
Received: 4 April 2022 Revised: 14 June 2023 Accepted: 31 August 2023 IET Intelligent Transport Systems

DOI: 10.1049/itr2.12426

ORIGINAL RESEARCH

Assessing the limits of centralized unmanned aerial vehicle

conflict management in U-Space

Pablo Boronat1 Miguel Pérez-Francisco2 Jamie Wubben3 Carlos T. Calafate3

Juan Carlos Cano3 Rafael Casado4

1Computer Languages and Systems Department,
Universitat Jaume I (UJI), Castelló de la Plana, Spain

2Computer Science and Engineering Department,
Universitat Jaume I (UJI), Castelló de la Plana, Spain

3Department of Computer Engineering, Universitat
Politècnica de València, Valencia, Spain

4Computing Systems Department, Universidad de
Castilla-La Mancha, Albacete, Spain

Correspondence

Miguel Pérez-Francisco, Computer Science and
Engineering Department, Universitat Jaume I (UJI),
Spain.
Email: mperez@uji.es

Funding information

Junta de Comunidades de Castilla-La Mancha,
Grant/Award Number:
SBPLY/19/180501/000159; Ministerio de Ciencia,
Innovación y Universidades, Grant/Award Number:
MCIN/AEI/10.13039/501100011033

Abstract

There is an important growth of unmanned aerial vehicles (UAVs) performing planned
missions in urban environments, which poses significant challenges to the research com-
munity. The possibility of collisions represents a critical challenge. UAVs can suffer
collisions due to different causes external or internal to their flight plans. In this context,
dynamic geo-fencing is a useful approach, whereby each UAV is able to provide a predic-
tion of its future positions within a limited time. These predictions could be used to detect
conflicts, allowing to dynamically modify the flight plans so as to avoid imminent collisions.
In this work, a conflict detection algorithm/method is proposed, implemented and tested
on a central server performing real-time conflict analysis for a large number of UAVs flying
in the aerial space of a city (U-Space). The architecture assumes that UAVs send their future
locations to a traffic controller. This controller compares the predicted positions of nearby
vehicles to detect possible conflicts. The results of this work demonstrate the feasibility
of the proposed conflict detection algorithm and its interest to improve the security and
efficiency in U-Space environments. The server is able to track thousands of UAVs in real
time with a conflict anticipation around 11 s.

1 INTRODUCTION

Unmanned aerial vehicles (UAVs), colloquially known as drones,
have become a commonly used tool for different fields such as
surveillance, emergency services, traffic control, assessment in
topographic surveys, agricultural supervision, or rapid goods
delivery, just to mention a few ([1]). The proliferation of
UAVs, and the coexistence with manned aircraft, has given
rise to restrictive regulations in Europe and worldwide due
to obvious dangers concerning potential collisions or con-
flicts. In different countries or regions, these regulations are
under development or have already been released; for instance,
the Unmanned Aircraft System Traffic Management (UTM)
in the United States ([2]), or the U-Space in the European
Union ([3]).

Conflict detection in the trajectories of piloted aircraft, and
their resolution, has been fundamental in traditional aviation,

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
© 2023 The Authors. IET Intelligent Transport Systems published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

having as a result the present air-transportation system, which
has proved to be quite robust. Yet, when addressing urban
scenarios with hundreds of UAVs, new applications and prob-
lems emerge. In fact, different issues have been anticipated
in the new regulations, including, for instance, the concept
of Z volume in the context of U-Space, which consists in
reserving, non exclusively, narrow volumes in the airspace to
be used for UAVs with pre-established flying plans, possibly
performing coordinated tasks, and supported by deconfliction

services ([4]).
In this paper we propose an algorithm or method for real-

time conflict detection, which is a crucial part of deconfliction
services. The feasibility and effectiveness of the conflict detec-
tion algorithm is analyzed from a real implementation point of
view. In particular, we provide results concerning the predic-
tion conflict time, the amount of UAVs that can be tracked
by a centralized server, the relevance of different parameters

IET Intell. Transp. Syst. 2023;1–12. wileyonlinelibrary.com/iet-its 1

https://orcid.org/0000-0001-7850-8179
https://orcid.org/0000-0003-3831-4075
https://orcid.org/0000-0001-8121-995X
https://orcid.org/0000-0001-5729-3041
https://orcid.org/0000-0002-0038-0539
https://orcid.org/0000-0002-5170-5743
mailto:mperez@uji.es
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-its
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fitr2.12426&domain=pdf&date_stamp=2023-09-18

2 BORONAT ET AL.

that can be used in our detection algorithm, and the quality
of the predictions regarding the number of conflicts that could
be avoided.

In order to validate the proposal, two algorithms for real-
time conflict detection have been developed. The first, and more
obvious, is based on a single joint list that stores the updated
positions of all aerial vehicles in the considered region. In this
algorithm, when a new message is received, it is compared with
the already stored positions in the list to detect possible con-
flicts. In the second algorithm, the target region is divided into
cells, and each cell maintains a list of messages of flying UAVs
entering the cell. For new messages, the respective cell is cal-
culated, and the message is compared with the messages in the
lists of both its cell and neighboring cells in an attempt to accel-
erate the process, and improve scalability. Notice that, in both
algorithms, position messages are periodically sent every sec-
ond, and they include, not only the current location, but also
the future planned positions of the sending UAV within a short
time frame. In the experiments, a look-ahead prediction time of
13 s has been used, with a granularity of 0.5 s (providing the
current position plus 25 future positions).

Experimental results based on an extensive simulation study
show that it is feasible to use a central server to handle U-Space
traffic for a high number of UAVs flying simultaneously (more
than 3,000), and without missing any collision danger. In partic-
ular, we show that our proposed spatial discretization approach
is critical to achieve such high performance, even when using
a standard computer as a controller server. We also show that
possible critical issues are detected about 11 s before UAVs
reach the actual conflict zone, offering enough margin to take
preventive actions, as desired.

The rest of the paper is organized as follows: Section 2
is devoted to review and analyze other studies of interest in
this field. In Section 3 we introduce the overall architecture of
our proposal. The algorithms which have been implemented
are presented in Section 4. Different experimental results are
exposed in Section 5. Finally, in Section 6, our main conclusions
and future work are presented.

2 RELATED WORK

In this paper we focus on fleets of UAVs, each one having
a coordinated flight plan to perform a mission, and probably
belonging to different companies or institutions. In addition, the
UAVs can share the (assigned) airspace with other manned air-
craft. These scenarios are contemplated in volumes Y and Z of
the U-Space ([4]).

