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Abstract
Let BE be the open unit ball of a complex finite or infinite dimensional Hilbert space
E and consider the spaceB(BE ) of Bloch functions on BE . Using Lipschitz continuity
of the dilation map on BE given by x �→ (1 − ‖x‖2)R f (x) for x ∈ BE , where R f
denotes the radial derivative of f ∈ B(BE ), we study when a composition operator
on B(BE ) is bounded below.
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1 Introduction and background

Let E be a complex Hilbert space and consider its open unit ball BE . The space of
Bloch functions f on BE will be denoted by B(BE ). We will study various properties
of automorphisms of the unit ball BE which will allow us to supply conditions for a
composition operator to be bounded below on B(BE ), extending the one-dimensional
results given [4]. The study of operators on Bloch spaces on an infinite dimensional
setting can be found in [3], where the boundness and compactness of composition
operators are studied. Hamada also deals with bounded below composition operators
on the space of Bloch functions on bounded symmetric domains [10]. The author also
studies properties of extended Cesàro operators on spaces of Bloch-type functions in
[9]. The results given in this work are presented as a preprint in [13].
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For our purpose, it will be needed that for any f ∈ B(BE ), the map on x ∈ BE

given by x �→ (1 − ‖x‖2)R f (x) is Lipschitz with respect to ρE , where ρE denotes
the pseudohyperbolic distance (see [13]) and bearing in mind that R f is the radial
derivative of the function f .

1.1 Automorphisms on BE. The pseudohyperbolic distance

If X is a complex Banach space and we denote by BX its open unit ball, the function
f : BX → C is said to be analytic (or holomorphic) if f is Fréchet differentiable for
all x ∈ BX (see [15] for further information). The pseudohyperbolic distance ρX (x, y)
for x, y ∈ BX is described by:

ρX (x, y) = sup{ρ( f (x), f (y)) : f ∈ H∞(BX ), | f | < 1 on D}

where we denote by H∞(BX ) the space of analytic functions on BX which are
bounded. This space is endowed with the sup-norm and the pseudohyperbolic dis-
tance on D is given by:

ρ(z, w) =
∣
∣
∣
∣

z − w

1 − z̄w

∣
∣
∣
∣

for all z, w ∈ D.

Now consider a complex Hilbert space E and denote by 〈·, ·〉 the natural inner
product of E .Wewill denote byAut(BE ) the space of automorphisms of BE , that is, the
bijective maps ϕ : BE → BE which are bianalytic. We will use these automorphisms
several times in this work (see [8] for further information). For every x ∈ BE , we will
denote the automorphism ϕx : BE −→ BE by:

ϕx (y) = (sx Qx + Px )(mx (y)) (1.1)

where sx = √

1 − ‖x‖2, mx : BE −→ BE is the analytic self-map:

mx (y) = x − y

1 − 〈y, x〉 ,

Px : E −→ E is given by:

Px (y) = 〈y, x〉
〈x, x〉 x

and Qx : E −→ E is defined by Qx = I dE − Px , where I dE is the identity on
E . Notice that ϕx (0) = x and also ϕx (x) = 0. It is well-known that the space of
automorphisms of BE is given by compositions of ϕx for some x ∈ BE with unitary
transformations U of E . In addition, this space acts transitively on BE .

The pseudohyperbolic distance on BE is given by (see [8]):

ρE (x, y) = ‖ϕy(x)‖ for any x, y ∈ BE . (1.2)
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and using the definition of ϕx it is easy to conclude that:

ρE (x, y)2 = 1 − (1 − ‖x‖2)(1 − ‖y‖2)
|1 − 〈x, y〉|2 . (1.3)

1.2 The space of Bloch functions

Let C be the space of complex numbers and D the open disk of radius 1 centered at 0.
The classical Bloch space B is given by the set of holomorphic functions f : D → C

such that ‖ f ‖B = supz∈D(1 − |z|2)| f ′(z)| < +∞. Timoney extended this space by
considering domains of finite dimensional Hilbert spaces (see [17]) and in [2] the
authors extended these functions to an infinite dimensional context. When we deal
with a complex Hilbert space E , the holomorphic function f : BE → C belongs to
the Bloch space B(BE ) if:

‖ f ‖B = sup
x∈BE

(1 − ‖x‖2)‖∇ f (x)‖ < +∞,

where the gradient ∇ f (x) denotes the Fréchet derivative f ′(x) of f at x or, equiva-
lently, if:

‖ f ‖R = sup
x∈BE

(1 − ‖x‖2)‖R f (x)‖ < +∞,

where R f (x) = 〈x,∇ f (x)〉. Both semi-norms are also equivalent to:

‖ f ‖I = sup
x∈BE

‖∇̃ f (x)‖, (1.4)

where ∇̃ f (x) is the invariant gradient of f at x , that is, ∇̃ f (x) = ∇( f ◦ ϕx )(0) and
bearing in mind that ϕx is the automorphism described in (1.1).

