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The Constant of Interpolation in Bloch
Type Spaces
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Abstract. It is known that there exists a constant 0 < A; < 1 such
that any Aj-separated sequence for the pseudohyperbolic distance in
the open unit disk D of C is interpolating for the classical Bloch space
B. We will prove that 0.8114 < A; < 0.9785 and we will also generalize
this result for Bloch type spaces By, for v,(z) = (1—|2|?)”. In particular,
we will provide a construction to calculate an estimate of the lower and
upper bounds for the corresponding constant of separation A, for these
spaces. We also prove that A, tends to 1 when p — oo.
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1. Introduction and Background

Let D be the open unit disk of the complex plane C. Recall that the classical
Bloch space B is given by the space of analytic functions f : D — C such that
I flls = sup.ep(l — |2*)|f/(2)] < co. The study of interpolating sequences
for the classical Bloch space B was started by Attele in [1] and Madigan and
Matheson in [9]. The study of interpolating sequences for Bloch type spaces
B, was introduced in [10], where the weight 1—|z|? was substituted by a more
general weight v(z). In this work, we will deal with weights v,(z) = (1—|2|?)P
for 1 <p < .

Recall that a sequence (z,) C D is said to be an interpolating sequence
for B, if for any (a,) € £ there exists f € B, such that v(z,)f (z,) =
a, for any n € N. The interpolating operator T' : B, — { is defined by
T(f) = (v(zn)f'(2n)). Notice that T is clearly linear and (z,) is interpolating
for B, if and only if T is surjective or, equivalently, if there exists a mapping
S : sy — B, such that T oS = Idy_ . Given ¢ > 0, the sequence (z,) is said
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to be d-separated (or simply separated) if p(zy, z;) > ¢ for k # j, where the
pseudohyperbolic distance p is defined by:

Z—w

p(z,w) = for any z,w € D.

1-—Zzw

It is well known that p(z,w) = |¢,(w)| where ¢, is the automorphism from

D onto itself given by ¢, (w) = (2 — w)/(1 — Zw). For any z € D, we have

that p(¢.(w1),¢.(w2)) = plwy, ws), wi,ws € D. Tt is also well known that:
(1= [z = wl?)

and these facts about p will be used in the sequel. The constant of separation
of (z,) is given by S := inf,,+; p(2p, 21). It is well known that if (z,,) C D
is interpolating, then it is separated (see for instance Corollary 3 in [1]). On
the other side, Attele (see Proposition 4 in [1]) and Madigan and Matheson
(see Proposition 1 in [9]) proved that there exists a universal constant Aq
such that any Aj-separated sequence in D is interpolating for B. Making
calculations from these works, it is not difficult to make an upper estimate
for this constant. Nevertheless, this estimate is higher than 0.99. In Theorem
5 in [4], the authors improved this upper bound until 0.9882.

In this work, we will improve the upper estimate and we will calculate
a lower estimate for Ay, proving that 0.8114 < A; < 0.9785. Furthermore,
we will generalize the result for Bloch type spaces B, : we will prove that
sufficiently separated sequences on the open unit disk are interpolating for
B,, and will provide bounds for the corresponding universal constants A,,.

2. Results

2.1. Lower Estimate

Let a > 1 and b > 0 and consider the sequence:

T(a,b) = {“m(b”m_i}m’nez. (2.1)

a™(bn +1i) +i

2 1
bloga < D’
This is based on the study of the positive density D% of the sequence (see
[11]). As Schuster observed [12], the constant of separation of T'(a, b) is given

by:
. fa—-1 b
S(a,b) —mln{w7w} .

Proposition 2.1. There exists a sequence (z,) C D which is 0-separated for
d = 0.811458 and (z,) is not interpolating for the Bloch space B. Hence,
Ay > 0.811458.