One major issue related to such usage of the airspace is the
risk of collisions. To deal with this problem, it is possible to
apply deconfliction techniques prior to the actual flight (before
the UAVs take off), as proposed in the volumes of type Y
in U-Space. Another possibility is to treat the problem dur-
ing flight time, as contemplated in the Z volumes defined by
U-Space.

Pre-flight techniques to reduce the risk of collisions are known
as strategic. The idea is that, before the UAVs take off, a system

analyzes the flight plans of the different UAVs in the consid-
ered region or volume, and it modifies these plans to solve the
detected conflicts. The problem with these approaches is that,
given the uncertainty regarding drone flights in the presence
of wind, GPS positioning errors, or other affecting factors, a
considerable separation between UAVs must be imposed. Con-
sequently, strategic techniques are expected to introduce a poor
airspace usage as detailed in [5]. [6, 7] are examples of strate-
gic methods for conflict detection. Thus, a better exploitation
of the airspace is expected with techniques applied during flight
time ([2, 3]). In-flight techniques can be classified as tactical or as
sense and avoid techniques.

In tactical conflict resolution techniques, the philosophy is
to modify the flight plan of one or several UAVs, so that the
conflict disappears without violating those mentioned flight
plans. These are usually centralized solutions, in which UAVs
send flight data to a centralized service such as an air traf-
fic controller. This controller analyzes the received data, looks
for conflicts, and then it sends back warnings or modifica-
tions to the flight plans of the concerned vehicles. An example
of a tactical method is proposed in [5] and a similar tech-
nique is proposed to assist air traffic controllers in aviation
in [8].

In the case of sense and avoid solutions there is a wide range
of cooperation levels than can be adopted. On the one hand,
there is no cooperation and, consequently, conflict detection is
done individually by using proximity sensors or artificial vision
techniques ([9–11]). On the other hand, UAVs can cooperate,
for instance, by exchanging position messages among them,
and even by applying a coordinated avoidance protocol in case
of conflict ([12–14]). Sense and avoid techniques are inevitable
as a last resource to avoid collisions between vehicles or with
other objects ([2]). However, they often require visual line of
sight, and imply brusque evasive maneuvers which can affect
the performance of the system.

Focusing specifically on centralized techniques, these are
criticized for suffering larger delays and introducing a higher
computation cost when compared with distributed ones. How-
ever, they have a global view of the controlled region, which
enables the coordination with manned aircraft, and a better per-
formance could be obtained if minimal modifications to the
flight plans are found to solve the conflicts. In fact, Zu volumes
defined in U-Space, with services still under development, will
be based on such a service ([4]).

It must be noted that all mentioned techniques are far from
being exclusive; instead, as many as possible should be com-
bined to enhance safety. For instance, strategic techniques could
be used to prevent conflicts among drones performing well
established missions that are known in advanced, while sense
and avoid techniques are necessary as a last resource to avoid
collisions with other unexpected objects or manned aircraft.
Any sort of cooperation will help to anticipate conflicts, and
to handle them smartly so as to reduce the impact on the
overall performance.

An open and general framework to manage the U-Space is
presented in [15]. Modules can be added to their framework to
perform and collaborate in different services. Some of these

 17519578, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12426 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BORONAT ET AL. 3

services are expected to be progressively incorporated in the
U-Space ecosystem.

Tactical techniques are composed by two related algorithms:
conflict detection, and collision avoidance. From these two,
conflict detection is a main issue as it must address real-time
constrains. A review of collision avoidance techniques can be
found in [16]. A broader review on the use of UAVs is also done
in [17], where authors study the challenges and problems that
need to be addressed including UAV traffic management and
collision avoidance. Several studies have been done with the goal
of detecting conflicts by reducing the computation time associ-
ated to this complex problem: [18–22]. However, we consider
that the problem is not completely solved if thousands of UAVs
have to be controlled in real-time, providing enough prediction
time to apply deconfliction techniques.

Our current work has some similarity with other works such
as [5] since, upon conflict detection, a central controller would
send modifications to the flight plans of the involved vehicles.
Yet, differently from previous works, we focus on a coopera-
tive tactical technique for early conflict detection through an
external flying controller, the Air Traffic Service (ATS). In par-
ticular, for conflict detection, we propose a novel approach
where, instead of computing crossing points between trajec-
tories, which is an inflexible and limiting approach, we check
that a minimal distance in future predicted points of the vehi-
cles is not violated, assuming that drones send periodically their
current position together with a set of their future previewed
positions at intervals of 0.5 s. The controller processes all these
messages, tracking drone positions, and looking for future con-
flicts. A remarkable work based on detecting crossing points,
but with a distributed method is presented in [12]. We prove
through experiments, based on a real implementation, that the
conflict detection system is feasible even when using a single
standard server, and that it can guarantee flight safety in tactic
scenarios covering a large region with thousands of UAVs.

Techniques for conflict detection close to ours are presented
in [6] and [7]. In both cases, the authors propose a detection
algorithm as part of a strategic deconfliction service, although
they could also be used for a tactical service. These works, sim-
ilarly to the work in this paper, also propose to discretize space
in order to reduce the comparisons required to detect conflicts.
The results in both related papers are obtained through sim-
ulations, while we have implemented the algorithm and tested
it under real-time conditions, proving its applicability in tacti-
cal methods. Also, we have checked some critical parameters
which can affect the performance of the implementation, such
as cell size. Finally, we have measured the anticipation time for
conflict prediction.

This paper addresses two aspects that, to the best of our
knowledge, have not been adequately addressed in related
works. First, an algorithm is proposed to track, in real time,
the future trajectories of UAVs having predefined flight plans.
Second, the algorithm has been implemented and tested in real-
istic conditions. The experimental results provide the basic hints
about the feasibility and limits of a centralised deconfliction air
traffic controller.

3 SYSTEM ARCHITECTURE

Due to the ever-growing number of UAV operations in urban
skies, restrictive strategic approaches based on blocking the
entire flight area for the whole mission time is considered too
conservative, and so more flexible techniques, like dynamic
geofencing, should be enforced. Hence, we target a low-altitude
U-Space environment where multiple UAVs from different
authorized flight operators share a common flight area, and
where every conflict (possibly leading to an actual collision)
should be addressed.

Each vehicle is expected to take off vertically up to a narrow
layer where they can travel horizontally to the pre-programmed
points that conform their mission. This narrow horizontal space
could be a Zu controlled volume of U-Space ([4]). In this Zu
volume, we assume that the U-Space deconfliction service acts
as a flight controller tracking all UAVs in its attributed area. The
controller is in charge of detecting flight conflicts, and eventu-
ally update the flight plans of some of the UAVs involved in an
imminent conflict. Such complementary topic remains outside
the scope of the current work.

