irradiation of UV light for 3 h. As a reference, glass samples were 
used. At least 2 sample pieces for each condition were used and 3 plates 
per sample were cultivated to determine the concentration of 
colony-forming units (CFU/mL) in each assayed condition. 

The antibacterial rate (R) was calculated according to Equation (6): 

(R)= (N0 − N) /N0 × 100 (6)  

where N0 represents the average number of viable bacteria on a refer
ence sample, and N is the average number of bacteria on tested samples. 

3. Results and discussion 

3.1. Characterization of transparent ZnO thin films 

The microstructure of ZnO thin films, such as crystalline orientation, 
crystalline structure, uniformity, and film density, was studied. The 
orientation and structure of ZnO crystals were analyzed based on GIXRD 
patterns. Seven diffraction peaks were identified in the GIXRD pattern, 
indicating a polycrystalline structure, as shown in Fig. 2(a). The most 
intense diffraction peak (002) indicates that the crystallites are pre
dominantly oriented perpendicular to the glass substrate on which they 
have been deposited. Using thin film deposition techniques, crystalline 
growth is predominant along the z-axis due to the reduced surface en
ergy of the (002) plane [57]. Furthermore, the computed values for the 
lattice constants a and c were determined to be 3.24 Å and 5.21 Å.The 
ratio of c to a (c/a) was found to be 1.602, which closely approximates 
the c/a ratio observed in a hexagonal structure (c/a = 1.633). Hence, the 
values are in accordance with those indicated in the standard card 
(JCPDS 070–2551) for ZnO, wurtzite type. The mean particle size (D) of 
the ZnO thin films, estimated to be 25.0 nm, was calculated using the 
Scherrer equation based on the diffraction peak at2θ = 34.4◦ associated 
with the (002) reflection plane. AFM images reveal that the surface of 
these thin films is rough, with a root-mean-square (RMS) roughness of 
29.9 nm and an average roughness (AR) of 24.4 nm. The RMS value 
obtained is comparable to values obtained on SiO2/Si substrates [60], 
and the average particulate size of ZnO in the layer corresponds to the 
value estimated by Sherrer’s formula. Fig. 2(c) shows the top view, and 
Fig. 2(d) shows the cross-sectional view of the ZnO thin films. The top 
view SEM image (Fig. 2(c)) confirms the formation of a dense layer, 
consisting of flawlessly sintered round grains. In addition, the 
cross-sectional SEM image shows that ZnO has a dense columnar 
structure and that its adhesion to the glass substrate is strong and 
delamination-free (Fig. 2(d)). Fig. S5 shows the transmission electron 
microscopy of a selective area, confirming that ZnO crystals grew 
perpendicular to the glass. The interplanar distance calculated from 
Fig. S5 is 0.26 nm, which is consistent with the interplanar distance of 
the (002) plane of ZnO (JCPDS 070–2551). EDS analysis shows that the 
transparent thin film is composed exclusively of ZnO. 

The Raman spectrum of a ZnO thin film measured under a 325 nm 
excitation wavelength, showing the vibrational modes, is presented in 
Fig. 3. Under resonant conditions, the intense LO peak (sum of two 
modes with A1 (LO) and E1 (LO) symmetry) and a second-order 2LO 
peak are observed in ZnO thin films [58]. These additional low-intensity 
peaks can be identified (see the vertical dashed lines in Fig. 3). They all 
are associated with the fundamental or previously identified multi
phonon modes of crystalline ZnO [59]. No additional peaks/bands that 
could be associated with the presence of other metals or impurities were 
visible. XPS was used to confirm the presence of Zn, O and C. The 

Fig. 1. Schematic representation of the preparation of transparent ZnO thin films on glass substrates.  
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characteristic peaks of Zn 2p (1021 eV), O 1s (530 eV) and C 1s (285 eV) 
are shown in Fig. S6, quantifying the atomic content of the transparent 
thin film as 54.2, 42.6 and 3.3% of Zn, O and C, respectively. 