These three semi-norms describe norms of Banach spaces which are equivalent-
modulo constant functions- in B(BE ) [2]. Indeed, there is a positive constant A0
satisfying:

‖ f ‖R ≤ ‖ f ‖B ≤ ‖ f ‖I ≤ A0‖ f ‖R, (1.5)

so we obtain a Banach space if we endow B(BE )with one of the norms ‖ ·‖B−Bloch =
| f (0)|+‖·‖B or ‖·‖R−Bloch and ‖·‖I−Bloch which are definedwith the corresponding
semi-norms ‖ · ‖R and ‖ · ‖I . These semi-norms will be used along our work.

1.3 The function (1 − ‖x‖2)|Rf(x)| is Lipschitz continuous

Let f ∈ B(BE ). Recall that the function defined on x ∈ BE and given by x �→
(1 − ‖x‖2)|R f (x)| is Lipschitz with respect to ρE . We recall several results which
can be found in [13].
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Theorem 1.1 If f belongs to B(BE ) then:

|(1 − ‖x‖2)R f (x) − (1 − ‖y‖2)R f (y)| ≤ 14‖ f ‖IρE (x, y) for all x, y ∈ BE .

As a consequence, we obtain a corollary which extends results given in [1] byAttele
and improved in [18] by Xiong on the Bloch space B:

Corollary 1.2 Consider a complex Hilbert space E. The function defined for x ∈ BE

and given by x �→ (1−‖x‖2)|R f (x)| is Lipschitz with respect to the pseudohyperbolic
distance ρE . In addition, we have:

|(1 − ‖x‖2)|R f (x)| − (1 − ‖y‖2)|R f (y)|| ≤ 14‖ f ‖IρE (x, y).

This will allow us to provide conditions for a composition operator on the Bloch
space B(BE ) to be bounded below.

2 Composition operators onB(BE)which are bounded below

Let X and Y be Banach spaces. A linear operator T : X → Y is said to be bounded
below if there is a positive constant k > 0 satisfying ‖x‖ ≤ k‖T (x)‖. A linear
continuous operator T is bounded below if and only if T has closed range and it is
injective.

If ϕ : D → D denotes an analytic map, the composition operator Cϕ : B → B is
defined by Cϕ( f ) = f ◦ ϕ and it is continuous for any ϕ. Define:

τϕ(z) = 1 − |z|2
1 − |ϕ(z)|2 ϕ′(z). (2.1)

In [7], it was investigated when ϕ induces a composition operator which has closed
range on B. They proved:

Proposition 2.1 Let Cϕ be bounded below. Then there are ε, r > 0 such that r < 1
satisfying that for all z ∈ D we have ρ(ϕ(w), z) ≤ r for all w ∈ D satisfying
|τϕ(w)| > ε.

The authors also studied the map defined for z ∈ D by z �→ (1− |z|2)| f ′(z)|, proving
that it is Lipschitz with respect to ρ if f belongs to the Bloch space B. Indeed, for any
f ∈ B and z, w ∈ D we have:

|(1 − |z|2)| f ′(z)| − (1 − |w|2)| f ′(w)|| ≤ 3.31‖ f ‖Bρ(z, w). (2.2)

This result refines a result of Attele (see [1]) who provided the constant 9 instead of
3.31. Xiong improved the constant in [18], giving 3

√
3/2 ≈ 2.6. From (2.2) we have

the following sufficient condition for Cϕ to be bounded below (see [7]):
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Theorem 2.2 Consider an analytic self-map ϕ on D and suppose that there is 0 <

r < 1
4 and ε > 0 satisfying that for any w ∈ D there exists zw ∈ D such that

ρ(ϕ(zw),w) < r and |τϕ(zw)| > ε. Then the operator Cϕ : B → B is bounded
below.

F. Deng, L. Jiang and C. Ouyang [6] and H. Chen [4] considered self-maps ϕ on Bn ,
where Bn denotes the open unit ball of a finite dimensional Hilbert space, extending
these results from the one-dimensional case. However, they replaced τϕ(z) by:

(
1 − ‖z‖2

1 − ‖ϕ(z)‖2
)(n+1)/2

|det(Jϕ(z))| (2.3)

where Jϕ(z) is the Jacobian matrix of ϕ. If ϕ is an automorphism of Bn then it is
easy that τϕ(z) = 1. Moreover, the proofs of these results used the definition given by
Timoney of Bloch function on Bn depending on the Bergman metric [17].

