
IEEE TRANSACTIONS ON ROBOTICS 1

Optimizing UAV Resupply Scheduling for
Heterogeneous and Persistent Aerial Service?

Edgar Arribas, Vicent Cholvi, and Vincenzo Mancuso

Abstract—With the current advances in UAV technologies,
aerial vehicles (UAVs) are becoming very attractive for many
purposes. However, currently the bottleneck in the adoption of
them is no longer due to architectural and protocol challenges and
constraints, but rather to the limited energy that they can rely on.
In this article, we design two power resupplying schemes under
the assumption of a fleet of homogeneous UAVs. Such schemes
are designed to minimize the size of the fleet to be devoted to
a persistent service (i.e., carried out at all times) of a set of
aerial locations. First, we consider the case where the aerial
locations to be served are equidistant from an energy supply
station. In that scenario, we design a simple scheduling, that
we name HORR, which we prove to be feasible and exact, in
the sense that it uses the minimum possible number of UAVs to
guarantee the permanent coverage of the aerial service locations.
Then, we extend that work for the case of non-evenly distributed
aerial locations. In this new scenario, we demonstrate that the
problem becomes NP-hard, and design a lightweight scheduling
scheme, PHERR, that extends the operation of HORR to the
heterogeneous case. Through numerical analysis, we show that
PHERR provides near-exact resupply schedules.

Index Terms—UAV, energy scheduling, optimization, persistent
aerial service.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs), and lightweight
drones in particular, are becoming very attractive for

many purposes due to their ability to extend the capabilities
of fixed infrastructures in a fast and flexible manner. Just to
mention a few, UAVs have been already used in many different
scenarios: in case of planned communication traffic surges
due to massive meetings, on military and disaster recovery
missions, for harvesting data from fixed sensors, to deliver
goods and to irrorate disinfectants [2], etc. Indeed, since the
use of UAVs is becoming a technically viable solution, it has
been proposed for a myriad of security and safety scenarios.

However, with the current advances in UAV technologies,
the bottleneck in the adoption of UAVs is no longer due
to architectural and protocol challenges and constraints, but
rather to the limited energy that they can rely on. With multiple
UAVs and limited stations where UAVs can land to get
supplied with energy, the need for intelligent management of
resources seems evident. For this reason, flying several UAVs
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in a real scenario needs accurate planning and monitoring of
both their energy consumption and resupply.

The work presented in this article focuses on an important
yet still not well understood aspect of providing a service by
means of UAVs, which is the need to resupply UAVs with
fresh energy before they run out of power. The problem is
important because it has implications on both service quality
and potential safety threats posed by UAVs freely falling
when running out of energy. These aspects make the problem
of monitoring with mobile devices different and harder than
with conventional robots or devices with no or unfrequent
need to obtain fresh energy. In turn, understanding such a
difference requires a formal study that goes beyond mere
experimental observations and intuitions.

In this article, we consider a scenario where there is a set of
aerial locations that must be serviced by a number of UAVs
(one UAV per location). We do not care about the type of
service that is performed by the UAVs, other than such services
must be persistent. Namely, we say that a service is persistent
if it is carried out at all times. Clearly, that means that, at all
times, one UAV must be situated at each location.

In order to ensure that some locations are permanently
serviced, first of all a number of UAVs must fly to these
locations to provide service for a period of time. Furthermore,
each servicing UAV must return to the resupply station when
it still has enough energy for the return flight. Then, once
a UAV has been resupplied with energy (by automatically
swapping the battery, recharging the battery, refueling, etc.), it
becomes available to replace another active UAV. However, the
above mentioned scheme raises some issues to be taken into
account. On the one hand, the need of UAVs to be periodically
resupplied with more energy will affect the service they
provide. Therefore, it is necessary to account for redundancy,
so that when a UAV flies to get resupplied, the service that it
was giving is provided by another UAV. But, unlike traditional
energy resupply schemes, the time during which a UAV with
low energy goes offline is not negligible, since neither resupply
times nor the time to fly back and forth are negligible.

At this point, we note that, as highlighted in the next
section, the best strategy to monitor a number of locations
in a persistent manner (in terms of minimizing the number
of UAVs needed) is to make each UAV, once it has serviced
a single location, go directly to get resupplied with more
energy [3]. Therefore, in this article we only need to focus
on that type of routing.
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Our contributions: In this article, we formally define the
problem of UAV resupply scheduling for persistent service
at designed aerial locations by accounting all associated UAV
energy resupply overheads. Thereafter we study two scenarios:
we start with a simple case in which UAVs are dispatched
at equidistant aerial target locations from their energy supply
station (i.e., targets located at homogeneous distances) where
they fly back when not in service; we show that the problem
admits at least one optimal solution, and design HORR, an
exact algorithm that implements a particular optimal solution
in which UAV operational shifts repeat cyclically. Then, we
move to a more generic scenario in which UAV distances from
the energy supply station are heterogeneous (i.e., non-equal
displacement distances). In this case, the problem becomes
NP-hard to solve, as we formally prove. We therefore resort
to heuristics that generalize HORR. Specifically, we design
the HERR routine as the generalization of HORR, obtained
by accounting for some buffer time in the UAV shifts, which
compensates for heterogeneous displacement distances that
UAVs have to cover to fly to and from their energy supply
station. We improve the performance of HERR by partitioning
the fleet of UAVs into groups within which distances are
as homogeneous as possible, and by applying HERR to
each group separately. The resulting algorithm, which we
name PHERR, is shown to be near-exact by comparing its
performance with a new lower bound of the problem that we
derive. The novelty and significance of the work presented
in this manuscript stems form the formal analytical results
derived here: we either provide exact algorithms or build
near-exact algorithms based on the results of the analysis
and not just based on experimental intuition. Eventually, our
algorithms are important also because they tell how to operate
UAV-based services in a cost-effective manner. Thus, our
work has practical relevance and impact on today’s market
of commodity services.

This article significantly extends our preliminary results
published in [1]. That work focuses on the analysis of the
homogeneous scenario and presents the HORR, which are also
compactly illustrated in this manuscript in part of Section IV.
However, most of the analysis and results derived in this article
have not been previously published. In particular, the analysis
of heterogeneous cases and the derivation of the corresponding
algorithms and properties is fully novel.

The rest of the article is organized as follows: Section II
discusses the related work. Section III describes the reference
UAV scenario studied in this article. Section IV presents
the case of homogeneous distances to be covered by UAVs,
and the optimality of our solution. Section V illustrates the
complexity of solving the scheduling of UAVs under hetero-
geneous conditions. Section VI proposes a near-exact heuristic
for the generic heterogeneous case. The performance analysis
and benchmarking of the proposed solutions is presented in
Section VII. Finally, Section VIII provides conclusions.

II. RELATED WORK

The increasing growth of the UAVs ecosystem during the
last years has led to an increasing number of management

strategies used to overcome both battery limitations as well as
lack of available UAVs in a given situation.

Most of the work on energy management of UAV-
based technologies focuses on the vehicle routing problem
(VRP) [4]. Namely, the goal of VRP is to generate routes
for a team of agents leaving a starting location, visiting a
number of target locations, and returning back to the starting
location. Among the many variants of such a problem, there is
the possibility that the energy stations in which the UAVs will
be powered be either stationary or mobile [5]. For instance,
machine learning achieves near optimal results to solve UAV
routing problems with resupplying stops as studied in [6],
which shows results within a few percents from the optimal
route. Besides, the full-fledged automation of energy stations
has proven feasible in real testbeds [7]. This opens to the
advent of new automated applications and strategies, which
involve pricing and resupply options. As an example, a credit-
based game theory approach to UAV resupplying at stationary
stations is studied in [8] and mechanisms to optimize the
position of energy stations have been proposed, e.g., in [9]
and [10] for fixed and mobile energy stations, respectively.

