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A B S T R A C T

In this paper, we develop an approach to exploit kernel methods with data lying on the 𝑚-D Kendall shape
space. When data arise in a finite-dimensional curved Riemannian manifold, as in this case, the usual Euclidean
computer vision and machine learning algorithms must be treated carefully. A good approach is to use positive
definite kernels on manifolds to embed the manifold with its corresponding metric in a high-dimensional
reproducing kernel Hilbert space, where it is possible to utilize algorithms developed for linear spaces. Different
Gaussian kernels can be found in the literature on the 2-D Kendall shape space to perform this embedding. The
main novelty of this work is to provide a Gaussian kernel for the 𝑚-D Kendall shape space. This new Kernel
coincides in the case 𝑚 = 2 with the Gaussian kernels most widely used in the Kendall planar shape space and
allows to define an embedding of the 𝑚-D Kendall shape space into a reproducible kernel Hilbert space. As
far as we know, the complexity of the 𝑚-D Kendall shape space has meant that this embedding has not been
addressed in the literature until now. This methodology will be tested on a machine learning problem with a
simulated and a real data set.
1. Introduction

The statistical analysis of the shapes of objects is of key importance
in many scientific fields, such as Biology, Archaeology, Medicine, Geol-
ogy, and Computer Vision and a great deal of research has been done in
this field in recent decades. Three major approaches can be identified
in Shape Analysis based on how the shape of the object is treated in
mathematical terms: a multivariate vector of descriptive measures of
shape, a sequence of points in the boundary of the object that are
given by certain geometrical or anatomical properties (landmarks), or
they can be described by using functions representing their contours.
In this paper, we concentrate on the second approach, the case where
the shape of an object is represented by a configuration matrix of
landmarks. Seminal books on this subject are [1] for a practical point
of view and [2] for a more theoretical mathematical study.

Formally, shape can be defined as the geometrical information
about the object that is invariant under Euclidean similarity transfor-
mations, that is, location, orientation, and scale. The shape space is the
resulting quotient space. When using the landmark-based approach, the
corresponding shape space is a finite-dimensional curved Riemannian
manifold, and statistical methodologies on manifolds have to be used.

Over recent decades, estimation and learning methods based on em-
bedding data in a high-dimensional Reproducing Kernel Hilbert Space
(RKHS) [3] have become rather popular, particularly in machine learn-
ing. See [4,5] for a review of the use of RKH spaces in the statistical and
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machine-learning contexts, and for active learning algorithms respec-
tively. Traditionally, theory and algorithms of machine learning and
statistics have been very well developed for the linear case. However,
real-world data analysis problems often require nonlinear methods to
detect the kind of dependencies that allow successful prediction or
classification. By using a positive definite kernel, the RKHS theory
allows us to embed our data in a (usually high dimensional) RKHS
space (feature space) where the kernel corresponds to a dot product.
In this space, our estimation methods are linear, and as long as we can
formulate everything in terms of kernel evaluations, we never explicitly
have to compute in the high-dimensional feature space.

When original data lie in a curved manifold, these algorithms
provide an additional advantage: they can be applied in the RKHS in
the same way that they are applied in the Euclidean case, without any
adaptation, because, although the original space is curved, the feature
space is not.

The great difficulty in using Hilbert space embeddings when the
data are in curved Riemannian manifolds arises from the fact that
the kernel function must be positive definite. Although many positive
definite kernel functions defined for R𝑛 are known, generalizing them
to manifolds is not straightforward. In fact, it has been proved [6,7]
that Gaussian kernels in curved spaces are never definite positive when
geodesic distances are used. When considering the Kendall’s space of 𝑚-
D shapes, as far as we know, the space of planar shapes 𝑚 = 2 is the only
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space that has been embedded in a reproducing kernel Hilbert space,
which is because the proof is based on considering that the 2D Kendall
shape space is the complex projective space, a relatively simple and
familiar Riemannian manifold. However, for higher dimensions 𝑚 > 2,
he manifold structure of the corresponding shape spaces is rather more
omplex.

Our aim in this paper is to provide and prove a theorem that allows
s to define a reproductive kernel in the Kendall shape space. When
= 2; that is, when planar curves are considered, the kernel we obtain

eneralizes and unifies two kernels widely used in the bibliography. In
he case 𝑚 = 3, that is surfaces in R3, this theorem allows us to propose
type of machine learning algorithm that we apply to two data sets:

he support vector machine in the Kendall Shape Space.
Support vector machines (SVMs) are widely used machine learning

lgorithms for pattern recognition tasks, including classification and
egression. They excel in scenarios involving high-dimensional data
nd the separation of distinct classes or groups. In the field of pattern
ecognition, the geometric properties of the Kendall shape manifold are
ometimes exploited to apply SVM and other classification techniques.
or example, in Human Action Recognition (HAR), one objective is
o classify human actions using depth movies while representing the
uman body as dynamic skeletons in Kendall space [8]. Therefore,
lthough this work makes contributions to the theory and methodology
f pattern recognition, it also holds significant relevance in applica-
ions where data is represented in the shape space, as it enables the
tilization of kernel methods in pattern design and recognition.

It is important to highlight that our proposed algorithm has poten-
ial for multimedia-related tasks such as image classification and video
nalysis. However, it assumes a preliminary stage of image and video
reprocessing, where the Euclidean coordinates of the objects of inter-
st are provided. While this may be perceived as a limitation, it also
istinguishes our work from many existing algorithms that primarily
ocus on classifying shapes within images and videos. These algorithms
ften rely on alternative sources of information beyond point clouds or
andmarks [9,10]. In contrast, our approach offers greater versatility,
ccommodating scenarios in biology, biomechanics, archaeology, and
ther domains where shapes can be obtained through direct scanning
f objects [11] or manual annotation of their coordinates.

Some significant and recent bibliographic references on statistical
earning in shape spaces are the following. Miolane et al. [12] intro-
uce Geomstats, an open-source Python package for computations and
tatistics on nonlinear manifolds. Nava-Yazdani et al. [13] compute
eodesic regression in Kendall’s shape space. Xiao et al. [14] provides
n overview of deep learning methods for shape analysis.

See [4] for a review of the use of reproducing kernel Hilbert spaces
n the statistical and machine-learning context in Euclidean Spaces.
ecently, several works have proposed to extend these approaches to
iemannian manifolds [6,7,15]. Concerning shape spaces, Jayasumana
t al. [16] propose using positive definite kernels in the 2D Kendall
hape space and de Carvalho and do Amaral [15] propose several
ethods based on the kernel trick also in this space.