To extend the results given for the classical Bloch space B to a more general setting
(finite or infinite dimensional), we will give sufficient and necessary conditions which
avoid the Bergman metric and expression (2.3). Hence, consider a complex Hilbert
space E and an analytic map ψ : BE → BE . We define for x ∈ BE the expressions
τψ(x) and τ̃ψ (x) which are given by:

τψ(x) = 1 − ‖x‖2
1 − ‖ψ(x)‖2 ‖ψ ′(x)‖ (2.4)

and:

τ̃ψ (x) =
√

1 − ‖x‖2
1 − ‖ψ(x)‖2 ‖ψ ′(x)‖. (2.5)

It is easy that τ̃ψ (x) ≥ τψ(x).
In [3] the authors studied the boundness and also the compactness ofCψ : B(BE ) →

B(BE ) which is the composition operator defined by Cψ( f ) = f ◦ ψ . It was proved
that for any analytic self map ψ on BE , the operator Cψ is bounded. Furthermore,
they proved the inequality ‖ f ◦ ψ‖I ≤ ‖ f ‖I where ‖ · ‖I is the semi-norm defined
in Sect. 1.2.

This Lemma will be useful for Lemma 2.4:

Lemma 2.3 Consider a complex Hilbert space E and f ∈ B(BE ). Then:

| f (x) − f (0)| ≤ ‖x‖ ‖ f ‖B
1 − ‖x‖2 for any x ∈ BE .
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Proof Note that:

| f (x) − f (0)| =
∣
∣
∣
∣

(∫ 1

0
f ′(xt)dt

)

(x)

∣
∣
∣
∣
≤ ‖x‖

∥
∥
∥
∥

∫ 1

0

f ′(xt)(1 − ‖t x‖2)
1 − ‖t x‖2 dt

∥
∥
∥
∥

≤ ‖x‖‖ f ‖B
∫ 1

0

∣
∣
∣
∣

1

1 − ‖t x‖2
∣
∣
∣
∣
dt

≤ ‖x‖‖ f ‖B
∫ 1

0

1

1 − ‖x‖2 dt = ‖x‖ ‖ f ‖B
1 − ‖x‖2

so the result is clear. ��
Recall that ‖·‖R, ‖·‖I and ‖·‖B are equivalent, so they can be used interchangeably

when studying if Cψ is bounded below.
The following Lemma was given in [10, Lemma 2.14] with a different proof for

the general case when BE is the unit ball of a J B∗-triple. For completeness, we give
a direct proof:

Lemma 2.4 Consider a complex Hilbert space E and an analytic mapψ : BE → BE .
The composition operator Cψ : B(BE ) → B(BE ) is bounded below if and only if
there is k > 0 such that:

‖Cψ( f )‖I ≥ k‖ f ‖I for all f ∈ B(BE ).

Proof If Cψ is bounded below then there exists k > 0 such that ‖Cψ( f )‖I−Bloch ≥
k‖ f ‖I−Bloch for f ∈ B(BE ). We define g(x) = f (x) − f (ψ(0)) and clearly
g(ψ(0)) = 0. We have:

‖Cψ( f )‖I = ‖ f ◦ ψ‖I = ‖g ◦ ψ‖I = ‖g ◦ ψ‖I−Bloch

≥ k‖g‖I−Bloch ≥ k‖g‖I = k‖ f ‖I .

Now consider ‖Cψ( f )‖I ≥ k‖ f ‖I for some constant 0 < k ≤ 1. We will find k′ > 0
satisfying ‖Cψ( f )‖I−Bloch ≥ k′‖ f ‖I−Bloch. Using Lemma 2.3 we obtain:

| f (ψ(0)) − f (0)| ≤ ‖ψ(0)‖ ‖ f ‖B
1 − ‖ψ(0)‖2

so we have:

| f (ψ(0))| ≥ | f (0)| − ‖ψ(0)‖ ‖ f ‖B
1 − ‖ψ(0)‖2 ≥ | f (0)| − ‖ f ‖I

1 − ‖ψ(0)‖2 .

and we obtain:

| f (ψ(0))| + 1

(1 − ‖ψ(0)‖2)‖ f ‖I ≥ | f (0)|.
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Hence:

k(1 − ‖ψ(0)‖2)| f (ψ(0))| + ‖Cψ( f )‖I
≥ k(1 − ‖ψ(0)‖2)| f (ψ(0))| + k‖ f ‖I ≥ k(1 − ‖ψ(0)‖2)| f (0)|

so we have that:

2(| f (ψ(0))| + ‖Cψ( f )‖I) = 2| f (ψ(0))| + ‖Cψ( f )‖I + ‖Cψ( f )‖I
≥ k(1 − ‖ψ(0)‖2)| f (ψ(0))| + ‖Cψ( f )‖I + ‖Cψ( f )‖I
≥ k(1 − ‖ψ(0)‖2)| f (0)| + ‖Cψ( f )‖I
≥ k(1 − ‖ψ(0)‖2)(| f (0)| + ‖ f ‖I)

and we can conclude:

‖Cψ( f ))‖I−Bloch ≥ k(1 − ‖ψ(0)‖2)
2

‖ f ‖I−Bloch

so taking k′ = k(1 − ‖ψ(0)‖2)/2 we obtain that Cψ is a bounded below operator. ��

2.1 The automorphisms'x on BE

In this section we will give some calculations related to the automorphisms ϕx of BE

given in (1.1) which will permit us to study conditions for Cϕ to be bounded below.
If E is finite dimensional, then it is well-known that ϕx is an involution (see [16]).
Since the proof uses the Cartan’s uniqueness theorem, we first give a new proof of this
assertion, extending the result for infinite dimensional spaces:

Lemma 2.5 If E is a complex Hilbert space and x ∈ BE , then ϕx ◦ ϕx = I dE , that is,
ϕx is an involution.

Proof Using (1.1), we have:

ϕx (ϕx (y)) = (sx Qx + Px )(mx (ϕx (y)) = (sx Qx + Px )

(
x − ϕx (y)

1 − 〈ϕx (y), x〉
)

and using the following result (it can be found as Lemma 3.6 in [14]):

1 − 〈ϕx (y), x〉 = 1 − 〈ϕx (y), ϕx (0)〉 = 1 − ‖x‖2
1 − 〈y, x〉

we obtain:

ϕx (ϕx (y)) = 1 − 〈y, x〉
1 − ‖x‖2 (sx Qx + Px ) (x − ϕx (y))

= 1 − 〈y, x〉
1 − ‖x‖2 ((sx Qx + Px )(x) − (sx Qx + Px )((sx Qx + Px )(mx (y)))) .
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Using Px ◦ Qx = Qx ◦ Px = 0, Px + Qx = I dE , P2
x = Px and Q2

x = Qx we have:

ϕx (ϕx (y)) = 1 − 〈y, x〉
1 − ‖x‖2

(

x − (s2x Qx + Px )

(
x − y

1 − 〈y, x〉
))

= 1 − 〈y, x〉
(1 − ‖x‖2)(1 − 〈y, x〉)

(

(1 − 〈y, x〉)x − (s2x Qx + Px ) (x − y)
)

= 1

(1 − ‖x‖2)
(

(x − ‖x‖2Px (y) − x + (1 − ‖x‖2)Qx (y) + Px (y)
)

= 1

(1 − ‖x‖2) (1 − ‖x‖2)(Px (y) + Qx (y)) = y

so we obtain the result. ��
Lemma 2.6 For any x ∈ BE we have that the operator ϕ′

x (0) is invertible and
ϕ′
x (0)

−1 = ϕ′
x (x).

Proof Using Lemma 2.5, we have (ϕx ◦ ϕx )
′(0) = I d ′

E (0) = I dE so:

ϕ′
x (ϕx (0)) ◦ ϕ′

x (0) = ϕ′
x (x) ◦ ϕ′

x (0) = I dE

and we are done. ��
Recall that ‖ f ‖I = supx∈BE

‖∇̃ f (x)‖ by (1.4). For all x ∈ BE we have:

‖∇̃ f (x)‖ = sup
u∈BE

‖ f ′(ϕx (0)) ◦ ϕ′
x (0)(u)‖ = sup

w∈E\{0}
| f ′(x)(w)|

‖ϕ′
x (0)

−1(w)‖ (2.6)

and for all w ∈ E we have that (see [2]):

‖ϕ′
x (0)

−1(w)‖2 = (1 − ‖x‖2)‖w‖2 + |〈w, x〉|2
(1 − ‖x‖2)2 . (2.7)

In [2] the following equality was also given:

‖∇̃ f (x)‖2 = (1 − ‖x‖2)
(

‖∇ f (x)‖2 − |R f (x)|2
)

. (2.8)

For an analyticmapψ : BE → BE , x ∈ BE andw ∈ E wewill use the infinitesimal
Kobayashi metric described in [10]. For a complex Hilbert space E , this metric can
be described in terms of the automorphisms ϕx by:

κE (x, w) = ‖ϕ′
x (0)

−1(w)‖ for x ∈ BE and w ∈ E .