K. Seip proved that I'(a,b) is interpolating for B, if and only if

Proof. Consider the sequence I'(a,b) in (2.1). Take b:% for a > 1 and

b > 0. Then, we have bl%% = 1 so the sequence is not interpolating for 5 by
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the comments above. Notice that functions:
a—1 4
=1- an
a+1 a+1 MW W+4 bm)+4

are non-decreasing and non-increasing, respectively. Hence, the highest value
of S(a,b) will be got when:

a—1 b

a+1 - Vb2 +4

which is equivalent to:

9 1
=1 1 =
9(a) a—|—1 214

the function g(a) is clearly non-decreasing

and bearing in mind that b =

log a’
continuous with respect to a. Since lim, 1+ g(a) = —1 and lim,—, 1o g(a) =
1, there exists a unique a > 1 such that g(a) = 0. Indeed, a ~ 9.60773 and

b~ 2.77701, which yields:
a—1 b

S(a,b) —mln{a+ N

Hence, we have a sequence whose constant of separation is 0.811458 but fails

to be interpolating for 5. 0

We can easily generalize Proposition 2.1 to B, spaces for 1 < p < +oo
taking b = 2pm/log a and following the same pattern:

} ~ 0.811458.

Proposition 2.2. For any 1 < p < +00, there exist a > 1 and b > 0 such
that the sequence I'(a,b) is separated but fails to be interpolating for B,
particular, these values can be chosen such that the constant of separation
tends to 1 when p — o0.

For some particular p, it is a straightforward calculation to determine
the value of a and S(a,b) such that b = % which yields examples of more
and more separated sequences which are not interpolating for B,,,. For in-
stance:

p| a S(a,b)
119.60773|0.811458
2(19.7151]0.903452
3
4

31.707 10.938851
45.3776|0.956876

Remark 2.3. There are A,-separated sequences (z,) C D which fail to be
interpolating for B,, and A, — 1 when p — oc. To show it, we will prove
that S(a,b) — 1 when p — oco. Indeed, from:

12—14
a+1 b2 + 4

and since p — oo then b — oo so the right term tends to 1. In order to
get this, we need that the left term also tends to 1 which is only possible if
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a — oo (since b = 2pm/log a, we can take a bigger than p to get it and b also
tends to infinity). Hence, S(a,b) — 1 and we are done.

2.2. Upper Estimate

Given a € D and 0 < r < 1, the pseudohyperbolic open disks centered at a
and radius r are denoted by D,(a,r) = {z € D : p(z,a) < r}. A standard
calculation (see for instance [14]) shows that D,(a,r) is the euclidean disk

: 1—r2 3 1—|a?
with center T= 2]z ¢ and radius =

(a2’ The following lemma is just an

easy calculation:

Lemma 2.4. Let z€ D and 0 <r < 1. Ifw € D,(z,7) then:

1—72 9 9 4
— =P < (- ) < T

(1= o).

Proof. An easy calculation shows that w € D,(z,r) if and only if p(z, w)? <

r2 if and only if 1 —r? < 1 — p(z,w)? = 7(14‘21'2_)%1;2@'2)

to:

which is equivalent

1—r? ot
(1 =1z = [w?) 1 —w2
(1 —72)21 — wz|? - 1
(1= [z2)2(1 = [wf?)? 1 —wz[?
and since |1 —wz| > (1 — |z]), it follows that:

5 if and only if

4 - 1 - 1 S (1 —72)2]1 —wz|?
(=122 7 A=z~ L—wz]? ~ (1 - |2?)?(1 = [w]?)?
(1—r2)?( - |z])? (1—r?)? (1—r?)?

T PR (w2 T A EDRA - wP)? AL wf?)?

and we are done. Changing z with w and repeating the proof we obtain the
second inequality. O

Lemma 2.5. Let a #b € D, p(a,b) > 6 and consider:
)
ISV e
Then, D,(a,rs) N D,y(b,r5) = 0. In addition, if p(a,b) = 0 then the disks

D,(a,rs) and D,(b,r5) are externally tangent in the complex plane C so the
radius rs is optimal to separate both disks.

rs

Proof. 1t is an easy calculation that r;s is the solution of the equation:
2rs
1+1r2
If we Dy(a,rs) N D,(b,rs) then:

=0.

pla, w) + p(b, w) 2rs
b) < =
P < T a wplbw) < T+ 72
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where last inequality is clear since given any 0 < a < 1 the real function
(x 4+ a)/(1 + ax) is non-decreasing for 0 < z < 1. This is a contradiction, so
the disks are disjoint.