Finally, regarding the state of the art on 3D shapes supervised
lassification based on landmarks, we must point out that references
re scarce, since, as previously mentioned, most of the algorithms are
esigned only to classify shapes in images and videos, so many of
hem are based on other types of information than the point cloud or
andmarks. Wang et al. [17], presents a dynamic graph convolutional
eural network approach for learning on point clouds, which involves
earning dynamic weights for the edges in the graph representation of
he shape. The method is evaluated on several benchmark data sets
nd shown to achieve state-of-the-art performance on several tasks,
ncluding 3D shape classification and segmentation. Mirbauer et al.
18] proposes a deep learning approach for 3D shape classification
sing PointNet, a neural network architecture that directly processes
oint clouds. Wang et al. [17], presents a dynamic graph convolutional
2

eural network approach for learning on point clouds, which involves 2
earning dynamic weights for the edges in the graph representation of
he shape. The method is evaluated on several benchmark data sets
nd shown to achieve state-of-the-art performance on several tasks,
ncluding 3D shape classification and segmentation. The performance
f the PointNet algorithm will be compared with our approach in
ection 6.4.

It should be noted that a strength of our method compared to these
ther existing methods is that these methods work with the reference
oints as belonging to a Euclidean space and therefore use linear
pproximations, whereas our method takes into account the curvature
f the space.

Finally, we will also compare the performance of the approach
roposed in this document with a classical supervised classification al-
orithm such as the 𝑘-Nearest Neighbor algorithm, which only requires
he calculus of the distances between observations in the corresponding
pace.

The article is organized as follows: Sections 2 and 3 provide brief
eviews of the theory of the Kendall 𝑚-D shape space and of the
eproducible kernel Hilbert spaces, respectively. In Section 4 provides
new kernels for the 𝑚-D Kendall shape and defines the corresponding

mbedding, for the case 𝑚 = 2 we relate two very widely used
aussian kernels to embed the 2-D Kendall shape space in the RKHS.
ection 6 contains the applied part of this paper. Finally, conclusions
re discussed in Section 7.

. Kendall m-D shape space

Each closed hypersurface that bounds an 𝑚-D domain can be iden-
ified by a set of landmarks, i.e., a set of points in the space R𝑚 that
dentifies each object. In this section, we follow the notation introduced
n [1].

efinition 1. A configuration matrix 𝑥 is a 𝑘 × 𝑚 matrix with the
artesian coordinates of the 𝑘 landmarks of the boundary of an 𝑚-D
omain.

The shape of an object is all the geometric information that remains
nvariant with translations, rotations, and changes of scale (similarity
ransformations). Thus:

efinition 2. The shape space 𝛴𝑘
𝑚 is the set of equivalence classes 𝑇𝑥

f 𝑘 × 𝑚 configuration matrices 𝑥 ∈ R𝑚𝑘 under the action of Euclidean
imilarity transformations.

Let 𝑥 be a configuration matrix. We remove the location and scale
ffects, multiplying it by the Helmert submatrix, 𝐻 [1], and dividing it
y its Frobenius norm. So,

𝑥 =
𝑥𝐻

‖𝑥𝐻‖

(1)

is called the pre-shape of the configuration matrix 𝑥.
In this way, all information about location and scale of 𝑥 has been

removed, but rotation information remains.

Definition 3. The pre-shape space 𝑆𝑘
𝑚 is the set of all possible pre-

shapes.

𝑆𝑘
𝑚 is a hypersphere of unit radius in R𝑚(𝑘−1). The shape space, 𝛴𝑘

𝑚,
s the quotient space of 𝑆𝑘

𝑚 under rotations, i.e.
𝑘
𝑚 = 𝑆𝑘

𝑚∕𝑆𝑂(𝑚).

et us denote by 𝜋 the natural projection to the equivalence class,

∶ 𝑆𝑘
𝑚 → 𝛴𝑘

𝑚.

shape [𝑥] is an orbit associated with the action of the rotation group
𝑂(𝑚) on the pre-shape.

When planar shapes are considered; that is, when the dimension 𝑚 =

, and the number of landmarks 𝑘 that identify each closed plane curve
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is greater than 2, it is well known [1] that the space of planar shapes
𝛴𝑘
2 is a smooth manifold isometric to the complex projective space
P𝑘−2 (without singular part). In this case, since CP𝑘−2 = 𝑆2

𝑘∕𝑈 (1),
where 𝑆2

𝑘 is the pre-shape sphere and 𝑈 (1) the unitary group, complex
coordinates can be used for the landmarks so that 𝑧 denotes a complex
(𝑘 − 1)-vector in the pre-shape space 𝑆2

𝑘 , and each planar shape is
represented by the equivalence class [𝑧].

Under this representation of 𝛴𝑘
2 , the full Procrustes distance be-

tween two shapes [𝑧1] and [𝑧2] is defined as follows:

𝑑𝐹𝑃 ([𝑧1], [𝑧2]) =
(

1 − |⟨𝑧1, 𝑧2⟩|
2
)

1
2 . (2)

ote that we have considered starred coordinates according to [19], so
he dimension of the vectors is (𝑘 − 1).

On the other hand, if 𝐺𝑟(𝑝, 𝑉 ) denotes the Grassmann manifold of
ll 𝑝-dimensional subspaces of the vector space 𝑉 when 1 ≤ 𝑝 ≤ dim𝑉
usually, 𝑉 = R𝑛 or 𝑉 = C𝑛), the Kendall’s space of 2-D shapes 𝛴𝑘

2
atisfies
𝑘
2 ≅ CP𝑘−2 ≅ 𝐺𝑟(1,C𝑘−1) ⊂ 𝐺𝑟(2,R2(𝑘−1)).

Then, a point on 𝛴𝑘
2 = 𝐺𝑟(1,C𝑘−1) is represented by an (𝑘 − 1) × 1

omplex matrix [𝑧1] where ‖𝑧1‖ = 1. That is, the point on 𝐺𝑟(1,C𝑘−1) is
he subspace (complex line) spanned by 𝑧1 and the Projection distance
etween two subspaces (shapes) [𝑧1], [𝑧2] is given by

𝑃 ([𝑧1], [𝑧2]) =
1
√

2
‖𝑧1𝑧

∗
1 − 𝑧2𝑧

∗
2‖𝐹 , (3)

where ∗ denotes the conjugate transpose and ‖𝐴‖𝐹 = trace(𝐴∗𝐴).