We will use κ(x, w) and κ(ψ(x), ψ ′(x)(w)) for an analytic self-map ψ : BE → BE

several times in the sequel. Notice that:

κ(ψ(x), ψ ′(x)(w)) = ‖ϕ′
ψ(x)(0)

−1(ψ ′(x)(w))‖. (2.9)
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Lemma 2.7 If ψ : BE → BE is analytic and x ∈ BE then:

(a) For w ∈ E:

‖w‖2
1 − ‖x‖2 ≤ κ(x, w)2 ≤ ‖w‖2

(1 − ‖x‖2)2 (2.10)

and:

‖ψ ′(x)(w)‖2
1 − ‖ψ(x)‖2 ≤ κ(ψ(x), ψ ′(x)(w))2 ≤ ‖ψ ′(x)(w)‖2

(1 − ‖ψ(x)‖2)2 . (2.11)

(b) If there is wx ∈ E satisfying ψ ′(x)(wx ) = ‖ψ ′(x)‖ψ(x) then:

‖ψ ′(x)‖‖ψ(x)‖
1 − ‖ψ(x)‖2 = κ(ψ(x), ψ ′(x)(wx )) ≤ ‖ψ ′(x)‖

1 − ‖ψ(x)‖2 (2.12)

and under the condition wx �= 0, then:

κ(ψ(x), ψ ′(x)(wx ))

κ(x, wx )
≥ τψ(x)

‖ψ(x)‖
‖wx‖ . (2.13)

Proof We will prove a). By (2.7) and (2.9) we obtain:

κ(x, w)2 = (1 − ‖x‖2)‖w‖2 + |〈w, x〉|2
(1 − ‖x‖2)2 .

Hence:

‖w‖2
(1 − ‖x‖2) ≤ κ(x, w)2 ≤ ‖w‖2

(1 − ‖x‖2)2

where last inequality is true because |〈w, x〉| ≤ ‖w‖‖x‖, so we conclude (2.10).
Following the same pattern, we obtain a proof for (2.11).

Now we prove b). We have:

κ(ψ(x), ψ ′(x)(wx ))
2 = (1 − ‖ψ(x)‖2)‖ψ ′(x)(wx )‖2 + |〈ψ ′(x)(wx ), ψ(x)〉|2

(1 − ‖ψ(x)‖2)2

= (1 − ‖ψ(x)‖2)‖ψ ′(x)‖2‖ψ(x)‖2 + ‖ψ(x)‖4‖ψ ′(x)‖2
(1 − ‖ψ(x)‖2)2

= ‖ψ ′(x)‖2‖ψ(x)‖2
(1 − ‖ψ(x)‖2)2
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andwe obtain inequality (2.12). Together with inequality (2.10) results in (2.13) since:

κ(ψ(x), ψ ′(x)(wx ))

κ(x, wx )
≥ 1 − ‖x‖2

1 − ‖ψ(x)‖2
‖ψ ′(x)‖‖ψ(x)‖

‖wx‖

and we conclude the result. ��

From Lemma 2.7 we have:

Lemma 2.8 For any x ∈ BE and w ∈ E\{0}:

κ(ψ(x), ψ ′(x)(w))

κ(x, w)
≤

√

1 − ‖x‖2
1 − ‖ψ(x)‖2

∥
∥
∥
∥
ψ ′(x)

(
w

‖w‖
)∥

∥
∥
∥

(2.14)

and:

κ(ψ(x), ψ ′(x)(w))

κ(x, w)
≥ 1 − ‖x‖2

√

1 − ‖ψ(x)‖2
∥
∥
∥
∥
ψ ′(x)

(
w

‖w‖
)∥

∥
∥
∥

. (2.15)

The following lemma is just a contractive property of the infinitesimal Kobayashi
metric. We omit the proof:

Lemma 2.9 If ψ is an analytic self-map on BE , then for any x ∈ BE and w ∈ E\{0}
we have:

κ(ψ(x), ψ ′(x)(w))

κ(x, w)
= ‖ϕ′

ψ(x)(0)
−1(ψ ′(x)(w))‖

‖ϕ′
x (0)

−1(w)‖ ≤ 1.

The following extension of the Schwarz-Pick lemma generalizes a result of Kalaj
[12] when we deal with an infinite dimensional space. The same result for bounded
symmetric domains can be found in [5].

Corollary 2.10 Consider an analytic self map ψ on BE . Then:

1 − ‖x‖2
√

1 − ‖ψ(x)‖2 ‖ψ ′(x)‖ ≤ 1 for all x ∈ BE .