In this work, we analyze the capacity of a centralized ATS for
conflict detection and prediction, and seek the optimal meth-
ods to maximize such capacity. If we are able to demonstrate
that it is feasible to calculate all operations in real time, it means
the controller would be able to apply tactical methods to solve
and prevent dangerous situations with a reduced impact on the
drones’ pre-established flight plans.

Thus, in the depicted scenario, we assume that the UAVs
communicate with the controller through a stable and reliable
communications infrastructure. In the present case, communi-
cations are based on the cellular infrastructure, which is already
deployed and known to provide good reliability levels compared
to other wireless communications alternatives; in addition, it
supports the connection of a large number of clients in a broad
area thanks to the replication of base stations. It must be said
that current 3G and 4G networks are optimized for terres-
trial connections, meaning that antenna beaming targets ground
users. Yet, optimizations in these networks and new standards
will consider aerial users as well ([23]). Finally, the controller
should be readily accessible via the Internet (or, alternatively,
a virtualized private network). A general representation of our
system architecture can be seen in Figure 1.

In the system, drones send periodically (each second) a UDP
message to the server. Each of these messages contains the
drone identifier, its current GPS position, and an estimation
of future positions considering its flight plan, with a sampling
granularity of 0.5 s. In our proposed architecture, these periodic
announcements rely on UDP/IP in order to minimize delay,
given that the server should receive and process in real time the
messages of all tracked UAVs.

From the proposed architecture, the danger of having a sin-
gle point of failure is evident in the case of a single server (i.e.
the air controller). Despite this issue remains outside the scope
of the paper, two solutions should be retained. First, as stated
in Section 2, sense and avoid mechanisms are inevitable as a

 17519578, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12426 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 BORONAT ET AL.

FIGURE 1 System architecture overview. UAVs are connected to the
cellular infrastructure to send their path predictions to the traffic controller.

last safety resource. In this case, the whole system should con-
tinue to proceed, probably in a performance degraded mode.
A second solution could consist in providing a backup server
(or multiple backup servers), keeping a copy of the state of the
system, and taking the role of the main server if necessary. In
the case of having backup controller(s), a protocol is necessary
to detect the lack of responsiveness of the main server, and for
switching to the new server.

4 DETECTION ALGORITHM

Based on the architecture and assumptions detailed previously,
in this section, we proceed to detail how the proposed ATS
server could handle conflicts in a centralized manner. To this
end, the calculations involved in detecting conflicts between
two UAVs are presented first; then, two different algorithms
that focus on large-scale detection of conflicts in real time
are proposed.

Concerning the conflict detection concept, our basic assump-
tion is that, every second, the controller receives a message from
each UAV containing an array with its current and future posi-
tions. The first element in these arrays is the location provided
by the GPS device of the aircraft at the moment of creating the
message (current position). The rest of the elements in the array
are the estimations they make regarding their future positions at
fixed time steps. In our tests, the time granularity adopted is half
a second and it is known below as tstep.

The conflict detection algorithm is based on the distance
between the same component of the arrays of two drones (i.e.
same time instant). In our scheme, a conflict will be detected if
one of the calculated distances is lower than the defined conflict

distance. This distance usually depends on the speed of vehicles.
If there is a collision danger, it must be detected at least in one
of the distances calculated between the two arrays. That is, if a
collision is possible between elements i and i + 1 of both arrays,
the conflict has to be detected in one (or both) of these elements
(i.e. positions i, or i + 1). The worst case happens when two

UAVs are flying in opposite directions at the maximum speed.
If they were able to travel the entire conflict distance during
the elapsed time between consecutive components of the array
(tstep), then there is a chance that the conflict would remain unde-
tected, meaning that a collision could take place. This particular
worst-case condition is illustrated in Figure 2.

Being Vmax the maximum drone speed, and tstep the time
between the consecutive elements of the position arrays, Equa-
tion (1) shows the condition for the conflict distance to
guarantee conflict detection even in worst-case scenarios.

2 ⋅ con flict _distance > 2 ⋅Vmax ⋅ tstep. (1)

However, we consider a more conservative value for the con-
flict distance, adding a possible GPS error (assumed to be about
5 m in [24]), which is counted twice (one per drone), and an
additional margin of uncertainty, as shown in Equation (2).

con flict _distance = Vmax ⋅ tstep + 2 ⋅ GPS_error + margin. (2)

It must be noted that, if a conflict is detected in the i compo-
nent of the arrays, it will take place in about (i ⋅ tstep) − tcom − tproc

seconds, where tcom is the communication time, and tproc is the
computation time. In the tests conducted in [25] under real con-
ditions, the communication time through the 4G infrastructure
was close to 50 ms, while the processing time was mostly load
dependent, and different approaches to reduce this time are pre-
sented further in this paper. Also, the conflict distance depends
on the maximum speed and on the tstep. If UAVs increment the
maximum speed, the time between predicted positions should
be reduced in order to maintain a reasonable conflict distance
(i.e. to keep down the number of the potential conflicts which
would not end up colliding).

In the conflict detection algorithms presented below, a filter

distance is also used in order to look up for conflicts between
vehicles which are relatively close, while avoiding conflict detec-
tion between all UAVs in the target U-Space region. Such filter
distance is computed roughly, comparing the difference of each
dimension (northing and easting) of the first element of the posi-
tions arrays (what should correspond to their more recent
location), enabling a quick discard. Concerning the conflict dis-
tance, the actual filter distance also depends on the maximum
speed of the UAVs. It is fixed to twice the distance that the
drones can fly during all time steps of the positions array, given
that the worst-case scenario is presented again when two UAVs
are flying in opposite direction at the maximum speed.

In the experiments, time steps (tstep) of 0.5 s have been used,
resulting in 13 s for the 27 positions stored in each array (reach-
ing the payload capacity of a UDP datagram). This provides
a filter distance of about 250 m if drones have a maximum
speed of 10 m/s. That is, UAVs which are farthest than this
distance can be quickly discarded as they will not be in con-
flict in the next 13 s. Note that position messages, as stated
above, are sent each second (to match the maximum frequency
of standard GPS devices). However, the prediction each UAV
makes regarding its future positions (taking into account the

 17519578, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12426 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BORONAT ET AL. 5

FIGURE 2 Example of the positions of two
UAVs in two consecutive elements of their positions
arrays (i, and i + 1). If Equation (1) is not satisfied, a
collision could remain undetected.

current position, and its flight plan) takes place every tstep

seconds.
Having now presented the different equations and distances

that regulate the detection strategy, two different algorithms
for the large-scale detection of conflicts on a single server are
presented next.