. Reproducible kernel Hilbert spaces

A Hilbert space can be considered as the natural generalization of
he usual Euclidean spaces R𝑚 and gives a framework to work with
nfinite-dimensional vectors as the limit of finite-dimensional ones. In
articular, given an arbitrary set 𝐸, a RKHS is a Hilbert space of func-
ions 𝑓 ∶ 𝐸 → R with some practical and interesting properties. The
bstract theory of Reproducible Kernel Hilbert Spaces was developed
y Aronszajn [20]. One of the most important theoretical properties of
n RKHS is that if two functions, 𝑓 and 𝑔, are close in the Hilbert space
orm, then 𝑓 (𝑥) and 𝑔(𝑥) are close for all 𝑥 ∈ 𝐸.

efinition 4. Let 𝐻 be a Hilbert space of real-valued functions defined
n 𝐸 and ⟨⋅, ⋅⟩𝐻 the inner product on 𝐻 . A function 𝐾 ∶ 𝐸 ×𝐸 → R, is
aid to be a reproducing kernel (rk) associated with 𝐻 if it satisfies:

1. for every 𝑥 ∈ 𝐸, 𝐾(⋅, 𝑥) ∈ 𝐻 .
2. 𝐾 satisfies the ‘‘reproducing property’’; that is, ∀𝑓 ∈ 𝐻 and

𝑥 ∈ 𝐸

𝑓 (𝑥) = ⟨𝐾(⋅, 𝑥), 𝑓⟩𝐻

The next theorem is a sort of converse to this:

efinition 5. A symmetric function 𝐾 ∶ 𝐸×𝐸 ⟶ R is positive definite
f ∀𝑁 ≥ 1, ∀(𝑎1,… , 𝑎𝑁 ) ∈ R, ∀(𝑥1,… , 𝑥𝑁 ) ∈ 𝐸,
𝑁
∑

,𝑗=1
𝑎𝑖𝑎𝑗𝐾(𝑥𝑖, 𝑥𝑗 ) ≥ 0.

heorem 6. If 𝐾 is a symmetric and positive definite function on 𝐸 × 𝐸,
hen there is a unique Hilbert space of real-valued functions, 𝐻 , such that
is the reproducing kernel (rk) associated with 𝐻 .
Moreover, there is a function (Kolmogorov decomposition) 𝜑 ∶ 𝐸 → 𝐻

uch that
3

(𝑥, 𝑦) = ⟨𝜑(𝑥), 𝜑(𝑦)⟩𝐻 . (4)
It is essential to bear in mind that the proof of this theorem is based
on constructing the space 𝐻 through the completion of

𝐻0 ∶= span{
𝑁
∑

𝑖=1
𝛼𝑖𝑘(⋅, 𝑥𝑖) 𝛼𝑖 ∈ R, 𝑥𝑖 ∈ 𝐸} ⊂ 𝐻.

The RKHS 𝐻 associated with the kernel 𝐾 is the closure of 𝐻0.
In the particular case where the set 𝐸 is the Kendall space of planar

shapes 𝛴𝑘
2 two positive definite Gaussian kernels have been introduced

on this manifold.
The Procrustes Gaussian kernel 𝐾𝐹𝑃 ∶ 𝛴𝑘

2 ×𝛴𝑘
2 ⟶ R is defined as:

𝐾𝐹𝑃 ([𝑧1], [𝑧2]) = exp
(

−𝛾𝑑2𝐹𝑃 ([𝑧1], [𝑧2])
)

, (5)

which is a positive definite kernel for all 𝛾 > 0, [16].
The Projection Gaussian kernel 𝐾𝑃 ∶ 𝛴𝑘

2 × 𝛴𝑘
2 ⟶ R is defined as:

𝐾𝑃 ([𝑧1], [𝑧2]) = exp
(

−𝛾𝑑2𝑃 ([𝑧1], [𝑧2])
)

, (6)

which is a positive definite kernel for all 𝛾 > 0, [6].

Proposition 7. Both kernels, the Procrustes Gaussian kernel and the Pro-
jection Gaussian kernel coincide; that is, 𝐾𝐹𝑃 ([𝑧1], [𝑧2]) = 𝐾𝑃 ([𝑧1], [𝑧2]).

roof. Let 𝜌 denote the angle such that cos 𝜌 = |⟨𝑧1, 𝑧2⟩| = |𝑧∗1𝑧2|, where
∗ denotes the conjugate transpose of 𝑧. Then,
2
𝐹𝑃 ([𝑧1], [𝑧2]) = 1 − cos2 𝜌, (7)

nd 0 ≤ 𝜌 ≤ 𝜋
2 (Eq. (4.13) of [21]).

On the other hand, if 𝜃 denotes the principal (Jordan) angle [22] of
[𝑧1] and [𝑧2] as lines in 𝐺𝑟(1,C𝑘−1), then

𝑃 ([𝑧1], [𝑧2]) = sin 𝜃. (8)

From [23], we have that 𝜌 = 𝜃; therefore

𝑑2𝐹𝑃 ([𝑧1], [𝑧2]) = 1 − cos2 𝜌 = 1 − cos2 𝜃 = sin2 𝜃 = 𝑑2𝑃 ([𝑧1], [𝑧2]), (9)

and

𝐾𝐹𝑃 ([𝑧1], [𝑧2]) = 𝐾𝑃 ([𝑧1], [𝑧2]). □ (10)

Starting from the previous kernels, it is possible to work in Kendall’s
space of planar shapes 𝛴𝑘

2 using the Reproducible Kernel Hilbert Space
defined by these kernels. However, for 𝑚-dimensional Kendall spaces
𝛴𝑘
𝑚, no positive definite kernels are known. In the next section, we

present the main theoretical result of the paper. This consists of em-
bedding the space 𝛴𝑘

𝑚 in a Euclidean space, and then mapping the data
to a RKHS where support vector learning algorithms are applied. This
is particularly interesting when considering shapes in R3 (surfaces).
Additionally, we will prove that if we particularize our kernel for 𝑚 = 2
(planar shapes), we obtain the Projection Gaussian kernel 𝐾𝑃 .

4. Main result: A Gaussian kernel via an embedding method in
Kendall’s m-D space.

Let 𝑧 be a (𝑘 − 1) × 𝑚 pre-shape, 𝑧 ∈ R𝑚(𝑘−1) and 𝑣 = 𝑧𝑡 with the
following collection of column vectors

𝑣 = [𝑣1 𝑣2 … 𝑣𝑘−1] with 𝑣𝑖 ∈ R𝑚 𝑖 ∈ {1,… , 𝑘 − 1} (11)

In order to obtain a positive definite kernel, we will make use of the

following embedding 𝜌 ∶ R𝑚(𝑘−1) → R𝑁 with 𝑁 = 𝑘(𝑘−1)
2 +

(

𝑘 − 1
𝑚

)

given by the map

𝑣 ↦ 𝜌(𝑣) ∶=

(

1
√

2
⟨𝑣𝑖, 𝑣𝑖⟩, ⟨𝑣𝑖, 𝑣𝑗⟩, det

(

𝑣𝑘1 , 𝑣𝑘2 ,… , 𝑣𝑘𝑚
)

)

,

here 𝑖 < 𝑗, 𝑘1 < 𝑘2 < ⋯ < 𝑘𝑚 with 𝑖, 𝑗, 𝑘𝑖 ∈ {1, 2,… , 𝑘 − 1}, and
⟨𝑣𝑖, 𝑣𝑗⟩ stands for the usual scalar product of 𝑣𝑖 and 𝑣𝑗 .