Proof Applying Lemma 2.9 and using inequality (2.15) in Lemma 2.7 we are done. ��

Remark 2.11 Hamada and Kohr [11] proved that Corollary 2.10 is sharp. Kalaj [12]
also proved this sharpness by considering for all t ∈ (0, π/2) the self-map ψt : B2 →
B2 defined by ψt (z, w) = (z sin t, cos t).
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2.2 Results on bounded below composition operators

Wewill apply the study on the automorphisms ϕx to study bounded below composition
operators. Hamada [10] provided a necessary condition in the context of the unit ball
of a J B∗−triple by considering the existence of ε > 0 and 0 < r < 1 such that if
y ∈ BE then ρ(ψ(xy), y) ≤ r for any xy ∈ BE satisfying τ ∗

ψ(xy) ≥ ε where:

τ ∗
ψ(xy) = sup

{
κE (ψ(xy), ψ ′(xy)(y))

κE (xy, y)
: w ∈ E\{0}

}

We provide a necessary condition for the Hilbert case by adapting the proof of
Theorem 2 in [6] and using τ̃ψ (xy) instead of τ ∗

ψ(xy):

Theorem 2.12 Consider an analytic self map ψ on BE and suppose that Cψ :
B(BE ) → B(BE ) is a bounded below operator. Then there are ε > 0 and 0 < r < 1
such that if y ∈ BE we haveρ(ψ(xy), y) ≤ r for some xy ∈ BE satisfying τ̃ψ (xy) ≥ ε.

Proof If Cψ is a bounded below operator, consider y ∈ BE and let f : BE → C be
an analytic function given by fy(x) = 1/(1 − 〈x, y〉).
We have:

f ′
y(x) = 〈·, y〉

(1 − 〈x, y〉)2

so we have:

‖ fy‖B = sup
x∈BE

(1 − ‖x‖2)‖ f ′
y(x)‖ = sup

x∈BE

(1 − ‖x‖2) ‖y‖
|1 − 〈x, y〉|2

= sup
x∈BE

‖y‖1 − ‖ϕy(x)‖2
1 − ‖y‖2 = ‖y‖

1 − ‖y‖2 .

Define gy : BE → C by gy(x) = fy(x)/‖ fy‖B which is analytic and it is satisfied
that ‖gy‖I ≥ ‖gy‖B = 1. Using Lemma 2.4, there is a positive number k satisfying
‖gy ◦ ψ‖I ≥ k‖gy‖I so since:

‖gy ◦ ψ‖I = sup
x∈BE

‖∇̃(gy ◦ ψ)(x)‖,

there exists xy ∈ BE which satisfies ‖∇̃(gy ◦ ψ)(xy)‖ ≥ k/2. Hence:

k

2
≤ ‖∇̃(gy ◦ ψ)(xy)‖ = sup

w∈E\{0}
‖∇̃(gy ◦ ψ)(xy)(w)‖

‖w‖

= sup
w∈E\{0}

|g′
y(ψ(xy))(ψ ′(xy)(w))|

‖ϕ′
xy (0)

−1(w)‖
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= sup
w∈E\{0}

|g′
y(ψ(xy))(ψ ′(xy)(w))|
κ(ψ(xy), ψ ′(xy)(w))

κ(ψ(xy), ψ ′(xy)(w))

κ(xy, w)

≤ ‖∇̃gy(ψ(xy))‖τ̃ψ (xy) (2.16)

where using (2.6) and (2.14) in Lemma 2.8 it is clearly deduced last inequality. By
(2.8) we conclude:

‖∇̃gy(ψ(xy))‖2 = (1 − ‖ψ(xy)‖2)(‖∇gy(ψ(xy))‖2 − |Rgy(ψ(xy))|2)
= (1 − ‖ψ(xy)‖2) (1 − ‖y‖2)2

‖y‖2
( ‖y‖2

|1 − 〈ψ(xy), y〉|4 − |〈ψ(xy), y〉|2
|1 − 〈ψ(xy), y〉|4

)

= (1 − ‖ψ(xy)‖2)(1 − ‖y‖2)2
1 −

∣
∣
∣

〈

ψ(xy),
y

‖y‖
〉∣
∣
∣

2

|1 − 〈ψ(xy), y〉|4 .

The inequality |1 − 〈c, d/‖d‖〉| ≤ 2|1 − 〈c, d〉| for any c, d ∈ BE is clear since:

|1 − 〈c, d/‖d‖〉| ≤ |1 − 〈c, d〉| + |〈c, d − d/‖d‖〉|
≤ |1 − 〈c, d〉| + 1 − ‖d‖ ≤ |1 − 〈c, d〉| + 1 − |〈c, d〉|
= 2|1 − 〈c, d〉|.