A variant of the VRP has been addresses by Hari et
al. [11]. Their model, which the authors refer to as persistent
monitoring problem, consists in finding a sequence of k visits
to each location, minimizing the time between two visits to the
same location. In there, the authors analyze different solutions
that depend on service time. They show that if such a time is
negligible, then it is easy to compute an optimal solution by
using standard solvers. Conversely, when the service time is
relatively large, they prove that it is sufficient to compute an
optimal travel salesman problem tour over the targets, so as to
determine the optimal solution. In between, when the service
time is any positive real number δ, they show how to build
feasible solutions that are at most δ units from the optimum.

In [12], the authors consider a single UAV
persistent monitoring problem for targets with arbitrary
weights/priorities. In their work, the goal is to minimize
the weighted time between consecutive visits to the same
location, which is defined as the maximum among the
products of the time between successive visits to the targets
and the weights of the corresponding targets. With this new
objective, the authors show that optimal infinite walks can be
obtained by indefinitely repeating finite walks. However and
contrary to [11], the number of visits in a finite walk that
needs to be repeated to obtain an optimal infinite walk can be
exponentially large. Similar to the above mentioned results,
our work also addresses the problem of energy management
of UAVs intended to visit/monitor a number of locations.
However, and contrary to them, our goal is not the same, in
the sense that we also require that such monitoring be carried
out in a persistent manner (i.e., at all times). This detail adds
new constraints that make existing UAV scheduling policies
not suitable for pursuing our objective.

A work closely related with our article is the one carried
out by Shakhatreh et al. in [13]. In their work, the authors
analyze the monitoring of a number of geographic areas,
with the objective of minimizing the number of UAVs that
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are needed to provide coverage at all times. Each UAV visits
one or more target areas, and the authors propose a heuristic
algorithm to find an efficient scheduling. However, traveling
through different target locations is not, in general, the best
strategy. Moreover, that approach incurs the problem of
finding the best cycle that UAVs must follow. Indeed, in [3],
the authors provide an interesting result regarding different
routing strategies that UAVs may follow to monitor a number
of locations in a persistent manner. Namely, they show that
the best strategy (in terms of minimizing the number of
UAVs needed) consists in making each UAV return directly
to the energy supply station (ESS) once it has serviced a
single location. Accordingly, in our work we only need to
consider this type of routing, which the authors in [3] call
proper replacement scheme.

In [3], the authors provide two approximation algorithms:
one with an approximation factor upper bound of 1.5 (when all
the locations are known in advance) and the other with an aver-
age factor of 1.7 (for the online version). They were followed
by the authors of [14], who consider minimizing the number
of UAVs with multiple energy stations. Using an approach
similar to that in [3], in a subsequent work [15], the authors
also consider the case with multiple energy stations, showing
that the problem is NP-hard even for a single additional UAV
(i.e., with just one back-up UAV needed to guarantee the
service). They also provide two approximation algorithms for
solving the problem. Their experimental evaluation shows that
the approximation factors are not worse that 1.6 (offline) and
1.7 (online), thus outperforming the results of [14].

Differently from existing works that provide approxima-
tions, we find an exact solution for the case in which UAVs are
dispatched at homogeneous distances from their energy supply
station. Moreover, relying on the structure of such optimal
solution, we build a near-exact scheme for the general non-
homogeneous case. This implies a key intrinsic difference with
existing approximation algorithms, which are instead based on
problem relaxations and bounds. Indeed, we will show that our
proposal largely outperforms state-of-the-art schemes.

III. REFERENCE SCENARIO

We consider a set of UAVs that must perform a persistent
task in a set N of aerial locations. We say that a UAV
is covering/providing service when it is at an aerial target
location to perform the persistent task. Clearly, as time passes
by, UAVs consume energy, and therefore they will periodically
need to fly to an energy supply station (ESS). We assume that
there are N target locations, M ≥ N UAVs and one ESS that
is able to resupply any number of UAVs at the same time.

The ESS can be installed at the center of the aerial locations,
so as to minimize the aggregate travelled distance, or in safe
places, like the roof of tall buildings in a city, etc. However, in
this article we assume that the topology of aerial locations and
ESS are given, and their optimization is out of the scope of our
work. When a UAV lands on the ESS, the UAV is resupplied
with energy. The process can consist in automatically swap-
ping the battery, recharging the battery, refueling the UAV, etc.,

Figure 1: Scenario of the UAV persistent problem.

depending on the specific UAV. Indeed, our work applies to
any kind of UAVs and resupply procedures. What matters is
that the resupply takes certain time c ≥ 0. Figure 1 illustrates
the above mentioned scenario.

In addition, we assume a fleet composed by identical UAVs
and denote as f the maximum flight time of each UAV.

We denote as gi the displacement time that UAV needs to
fly from the ESS to location i∈N (or viceversa).

Since to cover a location i a UAV needs to be able to, at
least, fly to it and come back (which takes 2gi time units)
before it runs out of energy (i.e., before f time units), we
assume that 2gi<f , for all i∈N .

The UAV Persistent Service problem. With the aforemen-
tioned reference scenario, our objective is to obtain a coordi-
nation strategy that guarantees that, at all times, each location
in N will be covered by one UAV. Such a strategy will instruct
each UAV when to fly and cover a location, and when to go to
the ESS and resupply its energy. In addition, we want this task
to be accomplished with the least possible number of UAVs.

IV. HOMOGENEOUS SCENARIOS

In this section, we consider the case in which the distance
from the ESS to each of the aerial locations is homogeneous
(i.e., the aerial locations are dispatched at equidistant positions
from the ESS). Hence, gi ≡ g, ∀i∈N .

First, we define the Homogeneous Rotating Resupply
(HORR) algorithm, and show that it solves the UPS problem.
Then, we provide some results regarding how UAVs are
instructed to resupply and prove that HORR is optimal, in
the sense that it minimizes the number of UAVs.

A. The HORR algorithm

The rationale behind how the algorithm has been designed
is based on the fact that the distances to the locations to be
covered are homogeneous. UAVs are cyclically replaced at
fixed time intervals, ensuring that they will provide service
as long as possible, and always replacing the UAV with the
lowest level of energy among the ones in service.

The code of the HORR algorithm is shown in Algorithm 1.
It works as follows: at each time interval of x time units
(Steps 3 and 4), the UAV with less energy goes to resupply,
regardless of whether or not it is actually running out of
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Algorithm 1 Homogeneous Rotating Resupply (HORR)

Input: N , f , g, c.
1: Obtain x = f−2g

N
, where N =|N |.

2: Initially, N UAVs are instructed to provide service at each
of the N aerial locations.

3: g time units before a period of a length of x time units
ends, a fully charged backup UAV uc takes off from the
ESS and goes to the location of the UAV with less energy
ue (breaking ties uniformly at random).

4: When uc arrives at the location of ue, it replaces ue and
ue goes to resupply. Once ue is resupplied it will be
considered as a backup UAV.

5: Go back to Step 3.
Output: Schedule {(tk, uk, ik)}k≥0 indicating the time in-

stants tk at which the UAV uk is instructed to take off
to replace the UAV of location ik.

energy. For that, we use x = f−2g
N . In this way, each UAV is

called to resupply at the ESS after N time intervals of length
x, so that the UAV will have been in service for Nx = f−2g
time units, which means that the operating time of each UAV
is maximized. In addition, g time units before that UAV is
instructed to resupply, a backup UAV is sent to replace it, so
that the coverage is maintained at all times. On its side, a
resupplied UAV is considered as a backup UAV.

The HORR algorithm is run at the system orchestrator once
the aerial locations to be covered are known. Once HORR is
run, the output is a resupply schedule {(tk, uk, ik)}k≥0 that
indicates the time instants tk at which the UAV uk is instructed
to take off from the ESS in order to replace the UAV of location
ik. The algorithm outputs a time schedule as long as needed
by the monitoring system in order to cover all aerial locations
during a desired period of time.

Note that HORR assumes that there will always be a backup
UAV ready to replace any other UAV instructed to resupply.
In the following theorem we prove that, by using HORR, the
number of backup UAVs that guarantees that each location in
N is permanently covered is

⌈
c+2g
f−2g

N
⌉
.

Theorem 1. Assume a fleet of UAVs that provide service in a
homogeneous scenario so that the resulting system is charac-
terized by f , c and g. HORR guarantees that N locations can
be permanently covered by using M = N +

⌈
c+2g
f−2g

N
⌉

UAVs.

Proof. According to Algorithm 1, at each time instant kx
(with k ∈N) a UAV ue is instructed to resupply, so that at
time instant kx− g a backup UAV uc takes off to replace
ue just on time. After that, it will take at least c + 2g time
units for ue to be back and replace another UAV called back
for resupplying. During that interval, exactly n =

⌊
c+2g
x

⌋
UAVs will be instructed to resupply, at intervals of x = f−2g

N

units after kx. If the ratio c+2g
x is integer, ue will be used

for the n-th replacement, otherwise it will be used for the
(n + 1)-th replacement. In both cases, the number of UAVs
instructed to resupply and not yet back to service is exactly⌈
c+2g
x

⌉
=
⌈
c+2g
f−2gN

⌉
. Hence, this is also the number of backup

UAVs needed by HORR, and the proof follows.

In Figure 2, we show an illustrative example of how the
HORR algorithm works. We consider a scenario formed by
three locations (i.e., N=3) and with f = 45 min, g = 5 min
and c=15 s. Under those premises, Theorem 1 guarantees that
only one additional UAV is strictly necessary to guarantee a
persistent coverage at the three locations (i.e., M = 4). Thus,
every x=11.6 min, one active UAV is instructed to resupply
and, 5 min in advance, a fully charged backup UAV is also
instructed to fly and replace that UAV. Observe also that, at the
regime level of the scheduling (i.e., after the second resupply
since the initial deployment of UAVs with full batteries) each
UAV provides service for f−2g=35 min.

B. Resupplying in the HORR algorithm

Next, we provide two results regarding when UAVs are
instructed to resupply.

Lemma 1. By using HORR, a UAV covering a location i∈N
is instructed to resupply for the k-th time at time instant:

tki =

(
i+ (k−1)N + (k−1)

⌈
2g+c

x

⌉)
x,

where x = f−2g
N

.

Proof. We prove the lemma by induction. Take k = 1. Without
loss of generality, assume that u is the UAV instructed to cover
the i-th location in the 1st round (otherwise, UAVs can be
resorted). Then:

t1i = ix,

which satisfies the lemma.
Assume the lemma is true for a given k. We prove that then

the lemma is also true for k+1.
According to the inductive hypothesis, u is instructed to

resupply for the k-th time at:

tki =

(
i+ (k−1)N + (k−1)

⌈
2g+c

x

⌉)
x.

Then, u arrives to the ESS at time tki +g and takes off at
tki +g+c (i.e., after it is fully resupplied). This means that u
can replace another UAV at time tki +2g+c or later.

Following the scheduling, u will replace another UAV at
instant jx, for some j ∈ N. Concretely, it will do it at the
minimum time instant jx such that jx≥ tki +2g+c. Hence:

j=

⌈
tki + 2g + c

x

⌉
=

⌈
i+ (k−1)N+(k−1)

⌈
2g + c

x

⌉
+
2g + c

x

⌉
= i+ (k−1)N + (k−1)

⌈
2g + c

x

⌉
+

⌈
2g + c

x

⌉
= i+ (k−1)N + k

⌈
2g + c

x

⌉
.

Then, after Nx time units, u will be instructed to resupply
again for the (k+1)-th time at time instant:

tk+1
i = jx+Nx =

(
i+ (k − 1)N + k

⌈
2g + c

x

⌉)
x+Nx

=

(
i+ kN + k

⌈
2g + c

x

⌉)
x,

which proves the lemma.
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Figure 2: UAV scheduling by using HORR with N = 3, f = 45 min, g = 5 min, c = 30 s.

Corollary 1. By using HORR, any UAV is instructed to
resupply every

(
N+

⌈
2g+c
x

⌉)
x time units.

Proof. The difference between two consecutive resupplies at
the same location i is given by

tk+1
i − tki =

(
i+ kN + k

⌈
2g + c

x

⌉)
x −

(
i+ (k−1)N

+ (k−1)

⌈
2g + c

x

⌉)
x =

(
N +

⌈
2g + c

x

⌉)
x,

and hence the corollary follows.

C. Optimality of the HORR algorithm

In the following theorem, we show which is the strictly
minimum number of UAVs necessary to guarantee that a given
set of locations are covered in a persistent manner.

Theorem 2. Assume a fleet of UAVs that provide service in a
homogeneous scenario so that the resulting system is charac-
terized by f , c and g. The minimum number of UAVs necessary
to guarantee that N of them will be always providing service
is M = N +

⌈
c+2g
f−2g

N
⌉
.

Proof. A UAV can provide service to a target location for at
most f−2g time units and needs to be offline for at least 2g+c.
Therefore, each target requires at least n backup UAVs, such
that (f − 2g)n = 2g + c. Hence, to cover N homogeneous
locations, we need at least N 2g+c

f−2g backup UAVs in total.
Rounding this number to the next integer yields the result.

The proof of the above theorem implies that HORR finds
an optimal scheduling, hence it is an exact algorithm because,
according to Theorem 1, it uses the minimum possible number
of backup UAVs.

Corollary 2. The HORR algorithm is exact.

D. Numerical analysis of the HORR algorithm

To end this section, and through a numerical analysis of
the result provided by Theorem 1, here we illustrate how the
fleet size M grows as a function of the number of locations to
be covered, N . Figure 3 shows that relationship for different
values of f . We have also considered different values of both
g and c, and we observed that the shapes were similar.

N
1 2 3 4 5 6 7 8 9 10

M

0

2

4

6

8

10

12

14

16

18

f = 30 min

f = 45 min

f = 75 min

f = 105 min

Figure 3: Behavior of the HORR algorithm. g = 5 min and c = 30 s.

The first observation is that the values of M grow linearly
with the values of N . This can be readily explained as follows:
We know that M = N+

⌈
c+2g
f−2gN

⌉
, which can be rewritten as

M/N = 1+
⌈
c+2g
f−2gN

⌉
/N ' f+c

f−2g . However, in any concrete
scenario, the parameters f , g and c remain constant, since
they model features that do not change. Therefore, we have
that M linearly grows with N at a rate of f+c

f−2g . At this point,
we note that the steps that can be observed in the graph are
due to rounding up the number of UAVs.

Another observation is that the higher the value of f , the
lower the slope. Again, this can be explained since the value
of f+c

f−2g decreases with the increase in the value of f , until it
reaches 1 (which happens when f is much larger than both g
and c.

V. HETEROGENEOUS SCENARIOS: NP-HARDNESS AND
COVERING COST

In this section, we address the case in which the distance
between the ESS and each different location can be different.
First, we show that, in that scenario, the UPS problem is NP-
hard. Then, we prove that covering heterogeneous scenarios
is, in general, more costly than covering homogeneous ones.
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A. NP-hardness

Theorem 3. The UPS problem in the heterogeneous case is
NP-hard.

Proof. Consider an instance of the UPS problem such that
c = 0 and 2gi < f/2, ∀1 ≤ i ≤ N . This instance of the
UPS problem is equivalent to the general instance of the
Minimal Spare Drone for Persistent Monitoring (MSDPM)
problem [16] with one ESS. At this point, we note that the
MSDPM problem is equivalent to the Bin Maximum Item
Double Packing (BMIDP) problem (see [16, Lemma 5.1]).
In addition, the BMIDP problem is NP-hard, as we formally
prove in Appendix A. Therefore, we have that the MSDPM
problem is NP-hard and, consequently, the UPS problem is
also NP-hard.

This result shows that, contrary to what happens in the
homogeneous case, i it is not possible to find an optimal
scheduling that works in polynomial-time for the heteroge-
neous distance scenario.

B. Covering Cost

In this subsection, we compare the covering cost, in terms
of the number of UAVs required in homogeneous scenarios
against the cost required in heterogeneous ones. To do this, we
first obtain a lower bound on the necessary number of UAVs
to guarantee that N locations will be permanently covered.

Theorem 4. Assume a fleet of UAVs that provide service
in a heterogenous scenario so that the resulting system is
characterized by f , c and gi (for each i ∈ N ). A lower
bound on the minimum number of UAVs necessary to guar-
antee that N of them will be always providing service is

MLB = N +

⌈
N∑
i=1

c+2gi
f−2gi

⌉
.

Proof. Similarly to what argued in the proof of Theorem 2,
each aerial target i requires at least c+2gi

f−2gi
backup UAVs.

Summing over all possible aerial locations, and taking the
ceiling, we get a lower bound of the total number of backup
UAVs, and the theorem follows.

Now, we can use the obtained lower bound to show that
covering in heterogeneous scenarios is, in general, more costly
than covering in homogeneous ones.

Theorem 5. Assume a fleet of UAVs that provide service
in a heterogenous scenario so that the resulting system is
characterized by f , c and gi (for each i ∈N ). Let Mhet be
the minimum number of UAVs that guarantee that N of them
are always providing service at the target locations, and let
Mhom be the minimum number of UAVs that guarantee that
N of them are always providing service in the homogeneous
scenario when g = Avg(gi). Then, Mhet ≥Mhom.

Proof. From Theorem 4, we know that Mhet≥N+

⌈
N∑
i=1

c+2gi
f−2gi

⌉
.

Now, we apply Theorem 8 from Appendix B to
N∑
i=1

c+2gi
f−2gi

:

N∑
i=1

c+2gi
f−2gi

≥ N

N∑
i=1

c+2gi

N∑
i=1

f−2gi

= N
Nc+2Ng

Nf−2Ng
= N

c+2g

f−2g
.

Hence, Mhet ≥N+
⌈
c+2g
f−2gN

⌉
. Since the optimal number of

UAVs for the homogeneous scenario is Mhom=N+
⌈
c+2g
f−2gN

⌉
(see Theorem 2), then Mhet ≥Mhom.

Theorem 5 is interesting for two reasons. First, the theorem
tells that any deviation from the homogeneous scenario will
result in a decrease in performance (regarding the minimum
number of necessary UAVs) and hence, finding a way to keep
sets of locations spread as homogeneously as possible will
help to reduce the needed fleet size. Second, Theorem 5 can
be used to make the right decision about where to locate the
ESS. Namely, in the place that makes the system homogeneous
(of course, if such a position is feasible), since it will need
fewer UAVs.

VI. HETEROGENEOUS SCENARIOS: THE PHERR
ALGORITHM

In this section, we introduce a UAV scheduling algorithm
for heterogeneous scenarios. Such an algorithm works in two
phases: in the first phase the whole set of locations are
properly partitioned into subsets so that, in the second phase, a
resupplying scheduling routine is individually applied to each
of the resulting subsets.

The rationale behind partitioning the whole set of loca-
tions is to work with more homogeneous subsets, as Theo-
rem 5 identifies that deviating from homogeneity increases
the amount of needed UAVs. As it will be clear later, this
will prevent the furthest locations, which can only be covered
for less time, from affecting the coverage of closest locations.
We remark that although we aim to find more homogeneous
subsets of locations, such subsets may be heterogeneous, so
that the scheduling derived for the homogeneous case is not
necessarily valid here.

A. The HERR routine

First, we introduce the resupply scheduling routine that is
used once the whole set of locations has been partitioned.
That routine, which we call Heterogeneous Rotating Resupply
(HERR), is a generalization of the HORR algorithm that takes
into account that distances from the ESS to the locations could
be different.

Its code is shown in Algorithm 2, and it works as follows:
Let I be a subset of I locations obtained after partitioning
N . For each location ij ∈ I, every xij time units (Steps 5
and 6) the UAV that covers ij will go to resupply, regardless
of whether or not it is actually running out of power. For
that, we define, for each location ij in the subset I, xij =



IEEE TRANSACTIONS ON ROBOTICS 7

Algorithm 2 Heterogeneous Rotating Resupply (HERR)

Input: I ⊆ N , f , {gij}ij∈I , c.
1: Sort {gij} in increasing order.
2: For all 1≤ j≤I: obtain xij =

f−2giI∑I
l=1

gil
·gij , where I =|I |.

3: Initially, one UAV is instructed to provide service at each
of the I aerial locations.

4: Set ij ← 1.
5: gij time units before a period of length xij time units

ends, a fully charged backup UAV uc takes off from the
ESS and goes to location ij .

6: When uc arrives to location ij , it replaces the UAV that
is covering it, which goes to resupply. Once resupplied,
that UAV will be considered as a backup UAV.

7: Set j ← (jmod I) + 1 and go back to Step 5.
Output: Schedule {(tk, uk, ik)}k≥0 indicating the time in-

stants tk at which the UAV uk is instructed to take off
to replace the UAV of location ik.

f−2giI∑I
l=1 gil

gij as the heterogeneous time interval, measured from
when the UAV covering location ij−1 was called to resupply
at the ESS,1 after which the UAV covering that location is
called to resupply at the ESS (and when that happens, the
UAV covering ij is the one with the least level of energy
among the UAVs in service). We define xij in this way because
then, once a UAV is called to resupply at the ESS after I
time intervals, such UAV has been monitoring the location
for

∑I
j=1 xij = f − giI time units, which is the maximum

operating time that can be guaranteed for all locations without
any UAV draining its energy (because {gij} have been sorted
in increasing order in Step 1). The way in which xij is defined
is a generalization of x in Algorithm 1 for the homogeneous
case. In addition, gij time units before that UAV is instructed
to go to resupply, a backup UAV is sent to replace it, so that the
coverage is maintained at all times. On its side, a resupplied
UAV is considered as a backup UAV. As it can be seen, the
main difference between HORR and HERR is that now the
time instants at which UAVs are instructed to resupply are not
equally spaced, but have been chosen so that no UAV will run
out of energy before reaching the ESS.

For simplicity, from now on we consider that if l> I then
gil = gij , where 1≤ j≤ I is the only number such that l ≡ j
mod I (the same applies for xil ).

As in the homogeneous case, the HERR algorithm is run at
the system orchestrator once the aerial locations to be covered
are known. Once HERR is run, the output is a resupply
schedule {(tk, uk, ik)}k≥0 that indicates the time instants tk
at which the UAV uk is instructed to take off from the ESS in
order to replace the UAV of location ik. The algorithm outputs
a time schedule as long as needed by the monitoring system
in order to cover all aerial locations during a desired period
of time.

In the following theorem, we provide a bound on the number
of UAVs that guarantees that, by using the HERR routine, each
location in I is permanently covered.

1Here, indices j have to be considered as circular indices ranging from 1
to |I|

Theorem 6. Assume a fleet of UAVs that, by using HERR,
provide service in a heterogenous scenario, and the resulting
system is characterized by f , c and gij (for each ij ∈ I). A
sufficient number of UAVs necessary to guarantee that I of
them will be always providing service is:

M = I + max
1≤k≤I

{nk},

where nk = min
n∈N

{
n :

k+n∑
l=k+1

gil≥
gik+c+gik∗
f−2giI

I∑
j=1

gil

}
, and

ik∗=min

{
iα > ik :

α∑
l=k+1

xil ≥ gik+c+giα

}
.

Proof. According to Algorithm 2, at some time instant
L (f − 2giI ) +

∑k
l=1 xil for some L ∈ Z≥0, 1 ≤ k ≤ I , a

UAV ue that is covering location ij = ik is instructed to
resupply. UAV ue goes to the ESS while a backup UAV
uc takes off at L (f − 2giI ) +

∑k
l=1 xil−gik to replace ue

at the proper instant. While ue gets ready, other nk UAVs
are instructed to resupply. Hence, the first location that ue
will be able to be ready to replace the next time is ik∗ =

min

{
iα > ik :

α∑
l=k+1

xil ≥ gik+c+giα

}
. Thus, the time needed

by ue to be able to replace another location is gik+c+gik∗ .
Hence, it is sufficient to have nk backup UAVs ready to replace
the nk UAVs that are being instructed to resupply during this

period such that
k+nk∑
l=k+1

xil ≥ gik + c+ gik∗ . According to the

definition of each xil , the minimum nk that accomplishes
this is:

nk = min
n∈N

{
n :

k+n∑
l=k+1

gil ≥
gik + c+ gik∗
f − 2giI

I∑
l=1

gil

}
.

Thus, every time a UAV in aerial location ik ∈ I needs
to be replaced, it is sufficient to have nk backup UAVs.
Hence, in general, the sufficient amount of auxiliary UAVs is
max
1≤k≤I

{nk}, while other I UAVs are actually providing service.

Hence, the theorem follows.

We note that, under homogeneous conditions, the proof of
Theorem 6 is equivalent to the proof of Theorem 1. That is,
Theorem 6, when applied to a homogeneous scenario, provides
the same optimal number of UAVs as Theorem 1. Furthermore,
later in Section VII-A we show that the value provided by
Theorem 6 is very close to the actual number of UAVs used
by HERR.

Regarding the complexity of finding nk, in the next lemma
we show that it is at most logarithmic in the input parameters.

Lemma 2. For all 1≤ k≤ I , obtaining nk has a complexity
that is at most logarithmic as O(logAk), where

Ak =

⌈
gik+c+ gik∗
f − 2giI

I∑
l=1

gil

/
gi1

⌉
.

Proof. In Theorem 6 we need to find nk as the minimum
natural number n accomplishing the indicated inequality.
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Figure 4: UAV scheduling by using HERR with I = 3, f = 45 min, c = 30 s and {gi} = {1, 5, 9} min.

Hence, if we find for all k some natural number Ak such
that the inequality is guaranteed to hold, the search space for
natural numbers gets reduced to the finite set {1, . . . , Ak} and
the complexity of finding the minimum n would be at most
logarithmic with Ak. Hence, we find such natural number Ak.

In the proof of Theorem 6, we need that nk verifies that:
k+nk∑
l=k+1

xil =
f − 2giI
N∑
l=1

gil

k+nk∑
l=k+1

gil ≥ gik+c+ gik∗ .

Since {gij} are sorted in increasing order, gil≥gi1 for all l,
the following inequality holds:

f−2giI
I∑
l=1

gil

k+nk∑
l=k+1

gil ≥
f−2giI
I∑
l=1

gil

k+nk∑
l=k+1

gi1 =
f−2giI
I∑
l=1

gil

nkgi1 .

Hence, if nk ≥
gik+c+gik∗
f−2giI

·
∑I
l=1 gil

/
gi1 , we might not get

the minimum number of needed auxiliary UAVs nk needed by
HERR but instead get an upper bound Ak, for all 1≤ k≤ I .
Thus, we define Ak as:

Ak =

⌈
gik+c+ gik∗
f − 2giI

I∑
l=1

gil

/
gi1

⌉
.

Hence, the lemma follows.

In Figure 4, we show an illustrative example of how the
HERR routine works on a set formed by three locations so
that f = 45 min, {gi} = {1, 5, 9} and c = 5 min. In that
case, Theorem 6 tells us that two additional UAVs are enough
to guarantee a persistent service at these three locations (i.e.,
M = 5). It can be seen that now the time instants at which
UAVs go to resupply are not homogeneously spaced.

B. The PHERR algorithm

A feature that characterizes how HERR works is that the
different locations are covered by the UAVs in a rotating
fashion. Furthermore, all locations are covered during the same
time interval, which is given by the maximum flight time of
the UAVs, minus twice the displacement time to go to the
furthest location (i.e., f − 2giI ). Clearly, this results in all the

locations being influenced by the furthest one, which could be
quite unsuitable in very heterogeneous scenarios.

Let us illustrate what we just said with a simple exam-
ple. Assume a scenario where we want to cover five loca-
tions with displacement times given by {g1, g2, g3, g4, g5} =
{5, 6, 9, 10, 15} (taking f = 45 min and c = 15 s). By directly
applying Theorem 6 to this example, we will obtain that the
required number of UAVs is 14. However, if we partition
these locations into 3 sets with similar displacement times, one
formed by locations 1 and 2, another formed by locations 3
and 4, and another formed by location 5, and apply Theorem 6
to each set, we will obtain that the number of required UAVs
is 11: 3 UAVs to cover locations 1 and 2; 4 UAVs to cover
locations 3 and 4; and 4 UAVs to cover location 5.

Next, we formulate the combinatorial problem to obtain the
best partition of the locations so that, by using the HERR
routine on each of the obtained sets, the resulting number of
UAVs is the minimum.

The heterogeneous partition problem. Assume a fleet of
UAVs that provide service to a heterogenous scenario char-
acterized by parameters f , c and gi (for each i∈N ). Find a
partition PN = {I1, . . . , IN} so that, by applying the HERR
routine to each element of the partition, the resulting total
number of UAVs is the minimum.

Unfortunately, partition problems such as the one we pre-
sented above are known to be NP-hard [17]. Therefore, here
we introduce a heuristic algorithm, which we call Partitioned
Heterogeneous Rotating Resupply (PHERR), that finds a suit-
able partition in linear time.

The code of PHERR is shown in Algorithm 3. It works
as follows: First, it sets the initial partition as the whole set
of locations and computes the amount of needed UAVs, M
(Steps 1 to 4). Then, at each iteration of the while loop, the
algorithm takes the subset of the current partition that contains
more locations and splits it into two new subsets by moving
the furthest location to a separate subset (Steps 7 to 11). This is
done because, as mentioned earlier, the number of UAVs found
by HERR is affected by the furthest location. The resulting
new partition is evaluated (Steps 12 to 13) and the process
is repeated until the total number of UAVs required becomes
higher than with the previous configuration. This leads to find a
(local) minimum. Finally, the HERR routine is applied to each
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Algorithm 3 Partitioned Heterogeneous Rotating Resupply
(PHERR)

Input: N , f , {gi}i∈N , c.
1: Set the initial partition P = N , with its elements increas-

ingly ordered in accordance with {gi}i∈N .
2: Set the partition size P = 1.
3: Define the only set of the partition P as I1.
4: Apply Theorem 6 to P and set M and Mnew to the

provided value.
5: while Mnew ≤M do
6: Set M ←Mnew.
7: Derive a new partition P ′ of subsets I ′p, ∀ 1≤p≤P+1:

8: Set I ′p ← Ip−1, ∀ 3≤p≤P+1.
9: I ′2 ← max{I1}

10: I ′1 ← I1 − I
′

2.
11: Set P ← P ′ and P←P+1.
12: Obtain the number of UAVs Mp used for each subset

Ip∈P , ∀ 1≤p≤P (by applying Theorem 6 to each Ip)

13: Derive Mnew ←
P∑
p=1

Mp.

14: end while
15: Apply HERR to each Ip ∈ P .

one of the subsets of the partition that requires the smallest
number of UAVs among the probed partitions (Step 15). Note
that the partition search requires a number of computations that
is linear with the number of locations, yet that search can be
computed offline, once the aerial locations are known. Then,
the scheduling of UAVs runs in real-time, as the remaining
computations are less than a ten sums and multiplications from
Algorithm 2.

At this point, we would like to remark that we have also
compared the linear search of partitions that we use against
the solution provided by a full combinatorial search (which is
not feasible in practical and realistic implementations, since
it takes a lot of time). Indeed, thanks to the adoption of
a properly derived partition to extend the HERR operation,
the performance difference between PHERR and a full com-
binatorial search results to be almost negligible. Hence, the
PHERR algorithm stands as the best resupplying scheduling
to be adopted, as we numerically show in the next section.

Note that, in case of addressing a homogeneous scenario, the
PHERR algorithm will provide the same schedule as HORR
and hence, it will provide optimal results. Indeed, since in
that case all the displacement times are the same, then the
initial partition of PHERR contains all locations with equal
displacement times, and no other partition will be checked
(indeed, no other partition could provide a lower total number
of UAVs). In such a homogeneous case, as noted before,
Theorem 6 finds the optimal number of UAVs.

VII. NUMERICAL ANALYSIS OF THE PHERR ALGORITHM

As we have previously done in the case of the HORR
algorithm, in this section we numerically analyze the perfor-
mance of the PHERR algorithm. To do so, we first provide
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Figure 5: Performance of the SUFF, HERR, PHERR, OPHERR and
GREEDY schedules. N = 10, c = 30 s.

a comprehensive benchmarking analysis to show that the
PHERR algorithm stands as the best strategy to be adopted
for UAV scheduling not only in terms of required fleet size,
but also in terms of energy efficiency. Next, we provide a
performance evaluation of PHERR and show that it is near-
exact in a wide range of application scenarios.

To analyze our results, we need to derive a broad range
of results in a wide set of scenarios and set-ups. For that
purpose, here we define two important parameters that identify
key aspects of the UAV scheduling: the heterogeneity level ∆
and the overhead ω.

Heterogeneity level. We define the displacement deviation
ratio (denoted by ∆), or simply heterogeneity level as the
ratio of maximum displacement time deviation of any location
over the average displacement time g. Hence, when ∆=0 we
are in a homogeneous scenario, and the higher the ∆ value,
the higher the heterogeneity. For instance, if g = 5 min and
∆ = 0.25, displacement times gi might vary from 3.75 min (a
25% less than 5 min) to 6.25 min (a 25% more than 5 min).
As we detail in the next paragraph, the actual value of each
gi is picked uniformly at random between the minimum and
maximum values.

Overhead. Also, we define the relative overhead of loca-
tion i∈N as ωi = 2 gi

f , where f is the maximum flight time
of the UAVs. Roughly speaking, ωi indicates the fraction of
time that a UAV will use to fly from the ESS to location i and
come back. Then, we define the average relative overhead, or
just overhead, as ω = Avg(ωi) = 2 g

f . Hence, by fixing the
flight time and varying the displacement times, we can model
scenarios with different overheads.

With the heterogeneity level and overhead parameters being
considered, we are able to simulate all kind of scenarios and
hence analyze the PHERR scheduling under a wide range of
settings. In order to generate significant statistical data to pro-
vide performance results that capture the heterogeneous nature
of the system, we consider several heterogeneity levels ∆.
After that, we consider an average displacement time g and
draw each gi value according to a uniform random variable
U (g (1−∆), g (1+∆)), hence generating a set of N values
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Figure 6: Ratio of energy overcost of the HORR, HERR, PHERR and
GREEDY schedules. N = 10, c = 30 s.

for gi that are different, under the same level of heterogeneity.
For each value of ∆ and ω, we used MATLAB to simu-

late 1000 different realizations of the random heterogeneous
scenario, and computed average results.

A. Benchmarking PHERR

In this section, we aim to benchmark the PHERR algo-
rithm. To do so, we compare the performance of PHERR
with (i) the scheduling schemes studied in Section V, i.e.,
SUFF and HERR; (ii) the OPTIMALLY-PARTITIONED HERR
(OPHERR) schedule, which stands as the optimal solution of
the heterogeneous partition problem defined in Section VI-B;
and (iii) a GREEDY schedule in order to compare other
state-of-the-art solutions. We benchmark PHERR not only
according to the resulting fleet size of each scheme, but also
consider further metrics such as the energy efficiency.

In Figure 5, we compare the performance of the available
schedules addressing the UPS problem in terms of required
fleet size.

Firstly, we show that the sufficient number of UAVs that we
have deterministically derived in Theorem 6 so that the HERR
routine is feasible (denoted as the SUFF schedule) is very
accurate for the actual number of UAVs required by the HERR
operation. In particular, we see that for different heterogeneity
settings (for ∆ = 0.3, 0.5) and for diverse average overhead
ω, the average difference between SUFF and HERR is always
negligible (below 1%). Hence, we find that in order to estimate
in advance the number of UAVs required to run any HERR-
partition based scheduling, it is advisable to check the number
of UAVs required by SUFF (using Theorem 6).

Secondly, in this figure we also compare the PHERR
schedule with OPHERR, in which we optimally solve the
heterogeneous partition problem defined in Section VI-B by
means of listing all possible partitions. We observe that there is
very small difference between a linear search of partitions from
PHERR and the solution provided by OPHERR with a full
combinatorial search. This fact remarks the accuracy achieved
with the very lightweight and linear search of partitions
performed by PHERR.

Thirdly, the figure shows significant average differences be-
tween the HERR and PHERR schedules performance, which
highlights the fact that the very lightweight extra complexity
added to PHERR is worth it. Specially, in cases with high
overhead and high heterogeneity, the difference between both
schemes is not only remarkable, but we also observe that the
HERR results are more spread (see the standard deviation
identified with error bars) than the PHERR results (with
smaller standard deviations).

Finally, the figure also compares the PHERR performance
with other available schemes, as the GREEDY one. The
GREEDY scheme works as follows. Initially, all N locations
are served by one UAV with a random remaining battery
energy supply level between 0 and f min. After that, every
time the remaining energy supply level of a UAV serving
location i falls to f − gi, another UAV ready at the ESS takes
off to replace the draining UAV and keep a persistent service.
As we observe, the fleet size required by GREEDY remarkably
surpasses the amount of UAVs needed by any other scheme. In
particular, as any HERR-partitioned based schedule accounts
for a cyclical replacement of UAVs to address in advance the
energy draining of UAVs, the most efficient of those schemes,
i.e., PHERR, requires to dispose of a much lower number of
available UAVs in the system.

Although PHERR has been shown to provide the best per-
formance results in terms of required fleet size in comparison
to any other benchmarking scheme, another point of interest is
studying whether, additionally, PHERR is also the most energy
efficient strategy to provide the UAV scheduling. Hence, in
Figure 6 we show the ratio of the extra energy cost from
each scheme. Such ratio is computed as follows. Assuming
that a UAV scheduling system operates T time units, under
the use of any scheme, for sure there will be, at all times, N
UAVs providing service at the N locations (persistent service).
Hence, the baseline energy cost, for any scheme, is NT time
units of energy consumption. From that energy cost, depending
on the strategy of whatever scheme, an extra energy cost σ,
different for each scheme, is spent by those UAVs coming back
and forth to the ESS. As a result, the ratio of extra energy cost
is σ

NT , which is what we represent in the lines of the figure,
for each scheme.

As observed in Figure 6, PHERR exploits better the energy
resources and behaves more efficiently than any other scheme
in all the scenarios. In particular, when we set the heterogeneity
level to ∆ = 0 (see the top subplot), the energy efficiency of
the exact scheme HORR is notably better than the energy
cost from the GREEDY scheme. Also, as the system becomes
more and more heterogeneous (middle and bottom subplots,
with ∆ = 0.3 and ∆ = 0.5, respectively), PHERR keeps
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Figure 7: Behaviour of the PHERR algorithm. g = 5 min and c = 30 s.
Different hues show the results for different values of ∆, from 0% to 50%.

managing the energy consumption more efficiently than the
remaining schemes. This fact reveals that the PHERR scheme
not only provides the best performance in terms of required
fleet size, but also distributes the energy resources more wisely.
The reason of this behavior stems from a properly designed
heterogeneous rotatory scheme based on simple partitions, and
also from the reduced number of UAVs simultaneously used
with PHERR. Therefore, even in special cases in which two
schemes would need the same fleet size, PHERR would keep
standing as the preferred option for the system operator.

B. Effect of heterogeneity

In Figure 7, we consider an average displacement time g=5
min, c = 30 s and, for each value of f , we vary the value of
∆ from 0 to 0.5, which results in a band of lines of degrading
color tone in the figure, the lower envelop of the band being
the performance in the homogeneous case.