It is worth noting that in the notation of [24] 𝜌(𝑣) = (𝑣𝑡𝑣, (𝛬𝑚(𝑣))𝑡)
𝑚
being 𝛬 (𝑣) the 𝑚th exterior power.
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Main Theorem. For any positive kernel 𝐾 ∶ R𝑁 × R𝑁 → R on R𝑁 , the
map

𝐾 ∶ 𝛴𝑘
𝑛 × 𝛴𝑘

𝑚 → R, ([𝑥], [𝑦]) ↦ 𝐾([𝑥], [𝑦]) ∶= 𝐾(𝜌(𝑥), 𝜌(𝑦))

is a positive definite kernel on 𝛴𝑘
𝑚 and it is independent on the particular

choose of 𝑥 and 𝑦 such that 𝜋(𝑥) = [𝑥] and 𝜋(𝑦) = [𝑦]. In particular,

𝐾([𝑥], [𝑦]) = 𝑒−𝛾‖𝜌(𝑥)−𝜌(𝑦)‖
2
, (12)

is a positive definite kernel on 𝛴𝑘
𝑚 for any 𝛾 > 0.

In this paper, we focus on the Gaussian kernel because it is the
generalization of the kernel introduced in [16] for planar shapes and,
as is well known, it provides the best results in practice. A great list
of other positive definite kernels on 𝛴𝑘

𝑚 could be defined because, as
indicated before, it is straightforward to find positive definite kernels
in R𝑁 . Some examples include: 𝐾([𝑥], [𝑦]) = 𝜌(𝑥)𝑇 𝜌(𝑦), 𝐾([𝑥], [𝑦]) =
(

𝜌(𝑥)𝑇 𝜌(𝑦) + 𝑟
)𝑚, 𝑟 ≥ 0, 𝑛 ≥ 1 and 𝐾([𝑥], [𝑦]) = 𝑒−𝛾‖𝜌(𝑥)−𝑖𝜌(𝑦)‖, 𝛾 > 0.

Before proving the Main Theorem, we will deduce from it the
following consequence for the particular case of 𝑚 = 2.

Corollary 8. In the Kendall space of planar shapes 𝛴𝑘
2 , our kernel

𝐾 ∶ 𝛴𝑘
2 × 𝛴𝑘

2 → R, ([𝑥], [𝑦]) ↦ 𝐾([𝑥], [𝑦]) ∶= 𝑒−𝛾‖𝜌(𝑥)−𝜌(𝑦)‖
2

coincides with 𝐾𝑃 .

Proof. As we have explained in Section 2, for 𝑚 = 2, the pre-shape
space is a (2𝑘 − 3)-dimensional sphere and 𝛴𝑘

2 = 𝑆2
𝑘∕𝑆𝑂(2). Moreover

𝛴𝑘
2 , when equipped with the quotient metric, is a isometric smooth

manifold to CP𝑘−2 equipped with the Fubini–Study metric (up to a scale
factor).

Let 𝑣,𝑤 ∈ R2(𝑘−1), then,

𝑣 =
(

𝑣11 ⋯ 𝑣1𝑘−1
𝑣12 ⋯ 𝑣2𝑘−1

)

, 𝑤 =

(

𝑤1
1 ⋯ 𝑤1

𝑘−1

𝑤1
2 ⋯ 𝑤2

𝑘−1.

)

where, 𝑣𝑖 = (𝑣1𝑖 , 𝑣
2
𝑖 ), 𝑤𝑖 = (𝑤1

𝑖 , 𝑤
2
𝑖 ), 𝑖 = 1,… , 𝑘 − 1.

If we consider the elements 𝑧1 and 𝑧2 in the pre-shape space
obtained by expressing 𝑣 and 𝑤 using the following complex notation:

𝑧1 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑣11 + 𝐢𝑣12
𝑣12 + 𝐢𝑣22

⋯
𝑣1𝑘−1 + 𝐢𝑣2𝑘−1

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑧2 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑤1
1 + 𝐢𝑤1

2

𝑤1
2 + 𝐢𝑤2

2
⋯

𝑤1
𝑘−1 + 𝐢𝑤2

𝑘−1

⎞

⎟

⎟

⎟

⎟

⎠

,

the Projection distance between their corresponding elements [𝑧1], [𝑧2]
in CP𝑘−2 is computed as (3):

𝑑𝑃 ([𝑧1], [𝑧2]) =
1
√

2
‖𝑧1𝑧

∗
1 − 𝑧2𝑧

∗
2‖𝐹 .

Now it is easy to check that

𝜌(𝑣) − 𝜌(𝑤)‖2 = 1
√

2
‖𝑧1𝑧

∗
1 − 𝑧2𝑧

∗
2‖𝐹 ,

and, therefore,

𝐾([𝑣], [𝑤]) = 𝐾𝑃 ([𝑧1], [𝑧2]). □

. Proof of the Main Theorem

In this section we are proving the Main Theorem. More precisely,
n this section we will state and prove Corollary 12 and Theorem 13.
orollary 12 implies that the map 𝑖 ∶ 𝛴𝑘

𝑛 → R𝑁 does not depend on the
hoice of representant of [𝑥]. Namely, if 𝜋(𝑥) = 𝜋(𝑦) = [𝑥],

𝑖([𝑥]) = 𝜌(𝑥) = 𝜌(𝑦).

and moreover that 𝑖 ∶ 𝛴𝑘
𝑚 → R𝑁 is an injective map. Namely, [𝑥] = [𝑦]

if and only if 𝑖([𝑥]) = 𝑖([𝑦]). Finally, we will state and we will prove
4

Theorem 13 which implies our Main Theorem.
5.1. Orbit space and invariants

Given 𝑥 ∈ 𝑆𝑘
𝑚, the orbit space 𝑂𝑥 ⊂ 𝑆𝑘

𝑚 of the group 𝑆𝑂(𝑚) acting
n 𝑆𝑘

𝑚 is given by

𝑥 ∶= {𝑀 𝑥 ∶ 𝑀 ∈ 𝑆𝑂(𝑚)}.

bviously, 𝑦 ∈ 𝑂𝑥, if and only if, 𝜋(𝑥) = 𝜋(𝑦).
An invariant of 𝑆𝑂(𝑚) is a polynomial 𝑝 ∶ R𝑚(𝑘−1) → R such that for

ny 𝐴 ∈ 𝑆𝑂(𝑚)

(𝑣) = 𝑝(𝐴𝑣).

he set of invariant polynomials of 𝑆𝑂(𝑚) will be denoted by
[R𝑚(𝑘−1)]𝑆𝑂(𝑚). An important tool in this setting is the following

heorem.

heorem 9 (See [25], For Instance). The invariants of 𝑆𝑂(𝑚) separate the
rbit space of 𝑆𝑂(𝑚) acting on R𝑚(𝑘−1).