From:

1 −
∣
∣
∣
∣

〈

ψ(xy),
y

‖y‖
〉
∣
∣
∣
∣

2

≤
(

1 +
∣
∣
∣
∣

〈

ψ(xy),
y

‖y‖
〉
∣
∣
∣
∣

) (

1 −
∣
∣
∣
∣

〈

ψ(xy),
y

‖y‖
〉
∣
∣
∣
∣

)

we conclude:

‖∇̃g(ψ(xy))‖2 ≤ 4(1 − ‖ψ(xy)‖2)(1 − ‖y‖2) 1

|1 − 〈ψ(xy), y〉|2
= 4(1 − ‖ϕy(ψ(xy))‖2) = 4(1 − ρ(y, ψ(xy))

2)

so:

k

2
≤ 2(1 − ρ(y, ψ(xy))

2)1/2τ̃ψ (xy)

which is true if and only if
k

4
≤ (1 − ρ(y, ψ(xy))

2)1/2τ̃ψ (xy)

and we have τ̃ψ (xy) ≥ k
4 .

Using (2.16) we have:

k

2
≤ 2(1 − ρ(y, ψ(xy))

2)1/2 sup
w∈E\{0}

κ(ψ(xy), ψ ′(xy)(w))

κ(xy, w)
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so applying Lemma 2.9:

√

1 − ρ(y, ψ(xy))2 ≥ k/4

and this expression is equivalent to:

ρ(y, ψ(xy)) ≤
√

1 − k2/16.

Taking r = √

1 − k2/16 and ε = k/4 we conclude the result. ��

Hamada [10] provided a sufficient condition for a composition operator to be
bounded below when we deal with unit balls of J B∗−triples. We will provide a
new condition by extending the result given in Theorem 2.2. Hence we will consider
the following condition: we will suppose that ψ(xy) belongs to the range of ψ ′(xy).
Recall that, as we have mentioned in (1.5), there is a positive constant A0 satisfying:

‖ f ‖R ≤ ‖ f ‖B ≤ ‖ f ‖I ≤ A0‖ f ‖R for any f ∈ B(BE ).

Theorem 2.13 Let ψ be an analytic self-map on BE . Suppose there are constants
r , ε satisfying 0 < r < 1

15A0
and ε > 0 which also satisfies that for any y ∈ BE

there exists xy ∈ BE such that ρ(ψ(xy), y) < r and τψ(xy) > ε. Suppose also that
ψ(xy) = ψ ′(xy)(wxy ) for some point wxy ∈ E satisfying supy∈BE

‖wxy‖ < +∞.
Then we have that Cψ : B(BE ) → B(BE ) is bounded below.

Proof Consider a function f ∈ B(BE ) satisfying ‖ f ‖I = 1. We show the existence
of k > 0 which satisfies that ‖ f ◦ψ‖I ≥ k. We have that ‖ f ‖R ≥ ‖ f ‖I/A0 by (1.5)
so ‖ f ‖R ≥ 1/A0. Taking y ∈ BE satisfying |R f (y)|(1− ‖y‖2) ≥ 14/(15A0), there
exists xy ∈ BE such that ρ(y, ψ(xy)) < r and τψ(xy) > ε. Using (1.4) and (2.6) and
also by (2.9), we have for any w ∈ E\{0}:

‖ f ◦ ψ‖I = sup
x∈BE

‖∇̃( f ◦ ψ)(x)‖

≥ |( f ◦ ψ)′(xy)(w)|
‖ϕ′

xy (0)
−1(w)‖ = | f ′(ψ(xy))(ψ ′(xy)(w))|

κ(ψ(xy), ψ ′(xy)(w))

κ(ψ(xy), ψ ′(xy)(w))

κ(xy, w)
.

Since ψ(xy) ∈ ψ ′(xy)(E), there exists wxy ∈ E such that ψ ′(xy)(wxy ) =
‖ψ ′(xy)‖ψ(xy) so the inequality above is clearly true taking wxy . Using (2.12) from
Lemma 2.7 we obtain:
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| f ′(ψ(xy))(ψ ′(xy)(wxy ))|
κ(ψ(xy), ψ ′(xy)(wxy ))

= | f ′(ψ(xy))(‖ψ ′(xy)‖ψ(xy))|
κ(ψ(xy), ψ ′(xy)(wxy ))

= ‖ψ ′(xy)‖| f ′(ψ(xy))(ψ(xy))|(1 − ‖ψ(xy)‖2)
‖ψ ′(xy)‖‖ψ(xy)‖

= |R f (ψ(xy))|(1 − ‖ψ(xy)‖2)
‖ψ(xy)‖

so:

‖ f ◦ ψ‖I ≥ R f (ψ(xy))(1 − ‖ψ(xy)‖2)
‖ψ(xy)‖

κ(ψ(xy), ψ ′(xy)(wxy ))

κ(xy, wxy )

and using (2.13) from Lemma 2.7 we have:

‖ f ◦ ψ‖I ≥ |R f (ψ(xy))|(1 − ‖ψ(xy)‖2)
‖ψ(xy)‖

‖ψ(xy)‖τψ(xy)

‖wxy‖
≥ |R f (ψ(xy))|(1 − ‖ψ(xy)‖2) ε

‖wxy‖
.