Now notice that z € D,(a,rs) N D,(b,rs) if and only if p(a,z) < rs
and p(b, z) < rs. Since p is invariant by automorphisms and ¢, (a) = 0, this
is equivalent to: p(0,9.(2)) < rs and p(pa(b), a(z)) < rs if and only if
©0a(2) € Dy(0,75) N D,y(pa(b),rs). Hence z belongs or not to D,(a,rs) and
D, (b,rs) if and only if ¢4(z) belongs or not to D,(0,7s) and D,(¢.(b),rs)
respectively. Notice that:

D,(0,7s) = D).|(0,r5) and

NN 1} 1 —[pa (D)2
D ((Pa(b),T5) =D < g LPa(b)» s

’ TN = rlea @™ 1= r3lea )
where D).| denotes the corresponding euclidean disks, so we will prove that
these disks are externally tangent. For this, it is sufficient to prove that that
the euclidean distance between both centers equals to the sum of both radius,
that is:

1- 12 Lo |
————|pu(b)| = rs + ———++57s if and only if
2@ PO T2 ga(0)

112 < 1—@&@?)
T pu(®)] = s (14 e
= 2@ P+ = 2O

_ . 2= r3lea®)” — lpa (D)
1= rlea(d)?

and bearing in mind that |, (b)| = p(a,b) = 0, this is equivalent to:
(1=r*)8 = 75(2 = 13la ) = lpa (D)) = 15(2 = (r3 +1)5?)

and dividing by 1+ 72 we have:

1—7“? 215
1+T§ _1+r§

2 2 2\ 2
and since 173 = /1 — 62 because ( 2rs ) + (1_”) = 1, the equality is

1+'r‘§ 1+r§ 1+r§
equivalent to:

V1 =625 =6 —rs6?

and dividing by ¢ and solving for r5 we obtain:

1-VI—8 4
9 14162

and we are done. O

rs =

The following result is an easy consequence of the mean value for com-
plex analytic functions f on D:
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Proposition 2.6. If f : D — C is analytic then for any a € D and 0 < r <1
we have:

uww—MWSIA()mww

w2

Proof. By Cauchy’s integral formula, we have for any 0 < s < 1 that
1 27 1 2T )
10)= 5= [ fsem)ao = 110 < 3= [ 1150
™ Jo 2
and using polar coordinates:

1
L e = 2j/=/'stse Jldods > 2£(0 |j/sds—wf 0.
wr D(0,r) wr

Applying this inequality to the function h := (f o ¢,)(¢})?, we obtain
as a consequence of the change of variable formula and the Cauchy-Riemman
equations that

|mwwm%ww$1&Mww

2

1
= flpa(z cp;zzdz:
a2 o VaDlch(a)
- L F()ldz = — F(2)]dz
7% Jou(D(0,r)) 72 I, (a,r)

and we are done.

The following results are well-known (see Theorem 1.7 in [8] or Lemma
3.10 in [14]). The measure A will denote the classical Borel measure defined
on C. O

Proposition 2.7. We have the following results:

a) Ifu> —1 and v € R such that v/2 is neither 0 nor a negative integer
then:

R KPR ACR S VIR NS N
/D 11— zw|v dA{w) = I(%)? Zm!F(m+u+2)|| '

b) For any 0 < x < 1 and s € R, s neither 0 nor a negative integer, we
have:

m=0

Proposition 2.8. Let p,q,r € R such thatp >0, p>r —2 > q;21 > —1 and
r—2>0. If (z,) C D is a separated sequence then:

> 1—|z,2)"(1 = |z]2)P
E(z)=sup{z( :1_;(Z|q+1| = }

zeD n—1

is bounded on D.
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Proof. Suppose that p(z,,zx) > d > 0 for n # k and consider the radius rs
given in Lemma 2.5. Fix z € D and define the function f,(w) := m,
which is holomorphic on D. Applying Proposition 2.6 and evaluating at z,
we have:

1—|2,2)2 1
Wl i b2 s 5 [ I e
Dy(zn,rs)

|1 —Zz,|t! s
By hypothesis D,(z,,75) N D,(2x,75) = 0 for n # k, so:
(oo} (oo}
e A=z (=[P 21p 1 2yr—2
pley = - LD oS (0

n=1

n=1

/ Ifz(w)ldU)>
D, (zn,Ts)

0 ’l“72
1 — - - 1— 2\r—2
[2/%) Z( T /D A Ifz(w)ldw>

IN

I e / (1 — Jw)r2
(1 —r2)r—2mr2 % Dp(emirs) |1 — Zw|ot!
A ey [0 wf2)—2
— (1—rd)r2mr? 1 — zw|at!
being the second inequality a consequence of Lemma 2.4. By Proposition 2.7
a), we have:

dw

B(2) < 472(1 —_\z|2)p aD(r —1) i L(m+ 2£1)? P
(L —r3)r=2mry T(LH)? — mll(m +7)

Therefore, for any z € D, we have that:

A2 (1 — [P (r — 2)T(r — 2)°

(L =) =2r} T(5H)2T(r - 2)

2
% Z F(m+%)2|zl2m
= mil'(m+7)

E(z) <

00 (m+f1;71)2 F(m+";—1)2 o
—|—mz::3(TTL—F?"—1)(m+r—2)mlr(m+r_2)| \ >

e Case r = 2. We obtain:

(1—|z|) 1 2 D(m+ 24y2
E(z) < 2 (q? 5 (2_: W*Q-Q)'ZP

Since 0 > 4+ then:
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and since the function I'(x) is non-decreasing for x > 1.462, we have for any
m > 3:
D(m+%1)? _ T(m)?® _T(m)

1
m!D(m) ~— m!T(m) m!  m

Liz|2m = —log(1 — ||?), we obtain:

and bearing in mind that > >°

m=1m

pl < W B o o 1)+ o)
2

where Pj(z) is a complex polynomial on |z|. Since (1 — |2]?)log(1 — |2]?) is
bounded on D, we are done.

oCaser;«éQ.Ifr—Zz%lthen:
g=1)2
(m+ 45=) -1
(m4+r—1)(m+r—-2) —

and since the function I'(x) is non-decreasing for x > 1.462, we have for any
m > 3:

T(m + 41)? < L(m+r—2)?
Fm+r—2) — T'(m+r—2)

=T'(m+r—-2).

So:
221 |22 (¢ = 2)T(r 2
PO e gy

— > F(T:LF+T72)|Z|2m ( ) |Z|O_F(1+T72)| ‘2
— m! (r—2) F( 2) 1T (r — 2)
2! ( ) O!F(r)F(r -2) 1T'(r+1)I(r—2)
L(452)? 4
o oo —2)

and since r — 2 > 0, by Proposition 2.7 b), we have:

2

il"(m+r—2)|z|2m_ 1
— m!T(r —2) (1= |22

Considering p > r — 2, we have:
— |z|2)P
APy _,
(1—]z[z)—=~
S0:
4r=2 —2)['(r —2)2
B < (r—2)T(r - 2)

Saoapmr e A ERTRGED)

where P5(|z|) is a polynomial depending on |z| so E(z) is uniformly bounded
for z € D. O

Hence, we obtain a well-known result about separated sequences:
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Corollary 2.9. If (z,) C D is a separated sequence then for every r > 1 we
have:

o0

Z(l — |zn])" < 0.

n=1

Proof. Taker > 1, p > 0such thatp >r—2 > q;—l > —1. Apply Proposition
2.8 evaluated at z = 0 and we are done. O

Our main result refines the Madigan and Matheson result to get an
upper estimate for Ay (see [9]). In addition, we generalize it for Bloch type
spaces B, and provide a procedure to estimate A, for any 1 < p < +o0.

Theorem 2.1. Let p > 1. There exists a constant 0 < A, < 1 such that if
(zn) C D is Ay-separated then it is interpolating for the Bloch space B,

Proof. Let p > 1 and consider 7,q such that p > r — 2 > % > —1 and
p+r=gq+1 Forany A = (\,,) € {, define:

Ty(z) :== ZM&%

= qzk (1 —7zg2)e

If z,, = 0 for any ko (there could only be one term because of the separability)
then substitute the corresponding ko-term of the previous series by Ay, z.
Notice that T is well-defined since the series is absolutely and uniformly
convergent on compact sets of D. To show this, set 1 := infyen{|2zn| | 2x # 0}.
Since (z) C D is separated it does not have accumulation points in D and
thus n > 0. Now for any |z| < s < 1, we have:

(1 —|z)" IIAHoo 1L &
NE |<Z|Ak| < qz el < oo

= Q|Zk| — |zkls) Pt

because of Corollary 2.9. Adding A;z for a possible z; = 0 does not affect to
the convergence.

Thus, T} is holomorphic for any A € fo and 75 (2) = > 7o A %,
which implies together with Proposition 2.8 that:

sup{(1 = |2 PIT(2) [} < 1|\ ]oe sup {Z (1= J2ef) (1 |2 >"} < o0,

2€D (k=1 |1 — Zgz[et?

so Ty € B,,. Consider T' : £ — B, given by T'(A) = T)(z). By the comments
above, it is clear that T is a well-defined linear bounded operator. Let L :
By, — lo given by L(f) = (f'(zn)(1 — |2n|*)?). We will prove that if A,
is close enough to 1, then the operator Lo T : ¢y, — { is invertible, so in
particular L is surjective. We have that:

o 1— 2\r 1— 2\p
An(1 = |z |?)FPat 4 Z /\k( 26]*)" (1 — |2 %)

k=1,k#n (1 = Zzn ot
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and since r + p = g + 1 therefore:

(LoT —Id,_)(\) = Z Dt 1 0 el 100 R (F(N)).

(1 — Zozn)i
k=1,k#n Zkzn)

n

Let ||A]|oo < 1 and consider & > 0 such that « < p,sop—a>r—2—«
and r—2— a>—1—ozandr 2—a, qH —a > 1—a > 0. Since p(zy, 2x) > A,
forn#kwehaveforany0§a<p

(1 — |2 (1 — |z )"
|]_ 7azn|2a

= (1= p*(2n,21))" < (1 - AD)°

and thus:

o0

F) =] 3 AL

. \atl
k=1 k#n (1 = Zpzp)1

O W N
‘1 —@ZH"“

oo

ca-ape 3 (SBDGCl

k=1,k#n 1= Zgzy|oti—2e

If we apply Proposition 2.6 to the function f,(z) = 0 L

Tmmmyiri-za At
By
1+,/1-A2

the point z = #z;, for k # n and taking r, = from Proposition 2.5

we obtain:
(1= Jz&[*)" (A = |z )P
‘1 _ﬁzn|q+l—2a
= [ fa () (1 = |22 (1 = 227272 (1 = [z )P
_ 2\p—a _ 2\r—2—«
(OolaPr g OolaPro,
o (2k,Tp

- mrl |1 — Z wlatl—2a

- (1 _ |Zn‘2)p—o¢ / 4r—2—a(1 _ ‘w|2)r—2—o¢
p(zkvrp

m"g ) (1-— rg)T*Q*aH — Zpw|1t1i—2e

< dw
the last inequality being a consequence of Lemma 2.4. Since the disks
D, (ri,rp) are disjoint, we obtain:

o0

s= 3 (1 — |22 (1 = |z [2)P

|1 _ Ezn|q+172a

k=1,k#n
47'—2—a(1 _ ‘zn|2)p—o¢ (1 _ ‘w|2)7‘—2—a q
w
WT%(I _ T}Q))T—Q—a D ‘1 _ %w|q+1—2a

where 7 — 2 — a and ¢ + 1 — 2 > 0. Bearing in mind Proposition 2.7 a) we
obtain:

o YT PP Al (r — 1 - ) i I'(m+ 2 — a)?

2 2m
2
T omrg(l—rg)rtme (- )2 m!l(m +r —a) e
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Therefore, for any z € D, we have that:
4201 |z )P —1—a) [ Tm+ S —a)?
S < > 20|
(L —rg)r=2ry T(GL —a)? \ 4= mID(m+7r—a)

(m+ L — a)? L(m+ % —a)? m
+Z 2 )‘Zn|2 ‘

(m4+r—1l—-a)(m+r—2—a)yml'(m+r—-2—«

m=3

Ifr—22q%landm23then:

(m+q;—1—a)2

<1
(m+r—1—a)m+r—2—a)

and for any m > 3, we also have:

T(m+ 45 — a)? - F(m+r—2—a)?
'm+r—2-—a) ~ T'm+r—2—aqa)

=I(m+r—2-a).

So:
S < 47—2—(1(1— |Zn‘2)p—a (’r—2_a)1—‘(’[’—2—a)
T (=)t F(ﬂl —a)2
2 1
L(m + %5~ — ) 2m m+7" 2-0)  om
. <Z mlT(m+r— | | ™"+ Z EM
m=0
- 472701 — |z, PP (1" -2 Q)F(r _9_ a)2
T (I—r2)r2mey2 T(4L — )2
2 atl )2
% Z F(m+ Oé) |Zn|2m
o ML (m 41 — T2 a)
F'm+r—2—0a) omn
ey Tt )
Calling:
3 F(m+ % —Oé)2 2m m+7“ Oé) 2m
" <W;m!r(m+ro¢)r(r2 Jzn] +;3m‘~2n|
we have:
Cim+r— —a) 2 I'r—2-a) o Lir—1-a) )
M= pm_Dlr=2-a) g Dr-1-a)
Z m!l(r —2 - a) 2l 0!F(7“—2—a)|z | 1!r(7~_2_a)|z |
_M‘Z oy T —a)
AT(r—2—a) " OI0(r — a)l(r —2 —«)
I(Z2 — )2 (42 — 5)2
( 2 Oé) ‘Zn|2+ ( 2 CY) |Z"‘4

Jr1!1"(7" +1-a)'(r—2—-a)
and by Proposition 2.7 b) we have:

AM(r+2—a)l(r—2—a)

i F(m+7"727a)|zn|2m 1

miT(r —2 — a) T A=)

m=0
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we have:
B 1 B B F(%l —a)?
M= (1—|z|?)r—2—« (1 Ol (r — a)l(r —2 — a))
_ 29— F(%S — )2 2
: TG ti-al—2—a)) ™
((r—l—a)(r—Q—a) (42 — a)? >|Z .
2 2M(r+2—a)l(r—2-a) )™

Since p > r — 2 we obtain:

(= Jaf)
(1 _ |Zn|2)'r‘f2fa -

so we conclude:

g < gr—2-c (r—2—-a)l'(r—2-—a)? (
ST

1+ (1= [z Q(|2a])

where Q(]z]) is the polynomial given by:

D4 — )2
(1 * 0T (r — az)F(r -2- a))

<T2a F($_O‘)2 >|Z ‘2
Mr+1-a)l(r—-2—a)) "™

_<(r—1—a)(r—2—a)_ I8 - a)? )Z It
2 2M(r+2—a)l(r—2—-a)) ™

so the expression 1+ (1 — |2,|%)P~*Q(|z|) is uniformly bounded for z € D by
a constant C. Hence:

4r—2—a1_A2a _9_ T _9_ 2
[[de,, — LoT|| < — ( G G o)

C
e e

so we will be done if we prove that:

47721 = A2 (r—2— Q)T(r — 2 — a)?
r2(1 —r2)r-2-« I‘(%1 — )?

as Ap — 1 for o > T§2. Indeed:

J1- A2
1—r2=1- A =2 r (2.2)
(1+,/1-A22 14, /1-A2
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and:

2a
4r—2—a(1 _ A%)a 47“7270‘ (1 /1 — A‘lz)

2 2\r—2— - —2—
r2(1—r2)r-2-« 2 ( 2,/1-A2 >T “
P\ 14+4/1-A2

or—2-a <\/@)3a—r+2 <1+ m)r—2—a

2
Tp

so the proof is completed since r, — 1 when A, — 1 and 3o —7+2 > 0. [

Remark 2.10. Theorem gives us a procedure to calculate an upper estimate
for the constant of separation A, for B, if p > 1.

Lemma 2.11. If a,b,c > 0 and 0 < a < 1, the function fo(x) = (1 —
22)1=%(—a — ba?® — ca?) satisfies:

(1—2)f(2) = 2(a(l — a) = b)z +2(b(2 — a) — 2¢)z® + 2¢(3 — a)z®.

Proposition 2.12. There exists 0.811 < Ay < 0.9785 such that for any sepa-
rated sequence (z,) C D such that p(zx, z;) > A1, then (z,) is interpolating
for the classical Bloch space B and there are examples of non-interpolating
sequences which are d-separated for values § < Aq.

Proof. Inequality 0.81 < A; is straightforward from Proposition 2.1. For the
other inequality, use proof of Theorem 2.1. Take p = 1,7 = 3 and ¢ = 3.
Notice that 0 < |z,| < 1 and take 0 < a < 1. We have:

41-0(1 — AZ)e

<
TS Ui —re

1+ (1= [z 7"Qzal))

where the polynomial Q(|z,]) is given by:

() (e

_(2—a(l—a) (3—a)(2—a)(1—a))|z 4
2 24— a) "

_ 1 1-— (2—a)(1—a)|z a
2—a 3-— 2(4 — ) "

so the expression fo(|z,]) := 1+ (1 — |2,*)*=*Q(|z,|) becomes:

_ 1 l-«a 2—-a)(1l-a)
allzn]) =1 1 -z, )t - n ! .
fallza) =14 (1= )2 (125 - 5 Tl
We will prove that for some 0 < « < 1, we have f/ (|z,]) > 0 for 0 < |z,| <1
50 fo(|zn|) will be non-decreasing for |z,|. Notice that this is equivalent to
proving that (1 — |2,]2)*f%(|2n|) > 0. Taking o = 4/5 and bearing in mind
Lemma 2.11 we have for any 0 < |z,| < 1:

33

5
3007 2

5 3
1— 2 4/5 / _ 2 3
( |Z7L| )P f (lan 33|Zn| 44|Zn|
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Hence the expression S is a non-decreasing function of |z, | and we have:
41—(1(1 _ A?)a
S < ! lim (14 (1= |z./2)'"Q(|zn
T (L (L ) ()
_ 1= (1 — A)e
(I —a)rf(1—rf)t-e

so calling t = \/1 — A? < 1 and bearing in mind (2.2) we have:

S - 41—at2a B 21—at3o¢—1(1 + t)Q—a
= 1— -
2t Y1 (1-a)(1-1)
(1-a) (1+t) ¢

and for o = 4/5, we have:

21/5t7/5(1 + t)6/5

1/5(1 —t)
if and only if 2/5¢7/5(1 4 ¢)5/° — (1 —¢) < 0.

which clearly has real solutions on 0 < ¢ < 1 by Bolzano’s Theorem. A root
of 21/5¢7/5(1 +1)%/5 — L(1 —¢) = 0is t ~ 0.2069 so Ay = V1 — 12 ~ 0.9784
and we are done. O
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