The meaning of the above theorem is that 𝑦 ∈ 𝑂𝑥 (or equivalently,
(𝑥) = 𝜋(𝑦)) if and only if,

(𝑥) = 𝑝(𝑦)

or any invariant 𝑝 ∈ R[R𝑚(𝑘−1)]𝑆𝑂(𝑚). The space of invariant poly-
omials R[R𝑚(𝑘−1)]𝑆𝑂(𝑚) is finitely generated, and a generating set of
[R𝑚(𝑘−1)]𝑆𝑂(𝑚) made of homogeneous polynomials can be found in the

ollowing way:

heorem 10. Let 𝑧 be a (𝑘−1)×𝑚 pre-shape, 𝑧 ∈ R𝑚(𝑘−1) and 𝑣 = 𝑧𝑡 with
he following collection of column vectors

= [𝑣1 𝑣2 … 𝑣𝑘−1] with 𝑣𝑖 ∈ R𝑚.

iven the action of 𝑀 ∈ 𝑆𝑂(𝑚) on R𝑚(𝑘−1) defined by

↦ 𝑀𝑣 ∶= [𝑀𝑣1 𝑀𝑣2 … 𝑀𝑣𝑘−1]

generating set of R[R𝑚(𝑘−1)]𝑆𝑂(𝑚) can be obtained as

𝑝𝑖,𝑗 , 𝑞𝑘1 ,…,𝑘𝑚}

here the polynomials 𝑝, 𝑞 are given by

𝑖,𝑗 (𝑣) = ⟨𝑣𝑖, 𝑣𝑗⟩

𝑘1 ,𝑘2 ,…,𝑘𝑚 (𝑣) = det
(

𝑣𝑘1 , 𝑣𝑘2 ,… , 𝑣𝑘𝑚
)

here ⟨𝑣𝑖, 𝑣𝑗⟩ stands for the usual scalar product of 𝑣𝑖 and 𝑣𝑗 .

emark 11. Since

𝑖,𝑗 (𝑣) = ⟨𝑣𝑖, 𝑣𝑗⟩ = ⟨𝑣𝑗 , 𝑣𝑖⟩ = 𝑝𝑗,𝑖(𝑣)

or any 𝑖, 𝑗 = 1,… , 𝑘 − 1, we only need 𝑘(𝑘−1)
2 of such invariants 𝑝.

oreover, due to the properties of the determinant, we only need
𝑘 − 1
𝑚

)

of the 𝑞 invariants. Hence we can give a generating setting

f invariant polynomials of 𝑆𝑂(𝑚) with 𝑘(𝑘−1)
2 +

(

𝑘 − 1
𝑚

)

invariants.

Corollary 12. Given 𝑥, 𝑦 ∈ 𝑆𝑘
𝑚 then 𝜋(𝑥) = 𝜋(𝑦), if and only if,

𝑝𝑖,𝑗 (𝑥) = 𝑝𝑖,𝑗 (𝑦), 𝑞𝑘1 ,…,𝑘𝑚 (𝑥) = 𝑞𝑘1 ,…,𝑘𝑚 (𝑦)

for any 𝑖, 𝑗, 𝑘𝑖 from 1 to 𝑘 − 1.

5.2. Embedding the shape space in an Euclidean space

By using the invariant polynomials, we can provide an injective map

𝑖 ∶ 𝛴𝑘 → R𝑁

𝑚
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i

with 𝑁 = 𝑘(𝑘−1)
2 +

(

𝑘 − 1
𝑛

)

, via the generating set of invariant polyno-

mials, we will define the map

𝜌 ∶ 𝑆3
𝑘 → R𝑁 , 𝑥 ↦ 𝜌(𝑥) ∶=

(

𝑝𝑖,𝑗 (𝑥), 𝑞𝑘1 ,…,𝑘𝑚 (𝑥)
)

.

Since the invariant polynomials are fiber invariant, i.e., if 𝜋(𝑥) = 𝜋(𝑦)
then 𝑝(𝑥) = 𝑝(𝑦) for any invariant polynomial, the following map

𝑖([𝑥]) =
(

𝑝𝑖,𝑗 (𝑥), 𝑞𝑘1 ,…,𝑘𝑚 (𝑥)
)

is well-defined, and any 𝑥 can be used such that 𝜋(𝑦) = [𝑥] (𝑦 ∈
𝜋−1([𝑥])). Moreover, the following diagram

𝑆𝑚
𝑘 R𝑁

𝛴𝑘
𝑚

𝜌

𝜋 𝑖

is a commutative diagram, and, furthermore, the map 𝑖 defined above
s an injective map. Effectively, if 𝑖([𝑥]) = 𝑖([𝑦]), then 𝜌(𝑥) = 𝜌(𝑦) for

any 𝑋, 𝑌 such that 𝜋(𝑥) = [𝑥] and 𝜋(𝑦) = [𝑦], but since 𝜌(𝑥) = 𝜌(𝑦), then
𝑝(𝑥) = 𝑝(𝑦) for any invariant polynomial, hence [𝑥] = 𝜋(𝑥) = 𝜋(𝑦) = [𝑦].

5.3. Embedding the shape space in an RKHS Hilbert space

From the injective map 𝑖 ∶ 𝛴𝑘
𝑚 → R𝑁 described above, we have the

following results.

Theorem 13. Let 𝐾 ∶ R𝑁 × R𝑁 → R be a positive definite kernel. Then,

𝐾 ∶ 𝛴𝑘
𝑚 × 𝛴𝑘

𝑚 → R, ([𝑥], [𝑦]) ↦ 𝐾([𝑥], [𝑦]) ∶= 𝐾(𝑖([𝑥]), 𝑖([𝑦]))

is a positive definite kernel on 𝛴𝑘
𝑚.