From Corollary 1.2, we obtain:

||R f (ψ(xy))|(1 − ‖ψ(xy)‖2) − |R f (y)|(1 − ‖y‖2)| ≤ 14‖ f ‖IρE (ψ(xy), y)

and using ‖ f ‖I = 1, we conclude:

‖ f ◦ ψ‖I ≥ (|R f (y)|(1 − ‖y‖2)| − 14ρ(ψ(xy), y))
ε

‖wxy‖
≥

(
14

15A0
− 14r

)
ε

supy∈BE
‖wxy‖

so we can take:

k = 14

(
1

15A0
− r

)
ε

supy∈BE
‖wxy‖

> 0

and we finally conclude ‖Cψ( f )‖I ≥ k. ��
Now we check that the automorphism ϕa of BE for any a ∈ BE satisfies the

conditions of Theorem 2.13. We will need this result, which shows τϕa (x) ≥ 1 for all
x ∈ BE .

Lemma 2.14 For all a ∈ BE we have τϕa (x) ≥ 1 if x ∈ BE .

Proof Notice that by (1.3) we have:

1 − ‖x‖2
1 − ‖ϕa(x)‖2 = |1 − 〈x, a〉|2

1 − ‖a‖2
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and since: ϕa(x) = (Pa + saQa) (ma(x)), then we obtain:

ϕ′
a(x) = (Pa + saQa)

′(ma(x)) ◦ m′
a(x) = (Pa + saQa)(m

′
a(x))

so we have:

‖ϕ′
a(x)‖2 = ‖Pa(m′

a(x))‖2 + s2a‖Qa(m
′
a(x))‖2 ≥ ‖Pa(m′

a(x))‖2.

It is easy that:

m′
a(x)(y) = −(1 − 〈x, a〉)y + 〈y, a〉(a − x)

(1 − 〈x, a〉)2
so:

‖ϕ′
a(x)‖ ≥ ‖Pa(m′

a(x))‖ = sup
y∈BE

‖Pa(m′
a(x))(y))‖

≥
∥
∥
∥
∥
Pa

(

m′
a(x)

(
a

‖a‖
))∥

∥
∥
∥

=
∥
∥
∥
∥
∥
Pa

(−(1 − 〈x, a〉) a
‖a‖ + 〈 a

‖a‖ , a〉(a − x)

(1 − 〈x, a〉)2
)∥

∥
∥
∥
∥

so we obtain:

τϕa (x) ≥ |1 − 〈x, a〉|2
1 − ‖a‖2

∥
∥
∥
∥
∥
Pa

(−(1 − 〈x, a〉) a
‖a‖ + 〈 a

‖a‖ , a〉(a − x)

(1 − 〈x, a〉)2
)∥

∥
∥
∥
∥

= 1

1 − ‖a‖2
∥
∥
∥
∥
Pa

(

−(1 − 〈x, a〉) a

‖a‖ + 〈 a

‖a‖ , a〉(a − x)

)∥
∥
∥
∥

= 1

1 − ‖a‖2
∥
∥
∥
∥

(

−(1 − 〈x, a〉) a

‖a‖ + ‖a‖a − 〈x, a〉
‖a‖2 ‖a‖a

)∥
∥
∥
∥

= 1

1 − ‖a‖2
∥
∥
∥
∥
−1 − ‖a‖2

‖a‖ a

∥
∥
∥
∥

= 1

and we have τϕa (x) ≥ 1 so we are done. ��
Remark 2.15 Conditions of Theorem 2.13 are satisfied by the automorphisms ϕa for
any a ∈ BE since by Lemma 2.14 we have:

1 − ‖x‖2
1 − ‖ϕa(x)‖2 ‖ϕ′

a(x)‖ ≥ 1

so choose ε = 1, r = 0 and for any y ∈ BE take xy = ϕa(y). Furthermore,
ϕa(xy) = ϕa(ϕa(y)) = y = ϕ′

a(xy)(wxy ) for somewxy belonging to E which satisfies
supy∈BE

‖wxy‖ < +∞ since the operator ϕ′
a(xy) is invertible on the space E .
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