4.1 Single list algorithm

To start, a simple algorithm for conflict detection based on the
elements that have been introduced is presented. In this algo-
rithm, data with the position announcements from all UAVs are
stored in a single list. For each new received message, the list has
to be traversed looking for conflicts. This is the List-algorithm,
and it is shown in Algorithm 1.

Algorithm 1 shows that there is a single list containing the
information of all UAVs in the covered region. The elements
of this list correspond to messages sent by the drones (one per
UAV), creating a data structure that includes, on each entry, the
UAV identifier, plus an array with the positions where the vehi-
cle predicts it will be every tstep interval. The first element of
the position array therefore corresponds to the last position the
UAV read from its GPS interface. The UAVs will send a new
message each second to update its positions in the list of the
controller. UAVs send position messages each second as this is
the frequency limit for GPS devices of common use. Hence, our
flight controller has the real-time restriction of having to process
all incoming messages from the different UAVs in less than 1 s,
including the needed calculations, or otherwise messages would
start to accumulate.

The condition in line 3 is true when the identity of the mes-
sage is found in the list. If it is the case, the element of the list is
removed, and the data of this UAV is updated when the process
is finished (line 16). The loop in line 7 iterates in the positions
arrays, checking the distance between each pair of positions.

In this algorithm, data for each conflict found are stored in
a list (line 9). These conflicts should be further processed in a
tactical deconfliction module. Such module will run independently,
and it remains outside the scope of this work.

ALGORITHM 1 List-algorithm

1: procedure ProcessMessageList(vehicleList, message)vehicleList is the list of
all UAVs in the server region, and message is a positions message from
a UAV.

2: for v ∈ vehicleList do

3: if v.id == message.id then

4: vehicleList .remove(v)

5: else

6: if filterDistance(message.positions[0], v.positions[0]) then

7: for i = 0; i < length(v.positions); i + + do

8: if distance(message.positions[i], v.positions[i]) < con flictDistance

then

9: con flictList .append (message.id , v.id , timestamp(), i)

10: break

11: end if

12: end for

13: end if

14: end if

15: end for

16: vehicleList .append (message)

17: end procedure

It must be said that the shown algorithm is a simplified ver-
sion for easy understanding. Implementations of the algorithm
have also to timestamp the elements in the list to detect outdated
data (>5 s old), enabling us to perform some housekeeping; that
is applicable to, e.g., UAVs that have already ended their mission.

The filterDistance() function used in line 6 of Algorithm 1 can
be seen in Algorithm 2. It is used to select a nearby aircraft for
which it is worth looking for potential conflicts. And finally, the
distance() function (line 8 of Algorithm 1) calculates the distance
between two points by merely applying the Pythagoras formula.

Notice how the computational cost of Algorithm 1 is
quadratic with the amount of simultaneous UAVs given that the
entire list has to be parsed for every single message arriving
from each UAV (Θ(n2)). The most costly operations are only

 17519578, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12426 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 BORONAT ET AL.

ALGORITHM 2 filterDistance

1: procedure filterDistance(position1, position2) Takes two positions and
returns true if the difference of both dimensions is lower than a
DISTANCE constant.

2: if |position1.x − position2.x| < DISTANCE then

3: if |position1.y − position2.y| < DISTANCE then

4: return TRUE

5: end if

6: end if

7: return FALSE

8: end procedure

executed for UAVs closer than the filter distance. This consider-
ation improves the computation time, but it does not reduce its
quadratic cost.

4.2 Space discretization (grid) algorithm

Algorithm 1 has the main drawback of having to detect poten-
tial conflicts with all UAVs in the region supervised by the traffic
controller (at least the filter distance rule must be enforced).
In an attempt to improve efficiency, a second algorithm has
been proposed where the target region is divided in square cells
forming a grid. Such spatial discretization is expected to signifi-
cantly alleviate the air traffic controller’s task. The Grid-algorithm

is shown in Algorithm 3.
In particular, in the Grid-algorithm, each cell maintains a list

of aircraft that are within its perimeter. Thus, to process a new
message, the cell corresponding to the first component of its
positions array (i.e. its current cell) is initially determined (line2);
then, the algorithm looks for potential conflicts on that same
cell, and on neighboring cells whose limits remain within the
filter distance (loops in lines 3 and 4), thereby restricting safety
checks (loop in line 9) to a minimum.

In Algorithm 3 the elements of the grid array are the cells. As
previously explained, each cell contains a list with the positions’
data for UAVs within its bounds. Notice that the actual code
implementing Algorithm 3 has to carefully address processing
in border cells. Here we have obviated such detailed checks for
the sake of simplicity and readability.

In the Grid-algorithm, RADIUS (used in lines 3 and 4) is
a constant with the range of cells considered according to the
defined filter distance. As an example, Figure 3 shows the cells
to be used for conflict detection (green cells), according to
the distance filter defined, when the message being processed
belongs to the yellow cell. In this example, the side of cells is
125 m, the distance filter is of 250 m, and RADIUS is equal
to 2.

The getCell () function in line 2 of Algorithm 3 is detailed
in Algorithm 4. The function uses as constants the posi-
tion of the down-left corner of the target airspace region
(EAST _LOW ,NORTH _LOW), and the size of the cells’ side
(CELL_DIM); given an input location, it returns the identity of

ALGORITHM 3 Grid-algorithm

1: procedure ProcessMessageGrid(grid, message)grid is the bidimensional
array of cells which cover the server region, and message is a positions
message from an UAV.

2: (cellx , celly) = getCell (message.positions[0])

3: for x ∈ range(cellx − RADIUS ∶ cellx + RADIUS) do

4: for y ∈ range(celly − RADIUS ∶ celly + RADIUS) do

5: for v ∈ grid [x, y].vehicleList do

6: if message.id == v.id then

7: grid [x, y].vehicleList .delete(v)

8: else

9: for i = 0; i < length(v.positions); i + + do

10: if distance(message.positions[i], v.positions[i]) < con flictDistance

then

11: con flictList .append (message.id , v.id , timestamp(), i)

12: break

13: end if

14: i + +

15: end for

16: end if

17: end for

18: end for

19: end for

20: grid [cellx , celly].vehicleList .append (message)

21: end procedure

ALGORITHM 4 getCell

1: procedure getCell(position) Given a position returns the respective cell
in the grid.