As shown in Fig. 4, the transparent ZnO thin films exhibit high 
absorbance below 350 nm and high transmittance, reaching approxi
mately 95% above 350 nm, i.e. across all the visible range. Fig. S3 shows 
the high transparency of ZnO thin films deposited on glass. The optical 
band gap value was estimated using the interpolation of the Tauc plot 

with respect to the x-axis. As shown in Fig. 3(b), the estimated value was 
3.28 eV. The estimated values agree with the latest reported values for 
ZnO thin films [60,61]. 

3.2. Photocatalytic degradation of 4-NP 

Initially, the photodegradation of 4-NP in the absence of ZnO thin 
films was evaluated in two control tests: (i) under UV-light irradiation 
and (ii) under UV-light irradiation with an uncoated glass substrate. The 
results demonstrated that only 10% of 4-NP had been degraded after 
270 min in both experiments (i) and (ii) (Fig. S7). Furthermore, the 
capacity of the thin films to adsorb 4-NP molecules was also evaluated 
using ZnO thin films under dark conditions. The investigation revealed 
that a minute quantity of 4-NP was captured by the ZnO thin films’ 
surface (approximately 9%), and the highest level of adsorption was 
attained within a 30-min interaction period, (refer to Fig. S8). Thin films 
had a total weight of 0.112 mg/cm2, which is a smaller amount of 
catalyst as compared to related work published in the literature [62,63]. 
The ZnO thin films showed high photocatalytic activity, leading to 94% 
4-NP degradation after 270 min, as shown in Fig. 5(a). Fig. 5(b) illus
trates the difference in photodegradation efficiency by depicting the 
C/C0 for the transparent ZnO thin films. The 4-NP concentration was 
obtained using the calibration curve presented in Fig. S9. 

The kinetic profile of 4-NP degradation using the ZnO thin film is 
shown in Fig. 5(b), which agrees with a pseudo-zero-order reaction with 
a kinetic rate constant of 3.1 × 10− 3 mM/min. The obtained kinetic 
constant for the degradation of other benzoic compounds using ZnO as a 
photocatalyst (Table 1) is a significantly lower value. 

On the other hand, the photocatalytic degradation rate of 4-NP 
decreased from 94% to 33% upon addition of hydroxyl scavenger 

Fig. 2. (A) GIXRD pattern, (b) AFM image, (c) top SEM image, and (d) cross-sectional SEM image of transparent ZnO thin films.  

Fig. 3. Raman spectrum of a typical ZnO thin film (laser line at 325 nm).  
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(tert-butyl alcohol) to the reaction mixture, whereas addition of FA or 
1,4-BQ only decreased the degradation rate to 62% and 55%, respec
tively (Fig. 6(a)). The bar graph in Fig. 6(b) clearly illustrates the effect 
of the tested scavengers on the photocatalytic degradation of 4-NP over 

the ZnO thin film. Fig. 6(a) and (b) show that h+ and O2− • exert a 
negligible contribution to 4-NP removal, thereby confirming the crucial 
role of OH• in the degradation process. 

Hence, when exposed to UV light, ZnO can absorb photons and 
generate electron-hole pairs, which can then react with oxygen mole
cules to produce superoxide radicals (O2-●) and hydroxyl radicals (OH•) 
through the following equations 7–13 [67,68]: 

ZnO+ hvUV → ZnO + (e− +h+) (7)  

H2O+hvUV → H+ + OH− (8)  

e−CB +O2→O−
2 (9)  

O−
2 +H+→HO2 (10)  

HO2 + e−CB→H2O2 (11)  

H2O2 + e−CB → OH− +OH• (12)  

OH− + hvUV → OH• (13) 

Hydroxyl radicals (OH•) formed in the equations above will attack 4- 
NP, producing organic radicals or other intermediates. NO2 is formed 
and subsequently oxidized to NO3 [69]. Ultimately, all parent com
pounds and intermediates will be oxidized into CO2 according to the 
following equation (14): 

C6H4OHNO2 + 7O2 → 6CO2 +H2O + HNO3 (14) 

Fig. 4. The optical characteristics of the ZnO thin film, (a) the absorbance and 
transmittance spectra analyzed using UV–vis spectroscopy, and (b) the deter
mination of the energy band gap through the Tauc plot. 