Proof. We need to check that 𝐾 is symmetric (i.e., 𝐾([𝑥], [𝑦]) =
𝐾([𝑦], [𝑥])) but this is true because 𝐾 is symmetric and hence

𝐾([𝑥], [𝑦]) = 𝐾(𝑖([𝑥]), 𝑖([𝑦])) = 𝐾(𝑖([𝑦]), 𝑖([𝑥])) = 𝐾([𝑦], [𝑥]).

Moreover, we need to prove that
𝑙

∑

𝑖,𝑗=1
𝑐𝑖𝑐𝑗𝐾([𝑥]𝑖, [𝑥]𝑗 ) =

𝑙
∑

𝑖,𝑗=1
𝑐𝑖𝑐𝑗𝐾(𝑖([𝑥]𝑖), 𝑖([𝑥]𝑗 )) ≥ 0

for all 𝑙 ∈ N, {[𝑥]1,… , [𝑥]𝑙} ⊂ 𝛴𝑘
𝑚 and {𝑐𝑎,… , 𝑐𝑙} ⊂ R. But this is true

because 𝐾 is positive definite. □

Once the main theorem has been proven, from Theorem 6, since a
positive kernel has been defined in 𝛴𝑘

𝑚, there is a map (Kolmogorov
decomposition):

𝜑 ∶ 𝛴𝑘
𝑚 ⟶ 𝐻,

such that:

𝐾([𝑥], [𝑦]) = ⟨𝜑([𝑥]), 𝜑([𝑦])⟩𝐻 . (13)

In the machine learning literature, this map is called the feature map
and allows us to embed our data in the RKHS 𝐻 associated with the
kernel 𝐾. The feature map is not unique, but the RKHS 𝐻 of functions
associated with 𝐾 is. The most natural choice of 𝜑 is:

𝛩 ∶ 𝛴𝑘
𝑚 ⟶ 𝐻

[𝑥] ↦ 𝐾(,̇ [𝑥]), (14)

and it is called the canonical feature map, or the Aronszajn map. The
proof of Theorem 6 of Section 3 states how the RKHS 𝐻 associated with
𝐾 is built. This result enables us to operate in a high-dimensional space
without ever computing the coordinates of the data in that space, using
methods that simply need to compute the inner products of all pairs of
data. These methods include support vector machine, kernel k-means,
and kernel PCA.
5

6. Applications

6.1. Experimental data sets

In order to illustrate the new framework proposed in this paper, two
data sets will be used: a simulated data set and a real data set.

In order to obtain our simulated data set, we generate eight figures
of a house with different shapes. Configurations 𝑥1,… , 𝑥8 are described
by 𝑘 = 25 landmarks. Fig. 1 shows the landmarks of these eight objects.

Then, random geometric objects are defined using a multivariate
normal distribution with 3𝑘-dimensional mean vector 𝑥𝑖, 𝑖 = 1,… , 8 and
a 3𝑘 × 3𝑘 covariance matrix 𝛴 = 0.05𝐼𝑘×3, i.e.:

vec(𝑥𝑗𝑖|𝑥𝑖) ∼ 𝑁3𝑘(vec(𝑥𝑖), 𝛴).

This simulated study is the same as the one carried out in [26],
where more details about the probability distribution of the shape of
𝑥𝑗𝑖 can be found.

Random samples of size 50, each with mean 𝑥𝑖 𝑖 = 1,… , 8, are
obtained, resulting in a total random sample of size 𝑛 = 400 (see Fig. 2).

We chose this dataset because it is easy to simulate, its probability
distribution is well-established, and the resulting shapes have few
landmarks, which allows tests to be carried out in a faster time and
scale. Furthermore, using simulated data gives us greater control over
the testing environment, enabling comprehensive and detailed testing
in a controlled setting.

The second data set corresponds to the example in Section 1.4.3
of [1]. It consists of seven 3D anatomical landmarks located on the
cranium of 9 males and 9 females, random sampled, of a specie of
macaque (Macaca fascicularis). The seven landmarks are: 1, prosthion;
7, opisthion; 10, bregam; 12, nasion; 15, asterion; 16, midpoint of
zyg/tems suture; and 17, interfrontomalare. An artist’s impression is
given in Fig. 3. We will use this data set to classify a new observation
as male or female. The interest of the original study conducted by Paul
O’Higgins [1] was to investigate if there are differences between sexes.

This is a very popular data set in the statistical shape analysis
literature which has been used to illustrate and test many techniques
such as geodesic PCA [27], clustering algorithms [28] and estimation
of missing landmarks [29]. The data set is included in the R package
shapes [21]. Fig. 4(a) and (b) shows the seven landmarks from a male
and a female, respectively.

In both cases, we are faced with a problem of supervised classifica-
tion on 3D shape spaces based on landmarks, and we propose to apply
the support vector machine algorithm to solve both of them.

6.2. The support vector machine algorithm

The support vector machine (SVM) is one of the so-called kernel
methods in the statistical learning literature [30]. As with all of them,
it is based on the kernel trick that consists of embedding original data
in the feature space 𝐻𝐾 .

Given a training data set with 𝑥1,… , 𝑥𝑛 configuration matrices and
𝑦𝑖 ∈ {−1, 1} associated labels, the fundamental idea of the binary SVM
classification method is to find the hyperplane

𝑤 ⋅ 𝜑(𝑥) + 𝑏 = 0,

that separates the two classes such that the margin is maximized in
the feature space 𝐻𝐾 . The margin is defined as the distance between
the hyperplane and the closest data points from each class. These data
points are called support vectors, and the optimal hyperplane can be
found by solving the dual optimization problem:

𝚖𝚊𝚡𝚒𝚖𝚒𝚣𝚎 𝑓 (𝑐1,… , 𝑐𝑛) =
𝑛
∑

𝑐𝑖 −
1
2

𝑛
∑

𝑛
∑

𝑦𝑖𝑐𝑖𝐾(𝑥𝑖, 𝑥𝑗 )𝑦𝑗𝑐𝑗 (15)

𝑖=1 𝑖=1 𝑗=1
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Fig. 1. Mean shapes.

Fig. 2. (a) A simulated house and (b) the corresponding mean house.
6

Fig. 3. A 3D macaque skull: (a) side view; (b) frontal view; and (c) bottom view. A
total of 26 landmarks are displayed and a subset of 7 was taken for the analysis.
Source: Taken from [1].