2: i = ⌊(position.x − EAST _LOW)∕CELL_DIM⌋

3: j = ⌊(position.y − NORTH _LOW)∕CELL_DIM⌋

4: return(i, j)

5: end procedure

the respective cell in the bi-dimensional array of cells (the grid

data structure used in the Grid-algorithm).
It is worth to point out that, similarly to the Single-list algo-

rithm, the computational cost of the Grid-algorithm is also
quadratic, but the execution logic is significantly more effi-
cient for each message, as only messages from aircraft falling
within the defined radius have to be processed. If we consider a
uniform distribution of the UAVs in a square region, the com-
putational complexity of the grid-algorithm would be Θ(nk),
where n is the total number of vehicles, and k represents the
UAVs belonging to the block of cells to be tested. That is,
k = (n∕c2) × (2R + 1)2, being c the number of cells in each
dimension of the grid of cells, and R the value of the RADIUS

constant. Analyzing these variables, for instance in the tests pre-
sented below, typical values can be n = 3, 000, c = 10, 000∕125
and R = 2, which represents an important cost reduction when

 17519578, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12426 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BORONAT ET AL. 7

FIGURE 3 Green cells are within the radius of the yellow one. In this
example, the cells are of 125 m of side, and the distance filter is 250 m. The
RADIUS constant of Algorithm 3 is set to 2.

compared to the list-algorithm. We further elaborate on these
improvements in Section 5.3.

As explained above, the grid-algorithm seeks to signifi-
cantly lower its execution time; however, the downside of this
approach is that a more complex data structure must be main-
tained. For instance, for cells sized 125×125 m2 (i.e. half the
filter distance), a region of 10 × 10 km2 needs a two-dimensional
array of 80 × 80 cells. So, whenever the controlled regions
have a reasonable dimension, it should not represent a com-
putational problem, as shown in Section 5. Otherwise, further
space partitioning should be enforced via additional traffic
management servers.

5 EXPERIMENTAL RESULTS

In this section, we will assess the feasibility and effectiveness
of our proposed air traffic management system for low-altitude
UAV flights. To this end, we will first describe our test envi-
ronment; then, we will validate that the system is operating
correctly. In the sections that follow, we then evaluate the impact
of different parameters on performance to determine the limits
of our solution.

5.1 Test environment

To check the presented conflict detection system, we have
implemented both algorithms proposed, and we have con-
ducted a wide set of tests. In the experiments, the controller
part is the real software receiving messages from the Internet,
and recording the detected conflicts. However, the drones them-
selves have been simulated with the ArduSim UAV simulator
([26]). Up to 15 computers have been used for these simula-

tions. The server and the computers simulating the drones are
in different IP networks connected to Fast Ethernet LANs (100
Mbps), to approximate to the conditions where different UAVs
may be connected to the wireless infrastructure from different
points, and via different providers.

It must be said that the communications part of the envi-
ronment test is not fully realistic, given that packet losses due
to the wireless 4G phone system to connect the UAVs are not
considered (optimal conditions are assumed). Nevertheless the
controller deals with this possibility in the following way: if
the communications link towards a specific UAV is temporar-
ily broken, the server estimates its current position based on
the applicable future element in the positions array that was
included in the last received message. It is also worth point-
ing out that, according to [25], tests on the 4G phone system
were conducted, and the stability and reliability tests showed
that such networks suit well the proposed real-time reactive sys-
tem. A similar treatment is given if a UAV loses contact with the
GPS system. It must be taken into account that UAV missions
based on flight plans are only possible if they have an accurate
geographical knowledge.

In the tests, the air traffic controller software has been exe-
cuted in a server with twelve Intel Core(TM) i7-8700 CPU 3.20
GHz, 24 Gbytes of RAM, and running Debian GNU/Linux
10.10. To avoid an early overflow of the UDP buffer due to
the high load expected, we have increased it from 208 Kbytes,
which is the default value, to 64 MBytes. The software imple-
mentation of the traffic controller was done with Python. The
Python interpreter has the well known limitation of real concur-
rency for the execution of threads, but, even with this limitation,
the results obtained prove the feasibility of the proposal.

The simulated drones have used the following displacement
pattern: for each drone, two points (departure and arrival) inside
the area covered by the traffic controller are chosen within a
range of 2-6 km. The drones travel from the departure point to
the destination at a constant speed of 10 m/s. Figure 4 shows an
example of 100 drones flying over Valencia (Spain) in a square
region of 10 × 10 km2. The length of the flights have been
selected to ensure that the simulated drones are flying simul-
taneously, and thus providing enough time to observe the effect
of the load on the controller. These simple flight plans allow us
to overload the air traffic controller. Yet, it is worth mention-
ing that real-life scenarios usually involve flights with multiple
waypoints, meaning that flight trajectories will not be straight all
the time.

For these experiments we have used a tstep of 0.5 s, and the
drones embed 27 positions in each message, sending them with
a frequency of one message per second. Table 1 shows the
default values used in the following tests if not stated otherwise.

5.2 System validation

To validate the prediction method, we have conducted several
tests comparing the collisions registered by ArduSim with the
conflicts detected by our server. In these tests we have simu-
lated just 100 UAVs, as this was our simulation limit on a single

 17519578, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12426 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 BORONAT ET AL.

FIGURE 4 100 drones following simple missions in an area of 10 × 10
km2. Departure points are marked in red, and arrival points in blue.

TABLE 1 Default values for the different parameters used in the
experiments.

Parameter Value

Side of the controlled region 10 km

Cells side 250 m

Collision distance 10 m

Conflict distance 25 m (20 + 5 m for uncertainty margin)

Vmax 10 m/s

tstep 0.5 s

PC; notice that we cannot distribute ArduSim simulations over
several computers as ArduSim collisions are only detectable in
the domain of a single host. These tests were made in a square
region sized 2 × 2 km2, with cells equals to 250 m of side (i.e.
a mean traffic density of 1.56 drones per cell) and a constant
speed of 10 m/s.

Table 2 shows the number of collisions registered by
ArduSim, and the number of potential conflicts. The data cor-
responds to the average of three independent tests. Potential
conflicts are expected, specially when the conflict distance is
greater than the collision distance. Note that non-detected colli-
sions can take place when the limit set in Equation (2) is not
satisfied, as for conflict distances below 20 m (plus 5 m of
uncertainty margin to account for real-life conditions).

5.3 Scalability analysis

The aim of this first set of tests is to detect the traffic controller
saturation point. Beyond this load level, the controller is not able

TABLE 2 Validation tests in a region of 2 × 2 km2 with 100 UAVs. The
collision distance is 10 m and the conflict distance range between 10 and 40 m.