Fig. 5. (A) UV–Vis absorption spectra of aqueous solutions of 4-NP (C0 = 6.95 mg/L) under UV-light irradiation in the presence of transparent ZnO thin films, and (b) 
pseudo-zero-order decay fitted linear regression curve for 4-NP photodegradation in the presence of transparent ZnO thin films and photolysis. 

Table 1 
Comparison of the transparent ZnO thin films behaviour with other recently 
developed similar ZnO photocatalysts under UV light irradiation.  

Samples Benzoic 
compounds 

[Pollutant] 
(mg/L) 

Amount of 
photocatalyst 
(mg) 

Removal 
(%) 

This work 4-Nitrophenol 
(4-NP) 

7.0 0.7 94 in 270 
min 

Nanocrystalline 
immobilized 
ZnO [64] 

Benzoic Acid 
(BA) 

122.1 unknown 18.3 after 
400 min 

ZnO powder [65] Benzoic Acid 
(BA) 

40.0 50 39 after 
120 min 

ZnO 
nanoparticles 
[66] 

Tetracycline, 
(TC) 

100.0 50 61.6 after 
120 min  
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Fig. 6. (A) The kinetics of the photoreaction using different scavengers were studied on ZnO thin films that allow light to pass through (b) The percentage of 
degradation efficiency was evaluated using different scavengers on ZnO thin films that are transparent. (c) A visual representation illustrating the mechanism of 
degradation of 4-NP in the presence of transparent ZnO thin films. 

Scheme 1. Proposed reaction mechanisms of the 4-NP degradation of by hydroxyl radicals (OH•).  
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Alternative authors propose that the breakdown of OH• and aro
matic molecules occurs through electrophilic addition instead. When 4- 
NP is present, ortho OH• has the ability to generate 4-nitrocatechol (4- 
NC). Scheme 1 illustrates a suggested sequence of reactions for the 
photooxidative deterioration of 4-NP. The combination of 4-NC and 
OH•, results in the production of 1,2,4-benzenetriol (1,2,4-BT). Subse
quent reactions of primary intermediates with OH• lead to ring opening, 
the formation of oxygenated aliphatic compounds, and the generation of 
mineralization products. Hydroquinone (HQ), can be formed when OH•

directly attacks the nitro group position. Similar to 4-NC, HQ reacts with 
OH• to yield 1,2,4-BT. The degradation of 4-NP, leading to the gener
ation of 4-NC and HQ, and its subsequent reaction with OH• to produce 
1,2,4-BT, exhibits resemblances to the degradation pathway proposed 
for the UV/TiO2 photocatalytic degradation of 4-NP [70,71]. 

To investigate the stability and reusability of the as-prepared ZnO 
thin films as photocatalysts, they underwent four photocatalytic cycles 
(Fig. 7(a)). 

In fact, high 4-NP degradation values are still observed after four 
cycles (90%), as indicated by the bar chart presented in Fig. S9. One of 
the possible explanations for this low decline is due to the adsorption of 
4-NP into the active centres of the photocatalyst, which results in a slight 
reduction in degradation efficiency. Moreover, in order to evaluate the 
stability of the transparent ZnO thin films, they were immersed in 
different aqueous solutions at pH 1, 7 and 14 for 24 h. The presence of 
Zn2+ ions has been measured by ICP-MS in accordance with the ISO 
11885 internal methodology (Table 2). The amount of Zn2+ in the su
pernatant solutions was 0.403 μg/L, which indicates the high stability of 
the transparent ZnO thin films in an aqueous medium. However, thin 
film would leach out and be dissolved in the reaction medium when the 
pH is below 6 due to the HCl, which is able to dissolve the zinc oxide 
[72]. The high stability of these thin films can be explained by the high 
adhesion to the glass substrate due to the synthesis method used as well 
as the high chemical resistance of ZnO [73]. 