𝚜𝚞𝚋𝚓𝚎𝚌𝚝 𝚝𝚘∶
𝑛
∑

𝑖=1
𝑐𝑖𝑦𝑖 = 0,

0 ≤ 𝑐𝑖 −
1

2𝑛𝐶
∀𝑖,

with

𝑤 =
𝑛
∑

𝑖=1
𝑐𝑖𝑦𝑖𝜑(𝑥𝑖)

and

𝑏 =
𝑛
∑

𝑖=𝑗
𝑐𝑖𝑦𝑖𝑘(𝑥𝑖, 𝑥𝑗 ), (16)

for some 𝑖 so that 𝜑(𝑥𝑖) lies on the boundary of the margin. The
parameter 𝐶 > 0 determines the trade-off between increasing the
margin size and ensuring that the 𝜑(𝑥𝑖) lie on the correct side of the
margin.

So, the SVM finds the optimal hyperplane in the feature space and
uses it to make predictions on new data points, getting the position of
these data points with respect to the hyperplane obtained.

SVM represents an extension of the maximum-margin hyperplane
linear classifier algorithm developed by Vapnik [31]. It is one of the
most robust prediction methods and has been widely applied to solve
problems in many different scientific disciplines.

A multiclass classification problem is usually solved by breaking it
down into multiple binary classification problems.

6.3. Algorithm

To classify a new shape using our proposed procedure, the method-
ology explained in Section 2 is used to obtain a representant of the
shape of each configuration matrix of our data set. Once the represen-
tant is obtained, the Gaussian Kernel stated in Eq. (12) is applied to
each pair of representants. Finally, the SVM algorithm is applied.

This procedure is given in detail in Algorithm 1.

Algorithm 1.

1 𝑥1,… , 𝑥𝑛 training set of configuration matrices, 𝑦𝑖 ∈ {−1, 1}
associated binary labels, 𝑋 configuration matrix to be classified
0
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Fig. 4. The skull data with seven landmarks from a male macaque (a) and a female macaque (b).
Table 1
(a) Kernel support vector machine results for the simulated data set of houses with
𝐶 = 500 using the full data set as training set. (b) results of the 𝑘-NN algorithm for
different 𝑘-values.

Method Training Training Training Training
Accuracy Precision Recall F1 score

SVM (a) 100% 100% 100% 100%
𝑘NN (b) 𝑘 = 3 89.00% 89.00% 89.00% 88.98%

𝑘 = 6 89.00% 89.06% 89.00% 88.89%
𝑘 = 13 89.25% 89.37% 89.25% 89.06%
𝑘 = 17 89.75% 89.82% 89.75% 88.66%

Table 2
Kernel support vector machine leave-one-out cross-validation results for the simulated
data set of houses with 𝐶 = 500.

Method CV Accuracy CV Precision CV Recall CV F1 score

𝛾 = 0.001 89.00% 89.00% 89.00% 89.00%
𝛾 = 0.005 88.00% 88.00% 88.00% 88.00%
𝛾 = 0.01 87.75% 87.75% 87.75% 87.75%
𝛾 = 0.015 87.25% 87.25% 87.25% 87.25%

2 For 𝑖 = 1 to 𝑛

Compute 𝑧𝑖 using Eq. (1).
Vectorize 𝑧𝑖, 𝑣𝑖 = 𝑣𝑒𝑐(𝑧𝑖)
Calculate the vector 𝜌(𝑣𝑖) using Eq. (11)

3 For 𝑖 = 1,… , 𝑛. For 𝑗 = 𝑖,… , 𝑛

Calculate 𝐾(𝑣𝑖, 𝑣𝑗 ) using Eq. (12)

4 Apply SVM algorithm to obtain 𝑐1,… 𝑐𝑛 i.e. to solve the optimiza-
tion problem Eq. (15) and calculate 𝑏 with Eq. (16)

5 Calculate 𝑑0 =
∑𝑛

𝑖=1 𝑐𝑖𝑦𝑖𝑘(𝑥𝑖, 𝑥0) − 𝑏
6 If 𝑠𝑖𝑔𝑛(𝑑0) < 0 𝑦0 = −1, else 𝑦0 = 1

For a multiclass classification problem steps 4, 5 and 6 are repeated
for all possible binary classification problems.

6.4. Results

The previous algorithm (Algorithm 1), has been applied to our data
sets. The preshapes 𝑧𝑖 were directly obtained using the R package
shapes [21] and the R package kernelab [32] was used to apply the
SVM algorithm.

The most popular evaluation metrics have been used to evaluate
our procedure: Accuracy, Precision, Recall and F1 score. Accuracy is
defined as the ratio of the number of correct predictions to the total
number of data. For a binary classifier system, Precision is the number
of true positives divided by the number of total positive predictions.
Recall is the number of true positives divided by the true positive and
false negative. In other words, Accuracy represents the proportion of
correct predictions overall, while precision measures the proportion
of positive predictions that are truly positive, and recall measures the
proportion of true positives that have been correctly identified by the
model. The F1 score is the harmonic mean of Precision and Recall,
7

i.e. maximizing the F1 score implies simultaneously maximizing Pre-
cision and Recall. These metric are extended to he case of a multiclass
classification problem by decomposing it into a series of binary one-
versus-remain problems and then averaging. All of them are used for
the full data set (Training Accuracy, Training Precision, Training Recall
and Training F1) and for a leave-one-out cross-validation study (CV
Accuracy, CV Precision, CV Recall and CV F1).

The results for the simulated data set of houses (Fig. 1) can be seen
in Tables 1 and 2 and the results for the macaque data set (Fig. 4) can
be seen in Tables 4 and 5. Different values of parameter 𝛾 have been
used.

In both cases, we have obtained excellent results, a perfect classifi-
cation with training data has been obtained for all 𝛾-values. Training
Accuracy, Training Precision, Training Recall and Training F1 are all
100%.

In the case of the cross validation study, the results range with
gamma.

For the macaque data set, the leave-one-out cross-validation accu-
racy increases with 𝛾, and for 𝛾 ≥ 0.2 the accuracy is 1.

However, for the simulated houses dataset, the leave-one-out cross-
validation accuracy decreases as 𝛾 increases, and the variation of errors
with gamma is much smaller. Although perfect classification is not
achieved, the values of all metrics are quite high.

In both data sets, the values of Accuracy, Precision, and Recall
are always very similar. This indicates that our procedure is able to
accurately predict all classes most of the time

The results shown in Tables 1 and 4 allow us to compare the
performance of our method and the 𝑘-NN algorithm. Since the 𝑘-NN
algorithm calculates distances between all observations and does not
specify a model, there is no process of parameter estimation involved.
Therefore, proposing a leave-one-out cross-validation analysis in this
scenario would be meaningless. We compute the Riemann distance
between all pairs of points in both data sets [21] and then use these
distance matrices to apply the 𝑘-NN algorithm for different values of 𝑘.