Conflict distance Collisions Potential conflicts Undetected collisions

10 84 63 30.8

15 76.6 80.3 11

20 91.7 125.25 0

25 81 136 0

30 83.5 165.5 0

35 89.5 210 0

40 88.4 229.2 0

FIGURE 5 Messages processed per second in the server as function of
the number of UAVs. The drones are moving in a square area of 10 km of side,
the filter distance is 250 m, and the cell side used is also 250 m (grid algorithm).

to process all messages sent by the aircraft in less than 1 s, and
so the input queue overflows.

To detect the saturation point, we count the number of mes-
sages that the server processes per second. When this number
is smaller than the number of clients, it means that the server
cannot attend all flying vehicles in real time. Figure 5 shows the
saturation point for both algorithms when using a square region
of 10 km of side. In these tests, the list-algorithm server begins
to saturate with 1,000 clients, while the grid-algorithm is able to
meet real-time responsiveness for up to 2,500 clients.

Figure 6 shows the response time to process each message.
It can be seen that this time grows with the number of UAVs
in the list-based algorithm, while it remains almost constant in
the grid-based algorithm. This unexpected behavior of the grid-
based algorithm is explained by the reduced amount of drones
in each cell (for 2,500 drones, the density is just 1.56 drones per
cell).

5.4 Effect of traffic density

To provide insight on how the density of drones (i.e. the amount
of drones per area unit) affects the server performance, we have

 17519578, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12426 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BORONAT ET AL. 9

FIGURE 6 Response time per message as function of the number of
UAVs. The drones are moving in a square area of 10 km of side.

FIGURE 7 Messages processed per second in the server as function of
the number of clients in a square region of 5 km of side.

made tests reducing the area covered by the traffic controller
to a square of 5 × 5 km2. In these experiments, the distance
filter and the side of cells have been also fixed at 250 m. So, for
a total of 1,000 drones, the density of drones increases to 2.5
drones per cell, compared to the previous experiments where
the density was of 0.625 drones per cell.

It can be observed in Figure 7 that, under these higher density
conditions, both versions of the server saturate with a smaller
number of clients, as increasing the density of vehicles also
increases the amount of vehicles within close range of each
other, thereby increasing the number of comparisons to be
made. The list-based algorithm fails to meet real-time require-
ments beyond 500 clients, while the grid-based algorithm does
the same for about 1,000 clients.

Figure 8 shows the response time to process each message
as a function of the number of clients. Again, the list-based
algorithm is more affected by the number of clients than the
grid-based algorithm.

FIGURE 8 Response time per message as function of the number of
UAVs in a square region of 5 km of side.

FIGURE 9 Messages processed per second as function of the number of
UAVs. The drones are moving in a square region of 10 km of side. Each line is
obtained with a different size of cells, ranging from 125 to 10,000 m (full map).

5.5 Impact of the spatial granularity level

Initially, for the grid-based algorithm, we used a cell size equals
to 250 m as it matches the filter distance. The idea behind
this choice was that the radius constant, used in Algorithm 3,
becomes 1, meaning that only neighboring cells must be tested.
Yet, this is not necessarily the most efficient approach.

Figure 9 shows the saturation of the server for different sizes
of cells with a filter distance of 250 m. These tests were made in
a square region of 10 × 10 km2. The respective response times
per message can be seen in Figure 10.

In these tests, the best result is for cells of 125 m of side (half
of the filter distance). As shown, we found that larger cell sizes
have a negative impact on performance. This occurs because
smaller cell sizes are able to map the filter distance more accu-
rately, thereby reducing the number of UAVs to be compared.
With cells of 125 × 125 m2, the controller is able to handle up
to 3,500 clients. Also notice that a finer granularity of the grid
increases the overall number of cells, which requires a larger data

 17519578, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12426 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 BORONAT ET AL.

FIGURE 10 Response time per message as function of the number of
UAVs. The drones are moving in a square region of 10 km of side. Each line is
obtained with a different size of cells, ranging from 125 to 10,000 m (full map).

FIGURE 11 Amount of conflicts detected per element in the positions
array in the grid-based algorithm for 500 UAVs with 250 m cells’ side and a
region of 10 × 10 km2.

structure, but in this case we find this option to be, nevertheless,
overall beneficial.

5.6 Anticipation in the conflict prediction

To evaluate the conflict prediction capacity of the proposed
system, we have checked how soon are we able to antici-
pate conflicts. This look ahead time margin can be deduced
by the component in the positions arrays in which a conflict
is detected, as the greater is the array index, the more time
is available. Obtaining the distribution of the prediction time
is interesting because it provides an idea about the time margin
the controller will have to prioritize, and solve conflicts.

Figures 11–13 show that most of the conflicts are detected
around element 25 of the position arrays, that is, between 11 and
13 s before the conflict takes place. These figures are obtained
with a square region of 10 × 10 km2 of side, and cells of 250 m

FIGURE 12 Amount of conflicts detected per element in the positions
array in the grid-based algorithm for 1,000 UAVs with 250 m cells’ side and a
region of 10 × 10 km2.

FIGURE 13 Amount of conflicts detected per element in the positions
array in the grid-based algorithm for 2,000 UAVs with 250 m cells’ side and a
region of 10 × 10 km2.

of side. The three figures differ in the number of clients, with
500, 1,000 and 2,000 UAVs, respectively.

We consider that the minimum time margin to deal with con-
flicts should allow enough time to find a solution to the conflict,
communicate the new flight plan to the affected UAVs, and con-
sider a non-zero reaction time. We now proceed by discussing
these times.

The process time needed to provide a solution for a predicted
conflict will depend on the actual strategy enforced. In [5] a
computation time per UAV involved in a conflict as a function
of the number of UAVs in the system is considered. In their
approach, a solution is computed in a loop, and it is modified
until no further conflicts are generated. For 100 UAVs, this time
is about 0.9 ms, but it grows exponentially with the total number
of drones. Yet, it is reasonable to assume that it can be handled
in less than 1 s.

Regarding the communications time, in [25] we measured the
mean communication round trip time in real mobile scenarios,

 17519578, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12426 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BORONAT ET AL. 11

finding results close to 0.1 s. In these tests, messages were sent
by vehicles to a server on the Internet through the 4G wireless
infrastructure, and the server then sends back a confirmation
message (round-trip time).

The reaction time for the drones (i.e. the time to apply a mod-
ification to its flying plan) depends on their speed and on the
type of maneuver. If we exclude the possibility to go backwards,
the worst case is having to completely stop the drone, which we
estimate in about 3.4 s for a maximum speed of 10 m/s accord-
ing to [27]. Thus, the minimum prediction time margin could
be approximated to 4.45 s in the worst case scenario, a value
which evidences the feasibility of the proposed prediction sys-
tem, which can detect conflicts with an anticipation of about
11 s in most cases.