3.3. Antibacterial activity of transparent ZnO thin films 

The antibacterial activity of thin ZnO films was tested, after UV 
irradiation for 3 h, using a standard method (JIS Z 2801_2000) devel
oped for hard surfaces, such as glass. Glass samples were used as refer
ence samples. Also, to evaluate the effect of UV irradiation, tests were 
conducted under UV light and in the dark, for the same testing time. 
After counting the viable cells that were recovered from the surface of 
the samples, the antibacterial rates were calculated. Results are pre
sented in Fig. 8. First, glass and ZnO thin films were compared for any 
possible antibacterial effect in the dark. Bacterial counts obtained for the 

two types of samples showed no significantly different antibacterial 
properties (Fig. 8A). However, after testing the presence of UV light, a 
significant reduction in cell viability was observed for both samples 
(Fig. 8A). The samples, however, showed significantly different behav
iours, with a 43.7 and 60.6% reduction in bacterial cells for glass and 
ZnO thin film, respectively. Results overall show that, when compared 
with glass surfaces, ZnO thin films make a significant addition to the 
antibacterial effect induced by UV irradiation of about 17% (Fig. 8B). 

ZnO nanoparticles in general are described has posing noticeable 
antibacterial activities [74]. This activity is thought to be caused by the 
production of ROS, particularly in the presence of light. Also, other ef
fects are possible, like causing membrane damage by accumulation on 
the cell’s surface, by cell internalization or through Zn+ ion release [75]. 
In this work, thin films produced are not expected to release Zn+ ions. 
Possible mechanism of antibacterial action must therefore come from 
ROS generation and cell membrane damage, through ZnO thin film 
contact. The fact that no significant differences were found between 
glass and thin films, under dark conditions, may imply that, considering 
the experiment conditions, cell membrane damage and ROS generation 
were not effective. But, when testing the same samples after UV expo
sure, bacterial reduction was observed in both, but significantly greater 
in thin films. For glass samples, the reduction observed must be due to 
UV induced damages in membranes, proteins and DNA that affect gen
eral cellular processes [76]. The augmented antibacterial activity seen 
for ZnO thin films can be explained by the combined action with UV 
causing enhanced ROS generation, toxic to the cells. Synergistic effects 
to enhance photocatalytic activity of ZnO have already been reported 
[74]. To the best of our knowledge this is the first evidence obtained on 
ZnO transparent films holding strong promises of future applications, 
where additional antimicrobial properties are desired. 

Fig. 7. (A) Reusability of the thin films in the photocatalytic degradation of 4-NP under UV light irradiation after a total of four cycles, and (b) a bar graph 
illustrating the percentage of degradation efficiency over four cycles. 

Table 2 
ICP-OES results of the amount of zinc leached after the leaching screen 
experiments.  

pH = 1 

Parameters Test method Analytical 
technique 

Result Units 

Zn Internal method based on 
ISO 11885 

ICP-OES 4826 μg/L 

pH = 7 
Zn Internal method based on 

ISO 11885 
ICP-OES <1 μg/L 

pH = 14 
Zn Internal method based on 

ISO 11885 
ICP-OES <1 μg/L  
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4. Conclusion 

This work presents a simple method of obtaining transparent ZnO 
thin films on glass, exhibiting an exceptional degree of transparency – 
over 95%. These thin films have been fabricated to act as photocatalysts 
for the degradation of water pollutants and bacteria. It is observed that 
their stability of these thin films is very high in neutral and basic 
aqueous media, thanks to the high adhesion of these films to the glass 
and the high chemical stability of ZnO. It has been shown that these 
films can generate hydroxyl radicals (OH•) when they are exposed to UV 
irradiation. The thin films exhibited high photocatalytic activity with 
94% of 4-NP degraded after 270 min. The same catalyst was used for 4 
degradation cycles maintaining an activity of 90% in the photo4-NP 
degradation. Comparing the reduction produced by a UV lamp when 
irradiating normal functionalized glass with these transparent ZnO 
layers, it was also discovered that radicals increase bacterial cell 
reduction by 17%. In future investigations, the evaluation of incorpo
rating nanoparticles (NPs) onto the surface of these transparent thin 
films, along with the assessment of the films’ photocatalytic activity 
under different light sources (such as visible light or sunlight), can be 
considered. 
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