
Compitational Mathematics Degree

Final Degree Project

Geometric foundations for Geometry
Processing of Neural Implicit

Representations of Signed Distance
Functions

Author:
Xavier Anadón
Garćıa-Arquimbau

Academic tutor:
José Joaqúın Gual Arnau

Presentation Date: 9 of June 2023
Curso académico 2022/2023

Resumen

This work explores using neural networks to approximate Signed Distance Functions for rep-
resenting 3D shapes. The work explains fundamental geometry concepts and their application
to these functions, as well as the workings of neural networks as function approximators. By
connecting these concepts, it explains how neural networks can represent 3D shapes and how to
perform shape smoothing and sharpening on them. The objective of this work was to provide a
solid foundation for further exploration of this topic, with a focus on providing a mathematical
explanation of these techniques. Future research can explore other types of operations and
efficient ways of creating and manipulating these representations.

Keywords

Neural Networks, Geometry, Signed Distance Functions, Curvature.

4

Contents

1 Introduction 7

1.1 Context and motivation . 7

1.2 Objectives . 8

2 Differential geometry of surfaces from distance functions 9

2.1 Differential Geometry . 9

2.1.1 Surfaces . 9

2.1.2 Tangent Plane and Surface Normal . 10

2.1.3 Curvature . 14

2.2 Signed Distance Functions . 15

2.2.1 Surface Normal of Signed Distance Functions 27

2.2.2 Curvature of Signed Distance Functions 29

3 Neural Networks and Neural Fields 31

3.1 Neural Networks . 31

3.1.1 Gradient Descent . 31

5

3.1.2 Multilayer Perceptron . 32

3.1.3 Back Propagation . 38

3.1.4 Adding complexity . 43

3.2 Neural Fields . 44

3.2.1 Data . 45

3.2.2 MLP Architecture and activation function 47

3.2.3 Loss and hyperparameters . 48

4 Shape smoothing and sharpening 49

4.1 Objective . 49

4.2 Smoothing and sharpening . 50

4.3 Limitations and research directions . 53

5 Conclusions 55

6

Chapter 1

Introduction

1.1 Context and motivation

In recent years, deep learning has emerged as a rapidly growing area of research. While it initially
gained popularity for its success in image processing, it has since been applied successfully to
other modalities such as text, audio, and video. More recently, researchers have attempted
to apply deep learning techniques to 3D data, including meshes and point clouds. This has
the potential to improve our understanding of 3D environments and enable the creation of 3D
generative models that have applications in fields such as robotics, virtual reality, and augmented
reality.

One particularly interesting research direction involves using deep learning to represent 3D
scenes and objects through the use of neural fields. These fields have numerous applications,
as outlined in [16], including the approximation of Signed Distance Functions (SDFs) that
represent a 3D shape. Throughout this text, we will provide a detailed explanation of these
terms.

However, in order for these representations to be widely adopted, it is necessary to be able
to perform geometry processing operations on them, such as shape smoothing and sharpening.
Unfortunately, it is not a trivial task to perform these operations on SDFs represented using
neural networks.

7

1.2 Objectives

The objective of this work is to provide a foundational understanding of how 3D shapes can be
represented using Signed Distance Functions approximated by neural networks. Additionally,
we will explain how geometry processing operations can be performed on these representations,
specifically focusing on the example of shape filtering (i.e., smoothing and sharpening). Our
work is strongly based on the research of Yang, Guandao et al. [17].

To achieve this objective, we will begin by introducing fundamental geometry concepts and
their application to Signed Distance Functions. We will then delve into the workings of neural
networks, specifically from the perspective of using them as function approximators. We will
cover these topics comprehensively from the ground up. Finally, we will connect all of these
concepts to explain how neural networks can be used to represent Signed Distance Functions of
3D shapes, and how shape smoothing and sharpening can be performed on them.

Our primary goal is to provide a strong foundation for further exploration of this topic,
with a focus on providing a mathematical explanation of these techniques. We believe that this
understanding is essential for the continued development of the field.

8

Chapter 2

Differential geometry of surfaces
from distance functions

2.1 Differential Geometry

2.1.1 Surfaces

Before approaching surfaces represented by Signed Distance Functions we have to introduce
some fundamental concepts of Differential Geometry. To do so, we must start by formalizing
the concept of a surface in R3.

Definition 1. Parameterized Regular Surface: Let Ω ∈ R2, and the function X : Ω ∈
R2 → R3. We say X is a parameterized regular surface if (dX)p is injective ∀p ∈ Ω. Where
(dX)p is the differential of the function X at point p.

This definition has two drawbacks:

1. We define X as a function, not as a set of points in R3.

2. It allows self-intersections because bijectivity is not required for the definition.

To address those we introduce the concept of regular surface.

Definition 2. Regular Surface: We say a non-empty set, S ⊂ R3, is a regular surface if
∀p ∈ S it exist an open set, U ⊂ R2, a neighborhood of p, V ⊂ S, and a differentiable function,
X : U → R3, such that:

9

(i) X(U) = V

(ii) X : U → V is an homeomorphism.

(iii) (dX)q : R2 → R3 is injective ∀q ∈ U

The above definitions lead to the following consequences:

1. (dX)q is injective ⇐⇒ Xu(q) =
dX

du
(q) and Xv(q) =

dX

dv
(q) are Linearly Independent

(LI). This is equivalent to saying that ||Xu(q) ×Xv(q)|| ̸= 0, which is also equivalent to
the existence of a tangent plane (defined in the next section) to the surface at point q.

2. Because of (ii) we need X to be bijective. Hence, exists an inverse function X−1. More-
over, this function will be continuous because X is a homeomorphism.

3. We call the functions X that appear in the definition of regular surface 2, parametriza-
tions of the surface. The set of all the parametrizations needed to cover the whole surface
S is called Atlas.

4. Every parametrization of a regular surface is a parameterized regular surface.

2.1.2 Tangent Plane and Surface Normal

In the following section, we will define important concepts to understand how we can use
differential geometry to describe a regular surface, S.

Definition 3. Tangent Plane Let S ⊂ R3 a regular surface and p ∈ S. A vector w ∈ R3 is
a vector tangent to the surface S iff it exist a paremetrized differentiable curve α : (−ϵ, ϵ) → S
such that α(0) = p and α′(0) = w. The set of all possible vectors tangent to S at p ∈ S is
denoted as

TpS = p+ {w ∈ R3 : it exist α(t) ⊂ S such that α(0) = p and α′(0) = w}

We call TpS tangent plane to S at p. We will often identify it with its director subspace

TpS ≡W = {w ∈ R3 : it exist α(t) ⊂ S such that α(0) = p and α′(0) = w}

The tangent plane is a linear variety with two dimensions (affine plane) in R3. We will see
it in the following proposition.

10

Proposition 1. Let X : U → X(U) a parametrization of a regular surface S. Then if p ∈ X(U)
and q = (u0, v0) ∈ U such that X(q) = X(u0, v0) = p then we have that

TpS = p+ (dX)q(R2)

That is

(dX)q(R2) = {w ∈ R3 : it exist α(t) ⊂ S such that α(0) = p and α′(0) = w}

Note that TpS is then a linear variety that includes p and has as a director subspace W =
(dX)q(R2)

Before the next proposition we will need a definition.

Definition 4. Coordinate curves Let X : U → X(U) a parametrization of a regular surface
S. Let p ∈ X(U), hence it exist q = (u0, v0) ∈ U such that X(q) = p. We define the coordinate
curves of S in p with respect to X as

γ1(t) = X(u0 + t, v0) γ2(t) = X(u0, v0 + t) (2.1)

Proposition 2. Let X : U → X(U) a parametrization of a regular surface S. Then if p ∈ X(U)
and q = (u0, v0) ∈ U such that X(q) = X(u0, v0) = p then we have that

TpS = p+ (dX)q(R2) = p+ < {Xu(u0, v0), Xv(u0, v0)} >

Where < {Xu(u0, v0), Xv(u0, v0)} > is the subspace generated by {Xu(u0, v0), Xv(u0, v0)}, that
are the partial derivatives with respect to each component from the application X.

Proof. To construct (dX)q(R2), because (dX)q is linear, we only need to know how it acts over
a base of R2. We take for example (dX)q(1, 0) and (dX)q(0, 1). Then ∀v = (v1, v2) ∈ R2

(dX)q(v) = (dX)q(v1, v2) = v1 (dX)q(1, 0) + v2 (dX)q(0, 1)

Identifying TpS with its tangent plane

TpS = (dX)q(R2) =< {(dX)q(1, 0), (dX)q(0, 1)} >

Using the definition of coordinate curves 4

γ1(t) = X(u0 + t, v0) = X((u0, v0) + t(1, 0)) −→ γ′1(0) = (dX)(u0,v0)(1, 0) = (dX)q(1, 0)

γ2(t) = X(u0, v0 + t) = X((u0, v0) + t(0, 1)) −→ γ′2(0) = (dX)(u0,v0)(0, 1) = (dX)q(0, 1)

So we can write

TpS =< {(dX)q(1, 0), (dX)q(0, 1)} >=< {γ′1(0), γ′2(0)} >

11

To conclude, we have that

γ′1(0) = Xu(u0, v0) γ′2(0) = Xv(u0, v0) (2.2)

because the coordinate curves just vary in one coordinate, first and second respectively.

This led us to the result

TpS =< {Xu(u0, v0), Xv(u0, v0)} >≡ p+ < {Xu(u0, v0), Xv(u0, v0)} >

Definition 5. Unit Surface Normal Let X : U ⊂ R2 → S a parametrization of a regular
surface S. We denote as Unit Normal with respect to X the scalar field NX : X(U) → R3,
given by:

NX(p) =
Xu(q)×Xv(q)

||Xu(q)×Xv(q)||

Where p ∈ X(U) and q = X−1(p)

Remark 1. The function NX as defined above has the following properties:

(i) ||Xu(q) ×Xv(q)|| ̸= 0, because X is a parametrization of the regular surface, therefore it
is injective.

(ii) ||NX(p)|| = 1, note that it NX(p) is a vector divided by its modulus.

(iii) NX(p) ∈< Xu(q)×Xv(q) >=< Xu(q), Xv(q) >
⊥= TpS

⊥ −→ NX(p) ∈ TpS
⊥

As we can see, the Unit Surface Normal at point p is orthogonal to every vector in the
tangent plane at that point. So it is the normal vector of the tangent plane. Although, by
defining the Unit Surface Normal this way, it depends on the parametrization X we choose.
This is what denotes the superscript X in NX . The natural next question is to ask if it really
depends on the parametrization we are using.

Proposition 3. The function Unit Surface Normal, NX , is not independent of the parametriza-
tion, X, chosen to define it. In particular, the magnitude and the direction are indeed indepen-
dent of X, but the sense is not.

12

Proof. To prove the proposition we will answer the following question:

Let X, Y two parametrizations such that X : UX −→ S, Y : UY −→ S, with X(UX)∩Y (UY) ̸=
∅. Take p ∈ X(UX) ∩ Y (UY) then, can we say that NX(p) = NY (p)?

The characteristics that define a vector are magnitude, direction, and sense.

• The magnitude is the norm of the vector, which is 1, as we have seen in (ii) of remark
1.

• The direction is the same because NX(p), NY (p) ∈ TpS
⊥, as we have seen in (iii) of

remark 1, which has only one degree of freedom.

Now we will prove that the sense can be different by showing an example.