The 𝑘-NN algorithm does not achieve perfect classification with
either of the two datasets (Tables 1 and 4). In both cases, the percentage
of correct classifications with the 𝑘-NN algorithm are lower than that
achieved with the SVM method. In the first case (Table 1), we obtain
the best result for 𝑘 = 17, while in the second database (Table 4) the
best classification is obtained for 𝑘 = 6.

Additionally, we apply the PointNet algorithm on our data sets.
PointNet is a convolutional neural network specifically designed to
handle point clouds, enabling various applications such as object clas-
sification, part segmentation, and scene semantic parsing.

To execute the algorithm, an implementation of ‘‘PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation’’ [33]
using PyTorch has been adapted to our databases. The original code is
available on [34].

In our simulated database, we have 400 house simulations with
landmarks, distributed across 8 distinct groups (50 simulations per
group). For the training set, we randomly selected 35 houses from each
group, leaving the remaining 120 houses (15 × 8) for the test set. After
applying the PointNet algorithm, we obtained the normalized confusion
matrix, displayed in Table 3. This matrix presents the predicted labels
for the observations in the test set, alongside their true labels, and the
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Table 3
Normalized confusion matrix for the simulated data set.

True∕prediction H1 H2 H3 H4 H5 H6 H7 H8

H1 0.20 0.27 0.07 0.20 0.20 0 0 0.07
H2 0.13 0.47 0.07 0.27 0.07 0 0 0
H3 0.20 0.40 0.07 0.07 0.07 0.20 0 0
H4 0.07 0.07 0.40 0.27 0.20 0 0 0
H5 0 0.07 0.80 0 0.13 0 0 0
H6 0 0 0.73 0 0.27 0 0 0
H7 0 0 0.60 0.33 0.07 0 0 0
H8 0 0 0 1 0 0 0 0

Table 4
(a) Kernel support vector machine results for the macaque data set with 𝐶 = 500 using
the full data set as training set. (b) Results of the 𝑘-NN algorithm for different 𝑘-values

Method Training Training Training Training
Method Accuracy Precision Recall F1 score

SVM (a) 100% 100% 100% 100%
𝑘NN (b) 𝑘 = 5 0.67% 0.67% 0.66% 0.66%

𝑘 = 6 77.78% 84.61% 77.77% 76.62%
𝑘 = 7 72.22% 75.00% 72.22% 71.43%

Table 5
Kernel support vector machine leave-one-out cross-validation results for the macaque
data set with 𝐶 = 500 with a one-leave.

CV Accuracy CV Precision CV Recall CV F1 score

𝛾 = 0.05 50.0000% 50.0000% 44.4444% 47.0588%
𝛾 = 0.1 72.2222% 70.0000% 77.7778% 73.6842%
𝛾 = 0.15 88.8888% 88.8888% 88.8888% 88.8888%
𝛾 = 0.2 100% 100% 100% 100%

Table 6
Normalized confusion matrix for the macaque data set.

True∕prediction f m

f 1 0
m 1 0

corresponding percentage of test observations. However, the percent-
age of correct classifications is relatively low in this case. In fact, the
values of the metrics that we are evaluating in the different cases are
now: Accuracy = 17.50%, Precision = 27.11%, Recall= 17.5% and F1
score = 21.15%.

The equivalent, in this case, of the one-leave-out CV method would
be to train the neural network with all the data except one point
and predict the class of that value using the trained network. This
procedure would be iteratively repeated for all points in the dataset.
We have applied this ‘‘one-leave-out’’ cross validation for the PointNET
algorithm on the macaque data set. The normalized confusion matrix
can be found in Table 6, and as can be seen, the algorithm cannot
distinguish between males and females. Due to the limited number of
observations and landmarks, the PointNET algorithm is ineffective in
this case.

The poor classification results obtained by the PointNet algorithm in
both data sets can be attributed to the fact that like other convolutional
neural network algorithms, it requires a large number of training
observations and a high number of landmarks per object to train the
model and recognize the distinctive patterns of objects in each class.

In applications where obtaining a large number of observations
or a high density of landmarks per observation is impossible, the
PointNet algorithm tends to perform worse compared to our SVM-based
algorithm.

In general, we find these results to be very satisfactory and promis-
ing.

7. Discussion

As is well known, the Kendall planar shape space is the complex
projective space, a relatively simple and familiar Riemannian manifold.
8

Until now, the projection metric has been widely used to define a
positive definite Gaussian kernel (𝐾𝑃 ) on this manifold to embed this
space in a high-dimensional reproducing kernel Hilbert space, where
it is possible to utilize algorithms developed for linear spaces. Alterna-
tively, using the popular full Procrustes distance on the 2-D Kendall’s
shape manifold, a Gaussian kernel (𝐾𝐹𝑃 ) can also be defined for this
embedding. Looking for a relationship between them, in Proposition 7
we have proven the equivalence of both kernels, i.e., that 𝐾𝐹𝑃 = 𝐾𝑃 .

For 𝑚 > 2, the 𝑚-D Kendall Shape space does not correspond to the
omplex projective space but to manifolds with rather more complex
tructures. As far as we know, this complexity has meant that the
roblem of embedding these spaces in an RKHS has remained as an
nsolved problem until now. The main contribution of this paper has
een to define a Gaussian kernel in the 𝑚-D Kendall Shape space that
oincides with 𝐾𝐹𝑃 = 𝐾𝑃 for 𝑚 = 2. This result enables us to operate
n a high-dimensional space without ever computing the coordinates
f the data in that space, using methods that simply need to compute
he inner products of all pairs of data. These methods include support
ector machine, kernel k-means, and kernel PCA. As an illustration, two
roblems of supervised classification have been proposed in Section 6.
he support vector machine algorithm has been applied to solve both of
hem, achieving very satisfactory and promising results. Four popular
etrics have been used for testing our procedure showing a high

lassification ability.
A possible weakness of our method is that if the shapes to be

lassified are contained in an image or video, a preprocessing step is
equired. However, this can also be considered a strength as it enables
ur method to be applicable in various other situations. In addition,
ur method takes into account the curvature of the space, and achieves
ood results despite a relatively small number of objects and landmarks.

The pattern recognition audience can benefit from this work in
wo ways. First, from a practical point of view, it can be applied to
imilar pattern classification tasks in different contexts. Second, from
methodological point of view, the proposed Gaussian kernel enables

he exploration and development of new kernel-based methodologies in
hape spaces for other types of pattern recognition than classification.
n our opinion, this represents a very interesting and promising avenue
or future research.
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