By using a UAV with a speed of 72 km/h—which is fairly
conservative—this experiment with g = 5 min corresponds to
a distance of 6 km from the ESS, on average. For instance, by
using a displacement deviation value of ∆ = 0.3, the UAVs
can be placed at distances between 4.2 and 7.8 km from the
ESS and, by using ∆ = 0.5, the UAVs can be placed at
distances between 3 and 9 km. Thus, this experiment covers
realistic scenarios with a wide range of heterogeneity. Nev-
ertheless, we have also performed simulations with different
values of both c and g, and we observed that the shapes of
the performance curves were similar.

First of all, in Figure 7, it can be readily seen that the more
we increase the value of ∆, the more the value of M increases
(for the same number of locations, N ). This behaviour matches
the fact that, as it has been already shown in Theorem 5,
covering in heterogeneous scenarios is, in general, more costly
than covering in homogeneous ones (i.e., Mhet ≥ Mhom).
However, it can also be observed that the increase in the value
of M with ∆ is quite moderate. Indeed, in most cases, only
one additional UAV (with respect to the homogeneous case)
was required, and even in stressful conditions (namely, with
f = 30 min, ∆ ≈ 0.5 and more than 8 locations), only two
additional UAVs were enough.

Whereas our analysis shows that heterogeneity is not a
factor that significantly affects system performance in most
cases, it must be taken into account the possibility of finding a
scenario that greatly increases the number of UAVs. Anyhow,
with the realistically vast range of scenarios represented in
Figure 7, we have found that the average values of the UAV
fleet size increase, on average, only by one or two units with
respect to the homogeneous case.

C. Effect of overhead, resupply time and flight time

Next, we evaluate the performance of PHERR against the
lower bound provided by Theorem 4 (i.e., against MLB). For
such a task, we define the approximation factor of PHERR
against the lower bound as the ratio between M and MLB .
Clearly, the closer the value of the approximation factor to 1,
the better the result.

In Figures 8, 9 and 10 we study the approximation factor of
PHERR, and consider two different fleet sizes: N = 10
and N = 15. We show only average results because the
observed variability is very low and cannot be well appreciated
in the figures. The figures study the effect of the overhead
(which, with fixed f and c, is equivalent to study the average
displacement time g), the resupply time c and the flight time f .

Before we proceed with the analysis of the results, it
must be taken into account that the values MLB provided
by Theorem 4 are not guaranteed to be optimal, and the real
optima could be greater than MLB . So, the values obtained for
the approximation factor are pessimistic, in the sense that they
represent upper bounds (i.e., real values could be smaller).

Overhead. In Figure 8, we fix f = 45 min and c = 30 s
and, for each value of ω, derive the corresponding value of g,
on top of which we apply a deviation ∆ between 0 and 0.5,
as explained before.

It can be seen that the approximation factor increases
with the heterogeneity. However, such an increase occurs
in a smooth way and quickly stabilizes. This behavior is
compatible with our results in Section VII-B. This confirms
that heterogeneity is not a factor that significantly affects
system performance.

Furthermore, Figure 8 also shows that PHERR provides
very good results, with approximation factors always below
1.1. This is much better than previous results [15], [16], which
respectively achieved, on average, approximation factors of 1.5
or 1.7. More precisely, it can be observed that approximation
factors close to 1.1 occur in stressful conditions, with large
values of both ∆ and ω. That is, approximation factors close
to 1.1 only occur in very heterogeneous scenarios in which
the UAVs must use a significant amount of energy to fly
to/from the locations. In contrast, when the conditions are
less stringent, PHERR provides near-exact results, to the point
where it is optimal in homogeneous scenarios or scenarios with
very small overhead.

Resupply time. To study the effect of different scenarios for
the resupply time at the ESS, in Figure 9 we fix f=45 min and
an average overhead of ω = 15%, while the resupply time c
varies from a few seconds (c = 15 s or c = 30 s, matching
scenarios with efficient battery swap systems, as described
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Figure 10: Impact of displacement time devia-
tion ∆ on the approximation factor of PHERR
w.r.t. LB. ω = 15% min, c = 30 s.

in [18], [19]) to several minutes (c= 2min matching refueling
scenarios or c=10 min matching actual recharging scenarios).

As we observe in the figure, again the approximation factor
is close to (but still lower than) 1.1 only under stressful
conditions, i.e., with high levels of heterogeneity, ∆. As long
as the conditions become more heterogeneous, we also see that
the approximation factor increases in a stabilized manner, not
exceeding a factor of 1.1 in any case. As a matter of fact, in
all the scenarios considered for the resupply time at the ESS,
PHERR achieves close-to-exact results, which shows that the
proposed solution is able to properly operate efficiently in any
type of ESS.

Flight time. Finally, in Figure 10 we study the effect of
different types of UAV energy sources or batteries: from fast
drain batteries (e.g., when f=15 min) to long lasting batteries
(e.g., when f=75 min). Here, we fix an average overhead of
ω=15% and a resupply time of c=30 s.

The results of this figure reveal that the proposed solution,
PHERR, is also properly designed to bear UAV schedules with
any kind of energy source, with flight times lasting from a
few minutes to more than an hour. Indeed, PHERR is able
to manage all these scheduling scenarios with a number of
UAVs close to the minimum required, as the approximation
factor remains below 1.1 in all cases, even under those stressful
conditions when the heterogeneity level ∆ is very high. Hence,
again the approximation factor from PHERR is much lower
than the factor of 1.5 and 1.7 achieved in previous works [15],
[16]. Interestingly, sometimes the approximation factor for
longer-lasting batteries is higher than for faster-draining ones
(e.g., f = 45 min and f = 15 min). As we have numerically
checked, this counter-intuitive behaviour is due to the fact that
the approximation factor is derived as the quotient of discrete
metrics (a number of UAVs), while the system parameters (c,
f or gi) are continuos.

VIII. CONCLUSIONS

In this article, we have studied the problem of the UAV fleet
resupply scheduling, meant to minimize the fleet size while
providing persistent service in a set of aerial locations. We
considered two scenarios: On one hand, we designed a simple
scheduling mechanism for UAVs serving aerial locations with
homogeneous distances to an energy resupply station, and we

proved that it is feasible and exact. On the other hand, we
demonstrated that the problem becomes NP-hard when the
aerial locations are non-evenly distributed. Indeed, we are the
first to show how to analyze in a realistic way the resupply
scheduling problem, and we not only reached complexity re-
sults but also provided the structure of the exact algorithm for
a specific class of scenarios (i.e., for homogeneous scenarios)
and designed the structure of a near-exact heuristic for the
generic case, which is based on the analytical results. Our
lightweight resupplying scheduling scheme was shown to be
not only much better than state-of-the-art heuristics, but it
also solves the problem near-optimally in a wide range of
application scenarios. In addition, we also derived a very tight
lower bound for the UAV fleet size.

The findings of this work are relevant for many commercial
and safety applications and services whose deployment de-
pends on the possibility to run a fleet of UAVs, and which
span from security and wild life protection to providing
connectivity in cellular networks without having to rely on
a fixed infrastructure. Notably, our findings also show how
to reduce capital expenditures—by identifying the minimum
required fleet size—as well as operational expenditures, as we
provide the fleet operator with a (near-)optimal scheduling of
UAV duty cycles, which is obtained with very low complexity.
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APPENDIX A
NP-HARDNESS OF THE UPS PROBLEM

The authors in [15], [16] demonstrate that the Bin Maximum
Item Double Packing (BMIDP) problem exactly solves what
they define as the Minimal Spare Drones for Persistent Mon-
itoring (MSDPM) problem with one recharging station. The
MSDPM problem with one recharging station is equivalent
to the UPS problem when the recharging time c is zero and
2gi < f/2. Here, we first formulate the BMIDP problem
defined in [16], and then we prove that it is NP-hard.

Definition 1 (Bin Maximum Item Doubled Packing (BMIDP)
problem [15]). Given a set of items It = {1, . . . , n}, where
each item i ∈ It has size wj ∈]0, 1], check whether it is
possible to split the items in N ∈N disjoint bins W1, . . . ,WN

of capacity 1 where the maximum item of each bin Wk must be
packed twice (i.e., ∀ 1≤k≤N ,

∑
wj∈Wk

wj + max
wj∈Wk

wj ≤ 1).

Theorem 7. The BMIDP problem is NP-hard.

Proof. In the following three steps, we reduce the k-way num-
ber partitioning problem (kPP) [20] to the BMIDP problem.
Therefore, since it is well-known that the kPP problem is NP-
hard [21], so it is the BMIDP problem.

1) Reduction of kPP to BMIDP: Given n∈N, we consider a
general instance of kPP I = {i1, . . . , in} such that ij≥0,
∀1≤j≤n and at least one non-zero element ij . Let I =
n∑
j=1

ij > 0. Let N≥1, and let {Sk = {ik1 , . . . , ikm}}
N
k=1

be a partition of the general instance I. We now define:

i(k) = max
ij∈Sk

ij , ∀1≤k≤N ;

wj=
N

I+Ni(k)
ij , if ij ∈Sk, ∀1≤j≤n;

Wk={wj : ij ∈ Sk} , ∀1≤k≤N ; (1)

w(k) = max
wj∈Wk

wj =
N

I+Ni(k)
i(k) < 1, ∀1≤k≤N.

The last equation above also implies that

i(k) =
I

N

w(k)

1− w(k)
. (2)

Note that since {Sk}Nk=1 is a partition of I, the definitions
above are well defined. Note that 0≤wj<1, ∀1≤ j≤n
and that for all j, then wj ∈Wk for some k if and only
if ij ∈Sk for the same k.
We now prove that the partition {Sk}Nk=1 is a solution
of kPP with N partitions if and only if {Wk}Nk=1 is a
solution of BMIDP with N bins.

2) Necessary condition: For the right direction, we assume
that {Sk}Nk=1 is a solution of kPP. Hence:∑

ij∈Sk

ij =
I

N
, ∀1≤k≤N.

Now, we verify that {Wk}Nk=1 is a solution of BMIDP
with N bins by evaluating if the sum of all elements in

a set Wk plus the maximum in Wk, which is w(k), fits
in a bin of size 1:

w(k) +
∑

wj∈Wk

wj =
N

I +Ni(k)

i(k) +
∑
ij∈Sk

ij

 =

N

I +Ni(k)

(
i(k) +

I

N

)
= 1 ≤ 1,

which is true ∀1≤k≤N .
3) Sufficient condition: For the left direction, we assume that
{Wk}Nk=1 is a solution of BMIDP with N bins:

w(k) +
∑

wj∈Wk

wj ≤ 1, ∀1≤k≤N. (3)

Given 1≤ j ≤ n, there exists a unique 1≤ k ≤N such
that wj ∈Wk. Since wj ∈Wk, then ij ∈Sk and moreover
(1) establishes a relation between wj and ij , which can
be rewritten as follows:

ij =
I +Ni(k)

N
wj . (4)

Now, by plugging (2) into (4), we obtain that

ij =
I

N

wj
1− w(k)

, ∀1≤j≤n, with k | ij ∈ Sk.

Hence, for all 1≤k≤N , it is satisfied that:

∑
ij∈Sk

ij =
∑

wj∈Wk

I

N

wj
1− w(k)

=
I

N

∑
wj∈Wk

wj

1− w(k)

=
I

N

w
(k) +

∑
wj∈Wk

wj

1− w(k)
− w(k)

1− w(k)


≤ I

N

(
1

1− w(k)
− w(k)

1− w(k)

)
=

I

N
, (5)

where we have used inequality (3) in the passage from
the second to the third row.
Since I is defined as

n∑
j=1

ij and {Sk}Nk=1 is a partition

of I, (5) must hold as equality, i.e.:∑
ij∈Sk

ij =
I

N
, ∀1≤k≤N.

If that were not the case, i.e.,
∑

ij∈Sk
ij <

I
N for some

1≤k≤N , then:

I =

n∑
j=1

ij =

N∑
k=1

∑
ij∈Sk

ij <

N∑
k=1

I

N
= I,

which is a contradiction. Therefore, the partition of I,
{Sk}Nk=1, is a solution of the kPP problem.

As a result, we have found a reduction of kPP that admits
a solution with an N -partition if and only if BMIDP admits
solution with N bins. Hence, the theorem follows.



IEEE TRANSACTIONS ON ROBOTICS 15

APPENDIX B
AUXILIARY RESULTS

Lemma 3. Given N ∈N, and given a vector x=(xi)
N
i=1∈RN

such that xi > 0, ∀i = 1, . . . , N , then:
N∑
i=1

xi ·
N∑
i=1

1

xi
≥ N2.

Proof. First, we do some algebraic manipulation:
N∑
i=1

xi ·
N∑
i=1

1

xi
=

N∑
i=1

N∑
j=1

xi
xj

= N +
∑
i 6=j

xi
xj
.

Now, let S = {s : s = xi
xj

> 1 for some i 6= j}. The
cardinality of S is the number of pairs (xi, xj) with xi > xj ,
that is:

|S| = N(N − 1)

2
. (6)

Now, we take again Eq. (6) and express
∑
i 6=j

xi
xj

in the terms

of set S by considering that for each pair of values (xi, xj)
that have ratio s > 1, we also have the pair (xj , xi) with ratio
1/s < 1, while the ratio is 1 in the N different cases in which
i = j:

N∑
i=1

xi ·
N∑
i=1

1

xi
= N +

∑
s∈S

(
s+

1

s

)
.

Since the function s + 1/s of positive argument s has a
derivative that becomes zero at s = 1, where the function
assumes value 2, and its second derivative is always positive,
we can conclude that the function has a minimum whose value
is 2, so that s+ 1/s ≥ 2,∀s ∈ R+. Therefore, we have:

N∑
i=1

xi ·
N∑
i=1

1

xi
≥ N +

∑
s∈S

2 = N + 2|S| = N2.

Hence, the lemma follows.

Theorem 8. Given N ∈N, and given two vectors x = (xi)
N
i=1,

y = (yi)
N
i=1 ∈ RN such that xi, yi > 0, ∀i = 1, . . . , N , then:

N∑
i=1

xi
yi
≥ N ·

N∑
i=1

xi

N∑
i=1

yi

. (7)

Proof. Let Avg(·) be the arithmetic mean function, which can
be seen as the stochastic average for a vector of equiprobable

values, i.e., given a vector z = (zi)
N
i=1, Avg(z) = 1

N

N∑
i=1

zi.

Hence, using the conditional average formula on the expres-
sion for the vector x/y = (xi/yi)

N
i=1, we have:

Avg

(
x

y

)
=

N∑
i=1

1

N
Avg

(
x

y

∣∣∣∣ y = yi

)
=

N∑
i=1

1

N
Avg

(
x

yi

)

= Avg(x) ·
N∑
i=1

1

N
· 1

yi
= Avg(x) ·Avg

(
1

y

)
, (8)

where 1
y is a vector (1/yi)

N
i=1 of positive numbers.

Thereby, according to Lemma 3,
N∑
i=1

yi·
N∑
i=1

1
yi
≥ N2. Hence,

1
N

N∑
i=1

yi · 1N
N∑
i=1

1
yi
≥ 1. This means that Avg(y)·Avg

(
1
y

)
≥1.

Hence:

Avg

(
1

y

)
≥ 1

Avg(y)
. (9)

Hence, by applying (9) to (8), we can lower-bound 1
N

N∑
i=1

xi
yi

as follows:

1

N

N∑
i=1

xi
yi

= Avg(x) ·Avg
(

1

y

)
≥ Avg(x)

Avg(y)
=

1
N

N∑
i=1

xi

1
N

N∑
i=1

yi

(10)

From Eq. (10) we finally get (7) by multiplying both sides
of the inequality by N , and then the theorem follows.