Let S be a regular surface, X : U −→ S a parametrization of S, p ∈ S. Then we have that

NX(p) =
Xu(q)×Xv(q)

||Xu(q)×Xv(q)||

Consider the diffeomorphism I : R2 −→ R2 such that I(x, y) = (y, x). Note that I2 =
I ◦ I = id, where id is the identity function. Then we have that X ◦ I2 = X ◦ id = X is a
parametrization.

Now we call Y = X ◦ I and define it to act on the subspace I(U) ⊂ R2, Y : I(U) −→ S. Note
that I(U) is a valid subspace of R2 because I is a diffeomorphism. Then we have that X ◦ I2
acting on U , which is a parametrization of S, is the same that Y acting on I(U). Therefore Y
is also a parametrization. Note that Y (u, v) = X ◦ I(u, v) = X(v, u)

Let p = Y (t0, w0) = X(w0, t0) ∈ S. Now we have:

NY (p) =
Yu(t0, w0)× Yv(t0, w0)

||Yu(t0, w0)× Yv(t0, w0)||

Where Yu(t0, w0) = f ′(0), with f(t) = Y (t0 + t, w0). But, f ′(0) = (Y (t0 + t, w0))
′ =

(X(w0, t0 + t))′ = Xv(w0, t0). Then Yu(t0, w0) = Xv(w0, t0)

Analogously, Yv(t0, w0) = Xu(w0, t0). Then we have the following:

NY (p) =
Yu(t0, w0)× Yv(t0, w0)

||Yu(t0, w0)× Yv(t0, w0)||
=

Xv(w0, t0)×Xu(w0, t0)

||Xv(w0, t0)×Xu(w0, t0)||
= −NX(p)

13

So in conclusion, the direction and magnitude are independent of the parametrization, but
the sense is not.

Example 1. Unitary sphere Let S2(1) = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} be the unitary
sphere. We want to calculate the tangent plane to S2(1) at point p ∈ S2(1).

We have to consider a parametrization that contains p. Because of that, we take e1, e2 such
that e1, e2, p is an orthonormal basis of R3. Then

X : D(1) −→ S2(1)

(u, v) 7−→ X(u, v) = u e1 + v e2 +
√

1− u2 − v2 p

where D1 = (x, y) ∈ R2 : x2 + y2 = 1 is the unitary circle.

X as defined above is a parametrization of S2(1) with p = X(0, 0).

Xu(u, v) = e1 −
u√

1− u2 − v2
p −→ Xu(0, 0) = e1

Xv(u, v) = e2 −
v√

1− u2 − v2
p −→ Xv(0, 0) = e2

TpS
2(1) =< e1, e2 >= p⊥

Then the tangent plane will be, πpS
2(1) = p+ p⊥

Definition 6. Compatible Parametrizations We know that the direction and magnitude of
the normal vector at a point p ∈ S are independent of the parametrization, but the sense is not.

Let X : U −→ S and Y : V −→ S two parametrizations of the regular surface S, such that
X(U) ∩ Y (V) ̸=.

We say that X and Y are compatible if NX(p) = NY (p) ∀p ∈ X(U) ∩ Y (V)

Note that in this equality we are only interested in the sense of this vector as we already
know that the direction and magnitude will be the same.

Definition 7. Orientable surfaces We say that a regular surface S is orientable if we can
find an Atlas (set of parametrizations needed to cover the whole surface S) formed by compatible
parametrizations.

2.1.3 Curvature

One of the most important properties of a surface is its curvature, which intuitively tells us how
different the surface is from a plane. But it is not trivial how to get this information from a given
surface S. Nevertheless, we can use the tools presented in the previous section to measure how

14

the normal vector of the surface changes. To do so we will consider S to be a regular surface,
orientable, and we will choose the Normal Unit Vector to point outwards. In this setting, we do
not need the superscript X in NX , because all the magnitude, direction, and sense (outwards
the surface) will be independent of the parametrization. So, from now on we will refer to the
application NX as N .

Definition 8. Gauss Map Note that, in reality, the Normal Unit Vector mapping N : S −→ R3,
always produces vectors, N(p) of magnitude 1, with an arbitrary direction (depending on the
point p ∈ S).

So they always will be points on the surface of a unitary sphere (radius equal to 1), S2(1).

So we can rewrite it as N : S −→ S2(1), which is called Gauss Map.

Remark 2. Given p ∈ S, dNp : TpS −→ TN(p)S
2(1).

We saw in the example 1, that TN(p)S
2(1) = N(p)⊥. But N(p)⊥ = TpS.

So the differential map of the Gauss Map at p ∈ S is an endomorphism, dNp : TpS −→ TpS

Definition 9. Shape Operator

Let S be a regular surface, orientable and oriented, and p ∈ S. We define the shape operator
as the map:

Wp := −dNp : TpS −→ TpS

Definition 10. Curvatures

Let S be a regular surface, orientable and oriented, and p ∈ S. We will use Wp to denote
the shape operator as well as the matrix associated with this function interchangeably.

We denote by Gaussian curvature in p ∈ S to p ∈ S to Kg(p) := det(Wp).

We denote by mean curvature in p ∈ S to k(p) :=
tr(Wp)

2 .

We denote by principal curvatures in p ∈ S to the eigenvalues of Wp, k1, k2. The spaces
generated by its eigenvectors, H(k1), H(k2), are called principal directions.

2.2 Signed Distance Functions

In the following section, we will work with an orientable regular surface in R3, M . As it is
orientable we can choose a direction for its normal vector, N , which will be outward.

15

Let Ω be a set of points in R3. We define the distance of any point, x = (x1, x2, x3) ∈ R3,
to the set Ω as follows:

dist(x,Ω) = inf
y∈Ω

∥x− y∥

Using the Euclidean norm for R3.

We add the constraint of Ω being an open set with non-zero volume and enclosed in a
regular surface, ∂Ω. This partition R3 into three regions, the interior Ω− = Ωo = Ω, the
exterior Ω+ = (Ω)o, and the boundary ∂Ω = R3 − {Ω−,Ω+}. We can then define a distance
function for this set as n(x), ∀x ∈ R3, given by:

n(x) =


dist(x, ∂Ω), if x ∈ Ω+

−dist(x, ∂Ω), if x ∈ Ω−

0, if x ∈ ∂Ω
(2.3)

Nevertheless, the above definition does not ensure differentiability ∀x ∈ R3, as we can see
in the following proof by contradiction.

Proposition 4. No differentiable: In the premises stated above, the function n(x) is not
differentiable for a point x for which there are two points in ∂Ω that are at the same minimal
distance to x.

Proof. We assume that n(x) is differentiable in x ∈ R3. We will take x ∈ Ω+, but the proof is
analogous if we take x ∈ Ω−.

Consider the case when the minimal distance to ∂Ω has the same value for two different
points a = (a1, a2, a3), b = (b1, b2, b3) ∈ ∂Ω, mathematically:

dist(x, ∂Ω) = inf
y∈∂Ω

∥x− y∥ = ∥x− a∥ = ∥x− b∥, with a ̸= b

Because a ̸= b, it must exist at least one component that should be different. Without loss
of generality, we assume that this is for example the first component, so a1 ̸= b1. Now, because
it is differentiable, we can calculate the derivative of n with respect to the first component of
x, which is x1:

dn

dx1
=

d

dx1
(dist(x, ∂Ω)) =

d

dx1
(∥x− a∥) = d

dx1
(∥x− b∥) (2.4)

As we are using the euclidean norm we have that:

16

d

dx1
(∥x− a∥) = d

dx1
(
√
(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2) =

=
1√

(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2
(x1 − a1) =

=
(x1 − a1)

∥x− a∥

Doing the analogous with
d

dx1
(∥x− b∥) we arrive to:

d

dx1
(∥x− a∥) = (x1 − a1)

∥x− a∥
d

dx1
(∥x− b∥) = (x1 − b1)

∥x− b∥

Using those values in the equation 2.4:

dn

dx1
=

(x1 − a1)

∥x− a∥
=

(x1 − b1)

∥x− b∥

But we had that ∥x− a∥ = ∥x− b∥, so:

x1 − a1 = x1 − b1 −→ a1 = b1

which is a contradiction, as we assumed a1 = b1.

Hence n(x) is not differentiable at the points x ∈ R3 for which there are two points in ∂Ω
at the same minimal distance to x.

This raises the question of where we can say that n(x), as we defined it in 2.3, is differentiable.
The following proposition addresses this question.

Proposition 5. Given a surface M = ∂Ω that encloses a domain Ω, the function n(x) is
differentiable for all points x ∈ R3, except for a set of zero volume.

To prove proposition 5 we will use the Rademacher’s theorem [7] stated below.

17

Theorem 1. Rademacher’s theorem: If U is an open subset of Rn and f : U −→ Rm is
Lipschitz continuous, then f is differentiable almost everywhere in U ; that is, the points in U
at which f is not differentiable form a set of Lebesgue measure zero.

Note that when n = 1, 2 or 3 the Lebesgue measure coincides with the measures of length,
area, and volume respectively. As in our case n = 3 we can reformulate the above theorem as
follows:

Theorem 2. Rademacher’s theorem for n=3: If U is an open subset of R3 and f : U −→ Rm

is Lipschitz continuous, then f is differentiable almost everywhere in U ; that is, the points in
U at which f is not differentiable form a set of zero volume.

Rademacher’s theorem enforces Lipschitz continuity, so we define it below.

Definition 11. Lipschitz continuity: Let (X, dX), (Y, dY) be two metric spaces. A function,
f : X −→ Y , is K-Lipschitz continuous if it exists a real constant K > 0 such that ∀x1, x2 ∈ X,

dY (f(x1), f(x2)) ≤ K dX(x1, x2)

If a function is Lipschitz continuous it means that it is K-Lipschitz continuous for some K > 0.

With that, we can now proceed with the proof of the proposition 5

Proof. Our function is n : R3 −→ R. Then, if we can prove that it is Lipschitz continuous, we
can apply the theorem 2 and the proposition 5 will be proven. So now we prove the Lipschitz
continuity of n.

Adapting the definition to our case, we have that the metric spaces are (R3, d3e), and (R, d1e)
with the euclidean distance of each space respectively. Take K = 1, x1, x2 ∈ R3, then we have
to prove the following

d1e(n(x1), n(x2)) ≤ d3e(x1, x2) −→ ||n(x1)− n(x2)||1e ≤ ||x1 − x2||3e

Let z ∈ ∂Ω we have that

n(x1) ≤ |n(x1)| = dist(x1, ∂Ω) = inf
y∈∂Ω

∥x1 − y∥3e ≤ ∥x1 − z∥3e

Using the triangular inequality of the norm ∥ ∥3e

n(x1) ≤ ∥x1 − z∥3e ≤ ∥x1 − x2∥3e + ∥x2 − z∥3e −→ n(x1)− ∥x1 − x2∥3e ≤ ∥x2 − z∥3e

Because this happens ∀z ∈ ∂Ω we can write

n(x1)− ∥x1 − x2∥3e ≤ inf
z∈∂Ω

∥x2 − z∥3e = n(x2) −→ n(x1)− n(x2) ≤ ∥x1 − x2∥3e

18

By doing the same procedure starting with x2 and n(x2), we arrive to

n(x2)− n(x1) ≤ ∥x2 − x1∥3e = ∥x1 − x2∥3e

So we can conclude that

|n(x1)− n(x2)| = ||n(x1)− n(x2)||1e =≤ ∥x1 − x2∥3e

Therefore n is 1-Lipschitz continuous and the proposition is proven.

Example 2. Let ∂Ω be a ball centered at the origin O = (0, 0, 0) of radius R. Then ∂Ω is the
sphere centered at O. Then, n is not differentiable at O.

Proof. As O is at the center of the sphere, its distance to any point in the sphere is R.

dist(O, x) = R ∀x ∈ ∂Ω −→ n(O) = −R

Take now p1 = (1, 0, 0), p2 = (−1, 0, 0) ∈ ∂Ω.

For the function to be differentiable at O the partial derivatives have to exist and be contin-
uous at that point. Using the definition of partial derivative with respect to the first component
we have the following limit:

lim
∆x1→0

n((0, 0, 0))− n((∆x1, 0, 0))

∆x1
= lim

∆x1→0

−R− n((∆x1, 0, 0))

∆x1

which has to be the same regardless of how we approach 0.

We will denote ∆x1+ and ∆x1− when ∆x1 is positive or negative respectively. Then we have
that the closest point from the sphere ∂Ω to (∆x1+, 0, 0) will be (R, 0, 0), while the closest to
(∆x1−, 0, 0) will be (−R, 0, 0). Note that in both cases the function n will be negative because
we consider ∆x1+,∆x1− → 0, hence ∆x1+,∆x1− < R, so we are inside the surface. This results
in the following limits:

lim
∆x1+→0

−R− n((∆x1+, 0, 0))

∆x1+
= lim

∆x1+→0

−R+
√
(∆x1+ −R)2

∆x1+
=

= lim
∆x1+→0

−R+ |∆x1+ −R|
∆x1+

= lim
∆x1+→0

−R+ (R−∆x1+)

∆x1+

= lim
∆x1+→0

−∆x1+
∆x1+

= −1

19

lim
∆x1−→0

−R− n((∆x1−, 0, 0))

∆x1−
= lim

∆x1−→0

−R+
√
(∆x1− +R)2

∆x1−
=

= lim
∆x1−→0

−R+ |∆x1− +R|
∆x1−

= lim
∆x1−→0

−R+ (R+∆x1−)

∆x1−

= lim
∆x1−→0

∆x1−
∆x1−

= 1

As we can see the limits are not the same, they depend on the direction we approach O. So
the function n is not differentiable at that point.

Example 3. Let ∂Ω be a torus generated by rotating a circle of radius r whose center is separated
by a distance R from the z axis and centered on the origin (r < R). Then,

n(x1, x2, x3) =

√(√
x21 + x22 −R

)2

+ x23 − r.

Proof. First, we have to define mathematically the described torus.

Consider first the plane XY , where Z = 0, formed by the points p = (x, y, 0) ∈ R3. The
distance from these points to the origin will be

√
x2 + y2. The distance from p to any point in

the circle centered at the origin of radius R in that plane will be d = |
√
x2 + y2 − R|. As we

can see in the figure 2.1 the third component z, d, and r, make a right triangle, therefore they
follow the Pythagoras Theorem. So we have that d2 + z2 = r2. Hence, we can define the Torus
as follows.

∂Ω = T2 = {(x, y, z) ∈ R3 : (
√
x2 + y2 −R)2 + z2 = r2} =

= {(x, y, z) ∈ R3 :

√
(
√
x2 + y2 −R)2 + z2 − r = 0}

This leads us to a very convenient definition of the torus as an implicit surface that we can use
to build the SDF we defined in 2.3. In fact, given a point x = (x1, x2, x3) ∈ R3 the expression√
(
√
x21 + x22 −R)2 + x23 − r will be 0 when we are on the surface ∂Ω.

Now we consider a point that is inside the torus, x ∈ Ω−. Looking at figure 2.1 again, we can
see that in this case d2 + z2 < r2 ≡

√
(d2 + z2 − r) < 0. Remember that d = |

√
x21 + x22 − R|.

So the expression
√
(
√
x21 + x22 −R)2 + x23 − r will be negative. Moreover, its absolute value

will give us the distance to ∂Ω.

20

Figure 2.1: Cut in the plane YZ, showing the section of a torus. Adapted from [15]

Lately, we consider a point that is outside the torus, x ∈ Ω+. Looking at figure 2.1
again, we can see that in this case d2 + z2 > r2 ≡

√
(d2 + z2 − r) > 0. So the expression√

(
√
x21 + x22 −R)2 + x23 − r will be positive and will give us the distance to ∂Ω.

Because of that, we can say that the signed distance function as defined in 2.3 is:

n(x1, x2, x3) =

√(√
x21 + x22 −R

)2

+ x23 − r.

Now we will discuss in which points it is not differentiable. We have already proven that
the function n as defined in 2.3 is not differentiable in the points where there is more than one
point of the surface ∂Ω at a minimal distance to that point. In the case of a torus, it happens
in two cases:

1. At x = (0, 0, 0), which minimal distance to ∂Ω is R− r (the distance to the smaller circle
of the torus intersecting with the plane XY)

2. At x = (0, 0, x3), that is, all the points in the Z axis. Their distance to the surface is

|
√
(
√
0 + 0−R)2 + x23 − r| = |

√
R2 + x23 − r|.

3. At all the points of the circle of radius R centered at the origin. Those are inside the
torus, and the minimal distance to the surface is r because they are in the center of the
circle that rotates to form the torus.

21

Note that we only make a difference between the first and the second case for conceptual
reasons. Strictly speaking, the first case is a particularization of the second one when x3 = 0.

We could use the definition of the derivative as in the previous example, but there is an
easier way to do it once we have the function n as we do now. We will use that if a multivariate
function is differentiable at a given point, then their partial derivatives with respect to each
component exist at that point. So we derive the function n(x, y, z) with respect to the first
component x:

d

dx
(

√
(
√
x2 + y2 −R)2 + z2 − r) =

d

dx
(

√
(
√
x2 + y2 −R)2 + z2) =

=

d

dx
[(
√
x2 + y2 −R)2]

2

√
(
√
x2 + y2 −R)2 + z2

=
2(
√
x2 + y2 −R)

d

dx
(
√
x2 + y2 −R)

2

√
(
√
x2 + y2 −R)2 + z2

=

=

(
√
x2 + y2 −R)

x√
x2 + y2√

(
√
x2 + y2 −R)2 + z2

=
x ·
(√

x2 + y2 −R
)

√
x2 + y2

√(√
x2 + y2 −R

)2
+ z2

As we can see in the first and second cases when x = (0, 0, 0) or x = (0, 0, x3) respectively,
we have that

√
x2 + y2 = 0, therefore it gives us a 0 in the denominator. Consequently, the

partial derivative does not exist at that point, so the function n is not differentiable.

In the third case, we have that z = 0 and
√
x2 + y2 = R, so

√(√
x2 + y2 −R

)2
+ z2 = 0,

giving us a 0 in the denominator as well. Consequently, the partial derivative does not exist at
that point, so the function n is not differentiable.

Remark 3. As we have seen the function n as defined in 2.3 does not ensures differentiability
for every point x ∈ R3. But in virtue of proposition 5 we know that it is not differentiable only
in a set of zero volume. Therefore, we can define n in a small R3-neighborhood, G of M , such
that n is differentiable everywhere in G. That is, we take a small R3-neighborhood, G of M ,
such that G does not intersect with any non-zero volume set where n is not differentiable.

This leads us to define G to be small enough so that every point of G lies on some normal
ray passing through a point on M , and so that no two normal rays passing through different
points on M intersect in G. With that, we ensure that it does not exist two points at the same
minimal distance from M . Now we can construct the signed distance function (SDF) for M on
G as follows:

22

n(x) =


dist(x,M), if x lies on an outward normal ray of M
−dist(x,M), if x lies on an inward normal ray of M
0, if x ∈M

(2.5)

Definition 12. Isosurfaces Let n(x) be a signed distance function of a surface M , as derived
above. Then we define the isosurfaces of such function as the level sets:

Mc = {x ∈ R3 : n(x) = c}

In particular, the zero-isosurface will be the surface M itself:

M0 =M

We know that M is a regular surface, then the zero-isosurface, M0, is also a regular surface.
In the next proposition, we will show that this is true for all the isosurfaces, Mc.

Proposition 6. Let n(x) be a signed distance function of a surface M , as derived in 2.5. Let
c ∈ R sufficiently small. Let Mc be the c-isosurface, such that

Mc = {x ∈ R3 : n(x) = c}

and det(I + c dN) ̸= 0 Then the set Mc is a regular surface.

Remark 4. Note that c has to be small enough so that the c-isosurface is included in the
neighborhood G from the definition 2.5.

If det(I + c dN) = 0 we can take a smaller c such that det(I + c dN) ̸= 0

Proof. Because M is a regular surface, according to definition 2 we know that ∀p ∈ M it exist
an open set, U ⊂ R2, a neighborhood of p, V ⊂ M , and a differentiable function, X : U → R3,
such that:

(i) X(U) = V

(ii) X : U → V is an homeomorphism.

(iii) (dX)q : R2 → R3 is injective ∀q ∈ U

For a given x ∈ Mc we have to find an open set, Ux ⊂ R2, a neighborhood of x, Vx ⊂ M,
and a differentiable function, Y : Ux → R3, such that it fulfill the three conditions listed before.

23

Now we fix x0 ∈ Mc, by how we defined the neighborhood G in 2.5, we know that it exists
only one point p0 ∈ M such that dist(x0, p0) = c and this distance is the minimal distance to
M . Moreover, x0 lies in the normal ray to the surface M that passes through p0.

Calling N(p) to the surface normal of M in p ∈ M . We can see that x0 = p0 + cN(p0).
Remember that, because p0 ∈ M and M is a regular surface it exists the parametrization X,
and the subspaces with the properties described above.

With that, we define,
Ux := U

Vx := {v + cN(v) : v ∈ V ⊂M}

Y : Ux → R3

q 7→ Y (q) = X(q) + cN(X(q))

Now we only have to prove that Y satisfies the three requirements:

i) Y (Ux) = Vx

Y (Ux) = {Y (q) : q ∈ Ux ⊂ R2} = {X(q) + cN(X(q)) : q ∈ U ⊂ R2} =

= {v + cN(v) : v ∈ V ⊂M} = Vx

ii) Y : Ux → Y (Ux) = V is an homeomorphism.

To prove this we have to show that Y is continuous and bijective, and its inverse, Y −1 is
also continuous.

First, we show that Y is continuous. Let q

Y (q) = X(q) + cN(X(q)) = X(q) + c
Xu(q)×Xv(q)

||Xu(q)×Xv(q)||

Because X is a parametrization of the regular surfaceM , we have that ||Xu(q)×Xv(q)|| ≠ 0,
and that the functionN(p) is continuous. So Y is a composition of a polynomial function (x+c y)
with continuous functions, so it is continuous.

Now we will see that Y is bijective. We know that is surjective because of i), so we only
have to prove that is injective. Take q1, q2 ∈ Ux. If Y (q1) = Y (q2) then X(q1) + cN(X(q1)) =

24

X(q2) + cN(X(q2)). On the other hand, because of how we defined the neighborhood G that
contains Mc, it exists only one point p ∈ M such that dist(Y (q1), p) = c = dist(Y (q2), p) and
this distance is the minimal distance to M . Moreover, Y (q1) = Y (q2) lies in the normal ray to
the surface M that passes through p. Therefore, Y (q1) = X(q1) + cN(X(q1)) = p + cN(p) =
X(q2) + cN(X(q2)) = Y (q2). This means that p = X(q1) = X(q2), and because X is bijective
we have that q1 = q2. So Y is injective and surjective, so it is bijective.

Lastly, we will prove that its inverse is continuous. To do this, first, we have to define Y −1.
Let x ∈ Vx ⊂Mc, and p = X(q) ∈M the only point that in M which distance to x is c, hence
Y (X(q)) = x. So we only have to define Y −1(x) to be X−1(p) = q ∈ U = Ux. We can do it by
doing:

Y −1 : Vx → Ux

x 7→ Y −1(x) = X−1(x− cN(X(q)))

See that it is well defined as we can always find a single p = X(q) ∈ M and therefore, a single
p = X(q) ∈ U associated with every x ∈ Vx.

We can see that we accomplish the desired function by doing:

Y −1(Y (q)) = Y −1(X(q) + cN(X(q))) = X−1(X(q) + cN(X(q))− cN(X(q))) = (2.6)

= X−1(X(q)) = q = Id(q) (2.7)

As X−1 is continuous, because X is an homeomorphism, Y −1 is a composition of continuous
functions and therefore continuous.

iii) (dY)q : R2 → R3 is injective ∀q ∈ Ux

Because the differential is linear we can write:

dY = d(X + cN(X)) = dX + c dNdX = (I + c dN)dX

By identifying the differential with its associated matrix, to see that (dY)q is injective is
enough to ensure that det((dY)q) ̸= 0. Calculating det((dY)q),

det((dY)q) = det((I + c dN)dX) = det(I + c dN) det(dX)

We know that det(dX) ̸= 0 because X is a parametrization of the regular surface and
det(I + c dN) ̸= 0 by hypothesis. Hence det((dY)q) ̸= 0, so (dY)q is injective.

25

Remark 5. In the previous proof, we restricted c such that det(I+c dN) ̸= 0. This is needed to
ensure that det((dY)q) ̸= 0 and therefore the surface Mc is regular. But we can say even more,
there will be some value of c, we call it c0, such that if |c| < |c0| then the surface Mc is regular.

Proof. We study det(I + c dN), but note that those are 2 × 2 matrices and that dN = −W ,

where W is the Weingarten matrix. In the appropriate base, we can write W =

(
k1 0
0 k2

)

det(I + c dN) = det(I − cW) = det

((
1 0
0 1

)
− c

(
k1 0
0 k2

))
=

=

∣∣∣∣1− ck1 0
0 1− ck2

∣∣∣∣ = (1− ck1) (1− ck2) = 1− ck2 − ck1 + c2k1k2 = c2k1k2 − c(k1 + k2) + 1

Taking c as a variable we can now see for which values of c the expression is 0.

c =
(k1 + k2)±

√
(k1 + k2)2 − 4(k1k2)1

2k1k2
=

(k1 + k2)±
√
k21 + k22 + 2k1k2 − 4k1k2
2k1k2

=

=
(k1 + k2)±

√
k21 + k22 − 2k1k2

2k1k2
=

(k1 + k2)±
√

(k1 − k2)2

2k1k2
=

(k1 + k2)± |k1 − k2|
2k1k2

=

=


k1 + k2 + k1 − k2

2k1k2
=

2k1
2k1k2

=
1

k2

k1 + k2 − k1 + k2
2k1k2

=
2k2
2k1k2

=
1

k1

Now, for every point p ∈ M we define k(p) = max{k1(p), k2(p)}, that is the maximum of
the two principal curvatures. Then if it exists we can take

k = max
p∈M

{k(p)}

If we take c0 <
1

k
, then we have that if |c| < |c0| then det(I + c dN) ̸= 0, so Mc is a regular

surface.

26

2.2.1 Surface Normal of Signed Distance Functions

We have already introduced the concept of surface normals for regular surfaces. The next step
is applying this to the specific surfaces described by the signed distance functions defined above.

Given a point x ∈ G, y(x) will be the unique point on M whose normal ray passes through
x, and v(x) will be the outward unit normal to M at y(x). Note that, because of how we have
defined G, there will be only one point of M whose normal ray passes through x, which is y(x),
so the function is well defined. Hence, the line of the minimal distance between x and M goes
through y(x). Moreover, it is perpendicular to M . So the vector that goes from y(x) to x is
the normal unitary vector to M in y(x), which is v(x); with a magnitude equal to the distance
from x to y(x), which has been defined as n(x). This yields the following equality:

x− y(x) = n(x) v(x)

In the following, we will denote y(x) = y, n(x) = n and v(x) = v. We can derive this vector
equation with respect to the first coordinate of the point x, x1, to obtain:

1
0
0

− dy

dx1
=

dn

dx1
v + n

dv

dx1

We apply the dot product by v on both sides of the equation, taking into account that
v · v =

√
∥v∥ = 1, as v is a unitary vector.

v1 −
dy

dx1
· v =

dn

dx1
+ n

dv

dx1
· v

As y ∈M , any derivative of y must be tangent toM . Because v is, by definition, orthogonal
to M we have that:

dy

dx1
· v = 0

Because ∥v∥ = 1 by deriving both sides with respect to the first component we have:

27

dv

dx1
= 0 −→ dv

dx1
· v = 0

Resulting in the following equality:

dn

dx1
= v1

Repeating the process, but deriving with respect to x2 and x3, we arrive to the following
conclusion:

∇n =


dn

dx1
dn

dx2
dn

dx3

 =

v1v2
v3

 = v

Therefore:

∥∇n∥ = ∥v∥ = 1 (2.8)

This is a particular case of the Eikonal equation which is ∥∇n∥ = f(x). We have proven
that this should hold true for every signed distance function n. So we can use it to ensure that
a field remains a valid SDF throughout any manipulation.

To summarize we have the following situation:

1. ∇n is perpendicular to all level surfaces of n.

2. M0 = {x ∈ R3 : n(x) = 0} =M −→The zero-isosurface of n is the surface M itself.

3. ∥∇n∥ = 1

4. The direction of increase of n is outward the surface is outward M , because of how it is
defined.

28

This leads us to conclude that the vector ∇n coincides with the outward unit normal vector
at p ∈ M , N(p). We can therefore extend our definition of Unit Surface Normal 5, for this
particular case by setting:

N(p) = ∇n(p) =

n1(p)n2(p)
n3(p)

 (2.9)

where ni(p) =
dn

dxi
(p).

2.2.2 Curvature of Signed Distance Functions

The previous section ended with the equation 2.9. Therefore if we call JN the Jacobian matrix
of N , this will be equivalent to the Hessian matrix of the SDF n, denoted by Hn. Note that
both JN and Hn are 3× 3 matrices.

Remember that we defined the Shape operator in 9 as follows:

Wp := −dNp : TpS −→ TpS

Remember also that we used Wp to denote both, the function and the matrix associated with
the function. So, if we restrict JN and Hn to the vectors from TpS, we can say that,

Wp = −dNp ≡ −JN = −Hn

This allows us to formulate the curvatures defined 10 based on these matrices. These definitions
are not direct, since Wp is a 2× 2 matrix and JN is 3× 3. In the following proposition, we will
see how the mean curvature, k(p) can be defined in terms of JN = Hn.

Proposition 7. The mean curvature in p ∈ S is k(p) :=
tr(Wp)

2
=
tr(−Hn)

2
= − tr(Hn)

2
.

Proof. To prove this we will prove that
tr(Wp)

2
= − tr(JN)

2
. Since we know that tr(JN) =∑3

i=1 λi, where λi are the eigenvalues of JN , we need to find those values (we can do it because
the matrix is symmetric, hence diagonalizable).

We know that < N(p), N(p) >= 1 by differentiating:

d

dxi
(< N(p), N(p) >) =<

d

dxi
(N), N > + < N,

d

dxi
(N) >= 2 <

d

dxi
(N), N >= 0

29

So < d
dxi

(N), N >= 0∀i = 1, 2, 3. Knowing that JN =



dN

dx1
dN

dx2
dN

dx3


, which is a 3× 3 matrix:

JNN = 0

This gives us the first eigenvector (N) and its eigenvalue (0).

To obtain the other two let α : I −→M a curve on the surface M , α(s) = p, and X : U −→M
the parametrization of the surface that includes α(s). Then α′(s) ∈ TpS, and if α′(s) is a
principal direction we know that it is an eigenvector of Wp, so being ki the principal curvature
associated with that direction we have:

Wp

(
a1
a2

)
= ki

(
a1
a2

)
=

(
ki a1
ki a2

)
(2.10)

Where α′(s) = a1Xu + a2Xv. We can do this because α′(s) ∈ TpS and TpS is generated
by {Xu, Xv}.

On the other hand, we know that Wp ≡ −JN , so:

Wp

(
a1
a2

)
≡ −JNα′(s) = −JN (a1Xu + a2Xv)

Then because equation 2.10 we have that:

−JNα′(s) = (ki a1Xu + ki a2Xv) = kiα
′(s) −→ JNα

′(s) = −kiα′(s)

Therefore, α′(s) is an eigenvector of JN and −ki is an eigenvalue. This is true for i = 1, 2,
hence the eigenvalues of JN are {0, k1, k2}.

With that, we can say that tr(JN) = 0 + k1 + k2 = tr(Wp)

We can conclude that k(p) :=
tr(Wp)

2
=
tr(−JN)

2
= − tr(JN)

2
= − tr(Hn)

2

30

Chapter 3

Neural Networks and Neural Fields

Neural networks are at the core of Deep Learning advances in the last decade. Inspired by
the human brain, they use a combination of artificial neurons to process and analyze data
inputs, allowing them to learn from experience and improve their performance over time. In
this chapter, we will see what all of this means, as well as a special type of neural network called
neural fields, which are very convenient for geometric and spatial representations.

3.1 Neural Networks

First, we will cover the fundamental concepts of neural networks, including activation functions,
gradient descent, and backpropagation. We will start with a simple example to detail all the
steps involved in training. For now, the reader just has to think about a neural network as a
function F (x) that takes as input x and produces an output y. This function F is determined
by a set of parameters P .

3.1.1 Gradient Descent

To explain how gradient descent works we will use a simple example that has nothing to do
with neural networks. Let F (ω) = (ω − 1)2 be a function for which we want to find the value
for ω that minimizes the value of the function.

By calculating its derivative F ′(ω) = 2(ω − 1) −→ ω∗ = 1, because it is the value for which
the derivative becomes 0.

31

For neural networks, the function is more complex, we have more parameters to optimize
and we find multiple minimums, so we use gradient descent.

We start with a random value for ω; for example ω = 2 and F (2) = 1. Now we have to make
a small change to ω in order for F (ω) to be smaller. So we could increase or decrease ω. The
answer to what to do is given by the derivative of the function, which tells us the direction in
which we have to move ω for F to increase. Because of that, to make the value of the function
smaller we will update ω adding an increment of ∆ω = −f ′(ω).

Starting from ω0, the next step will give us ω1 = ω0 − f ′(ω0), and so on, until ωn =
ωn−1 − f ′(ωn−1). Once we stop, we expect the value F (ωn) to be as close to the minimum as
possible. Nevertheless, to avoid the increment ∆ω being too big, we set a value of α > 0, such
that

ωi = ωi−1 − αf ′(ωn−1).

This α is known as the learning rate and determines how much we move in the direction in
which the function decreases. Its value depends on the problem, and we should try different
values. The reason is that with more complex functions we can find local minima in which we
will get stuck if the learning rate is too close to 0. Although, if we take a learning rate that is
too high, the changes in ω will be too big and we will miss the minimum we are trying to reach.

For neural networks, the function we will try to optimize will not be a function of the inputs
x or outputs y. Instead, it will be a function of the parameters P of the network. As we
have defined P as a set, that means that we can have multiple parameters, in practice we have
thousands or more. Hence we will apply gradient descent using the partial derivatives with
respect to each one of the parameters in P .

3.1.2 Multilayer Perceptron

Deep feedforward networks, also called feedforward neural networks or multilayer perceptrons
(MLPs), are the quintessential deep learning models [5]. They take an input vector x =
(x1, x2, ..., xn), and produce an output vector y = (y1, y2, ..., yl). The goal of MLPs is to
approximate a function F ∗(x) = y.

Finally, to see what an MLP looks like one can see figure 3.2. To understand this better we
have to introduce some notation.

This is a five-layer MLP, as we name each column in the diagram as a layer. In particular,
the first layer is the inputs and the last one is the outputs. All the intermediate layers are
called hidden layers. We will index each layer with a superscript a(k), with k = 0, ..., 4. Note
that this way, we will write the input and output layers with the same notation as the hidden

32

layers, where xi = a
(0)
i , with i = 1, ..., n; and yj = a

(4)
j , with j = 1, ..., l. Each layer can have

mk nodes, being m0 = n and m4 = l.

Each connection between two nodes represents a parameter called weight, w
(k)
i,j ∈ P . This

is the parameter of the connection between node i from layer k and node j from layer k + 1.
So here i = 1, ...,mk and j = 1, ...,mk+1. For each node (or neuron) we have an additional
parameter, bkj ∈ P , with j = 1, ...,mk+1. Those are called biases and note that we have k + 1
of them because each of those is associated with one neuron in the layer k + 1.

To combine those parameters, for each neuron we multiply the weight of each incoming
connection by the value of the node that comes from and add the result. Lately, we add the
bias of that neuron and we apply a non-linear function σ, normally referred to as activation
function. This produces the output of the neuron which is also called activation. Then the
outputs (activations) of one layer serve as input to the next one, and we continue this process
until we reach the final layer. An illustration of the computation of the first layer can be found
in 3.3. Here it can also be seen how this operation can be conveniently expressed as a matrix
multiplication, which makes them very efficient computationally.

There are multiple options for choosing the activation function σ, we can see some of those in
figure 3.1. Choosing one of them will strongly depend on our problem and there is no universal
agreement about which one works best. Nevertheless, it can be empirically tested and stated
that some of them work better for specific problems, as we will see on Chapter 4.

Remark 6. On differentiability: In the previous section, we talked about gradient descent,
and we saw that relies on derivatives. So, when applying it to MLP one would expect all the
operations to be differentiable. But as we can see in 3.1, there are some activation functions
that are not differentiable at some points.

For instance, take the ReLU activation which is mathematically expressed as ReLU(x) =
max{0, x}. We can see that this is not differentiable at x = 0 by using the definition of the
derivative when we are approaching 0 with x < 0 and x > 0:

lim
x−→0

max{0, x−} −max{0, 0}
x− − 0

= lim
x−→0

0

x−
= 0

lim
x+→0

max{0, x+} −max{0, 0}
x+ − 0

= lim
x+→0

x+

x+
= 1

So we cannot compute the derivative in x = 0 if we are using this activation function. This may
be heuristically justified by observing that gradient-based optimization on a digital computer is
subject to numerical error anyway. When a function is asked to evaluate g(0), it is very unlikely
that the underlying value truly was 0. Instead, it was likely to be some small value ϵ that was
rounded to 0 [5]. So it is justified to use this function, and similar explanations can be given in
other cases.

33

Figure 3.1: Different activation functions to apply in the hidden layers. Image from [9]

It would be valid to ask why we need those activation functions to be applied between the
layers. The answer will be given in Remark 8, but first, we need to define two types of functions.

Definition 13. Linear function: Let F : Rn −→ Rm be a function, such that for u ∈ Rn,
F (u) ∈ Rm. F is a linear function only if:

F (au+ bv) = aF (u) + b F (v) ∀u, v ∈ Rn, ∀a, b ∈ R

Proposition 8. Let A be an m× n matrix, A ∈ Rm×n. Let FA : Rn −→ Rm be a function, such
that for u ∈ Rn, FA(u) = Au ∈ Rm. Then the function FA is a linear function.

Consequently, we can state that multiplying a vector by a matrix is a linear transformation
between Rn and Rm.

34

Proof. Let u,v ∈ Rn, a, b ∈ R then using the matrix properties we have:

FA(au+ bv) = A (au+ bv) = a(Au) + b(Av) = aF (u) + b F (v)

Definition 14. Affine function: Note that we should define the function F to go from one
affine space to another. So we denote with Rn and Rm the affine spaces (Rn, Rn, ge) and (Rm,
Rm, ge) respectively, where ge is the Euclidean metric. To distinguish when we are using points
or vectors, we will denote the vectors with bold letters.

Let F : Rn −→ Rm be a function, such that for u ∈ Rn, F (u) ∈ Rm. F is an affine only if it
exists o ∈ Rn, treated as a point, and a linear function F : Rn −→ Rm such that:

F (ou) = F (o)F (u) ∀u, v ∈ Rn

Where uv = v − u∀u, v ∈ Rn, which is the vector from Rn beginning at point u and ending at
point v. It is analogous when u, v ∈ Rm.

The linear function F is called associated linear function.

Remark 7. For any affine function F we have that:

F (ou) = F (o)F (u) = F (u)− F (o) ∀u, v ∈ Rn

Hence we can write, F (u) = F (o) + F (ou).

Proposition 9. Let A be an m × n matrix, A ∈ Rm×n, and b ∈ Rm. Let F : Rn −→ Rm be a
function, such that for u ∈ Rn, FA(u) = Au + b ∈ Rm. Then the F is an affine function with
associated linear function F : Rn −→ Rm, such that F (u) = Au.

Consequently, we can state that multiplying a vector by a matrix and adding another vector
is an affine transformation between Rn and Rm.

Proof. Let o = 0 be the zero of Rn, u ∈ Rn, both treated as points, then we have that:

F (ou) = F (u) = Au

F (o)F (u) = (Ao+ b)(Au+ b) = b(Au+ b) = (Au+ b− b) = Au

So we see that those are equal which finishes the proof.

Affine transformations between Euclidean spaces can be seen as linear transformations fol-
lowed by a translation.

In figure 3.3 we can see that before applying σ we have performed an affine transformation
of the inputs.

35

Proposition 10. Given the affine functions φ : A −→ A′ ψ : A′ −→ A′′, the composition
φ ◦ ψ : A −→ A′′ is also an affine function. Its associated linear function is φ ◦ ψ = φ ◦ ψ.

Proof. As φ and ψ are affine we can write:

φ(a1) = φ(o1) + φ(o1a1) ψ(a2) = ψ(o2) + ψ(o2a2)

Let u ∈ A, then we can write:

φ ◦ ψ(o1)φ ◦ ψ(u) = (ψ(φ(o1)))(ψ(φ(u))) = ψ(φ(u))− ψ(φ(o1)) =

= ψ(o2) + ψ(o2φ(u))− ψ(o2)− ψ(o2φ(o1)) = ψ(φ(u)− o2)− ψ(φ(o1)− o2)

As ψ and φ are linear, we can write:

ψ(φ(u)− o2)− ψ(φ(o1)− o2) = ψ(φ(u)− (o2)− φ(o1) + o2) = ψ(φ(u)− φ(o1)) =

= ψ(φ(o1) + φ(o1u)− φ(o1)− φ(o1o1))) = ψ(φ(o1u)− φ(0)) =

= ψ(φ(o1u)) = φ ◦ ψ(o1u)

So taking as associated linear function φ ◦ ψ = φ ◦ ψ we have that:

φ ◦ ψ(o1)φ ◦ ψ(u) = φ ◦ ψ(o1u) = φ ◦ ψ(o1u)

Remark 8. The importance of the non-linear activation function: It is essential to
apply the non-linear function to the result of the operation of each neuron.

This is because, as shown in figure 3.3, if we do not apply the function σ the result of each
neuron is just an affine transformation. In addition, as we have seen in proposition 10, the
composition of affine transformations is also affine. Therefore, if we do not apply σ we will
only be able to approximate affine functions. This is not convenient because we want to be able
to approximate more complex functions.

In fact, if the function σ is linear (instead of non-linear). We have the same result, as linear
transformations are a subset of affine transformations.

An interesting property of such models is the Universal Approximation Theorem, proven in
[8], and stated below:

Theorem 3. Universal Approximation Theorem Multilayer feedforward networks with as
few as one hidden layer using arbitrary activation functions are capable of approximating any
Borel measurable function from one finite dimensional space to another to any desired degree
of accuracy, provided sufficiently many hidden units are available. In this sense, multilayer
feedforward networks are a class of universal approximators.

36

x1

x2

x3

xn

...

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
m1

...

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
m2

...

a
(3)
1

a
(3)
2

a
(3)
3

a
(3)
4

a
(3)
m3

...

y1

y2

yl

...

input
layer

hidden layers

output
layer

Figure 3.2: General Architecture Multilayer Perceptron with three hidden layers. Figure
adapted from [13]

a
(0)
1

a
(0)
2

a
(0)
3

a
(0)
4

a
(0)
n

a
(1)
m

a
(1)
3

a
(1)
2

a
(1)
1

w1,1w1,1

w2,1w2,1

w3,1w3,1

w4,1w4,1

wn,1wn,1

...

...

= σ
(
w1,1a

(0)
1 + w2,1a

(0)
2 + . . .+ wn,1a

(0)
n + b

(0)
1

)
= σ

(
n∑

i=1

wi,1a
(0)
i + b

(0)
1

)

a
(1)
1

a
(1)
2
...

a
(1)
m

 = σ



w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n
...

...
. . .

...
wm,1 wm,2 . . . wm,n


T

a
(0)
1

a
(0)
2
...

a
(0)
n

+


b
(0)
1

b
(0)
2
...

b
(0)
m




a(1) = σ

((
W(0)

)T
a(0) + b(0)

)

Figure 3.3: Activation computation MLP. This figure shows how the activations of the first
layer are computed, as well as its matrix representation. The activation function σ is applied
elementwise to the components of the vector. Note that we do not use the sub-index in am
for simplicity, but if there were more layers this would be am1 . Figure adapted from [13]

.

37

a
(0)
1

a
(0)
2

a
(0)
3

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(3)
1

a
(3)
2

input
layer

hidden layer

output
layer

Figure 3.4: Simple Multilayer Perceptron

It will be very useful to think about MLP as universal approximators in the next sections.

3.1.3 Back Propagation

We have already seen in section 3.1.1 how gradient descent works, this is the (most basic)
optimization method used in the learning algorithm of the neural networks, but we have not
explained which algorithm we use. This is called Back Propagation Algorithm. In this section,
we will apply it to a simple MLP to illustrate all the steps.

We will work with the MLP shown in figure 3.4. It has four layers, two of which are hidden.
For simplicity, we will use the sigmoid activation function, defined as follows:

σ(x) = (1 + e−x)−1 =
1

1 + e−x

Then we can easily calculate the derivative, resulting in:

σ′(x) =
−e−x · (−1)

(1 + e−x)2
= (1 + e−x)−1 e−x

1 + e−x
= σ(x)

1− 1 + e−x

1 + e−x
=

= σ(x) (
−1

1 + e−x
+

1 + e−x

1 + e−x
) = σ(x)(1− σ(x))

So we have that for computing the derivative of this function we do not need to actually
calculate it, but we can use σ′(x) = σ(x)(1− σ(x)).

We will denote the weights and biases from the connections between layer k (previous) and
layer k + 1 (next) with the superscript (k). For the weights, the subscript will be i, j, where

38

i is the number of the node from the previous layer, k, and j is the node from the next layer,
k+1. For the biases, the subscript will be j and will mean the neuron with which is associated
from layer k + 1. For an example see figure 3.3, but note that for all the weights, wi,j they

should be w
(0)
i,1 , as we are between layer 0 and layer 1. The ranges for those indexes in the case

of our simple example from figure 3.4 will be k = 0, ..., 3, and the i, j will vary depending on
the layers we are connecting. Being np, nn, the number of nodes for the previous and the next
layer respectively, i = 1, ..., np, j = 1, ..., nn. For example, for the connections between layer 0
and layer 1, i = 1, ..., 4 and j = 1, ..., 3.

Remember that we denoted the inputs, x = (x1, x2, x3), and outputs, y = (y1, y2), as the
activations a(0) and a(3) respectively. This means that x = a(0) and y = a(3).

Remark 9. Loss

Before continuing we have to introduce the notion of loss. For a given input x, we know
that we want to get a desired output, s = (s1, s2), which is called target (when dealing with
classification problems they are more often called labels). But the output that we get from the
neural network is MLP (x) = y, which is probably not the same as s. Therefore we want to
measure how wrong was our prediction, and we make it by using a loss (or error) function
e(y, s). In our case, we will use a simple function, the Mean Squared Error, which is based on
the distance between y and s:

e(y, s) =
1

2
(s1 − y1)

2 +
1

2
(s2 − y2)

2

Intuitively, this gives us how ”far” we are from the expected output. Therefore this is the
function we want to minimize using gradient descent: e(MLP (x), s). And we will minimize it
with respect to the set of parameters P , from the MLP (the weights and the biases).

The first thing to do is to calculate the derivative of the loss function with respect to each
parameter of the MLP. This will be done by using the chain rule from calculus. So we have to
start calculating the derivative of e(y, s) ≡ e with respect to y, for then calculating the derivative

of e with respect to the parameters w
(2)
i,j , b

(2)
j , with which we will calculate the derivative from

the previous layer parameters and so on until we reach the beginning of the network. This is
called backward pass, as opposed to the forward pass which is just MLP (x) = y. So now we
start the calculations:

Between layer 3 and layer 2

∂e

∂yj
=

∂

∂yj

(
1

2
(s1 − y1)

2 +
1

2
(s2 − y2)

2

)
= −(sj − yj) with j = 1, 2

39

∂yj

∂w
(2)
i,j

=
∂

∂w
(2)
i,j

(
σ
(
w

(2)
1,ja

(2)
1 + w

(2)
2,ja

(2)
2 + w

(2)
3,ja

(2)
3 + w

(2)
4,ja

(2)
4 + bj

))
=

= σ
(
w

(2)
1,ja

(2)
1 + w

(2)
2,ja

(2)
2 + w

(2)
3,ja

(2)
3 + w

(2)
4,ja

(2)
4 + bj

)(
1− σ

(
w

(2)
1,ja

(2)
1 + w

(2)
2,ja

(2)
2 + w

(2)
3,ja

(2)
3 + w

(2)
4,ja

(2)
4 + bj

))
∂

∂w
(2)
i,j

(
w

(2)
1,ja

(2)
1 + w

(2)
2,ja

(2)
2 + w

(2)
3,ja

(2)
3 + w

(2)
4,ja

(2)
4 + bj

)
= yj(1− yj)(a

(2)
i)

∂e

∂w
(2)
i,j

=
∂e

∂yj
· ∂yj

∂w(2)i,j
= (yj − sj)

(
yj(1− yj)(a

(2)
i)
)

∂yj

∂b
(2)
j

=
∂

∂b
(2)
j

(
σ
(
w

(2)
1,ja

(2)
1 + w

(2)
2,ja

(2)
2 + w

(2)
3,ja

(2)
3 + w

(2)
4,ja

(2)
4 + bj

))
=

= σ
(
w

(2)
1,ja

(2)
1 + w

(2)
2,ja

(2)
2 + w

(2)
3,ja

(2)
3 + w

(2)
4,ja

(2)
4 + bj

)(
1− σ

(
w

(2)
1,ja

(2)
1 + w

(2)
2,ja

(2)
2 + w

(2)
3,ja

(2)
3 + w

(2)
4,ja

(2)
4 + bj

))
∂

∂b
(2)
j

(
w

(2)
1,ja

(2)
1 + w

(2)
2,ja

(2)
2 + w

(2)
3,ja

(2)
3 + w

(2)
4,ja

(2)
4 + bj

)
= yj(1− yj)

∂e

∂b
(2)
j

=
∂e

∂yj
· ∂yj
∂b

(2)
j

= (yj − sj) yj(1− yj)

Defining δ(3) as

δ(3) = (yj − sj) yj(1− yj)

We have that:

∂e

∂w
(2)
i,j

= a
(2)
i δ(3)

∂e

∂b
(2)
j

= δ(3)

Between layer 2 and layer 1

∂a
(2)
j

∂w
(1)
i,j

=
∂

∂w
(1)
i,j

(
σ
(
w

(1)
1,ja

(1)
1 + w

(1)
2,ja

(1)
2 + w

(1)
3,ja

(1)
3 + w

(1)
4,ja

(1)
4 + bj

))
= a

(2)
j (1− a

(2)
j)(a

(1)
i)

∂a
(k+1)
p

∂a
(k)
j

=
∂

∂a
(k)
j

(
σ
(
w

(k)
1,pa

(k)
1 + w

(k)
2,pa

(k)
2 + ...+ w(k)

mk,p
a(k)mk

+ bp

))
= a(k+1)

p (1− a(k+1)
p)(w

(k)
j,p)

40

Noting that yp = a
(3)
p

∂e

∂w
(1)
i,j

=

2∑
p=1

(
∂e

∂yp
· ∂yp
∂a

(2)
j

·
∂a

(2)
j

∂w
(1)
i,j

)
=

2∑
p=1

(
(yp − sp)

(
yp(1− yp)w

(2)
j,p

)(
a
(2)
j (1− a

(2)
j)(a

(1)
j)
))

=

=
(
a
(2)
j (1− a

(2)
j)(a

(1)
j)
) 2∑

p=1

(
(yp − sp)

(
yp(1− yp)w

(2)
j,p

))

∂e

∂w
(1)
i,j

=
(
a
(2)
j (1− a

(2)
j)(a

(1)
j)
)∑2

p=1

(
(yp − sp)

(
yp(1− yp)w

(2)
j,p

))

∂e

∂b
(1)
j

=
2∑

p=1

(
∂e

∂yp
· ∂yp
∂a

(2)
j

·
∂a

(2)
j

∂b
(1)
j

)
=

2∑
p=1

(
(yp − sp)

(
yp(1− yp)w

(2)
j,p

)(
a
(2)
j (1− a

(2)
j)
))

=

=
(
a
(2)
j (1− a

(2)
j)
) 2∑

p=1

(
(yp − sp)

(
yp(1− yp)w

(2)
j,p

))

∂e

∂b
(1)
j

=
(
a
(2)
j (1− a

(2)
j)
)∑2

p=1

(
(yp − sp)

(
yp(1− yp)w

(2)
j,p

))

Defining δ(2) as

δ(2) =
(
a
(2)
j (1− a

(2)
j)
) 2∑

p=1

(
(yp − sp) yp(1− yp)w

(2)
j,p

)
=
(
a
(2)
j (1− a

(2)
j)
) 2∑

p=1

w
(2)
j,p δ

(3)

We have that:

∂e

∂w
(1)
i,j

= a
(1)
i δ(2)

∂e

∂b
(1)
j

= δ(2)

Between layer 1 and layer 0 Noting that x = a(0):

∂a
(1)
j

∂w
(0)
i,j

=
∂

∂w
(0)
i,j

(
σ
(
w

(0)
1,jx1 + w

(0)
2,jx2 + w

(0)
3,jx3 + bj

))
= a

(1)
j (1− a

(1)
j)(xi)

41

∂e

∂w
(0)
i,j

=

2∑
p=1

 ∂e

∂yp

4∑
q=1

(
∂yp

∂a
(2)
q

· ∂a
(2)
q

∂a
(1)
j

·
∂a

(1)
j

∂w
(0)
i,j

) =

=
2∑

p=1

−(sp − yp)
4∑

q=1

((
yp(1− yp)w

(2)
q,p

)
·
(
a(2)q (1− a(2)q)w

(1)
j,q

)
·
(
a
(1)
j (1− a

(1)
j)xi

)) =

=
(
a
(1)
j (1− a

(1)
j)xi

) 2∑
p=1

−(sp − yp)
4∑

q=1

(
yp (1− yp)w

(2)
q,p a

(2)
q (1− a(2)q)w

(1)
j,q

) =

=
(
a
(1)
j (1− a

(1)
j)xi

) 2∑
p=1

 4∑
q=1

(yp − sp)
(
yp (1− yp)w

(2)
q,p a

(2)
q (1− a(2)q)w

(1)
j,q

) =

=
(
a
(1)
j (1− a

(1)
j)xi

) 4∑
q=1

 2∑
p=1

(yp − sp)
(
yp (1− yp)w

(2)
q,p a

(2)
q (1− a(2)q)w

(1)
j,q

) =

=
(
a
(1)
j (1− a

(1)
j)xi

) 4∑
q=1

a(2)q (1− a(2)q)w
(1)
j,q

2∑
p=1

(yp − sp)
(
yp (1− yp)w

(2)
q,p

)

∂e

∂w
(0)
i,j

=
(
a
(1)
j (1− a

(1)
j)xi

) ∑4
q=1

(
a
(2)
q (1− a

(2)
q)w

(1)
j,q

∑2
p=1(yp − sp) yp (1− yp)w

(2)
q,p

)

∂a
(1)
j

∂b
(0)
j

=
∂

∂b
(0)
j

(
σ
(
w

(0)
1,jx1 + w

(0)
2,jx2 + w

(0)
3,jx3 + bj

))
= a

(1)
j (1− a

(1)
j)

∂e

∂b
(0)
j

=

2∑
p=1

 ∂e

∂yp

4∑
q=1

(
∂yp

∂a
(2)
q

· ∂a
(2)
q

∂a
(1)
j

·
∂a

(1)
j

∂b
(0)
j

)

By doing the same procedure as before, but changing the last derivative
∂a

(1)
j

∂b
(0)
j

we arrive to:

∂e

∂b
(0)
j

=
(
a
(1)
j (1− a

(1)
j))

) ∑4
q=1

(
a
(2)
q (1− a

(2)
q)w

(1)
j,q

∑2
p=1(yp − sp) yp (1− yp)w

(2)
q,p

)

42

Defining δ(1) as

δ(1) =
(
a
(1)
j (1− a

(1)
j)
) 4∑

q=1

a(2)q (1− a(2)q)w
(1)
j,q

2∑
p=1

(yp − sp) yp (1− yp)w
(2)
q,p

 =

=
(
a
(1)
j (1− a

(1)
j)
) 4∑

q=1

a(2)q (1− a(2)q)w
(1)
j,q

2∑
p=1

w(2)
q,p δ

(3)

 =
(
a
(1)
j (1− a

(1)
j)
) 4∑

q=1

(
w

(1)
j,q δ

(2)
)

We have that:

∂e

∂w
(0)
i,j

= xi δ
(1) ∂e

∂b
(0)
j

= δ(1)

With this information, we can update the parameters of the network using the procedure
we have seen in section 3.1.1.

w −→ w − α
∂e

∂w
b −→ b− α

∂e

∂b

Remember that α is the learning rate that tells us how much we change the parameters in
the direction in which the function decreases every time we update them. Note that this is
an iterative process, so once the parameters, P , from the network are updated, we repeat the
process. Every iteration is called an epoch, and normally those are fixed.

Remark 10. Note that as we are using the sigmoid function also in the last layer our outputs
y will be between 0 and 1, so we expect the targets, s, to follow this rule too. To accomplish that
we can scale them by calculating the minimum and the maximum of each column and doing:

ValScaled =
ValOriginal−MinVal

MaxVal−MinVal

Then we can recover the original value by doing:

ValOriginal = ValScaled(MaxVal−MinVal) +MinVal

Although, the most common thing when dealing with regression problems is not to have the
activation function in the last layer.

3.1.4 Adding complexity

The MLP studied in the previous section is very simple, so we can perform Back Propagation
manually. But in practice, they have more neurons and layers. Moreover, there are a lot

43

of modifications that can be made to our basic setting. For example, one could change the
optimization algorithm from gradient descent to another one, for example using stochastic
methods. This is the case of one of the most commonly used optimization algorithms for neural
networks, the Adam optimizer [4].

As mentioned we can also change the activation function. To integrate this change we
would only need to modify the definition of δ to replace the derivative of the sigmoid activation
function with the one that we are using. For example, if we want to use the sinusoidal function,
σ = sin(x), then we would replace the derivative by:

σ′(s) = sin′(x) = cos(x) =
√

1− sin2(x) =
√

1− σ2(x)

We have introduced the sinusoidal function as an activation function because it will be relevant
in the following part of the text. The main idea of this section is to provide an understanding
of what is happening at the basic level when we train a neural network. In the next sections
and chapters, we will use more complex neural networks, losses, and activation functions, but
it is all based on what has been discussed above.

3.2 Neural Fields

Definition 15. A field is a quantity defined for all spatial and/or temporal coordinates.

Those can be formulated then as functions that map spatial and/or temporal coordinates
to Rn.

Hence, using the universal approximation theorem, we approximate these fields using neural
networks, giving rise to the term Neural Fields. So basically those are neural networks that
take as input spatiotemporal coordinates and give as output a scalar that represents the value
of the field in that spatiotemporal point.

In this setting, we can see the Signed Distance Functions of surfaces as fields. To each
spatial coordinate where the SDF is defined, we assign its signed distance from the surface
using the function 2.5. But we do not necessarily have to know what the value of the function
is, especially in complex shapes. Here is where we will use neural networks to approximate the
function 2.5.

In section 3.1.4 we have discussed how we can add complexity to the neural networks and
how we train them. In this section, we will specify what changes are we making to the basic
training scenario introduced before.

44

Remark 11. Through this section, we will refer to the neural network used to approximate the
SDF of the surface M , as Fθ. The subscript θ indicates the set of parameters of the neural
network F . Then, the zero-isosurface of Fθ will be a surface MFθ

, and we would like it to be as
similar as possible to M so that we can say MFθ

≡M .

The objective of this section is to show how we can get the neural network Fθ that approx-
imates the SDF of M . To illustrate it better we will work with an example where our surface
M will be the Armadillo [11] shown in figure 3.5. Note that the surface M is just conceptual,
meaning that we do not have any parametrization, nor the SDF of this surface. In the next
subsection, we will see how surfaces are normally represented in computer graphics.

Figure 3.5: Original Armadillo mesh

3.2.1 Data

To train our neural network we need data first. This data will be tuples of 3D points, x ∈ R3,
and their corresponding value of the SDF y = n(x) ∈ R. We will denote the set of these tuples
as D, and it will be our dataset. But we often do not have this information, instead, we usually
have two types of representations of the surface M . One is pointclouds, which are simply a
set of points on the surface. These appear more often when working with sensors in computer
vision and inverse graphics problems.

The other more common representation is meshes, which are a polygonal representation of
the surface M . The most common polygonal meshes are the ones formed by triangles, called
triangular meshes. So we do not have the surface M itself, but a discrete triangularization

45

of it. An example of this triangularization can be seen when zooming on the armadillo 3.6.
We describe how to extract the dataset D from such meshes, but the process is analogous for
pointclouds.

Figure 3.6: Zoom Armadillo mesh

To extract the dataset D, from a given mesh we will proceed as follows. First, we normalize
the mesh to be in a 3D cube [−1, 1]3. Then, we sample uniformly 5 million points inside
this cube. For each one, we will calculate the distance to the closest polygon on the surface.
Moreover, we have information on whether the point is inside or outside the shape, which gives
us the sign. Now, we sample again 5 million points but this time we do not do it uniformly over
the whole cube, but near the surface (i.e. the surface plus a Gaussian with a standard deviation
of 0.1). We then compute the value for n(x) of these points the same way we did before. an
example of the process can be seen in figure 3.7.

Remark 12. Note that in the formulation of the function n(x) 2.5, we restricted the domain
to be a small enough neighborhood so that no two normal rays passing through different points
on the surface intersect in that neighborhood. We can check this to see if a point is valid or not
and discard it in case it is not. Although, the results presented in figure 3.7 use more elaborated
techniques that allow you to take more points.

With this, we have our dataset D which is a sample of values of the SDF of M , ideally, 10
million points (some of them can be discarded). Note that, in reality, these values are not for
the SDF ofM , but for the SDF of the mesh. Nevertheless, this is a good enough approximation
because our neural network will not have the information about the triangularization (it only
sees the dataset of points D). Better results could be achieved if we use a very dense pointcloud
instead of a mesh to represent M . In the rest of the section, we will refer to approximating the
SDF of M for simplicity.

46

Figure 3.7: Result from sampling to get a dataset D. In the right image, the red points represent
points with a positive sign (outside the surface) and the blue ones have a negative sign (inside
the surface). Image from [13]

3.2.2 MLP Architecture and activation function

The MLP architecture is what defines the number of layers and how many neurons each
of those has. In other applications, it also refers to how the connections between neurons are
made, which gives rise to Convolutional Neural Networks (CNN), Recurrent Neural Networks
(RNN), Transformers, or the more general ones, Graph Neural Networks (GNN). But in our
case, the simple MLP architecture presented in the section 3.1 will be enough.

The complexity of a neural network grows with the number of layers and/or with the number
of neurons. Intuitively, a more complex neural network can represent more complex shapes. In
the examples presented by Yang, Guandao et al. [17], the following dimensions (number of
neurons per layer) were used depending on the complexity of the shape:

• Complex 3D shapes: 3-512-512-512-512-512-512-1.

• Simple 3D shapes: 3-512-512-512-1.

• 2D rectangle: 2-128-128-128-128-1.

Remark 13. Note that the input dimensions are always the ones from the space we are in, and
the output is always one (the signed distance predicted for that input).

When dealing with neural implicit representations (not only for SDF, but also for images and

47

videos) the sine activation function has given better results than others [14]. In the case of
SDF, the reason is that the loss function involves calculating the gradient of the neural network
because we will be solving (approximately) the Eikonal equation 2.8. This makes architectures
that use activations whose gradients are not well-behaved (such as ReLU or TanH) perform
worse than the ones using the sine.

3.2.3 Loss and hyperparameters

The next thing to do is to define the loss function, keeping in mind that we have two objectives
to fulfill by our neural network F : first, we want it to be a good approximation of the SDF of
the surface M ; second, we want it to be an SDF, and we can achieve it by enforcing that the
Eikonal equation 2.8 is fulfilled. Remember that the tuples of our dataset are the input points
x ∈ R3 and the ground truth SDF value, y = n(x) ∈ R, with that we have that our loss function
will be:

e(x, y) = (Fθ(x)− y)2 + λg (||∇xFθ(x)|| − 1)2 (3.1)

The first term of the sum will ensure that the predicted values of the SDF are close to the
ground truth. The second is the one that ensures the Eikonal equation is fulfilled and is derived
by subtracting one from both sides in the equation 2.8. The constant λg is just a hyperparameter
that weights the importance of the second term for the optimization process. In practice, it was
set to λg = 0.01 according to Gropp et al. [6]. By applying the backpropagation algorithm with
this loss function we will decrease this error, therefore Fθ will be a better approximation of the
SDF of M . Remember that we are working now with a much larger neural network, so we do
not compute all the derivatives required manually. Instead, we can use computational tools and
frameworks that provide us with automatic differentiation capabilities. Those basically store a
computational graph of the operations performed to easily calculate the derivatives with respect
to each weight in the network.

In the loss function appears the following term∇xFθ(x). This means calculating the gradient
of Fθ with respect to the inputs x. To do this we can sample a number of points from the cube
[−1, 1]3, process them with the neural network, and compute the derivative of the output with
respect to the sampled point (using the automatic differentiation). Note that there is no loss
function involved in this process.

One last remark is that, for the optimization process, the Adam optimizer [4] was used,
instead of the basic Gradient Descent described in the previous section. The network was
trained for 300000 steps (iterations of the backpropagation algorithm) with a learning rate of
1e - 5.

48

Chapter 4

Shape smoothing and sharpening

In this chapter, we assume that we have a neural network F representing a 3D surface (neural
implicit representation), MF . We can obtain this neural network following what we have done
in the previous chapter. Note that in this chapter we denote the network as F without the
subscripts θ. This is because we are no longer changing the parameters of this network, we will
assume that it is already a good representation of the surface. So now F can be seen as a static
function that takes as input a 3D point in the space and outputs the SDF with respect to the
surface MF . Then, F is a (good) approximation of the true SDF, n.

4.1 Objective

Our objective in this chapter is to obtain another neural implicit representation of the surface
MF but after with a smoothing or sharpening (we will refer to both as filtering) effect. We
could do it in two ways:

1. Apply some filtering (smoothing or sharpening) algorithm to the original surface M and
train from scratch a neural network as we saw in the previous chapter.

2. Manipulating the neural network F to obtain another neural network H that represents
the surface M after the filtering process.

We are interested in the second way to do it because it seems more natural and direct, as
well as more interesting for future applications.

49

4.2 Smoothing and sharpening

We will use another neural network, Gθ, with the same architecture and activation function
as F . Moreover, we will initialize the weights and biases, θ, from Hθ to be the same as the
already trained parameter of F . We will call the shape represented by Hθ, MHθ

. Note that at
the beginning of the process MF = MGθ

, but at the end of the process, MGθ
has to represent

the same shape as MF after a smoothing or sharpening process.

We want the neural network Gθ to fulfill three properties at the end of the filtering process:

1. It has to preserve the original shape represented by F , GF .

2. It has to be enforced to remain an SDF (i.e. fulfilling the Eikonal equation 2.8).

3. The curvature of the surface represented, MHθ
, has to change. It will decrease in the case

of smoothing filtering and increase in the case of sharpening.

To convert the network Gθ into the desired one we will use the backpropagation algorithm
to change the weights θ so that the above properties are fulfilled. A way to introduce these
restrictions is in the loss function. Note that this time we do not need a ground truth y,
which in the Machine Learning community is referred to as unsupervised learning (although
self-supervised would be more accurate in this case). So the loss function will only depend on
the input x.

e(x) = (Gθ(x)− F (x))2 + λg (||∇xGθ(x)|| − 1)2 + λk(kGθ
(x)− β kF (x))

2

We will explain each term in detail:

1. (Gθ(x)−F (x))2: This enforces the shape MHθ
to be the same as MF . We do not use the

ground truth y from the sampled dataset D (as in the previous section), because this is
limited to a few points (approximately 10 million) in [−1, 1]3. Contrary, using F (x) allow
us to take any x ∈ [−1, 1]3.

2. λg (||∇xGθ(x)|| − 1)2: This term is the Eikonal 2.8 regularization term that enforces the
representation to remain an SDF. The constant λg weights the importance given to this
restriction.

3. λk(kGθ
(x) − β kF (x))

2: This term makes the mean curvature of each level set from the
new network, kGθ

(x) be proportional to the original one kF (x) by a factor of β. If β < 1
then the curvature will decrease, smoothing the surface. If β > 1 then the curvature will
increase, sharpening the surface. The constant λk weights the importance given to this
restriction.

50

We can see different experiments and their results in figures 4.1 for smoothing and 4.2 for
sharpening.

(a) β = 1 (original mesh) (b) β = 0.6 (c) β = 0.0

Figure 4.1: Shape smoothing

(a) β = 1 (original mesh) (b) β = 2 (c) β = 10

Figure 4.2: Shape sharpening

Before explaining how we calculate the terms kF (x) and kGθ
(x) we will introduce a definition

that will be useful.

Definition 16. Divergence of a vector field in Cartesian Coordinates Let G : R3 −→ R3,
G(x, y, z) = (G1(x, y, z), G2(x, y, z), G3(x, y, z)) be a vector field in Cartesian coordinates. We
define the divergence of that field, div(G), as:

div(G) = ∇ ·G =

(
dG1

dx
+
dG2

dy
+
dG3

dz

)
Remark 14. How the mean curvature is calculated: We will explain how to calculate the
normal curvature on the point x with respect to F , but is analogous for Gθ

51

Remember that we defined the shape operator as:

Wp := −dNp : TpS −→ TpS

Then we had that the mean curvature in a point p on the surface was, because 7:

k(p) :=
tr(Wp)

2
=
tr(−Hn)

2
= − tr(Hn)

2

Nevertheless, in the implementation of Guandao Yang et al. [17], the shape operator is defined
without using the negative sign, Wp := dNp. That will make the normal curvature be k(p) :=
tr(Wp)

2
=

tr(Hn)

2
. Note that this change in the sign is not relevant because the sign of the

mean curvature depends on the sense of the normal we are choosing, which depends on the
parametrization we are choosing. For simplicity in the calculations we will follow the convention

taken in [17], so we will take k(p) =
tr(Hn)

2

Our point p is called x, and the SDF n is F .Then we have that k(x) =
tr(HF)

2
. Remember

that the Hessian matrix looks as follows:

HF =



d2F

dx2
d2F

dxdy

d2F

dxdz

d2F

dydx

d2F

dy2
d2F

dydz

d2F

dzdx

d2F

dzdy

d2F

dz2



k(x) =
tr(HF)

2
=
d2F

dx2
+
d2F

dy2
+
d2F

dz2

So we would need to calculate the Hessian matrix of F and then calculate the trace. This can
be more simply implemented by using the divergence, as done in the implementation of Guandao

Yang et al. [17]. If we take the vector field ∇F = (
dF

dx
,
dF

dy
,
dF

dz
) we can calculate its divergence

as:

div(∇F) = ∇ · (∇F) = d2F

dx2
+
d2F

dy2
+
d2F

dz2
= k(x)

This way we only need to calculate ∇F using the automatic differentiation tools mentioned in
the previous section and calculate its divergence with respect to the inputs (using the automatic
differentiation tools again)

52

After the training process of the neural network Gθ with the error metric introduced here,
we expect it to represent the same shape after the filtering operation desired.

4.3 Limitations and research directions

• Speed: The shape smoothing and sharpening operation as we have described it implies
an optimization process by training the neural network. This is time consuming and
does not allow interactivity during the editing. One possible solution could be trying to
accelerate the training, by reducing the number of steps needed or making them faster.
But this approach would not give the orders of magnitude of improvement that are needed.
Another alternative is to use what are known as hypernetworks. In a generic sense, this
are neural networks which output the weights of other neural networks. We can use
the weights of the original neural field as input and train the network to perform the
smoothing operation (in the weight space) and return the weights of the smoothed SDF.
This would reduce the iterative process of training the network to a single forward pass.
Similar approaches have shown success in consistent style transfer with NeRF (Neural
Radiance Fields) [2], where artistic styles are applied to 3D scenes consistently 4.3.

Figure 4.3: (a) First the model learns an implicit representation of a 3D scene that disentangles
the geometry and appearance. (b) Then, the style information is transfered using the hypernet-
work. (c) Finally, we can render stylized novel views with a consistent appearance at various
view angles. Image from [2]

• Appearance: We have discussed neural fields as representation of Signed Distance Func-
tions, but those can be used for representing other fields. Specifically, we can encode the
radiance field of an scene, which gives raise to one of the most famous application of neural
fields, NeRF (Neural Radiance Fields) [12]. Those can be used to encode the appearance
of a 3D scene, including lighting, reflections etc. Nevertheless, their performance is not
as good for reconstructing the geometry of that scene. By combining SDF representation
with NeRF we can achieve accurate geometry representations together with the appear-
ance [1]. Moreover, once we have a way to edit the SDF, as we have shown in this work,

53

we can perform this kind of operations more robustly over the entire scene (including the
appearance).

• Compositing with Deep Learning pipelines: One of the advantages of represent-
ing scenes as neural fields is using Deep Leaning techniques to those. We have already
mentioned style transfer, but we can go beyond that. For example, we can learn the dis-
tribution of natural objects to get generative models of SDF [18] [3]. Or we can combine
NeRF with the latest advances in Natural Leanguage Processing (NLP) to detect and
segment objects in the 3D scene, based on queries in natural language 4.4[10].

Figure 4.4: Multiple queries from objects in the scene using natural language. The highlighted
regions correspond to the attention mask of the language model, which is used as a relevancy
mask. Note that the input to the model is the natural language phrase that appears below each
image. Image from [10]

54

Chapter 5

Conclusions

In conclusion, this work has provided a comprehensive overview of how 3D shapes can be repre-
sented using Signed Distance Functions approximated by neural networks. We have explained
fundamental geometry concepts and their application to these functions, and we have delved
into the workings of neural networks as function approximators. Our work has culminated in
an explanation of how neural networks can be used to represent Signed Distance Functions of
3D shapes and how shape smoothing and sharpening can be performed on them.

Our objective was to provide a solid foundation for further exploration of this topic, with a
focus on providing a mathematical explanation of these techniques, which we believe is essential
for the continued development of the field.

While our work has focused on shape filtering as an example of geometry processing op-
erations, there is still much to be explored in this area. Future research may consider other
types of operations and their applications, such as shape deformation [17] or feature extraction.
Additionally, it is also interesting to explore how to connect this kind of representation with
other deep learning techniques. We consider that it is also essential to further investigate more
efficient ways to create and manipulate these representations.

Overall, we hope that this work serves as a valuable resource for those interested in exploring
the representation of 3D shapes using Signed Distance Functions and neural networks, and that
it contributes to the continued growth and development of this field.

55

56

Bibliography

[1] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman, Matthias Nießner, and Justus
Thies. Neural rgb-d surface reconstruction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 6290–6301, June 2022.

[2] Pei-Ze Chiang, Meng-Shiun Tsai, Hung-Yu Tseng, Wei-Sheng Lai, and Wei-Chen Chiu.
Stylizing 3d scene via implicit representation and hypernetwork. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), January
2022.

[3] Gene Chou, Yuval Bahat, and Felix Heide. Diffusion-sdf: Conditional generative modeling
of signed distance functions. arXiv preprint arXiv:2211.13757, 2022.

[4] Jimmy Ba Diederik P. Kingma. Adam: A method for stochastic optimization, 2014. Com-
ment: Published as a conference paper at the 3rd International Conference for Learning
Representations, San Diego, 2015.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[6] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric
regularization for learning shapes. In Hal Daumé III and Aarti Singh, editors, Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 3789–3799. PMLR, 13–18 Jul 2020.

[7] Juha Heinonen. Lectures on lipschitz analysis introduction, 2004. http://www.math.jyu.
fi/research/reports/rep100.pdf.

[8] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359–366, 1989.

[9] N. Johnson, P. Vulimiri, A. To, X. Zhang, C. Brice, Branden Kappes, and Aaron Stebner.
Machine learning for materials developments in metals additive manufacturing, 05 2020.

[10] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik.
Lerf: Language embedded radiance fields. arXiv preprint arXiv:2303.09553, 2023.

57

http://www.deeplearningbook.org
http://www.math.jyu.fi/research/reports/rep100.pdf
http://www.math.jyu.fi/research/reports/rep100.pdf

[11] Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to dense polygon meshes.
In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’96, page 313–324, New York, NY, USA, 1996. Association for Com-
puting Machinery.

[12] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. In ECCV, 2020.

[13] Izaak Neutelings. Neural networks latex. TikZ.net Graphics with TikZ in LaTeX, May
2022. https://tikz.net/neural_networks/.

[14] Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and
Gordon Wetzstein. Implicit neural representations with periodic activation functions. In
Proc. NeurIPS, 2020.

[15] Reactant (https://math.stackexchange.com/users/250971/reactant). How to de-
rive the 3d equation of a torus? Mathematics Stack Exchange. URL:https://math.
stackexchange.com/q/1352920 (version: 2020-06-12).

[16] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,
Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields
in visual computing and beyond. Computer Graphics Forum, 2022.

[17] Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. Geometry pro-
cessing with neural fields. In Thirty-Fifth Conference on Neural Information Processing
Systems, 2021.

[18] Xin-Yang Zheng, Yang Liu, Peng-Shuai Wang, and Xin Tong. Sdf-stylegan: Implicit sdf-
based stylegan for 3d shape generation. In Comput. Graph. Forum (SGP), 2022.

58

https://tikz.net/neural_networks/
https://math.stackexchange.com/users/250971/reactant
https://math.stackexchange.com/q/1352920
https://math.stackexchange.com/q/1352920

	Introduction
	Context and motivation
	Objectives

	Differential geometry of surfaces from distance functions
	Differential Geometry
	Surfaces
	Tangent Plane and Surface Normal
	Curvature

	Signed Distance Functions
	Surface Normal of Signed Distance Functions
	Curvature of Signed Distance Functions

	Neural Networks and Neural Fields
	Neural Networks
	Gradient Descent
	Multilayer Perceptron
	Back Propagation
	Adding complexity

	Neural Fields
	Data
	MLP Architecture and activation function
	Loss and hyperparameters

	Shape smoothing and sharpening
	Objective
	Smoothing and sharpening
	Limitations and research directions

	Conclusions