In Figures 11–13 we can see that there are no conflicts
detected in the first element of the positions array. We have
forced these results by starting all UAVs at the same time and
ensuring that the distance between the starting points of the
drones is bigger than the conflict distance. In a real scenario,
drones should start to send their position messages to the
controller at least 1 s before taking off.

6 CONCLUSIONS AND FUTURE WORK

The urban airspace is a limited and coveted resource for UAV
operators in different countries. In order to optimize the use
of this resource, automated solutions for the coordination of
UAVs, such as air traffic control services, are crucial. The goal
of these services is twofold: avoid the risk of collisions, and
minimize disruptions to the original flight plans. The task of air
traffic controllers is, therefore, to track the UAVs flying in a pre-
established region or volume, and they should be able to detect
conflicts and so correct the flight plans of the involved drones.

The main contribution of this paper is the proposal of a
conflict detection technique whose basic requirements are that
UAVs periodically send to the controller a prediction of their
immediate-future positions. In addition, the conflict detection
technique has been tested in realistic scenarios. This enables the
flight controller to detect conflicts, and react in real time.

We have developed implementations of two algorithms, the
List-algorithm where all UAVs in the region assigned to the
controller are handled using a joint list, and the Grid-algorithm
where the target region is divided into cells, and where an
independent list of vehicles is maintained per cell. Exhaus-
tive simulation experiments show that the algorithm based on
space discretization (cells) largely outperforms the list-based
algorithm, especially when selecting small cell sizes. Overall,
we find that our conflict detection system, when running on a
single, standard server, can still deal with thousands of UAVs
easily, and even in high traffic density situations, providing
enough time margin (around 11 s) for the application of conflict
resolution techniques.

The results obtained through experimentation using a true
functional server communicating with a network of simulated
UAVs evidence the applicability of the work. Both in [5] and
[6], which are close papers, experiments are done through

simulation. In [5] the authors simulate up to 100 UAVs, but
the conflict detection part is not presented separately from
the whole deconflition technique. In [6] results with 500 UAVs
are shown, but the conflict detection technique is presented as
part of a strategic method, applied prior to the flight time with a
granularity of 1 s. Similarly, in [7], there are simulations with up
to 1,200 UAVs, again prior to flight time. In our experiments, we
are able to track up to 3,500 UAVs under real-time restrictions,
detecting all conflicts with a granularity of 0,5 s.

As future work, we plan to develop a conflict resolution
technique which will be fed with the output of our conflict
detection system, thereby contributing to the development of
advanced air traffic control services, meeting the requirements
of U-Space European regulations. Another line of work con-
sists in developing a load balance system when an air controller
starts to be saturated and, consequently, real-time restrictions
are compromised.

AUTHOR CONTRIBUTIONS

Pablo Boronat: Conceptualization, formal analysis, investiga-
tion, methodology, software, validation, writing - original draft,
writing - review and editing. Miguel Pérez-Francisco: Conceptu-
alization, formal analysis, investigation, methodology, software,
writing - review and editing. Jamie Wubben: Software, writing
- review and editing. Carlos Tavares Calafate: Formal anal-
ysis, funding acquisition, supervision, writing - review and
editing. Juan-Carlos Cano: Funding acquisition, supervision,
writing - review and editing. Rafael Casado: Funding acquisition,
supervision, writing - review and editing.

ACKNOWLEDGEMENTS

This work is derived from the following R&D projects:
PID2021-122580NB-I00 and RTI2018-098156-B-C52, funded
by MCIN/AEI/10.13039/501100011033, “ERDF A way of
making Europe”, and SBPLY/19/180501/000159, funded by
the Junta de Comunidades de Castilla-La Mancha (JCCM) and
the EU through the European Regional Development Fund
(ERDF-FEDER).

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

Data available on request from the authors.

ORCID

Pablo Boronat https://orcid.org/0000-0001-7850-8179
Miguel Pérez-Francisco https://orcid.org/0000-0003-3831-
4075
Jamie Wubben https://orcid.org/0000-0001-8121-995X
Carlos T. Calafate https://orcid.org/0000-0001-5729-3041
Juan Carlos Cano https://orcid.org/0000-0002-0038-0539
Rafael Casado https://orcid.org/0000-0002-5170-5743

REFERENCES

1. Shakhatreh, H., Sawalmeh, A.H., Al-Fuqaha, A., Dou, Z., Almaita, E.,
Khalil, I., et al.: Unmanned aerial vehicles (UAVs): A survey on civil

 17519578, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12426 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-7850-8179
https://orcid.org/0000-0001-7850-8179
https://orcid.org/0000-0003-3831-4075
https://orcid.org/0000-0003-3831-4075
https://orcid.org/0000-0003-3831-4075
https://orcid.org/0000-0001-8121-995X
https://orcid.org/0000-0001-8121-995X
https://orcid.org/0000-0001-5729-3041
https://orcid.org/0000-0001-5729-3041
https://orcid.org/0000-0002-0038-0539
https://orcid.org/0000-0002-0038-0539
https://orcid.org/0000-0002-5170-5743
https://orcid.org/0000-0002-5170-5743

12 BORONAT ET AL.

applications and key research challenges. IEEE Access 7, 48572–48634
(2019)

2. Federal Aviation Administration OoN: UTM Concept of Operations V
2.0. 800 Independence Ave., SW. Washington, DC 20591 (2020)

3. CORUS-Project: U-Space Concept of Operations. SESAR Joint Undertak-
ing, Av. de Cortenberh, 100, 1000 Brussels (2019)

4. Barrado, C., Boyero, M., Brucculeri, L., Ferrara, G., Hately, A., Hullah, P.,
et al: U-space concept of operations: A key enabler for opening airspace to
emerging low-altitude operations. Aerospace 7(3), 24 (2020)

5. Jover, J., Bermúdez, A., Casado, R.: A tactical conflict resolution proposal
for U-space Zu airspace volumes. Sensors 21(16), 5649 (2021)

6. Acevedo, J.J., Castaño, Á.R., Andrade-Pineda, J.L., Ollero, A.: A 4D grid
based approach for efficient conflict detection in large-scale multi-UAV
scenarios. In: 2019 Workshop on Research, Education and Development
of Unmanned Aerial Systems (RED UAS), pp. 18–23. IEEE, Piscataway
(2019)

7. Yang, J., Hu, M., Su, F.: Unmanned aerial vehicle conflict detection based
on spatiotemporal data grid. J. Phys. Conf. Ser. 2246(1), 012032 (2022).
Available from: https://dx.doi.org/10.1088/1742-6596/2246/1/012032

8. Wang, Z., Li, H., Wang, J., Shen, F.: Deep reinforcement learning based
conflict detection and resolution in air traffic control. IET Intel. Transport
Syst. 13(6), 1041–1047 (2019)

9. Park, J., Cho, N.: Collision avoidance of hexacopter UAV based on LiDAR
data in dynamic environment. Remote Sens. 12(6), 975 (2020). Available
from: https://www.mdpi.com/2072-4292/12/6/975

10. Zsedrovits, T., Bauer, P., Zarandy, A., Vanek, B., Bokor, J., Roska,
T.: Error analysis of algorithms for camera rotation calculation in
GPS/IMU/camera fusion for UAV sense and avoid systems. In: 2014
International Conference on Unmanned Aircraft Systems (ICUAS), pp.
864–875. IEEE, Piscataway (2014)

11. Fasano, G., Accado, D., Moccia, A., Moroney, D.: Sense and avoid for
unmanned aircraft systems. IEEE Aerosp. Electron. Syst. Mag. 31(11),
82–110 (2016)

12. Mahjri, I., Dhraief, A., Belghith, A., AlMogren, A.S.: SLIDE: A straight
line conflict detection and alerting algorithm for multiple unmanned aerial
vehicles. IEEE Trans. Mob. Comput. 17(5), 1190–1203 (2018)

13. Fabra, F., Calafate, C.T., Cano, J.C., Manzoni, P.: MBCAP: Mission based
collision avoidance protocol for UAVs. In: 2018 IEEE 32nd International
Conference on Advanced Information Networking and Applications
(AINA), pp. 579–586. IEEE, Piscataway (2018)

14. Sánchez, P., Casado, R., Bermúdez, A.: Real-time collision-free naviga-
tion of multiple UAVs based on bounding boxes. Electronics 9(10), 1632
(2020). Available from: https://www.mdpi.com/2079-9292/9/10/1632.

15. Capitán, C., Pérez-León, H., Capitán, J., Castaño, Á., Ollero, A.:
Unmanned aerial traffic management system architecture for U-space
in-flight services. Appl. Sci. 11(9), 3995 (2021)

16. Yasin, J.N., Mohamed, S.A.S., Haghbayan, M.H., Heikkonen, J., Tenhunen,
H., Plosila, J.: Unmanned aerial vehicles (UAVs): Collision avoidance
systems and approaches. IEEE Access 8, 105139–105155 (2020)

17. Hildmann, H., Kovacs, E.: Review: Using unmanned aerial vehicles (UAVs)
as mobile sensing platforms (MSPs) for disaster response, civil security and
public safety. Drones 3(3), 59 (2019). Available from: https://www.mdpi.
com/2504-446X/3/3/59

18. Tang, H., Robinson, J.E., Denery, D.G.: Tactical Conflict Detection in Ter-
minal Airspace. J. Guid. Control Dyn. 34(2), 403–413 (2011). Available
from: https://doi.org/10.2514/1.51898

19. Velasco, G.A.M., Borst, C., Ellerbroek, J., Van Paassen, M., Mulder, M.:
The use of intent information in conflict detection and resolution mod-
els based on dynamic velocity obstacles. IEEE Trans. Intell. Transp. Syst.
16(4),2297–2302 (2015).

20. Yang, J., Yin, D., Niu, Y., Zhu, L.: Cooperative conflict detection and res-
olution of civil unmanned aerial vehicles in metropolis. Adv. Mech. Eng.
8(6), 1687814016651195 (2016)

21. Ma, L., Gao, Y., Yin, T., Zhai, W.: Improved flight conflict detection algo-
rithm based on gauss-hermite particle filter. WWuhan Univ. J. Natural Sci.
22(3), 269–276 (2017)

22. Zhang, H., Zhang, J., Zhong, G., Liu, H., Liu, W.: Multivariate combined
collision detection for multi-unmanned aircraft systems. IEEE Access 10,
103827–103839 (2022)

23. Nguyen, H.C., Amorim, R., Wigard, J., KováCs, I.Z., Sørensen,
T.B., Mogensen, P.E.: How to ensure reliable connectivity for
aerial vehicles over cellular networks. IEEE Access 6, 12304–12317
(2018)

24. Liebner, M., Klanner, F., Stiller, C.: Active safety for vulnerable
road users based on smartphone position data. In: 2013 IEEE
Intelligent Vehicles Symposium (IV), pp. 256–261. IEEE, Piscataway
(2013)

25. Boronat, P., Pérez-Francisco, M., Calafate, C.T., Cano, J.C.: Towards a
sustainable city for cyclists: Promoting safety through a mobile sensing
application. Sensors 21(6), 2116 (2021)

26. Fabra, F., Calafate, C.T., Cano, J.C., Manzoni, P.: ArduSim: Accurate and
real-time multicopter simulation. Simul. Modell. Pract. Theory 87, 170–190
(2018)

27. Fabra, F., Zamora, W., Sanguesa, J., Calafate, C., Cano, J.C., Manzoni, P.:
A distributed approach for collision avoidance between multirotor UAVs
following planned missions. Sensors 19, 2404 (2019)

How to cite this article: Boronat, P., Pérez-Francisco,
M., Wubben, J., Calafate, C.T., Cano, J.C., Casado, R.:
Assessing the limits of centralized unmanned aerial
vehicle conflict management in U-Space. IET Intell.
Transp. Syst. 1–12 (2023).
https://doi.org/10.1049/itr2.12426

 17519578, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12426 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://dx.doi.org/10.1088/1742-6596/2246/1/012032
https://www.mdpi.com/2072-4292/12/6/975
https://www.mdpi.com/2079-9292/9/10/1632
https://www.mdpi.com/2504-446X/3/3/59
https://www.mdpi.com/2504-446X/3/3/59
https://doi.org/10.2514/1.51898
https://doi.org/10.1049/itr2.12426

	Assessing the limits of centralized unmanned aerial vehicle conflict management in U-Space
	Abstract
	1 | INTRODUCTION
	2 | RELATED WORK
	3 | SYSTEM ARCHITECTURE
	4 | DETECTION ALGORITHM
	4.1 | Single list algorithm
	4.2 | Space discretization (grid) algorithm

	5 | EXPERIMENTAL RESULTS
	5.1 | Test environment
	5.2 | System validation
	5.3 | Scalability analysis
	5.4 | Effect of traffic density
	5.5 | Impact of the spatial granularity level
	5.6 | Anticipation in the conflict prediction

	6 | CONCLUSIONS AND FUTURE WORK
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES

