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Abstract
Curves are complex data. Tools for visualizing, exploring, anddiscovering the structure
of a data set of curves are valuable. In this paper, we propose a scalablemethodology to
solve this challenge. On the one hand, we consider two distances in the shape and size
space, one well-known distance and another recently proposed, which differentiate the
contribution in shape and in size of the elements considered to compute the distance.
On the other hand, we use archetypoid analysis (ADA) for the first time in elastic
shape analysis. ADA is a recent technique in unsupervised statistical learning, whose
objective is to find a set of archetypal observations (curves in this case), in such a way
that we can describe the data set as convex combinations of these archetypal curves.
This makes interpretation easy, even for non-experts. Archetypal curves or pure types
are extreme cases, which also facilitates human understanding. The methodology is
illustrated with a simulated data set and applied to a real problem. It is important to
know the distribution of foot shapes to design suitable footwear that accommodates
the population. For this purpose, we apply our proposed methodology to a real data
set composed of foot contours from the adult Spanish population.
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1 Introduction

Shape analysis is an extensive area of research since there are many applications in
which it is interesting to quantify the difference between shapes, register shapes, see
how one shape deforms into another, calculate the mean shape, or classify and cluster
different shapes. In the case of planar shapes, one way to approach their analysis is to
consider landmarks on the boundary curve of the object of interest to characterize its
shape [1]. However, choosing the appropriate landmarks for each shape and registering
these points between different shapes is not always an easy task; therefore, the function
that defines the boundary curve of the object can be used to characterize its shape.
Then, every plane shape is characterized by a parameterized curve and the set of all
plane shapes is a Riemannian manifold with the appropriate metric, see for instance
[2]. Although a certain parameterization of the boundary curve can be fixed for each
plane shape (for example, parameterization by arc length), in elastic shape analysis,
themetricmust be preserved under reparameterizations of the curve. In [3], the authors
use the square-root velocity functions (SRVF) and propose an elastic metric for the
study of shapes represented by curves, which is valid not only for plane curves but also
for curves in Euclidean n−dimensional spaces. Depending on the applications, it may
be interesting for the metric to be invariant with respect to translations, rotations, and
scaling as well; in this case, the feature space is called the shape space. However, in
many applications (for example, in the analysis of anatomical structures in medicine),
it is also important to distinguish the size of curves, in addition to shape. In this second
case, the feature space is called the shape and size space. Elastic metrics for the shape
space and the shape and size space can be found in [4]. Furthermore, in [5], the authors
propose a metric that distinguishes between the contribution of the difference in shape
and the difference in size of two elements in the shape and size space.

On the other hand, elastic shape analysis of curves has been used in different
data science problems, such as principal component analysis (PCA) [4, 6, 7], cluster
analysis (CLA) [4, 8, 9], classification [4, 9, 10], and outlier detection [5, 6, 11, 12].
However, until now, elastic shape analysis has not been used in archetypal analysis.

Archetype analysis (AA) was defined by [13]. It is an exploratory unsupervised
statistical learning technique [14] that lies between two well-known techniques, PCA
and CLA [15]. The objective of AA is to express the data as a mixture (convex combi-
nation) of a set of archetypes. The archetypes are also a mixture of data points. Both
these facts make the results of AA easy to understand, even for non-experts. Note that
the interpretation ofmixtures is simple, unlike the linear combinations of variables that
form the factors of the PCA. Although the centers of CLA are also easy to understand,
its modeling flexibility is diminished by the fact that data can only be assigned to one
cluster, unlike AA. There is also another fact that stimulates the human comprehension
of the results of AA versus other unsupervised techniques: archetypes are extreme or
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pure profiles, and human beings understand them better than central points since we
interpret opposite components better [16, 17]. Archetypes in Statistics have the same
meaning as in everyday life [18].

Vinué [19] defined archetypoid analysis (ADA), which is a variant of AA. In ADA,
the archetypal profiles are concrete observations. This is very useful for our case, as
will be explained later since we are not dealing with multivariate data but with curves.

Visualization is an important task in exploratory analysis since it allows us to
discover unrevealed aspects of the data. In our case, this is even more important since
curves are complex data [11]. ADA not only allows us to display the main features of
the data set by its extremes (archetypoids) but also allows us to explore data and extract
information through the approximation of the data as a mixture of the archetypoids.
ADAmakes it possible to see and describe the whole data set through only a small set
of representative observations that are easy to understand [18]. Note that considering
extreme curves to display the main characteristics of a data set of curves was proposed
by [20], who considered extreme principal component scores. However, the goal of
PCA is not to find extreme cases as it is for ADA. Therefore, the cases with extreme
PCA scores do not necessarily correspond to archetypal cases [13]. Even if all PCs
were taken into account, archetypes could not be recovered [21].

AA and ADA are applied in many diverse fields, such as biology [22], computer
vision [23–28], education [29, 30], engineering [31], genetics [32], machine learn-
ing problems [15], market research [17], neuroscience [33–35], psychology [36],and
sports [37, 38]. Since the proposal by [21], AA has become a standard in the accom-
modation problem in industrial design [39], where extreme cases are searched to give
designers an efficient way to develop and assess a product design. The designer con-
siders a small set of boundary cases so that if the design fits well for those cases, it
will also fit well for the not so extreme cases. However, the accommodation problem
has not restricted to the multivariate case, but it has also been applied in other cases,
such as shapes with landmarks [40, 41].

In this paper, we consider ADA when the metrics defined in [4] and [5] for the
shape and size space are considered. This is the first time that ADA has been used in
elastic shape analysis. ADA has been used before in shape analysis but with landmarks
[40, 41], working in the tangent space. Our motivating problem is an accommodation
problem with curves; therefore,we need to find archetypal curves. The main contribu-
tions of this work are as follows: to propose the first methodology to obtain archetypal
curves in the shape and size space and to analyze their use with simulated data and to
apply it to a real problem. Furthermore, the code is made available.

The outline of the paper is as follows. On the one hand, Sect. 2 reviews the SRVF
representation of curves and the elastic metrics. On the other hand, several multivariate
statistical methods are reviewed: a multidimensional scaling procedure and AA and
ADA for the multivariate case. The proposed methodology for finding archetypal
curves is introduced in Sect. 3. Sections 4 and 5 discuss the results when the new
methodology is applied to a simulated data set and a real data set, respectively. Finally,
some conclusions are given in Sect. 6.
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2 Background

2.1 Elastic Metrics

For the study of shapes, or shapes and sizes, described by curves, the curve is usually
represented in a specific metric space. Since a metric space is endowed with a distance
function,when someonewishes to compare two shapes, or two shapes and sizes, of two
domains bounded by their respective curves, it is necessary to compute the distance
of the two points that represent such curves.

The classicalmetric spaces to represent curves are sub-spaces of theHilbert space of
functionsL2([0, 1],Rn), i.e., the space of square integrable functions from [0, 1] ⊂ R

to R
n . For example, in the square-root velocity function (SRVF) approach, every

parameterized curve β : [0, 1] → R
n is represented by

β(t) �→ q(t) = β ′(t)√|β ′(t)| .

It is easy to check that q(t) associated with the curve β : [0, 1] → R
n belongs to

L
2([0, 1],Rn) because

‖q‖2
L2 =

∫ 1

0
|q(t)|2dt = length(β) < ∞.

Moreover, it is interesting to remark here that the space of curves in Rn and the space
of functions L2([0, 1],Rn) can actually be identified because not only is each curve
represented in the space L2([0, 1],Rn) but every function q(t) ∈ L

2([0, 1],Rn) can
be associated with the following curve

β(t) =
∫ t

0
q(s)|q(s)|ds.

By using this identification between the space of parameterized curves and the Hilbert
space L

2([0, 1],Rn), we can use the distance dL2 in L
2([0, 1],Rn) as a distance

between curves. Remember that given two points q1 and q2 in L
2([0, 1],Rn), since

L
2([0, 1],Rn) is a Hilbert space, we can use its inner product to obtain the distance

from q1 to q2 as

dL2(q1, q2) :=‖q2 − q1‖ = √〈q2 − q1, q2 − q1〉L2

=
√∫ 1

0
(q2(t) − q1(t))2dt .

When we think about a curve as a geometric object embedded or immersed in Rn , we
must conclude that the previous distance is not good enough to characterize the space of
curves. This is mainly because this distance is not invariant under reparameterizations.
Let us briefly recall the concept of reparameterization. Given a curve γ : [0, 1] → R

n
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and given a diffeormorphism φ : [0, 1] → [0, 1] such that φ(0) = 0 and φ(1) = 1,
we will say that the curve

β : [0, 1] → R
n, t �→ β(t) := γ (φ(t))

is the reparameterization by φ of the curve α. The set of reparameterizations with
the composition law has a group structure, and we will denote it as �. A required
condition for a distance to be useful in order to compare curves is, therefore, to be
invariant under the action of the group of reparameterizations. These invariant metrics
are called elastic metrics.

By using the identification of the space of curves with L2([0, 1],Rn), the action of
the group � on the space of curves naturally induces an action on L2([0, 1],Rn) given
by

� × L
2([0, 1],Rn) → L

2([0, 1],Rn), (φ, q) �→ φ(q)(t) := q(φ(t))
√

φ′(t).

Since two rotated curves represent the same bounded shape, we have to take care of the
group of rotations as well. The group of rotations SO(n) acts by matrix multiplication
on the space of curves, and by again using the identification between the space of curves
and L2([0, 1],Rn), there is a global action of the group SO(n) × � on L2([0, 1],Rn)

given by

SO(n) × � × L
2([0, 1],Rn) → L

2([0, 1],Rn),

(O, φ, q) �→ (O, φ)(q)(t) := O(q(φ(t)))
√

φ′(t).

Then, the space of interest, the shape and size space, will be represented as the orbit
space

S := L
2([0, 1],Rn)/SO(n) × �.

In order to simplify the notation, let us denote this as G := SO(n) × �. Then, given
q ∈ L

2([0, 1],Rn) the associated orbit [q] ∈ S will be obtained as

[q] := G.q = {(O, φ)(q) : (O, φ) ∈ G} .

Classically, see [4], the distance between orbits has been used to define an elastic
metric in S as

d2 ([p], [q]) := inf
(O ′,φ′),(O ′′,φ′′)∈G

dL2
(
(O ′, φ′)p, (O ′′, φ′′)(q)

)

= inf
(O ′,φ′),(O ′′,φ′′)∈G

dL2

(
(O ′, φ′)

(
p, (O ′, φ′)−1(O ′′, φ′′)(q)

))

= inf
(O,φ)∈G dL2 (p, (O, φ)(q)) .
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This is a distance in the shape and size space. In order to “take away” the length of
the curves, normalized curves of length 1 can be used instead as

d4 ([p], [q]) := inf
(O,φ)∈G cos−1

(〈
p

‖p‖L2
, (O, φ)

(
q

‖q‖L2

)〉
L2

)
.

In this paper, we focus on distances in the shape and size space as d2. Recently, [5]
proposed a new distance given by

d4s([p], [q]) :=
√
d24

(
p

‖p‖L2
,

q

‖q‖L2

)
+ ln2

(‖p‖L2

‖q‖L2

)
.

This new distance is scale invariant in the sense that for any λ �= 0

d4s([p], [q]) = d4s([λp], [λq]).

Moreover, in some cases, see Figures 6 and 7 of [5], for instance, when authors deal
with a set of curves with a very large range of lengths, the new d4s distance could
improve the d2 distance. Both distances are compared in clustering setting by [5].

2.2 Multidimensional Scaling

Let D be the m ×m matrix containing the observed dissimilarity from the object p to
the object q.

Let us recall that a distance matrix D is Euclidean if and only if B is positive
semidefinite [42, Theorem 14.2.1], where B = (I −m−1ee′)M(I −m−1ee′), M is a
matrix with elements mpq = -0.5* d2pq , I is the m × m identity matrix, and e is the
m × 1 vector with all its elements equal to unity.

If the distances are Euclidean distances, they can be represented exactly in at most
m−1 dimensions [42, Theorem14.4.1] bymeans of classicalmultidimensional scaling
(cMDS) [43]. The objective of cMDS is to return a set of points such that the distances
between them are approximately equal to the original distances since the dimension
of the space that the data are to be projected in is usually less than m − 1. On the
other hand, if the distances are not Euclidean, we can use cMDS as an approximation,
which is optimal for a kind of discrepancy measure [42, Theorem 14.4.2]. However,
it is possible to use h-plot, an alternative methodology proposed by [44, 45], which
even works when the dissimilarity is not a distance. The aim of the h-plots is not
to conserve the interpoint distances exactly but to preserve relationships between
dissimilarity variables. This perspective is especially useful when the distance is not
Euclidean, as in this case for d2, d4, d4s , as the distances cannot be projected exactly
in a Euclidean space. There are negative eigenvalues in the respective B matrices (see
Sect. 4 and Sect. 5.1 for examples). Note that the original spaces are not Euclidean,
so neither are the distances.
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2.2.1 h-Plot for MDS

D is treated as a data matrix with h-plot, where each variable dq. measures the distance
from q to other objects. (In case of asymmetrical relationships, variables measuring
the distance from an object to q, d.q , should be also considered). The variance–
covariance matrix of D, S, is computed. S is always positive semidefinite and we
solve the eigenvalue problem. Let λ1 and λ2 denote the two largest eigenvalues and
q1 and q2 the corresponding unit eigenvectors. Then, the h-plot in two dimensions is
H2 = (

√
λ1q1,

√
λ2q2). Analogously, it can be defined for higher dimensions.

The Euclidean distance between the rows h p and hq is approximately the sample
standard deviation of the difference between variables dp. and dq.. Therefore, if these
variables are similar, their difference and, as a consequence, the standard deviation of
their difference will be small and they will be represented near to each other and vice
versa. If the scale of the distances is linearly modified, the obtained configuration does
not change, only the scale of the axes is modified. The goodness of fit can be easily
assessed by (λ21 + λ22)/

∑
j λ

2
j , where a high measure, close to 1, indicates a better fit.

H-plots were compared with eleven methods by [44], with very good performance,
even for asymmetrical relationships [45].

2.2.2 Congruence Coefficient

The best method to asses configurations is pictures [46, sec. 19.7]. However, we
can use the congruence coefficient (CC), a correlation coefficient about the origin,
to approximately assess the configurational similarity of two configurations C1 and
C2. In configuration C1 (C2), the dissimilarity between i th and j th objects is di j (C1)

(di j (C2)).
CC is defined for symmetric dissimilarity matrices:

CC =
∑

i< j di j (C1)di j (C2)

(
∑

i< j d
2
i j (C1))1/2(

∑
i< j d

2
i j (C2))1/2

CC ranges from 0 to 1. If C1 and C2 are perfectly similar geometrically, CC = 1. We
say that two configurations are similar when they can be brought to a complete match
by rigid motions and dilations.

In the experimental sections, the configuration C1 provided by distances d2 and d4s
is compared with the configuration C2 obtained after projecting by h-plot, using the
Euclidean distance for computing the interpoint distances.

The idea of assessing the goodness of approximations by means of correlation
between distances has been also used elsewhere. For example, [47] used the correlation
between the Procrustes distances and the Euclidean distances in the tangent space in
shape statistics with landmarks.
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2.3 Archetypal Analysis

Let us review ADA and AA in the multivariate case. Let X = (x1, ..., xm) be an m × r
data matrix with m observations and r variables.

In AA, we search for k archetypes, which are mixtures of observations, i.e., a k × r
matrix Z = (z1, ..., zk), whose mixture approximates each row xi

xi ∼ x̂i =
k∑
j=1

αi jz j . (1)

The m × k matrix α = (αi j ) contains the approximator mixture coefficients, while
the k×m matrix β = (β jl ) contains the constructor mixture coefficients, i.e.,they build
the archetypes according to:

z j =
m∑
l=1

β jlxl . (2)

To find the matrices α and β and, therefore, Z, we should minimize the following
residual sum of squares (RSS), where ( ‖ · ‖ denotes the Frobenius matrix norm for
matrices and the Euclidean norm for vectors):

RSS = ‖X − αβX‖2 =
m∑
i=1

∥∥∥∥∥∥xi −
k∑
j=1

αi jz j

∥∥∥∥∥∥
2

=
n∑

i=1

∥∥∥∥∥∥xi −
k∑
j=1

αi j

n∑
l=1

β jlxl

∥∥∥∥∥∥
2

,

(3)

under the restrictions

(1)
k∑
j=1

αi j = 1 with αi j ≥ 0 and i = 1, . . . ,m, j = 1, . . . , k and

(2)
m∑
l=1

β jl = 1 with β jl ≥ 0 and j = 1, . . . , k and l = 1, . . . ,m.

In ADA, we search for k archetypoids, which are actual observations of the data
set. Therefore, the minimization problem is similar to that of AA but restriction 2) is
replaced by:

2)
m∑
l=1

β jl = 1 with β jl ∈ {0, 1} and j = 1, . . . , k and l = 1, . . . ,m. In this way,

β jl = 1 for one and only one l, otherwise β jl = 0.
In ADA, as in AA, each αi j returns the weight of the archetypoid z j for the obser-

vation xi ; that is to say, the α approximator coefficients indicate how much each
archetypoid contributes to the approximation of each observation.

Archetypes are located on the boundary of the convex hull if k > 1, while it is the
mean if k = 1 [13]. Archetypoids are not necessarily on the boundary of the convex hull
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Fig. 1 Results for FL and BG. a k-means with cluster assignments to each centroid represented by blue
triangles. b ADA with assignments to the maximum alpha. Archetypoids are represented by blue crosses.
c PC projected k-means results. d PC projected ADA results

if k > 1, and it is the medoid if k = 1 [19]. The medoid is the observation for which the
average dissimilarity between it and all the other observations is minimal. Therefore,
it is the most centrally located observation. Note that medoids are the elements of the
data set.

In this paper, we will focus on ADA, as explained in Sect. 3.

2.3.1 Toy Example

We use a two-dimensional data set to clarify the meaning of ADA and their differences
with PCA and CLA. We consider two variables of 381 right feet of Spanish women:
the Foot Length (FL) and Ball Girth (BG). Details about the data set and variables are
provided in Sect. 5. PCA, k-means and ADA with k = 3 are applied to standardized
data. Figure 1 shows the results.
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Archetypoids are extreme feet. The first archetypoid has very low FL and BG
values, the second archetypoid is characterized by a very high value for BG, but a
medium value for FL, while archetypoid 3 is characterized by a very high FL value,
but a medium–high value for BG. The rest of the feet are explained by mixtures of
these archetypal feet. For instance, a foot with values of 254 and 254 for FL and BG,
respectively, is described by 64% of archetypoid 2 plus 36% of archetypoid 3. k-means
does not return this kind of information, it only indicates the cluster assignments.

Centroids of k-means are in the middle of the data cloud, with less extreme
dimensions than archetypoids. Therefore, archetypoids are more easily interpretable.
Centroids have more uniform shapes, and they have the same FL and BG ratio as the
mean foot. This does not happens with archetypoids. We can visualize this in the PC
projections. The first PC is a size component, while the second PC is a shape compo-
nent, since the loadings are 0.7 and 0.7 for the 1st PC and 0.7 and -0.7 for the 2nd PC.
Centroids are found in the zero horizontal line, while archetypoids are found near the
border of the PC score space, although they are not the cases with the most extreme
PC scores.

3 Methodology

In our problem, we do not have variables in R
r , but we have the distances between

the curves. When variables are unavailable, we can follow the strategy explained by
[19] for finding archetypoids. The idea is to project the distances into a certain space
R
r and find the archetypoids in that space. Note that by using archetypoids, as they

are actual observations, we can determine the concrete curves in the original space.
In this way, we can also visualize the archetypal curves. This would not be possible
with archetypes since we cannot obtain a mixture of curves. However, we have the α

coefficients, expressing the contribution of each original archetypoid to each original
curve. The idea of projecting to an approximating linear space, when the original space
is not vectorial, and working on that space, is widely used in Statistics [48].

The scheme of the procedure is as follows.
1. Compute D, which is the m ×m matrix where dpq denotes the distance between

the curves [p] and [q].
2. Use a multidimensional scaling method (MDS) to find a representation inRr that

conserves the pairwise distances, i.e., the information contained in D, in some way.
According to the method, a goodness of fit measure can be used to select r .

3. Calculate the archetypoids of the m × r matrix X, the matrix obtained by the
MDSmethod. This matrix contains the coordinates of the points estimated to represent
the distances.

Regarding to D, d2 or d4s are used in our case. As regards the MDS method, we
consider h-plot in this work. It was used previously with good results in ADA when
variables are not available [18, 19, 49, 50]. We want to emphasize that the scheme is
flexible. Other choices can be selected for estimating D and for MDS.
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3.1 Computational Details

As regards the implementation of the methods, the code is available in Section Code
Availability. For computing d2 and d4s distances, we use the implementation by [4]
and [5], respectively. [5] also used the code by [4] for computing d4. For obtaining the
infimum over orbits, two optimization methods are applied, Procrustes analysis and
the dynamic programming algorithm. Full details are provided in [4, Appendix 2].

H-plot implementation is made as in [44], with princomp function for PCA in R.
To solve the mixed-integer optimization problem of ADA, [19] proposed an algo-

rithm based on two phases: an initialization phase, called the BUILD phase, where a
set of possible archetypoids are selected, and the SWAP phase, where the initial set is
improved by exchanging the selected observations for unselected ones and checking
if these replacements decrease the RSS. We use the R [51] implementation created by
[40].

As regards the determination of the number of archetypoids, we use the elbow
criterion, which has been used in previous papers, such as [13, 19, 52]. This criterion
consists of displaying the RSS versus the number of archetypoids and determining the
point where an elbow is found.

3.1.1 Scalability

Regarding scalability, there are two issues to consider. On the one hand, the number
of sample points per curve is not a problem since the algorithm by [4] resamples the
curves at the beginning to have 100 points, so the number of sample points is always
constant. The number of sample points in curves is only used in the estimation of the
distances.

On the other hand, let us analyze the scalability of our procedure when the number
of curves is big. Let us analyze each part of the procedure. Firstly, the computation of
the distances is made by each pair of curves. Therefore, it can be easily parallelized.
Secondly, the h-plot method depends on the solution of an eigenvalue problem of
a positive semidefinite matrix, which is a well-studied problem for large matrices
[53]. Nowadays, there are even scalable methods for computing eigenvectors of non-
symmetric matrices [54]. Thirdly, ADA method was made scalable by [55].

4 Application to a Simulated Data Set

We have simulated an artificial data set with 90 3D cylindric helixes, βi (t) i =
1, · · · , 90, t ∈ [0, 1], with

xi = ai cos(8π t); yi = ai sin(8π t); zi = bi t; i = 1, · · · , 90

where the parameters ai and bi of the helix are randomly obtained from two
different probability distributions; the radius ai ∼ Normal(50, 20) and bi ∼
Uni f orm(30, 70) (so all these helixeswill have different shapes anddifferent lengths).
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Fig. 2 Parameters of the simulated helixes. a Values simulated for ai , i = 1, · · · , 90 b Values simulated
for bi , i = 1, · · · , 90. c Scatter-plot of the values simulated for (ai , bi ), i = 1, · · · , 90

Fig. 2 shows the values obtained in the simulations for the parameters of the 90 helixes.
Fig. 3a and b show two graphical representations of the simulated helixes.

The distance matrices between the 90 curves, D4s and D2, have been computed.
As these distance matrices are not Euclidean (there are negative eigenvalues in B for
both distance matrices, see Fig. 4), h-plots can be used as MDS. The goodness-of-fit
measures of h-plots explained by [44] for d4s are 87.94%, 99.92%, and 99.99% for
r = 1, 2, 3, respectively, and 80.31%, 99.92%, and 99.97% for d2. We use r = 3 in
both cases. The resulting h-plots for two dimensions (r = 2) can be seen in Fig. 5.
Their CC are 95% and 97%, respectively.

According to the elbow criteria, the screeplots shown in fig. 6 advises us to consider
three (k = 3) archetypoids in each case.

The archetypoids obtained with the two distances are somewhat different (Figs.
7 and 8). The values of ai in the helixes of the data set range from 4.82 to 121.57,
and the values of bi range between 30.18 and 79. Figure 8 shows the parameters of
the 90 helixes together with the parameters of the archetypoids obtained with the two
distances. The first archetypoid obtained from d4s has a very low value for ai and a
very high value for bi , while the first archetypoid from d2 has also a low value for ai
and quite a high value for bi , slightly lower than that obtained with d4s . The second
and third archetypoids from d4s have low values for bi , and intermediate and high
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Fig. 3 Simulated curves. a and b show the 90 simulated helixes seen from different perspectives
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Fig. 6 Screeplot for simulated data. a Using the distance d4s . b Using the distance d2
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Fig. 7 Archetypoids obtained seen from two different perspectives. In green, the archetypoids obtained
with d4s , and in red, those obtained with d2

values for ai , respectively. However, the second and third archetypoids from d2 also
have intermediate and high values for ai , respectively, but medium values for bi . In
summary, the parameters of the archetypoids found by d4s are more extreme than the
parameters of the archetypoids found by d2.

5 Application to a Real Data Set

Suitable footwear design needs to take into account the distribution of foot shape [41].
If this is not taken into account, it will not only lead to lower sales, but can also cause
pain and deformity, especially inwomen. This is the reasonwhy there aremany studies
on foot shape, such as [56–61], etc.

Comprehension of the typology and distribution of body part shapes is not only
critical in the apparel industry but also in ergonomic industrial design [62, 63], as well
as in other scientific disciplines that include criminalistics [64], face classificationwith
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Fig. 9 Medoid curves of feet for men (a) and women (b) with d4s

all its fields of application (forensic anthropology, crime prevention, human-machine
interaction systems like e-commerce, e-learning, games, dating, and social networks)
[65, 66], medicine [67–69], phylogeny [70], sport [71–73], etc. However, it is not just
restricted to anthropometry; taxonomy is also important in morphometry in general,
such as in plant or animal taxonomy [74, 75] and also in genetics [76].

ADAwith landmarkswas used in [41] for determining foot type in the adult Spanish
population. Here we have carried out a similar study, but instead of using landmarks,
we use curves.

Here, we use the data from [5]. The description of the acquisition of these data is
detailed in [5]. Our curves consist of the longitudinal contour of right feet passing
through the Ball Position. The sample size is 770, divided into 389 and 381 right feet
of Spanish adult men and women, respectively.

The medoid shapes for men and women with d4s are displayed in Figure 9.

5.1 Results and Discussion

In the interests of brevity and as an illustrative example, we only examine the results for
d4s although they could be carried out with d2, analogously. The matrices D obtained
with d4s for men and women are not Euclidean, since the respective B are not positive
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Fig. 10 Screeplot for women (a) and men (b)

Fig. 11 Archetypoidal feet for women

semidefinite; 41% of the eigenvalues are negative. Therefore, we show the results
using h-plot as MDS.

The goodness-of-fit measure for h-plotting (see [44] for details) is 99% for r = 4
for both men and women (it is 84.96%, 95.44%, 97.77%, and 99.43% for r = 1, 2, 3,
and 4, respectively, for men, while it is 81.89%, 91.66%, 96.92%, and 98.83% for r
= 1, 2, 3, and 4, respectively, for women). Therefore, we use r = 4. The CC are 97%
and 96% for men and women, respectively.

Figure 10 shows the screeplot for women and men. The elbow is found at k = 4 and
k = 5, for women and men, respectively. The archetypal feet are displayed in Figure
11 and Figure 12 for women and men, respectively.

In order to describe the archetypoidal curves obtained, Tables 1 and 2 display the
percentiles of the four variables that most influence shoe fit according to footwear
design experts. The variables are Foot Length, FL (distance between the rear and
foremost point of the foot axis); Ball Girth, BG (perimeter of the ball section); Ball
Width, BW (maximal distance between the extreme points of the ball section projected
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Fig. 12 Archetypoidal feet for men

Table 1 Percentiles of the main variables and divided by FL for archetypoidal feet of women

Archetypoid FL BG BW IH BG/FL BW/FL IH/FL

1st 82 59 54 87 32 30 71

2nd 66 14 37 3 7 24 1

3rd 19 17 20 56 43 44 72

4th 13 65 55 62 94 90 85

Table 2 Percentiles of the main variables and divided by FL for archetypoidal feet of men

Archetypoid FL BG BW IH BG/FL BW/FL IH/FL

1st 94 69 61 53 9 9 16

2nd 50 36 21 96 37 18 92

3rd 25 95 87 93 99 98 95

4th 63 17 12 7 7 4 5

5th 95 95 95 72 53 62 35

onto the ground plane); and Instep Height, IH (maximal height of the instep section,
located at 50% of the foot length). We also show the percentiles of the variables after
removing the scale, i.e.,by dividing each of the variables by FL: BG/FL, BW/FL, and
IH/FL.

In the case of women, the first archetypoidal foot has high percentiles for FL and
IH and medium percentiles for BG and BW; the second archetypoidal foot has low
percentiles for BG and IH, and medium for FL and BW; the third archetypoid has
low percentiles for FL, BG,and BW, and medium for IH; and the fourth archetypoid
has a low percentile for FL and medium for BG, BW,and IH. This last archetypoidal

123



La Matematica

Table 3 Distribution of feet for women and men

1st Arch. 2nd Arch. 3rd Arch. 4th Arch. 5th Arch.

Women 92 109 79 101

Men 121 77 62 32 97

Arch. stands for archetypoid

)b()a(
Fig. 13 Simplexplot for women (a) and men (b)

foot has an extreme shape, since it has very high percentiles (around 90) for variables
BG/FL, BW/FL, and IH/FL.

In the case of men, the first archetypoidal foot has a high percentile for FL and
medium percentiles for the rest of the variables (BG, BW, and IH), although the
percentiles are low for the variables divided by FL; the second archetypoidal foot
has a high percentile for IH; the third archetypoid has high percentiles for BG, BW,
and IH; the fourth archetypoid has low percentiles for BG, BW, and IH; and the fifth
archetypoidal foot has high percentiles for all four variables FL, BG, BW, and IH.

Let us see how the feet are distributed according to the archetypoidal curves. Table
3 shows the distribution of archetypoidal profiles for women and men. For each foot,
we consider its α coefficients, and we assign each foot to the archetypoidal profiles
for which the α coefficient is maximum. For example, the 4th archetypoidal profile
for men is not very prevalent. A simplex visualization of the α coefficients is shown
in Fig. 13, using the simplexplot function of the R package archetypes [77]. In this
way, we have been able to visualize the set of curves of the feet and express them as
a mixture of the archetypoids.

We have applied multivariate ADAwith standardized features FL, BG, BW,and IH,
for men and women. We have considered the same number of archetypoids as with
curves to check if the same results could have been achieved using the features directly
instead of the curves. Table 4 shows the percentiles of the multivariate archetypoids
for women and men, respectively.
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Table 4 Percentiles of the main variables and divided by FL for archetypoidal feet of women and men with
multivariate features

Archetypoid FL BG BW IH BG/FL BW/FL IH/FL

A1W 99 40 59 82 1 4 32

A2W 5 1 0 0 8 3 2

A3W 96 100 100 64 93 97 27

A4W 17 83 82 100 96 95 100

A1M 10 86 93 24 99 100 59

A2M 0 0 0 4 41 5 66

A3M 53 80 80 100 84 82 100

A4M 78 26 50 2 5 21 1

A5M 100 99 99 98 28 37 53

The first four archetypoids correspond to the sample of women. They are denoted by A1W, ..., A4W. The
last five archetypoids correspond to the sample of men. They are denoted by A1M, ... A5M

The profiles returned bymultivariate features and curves are somewhat different. In
the case of women, the fourth archetypoid profiles are the most similar with no large
differences in features FL, BG/FL, BW/FL, and IH/FL. There are some coincidences
in the first archetypoid profiles, with some not too large differences in features FL,
BW, and IH. This also happens with the second archetypoid profiles, with some not
too large differences in features BG, IH, BG/FL, and IH/FL. The third archetypoid
profiles have the largest differences. These differences are found in all the features
except IH.

As regards men, the third, fourth, and fifth archetypoid profiles are the most similar
with no large differences in features BG, BW, IH, BG/FL, BW/FL, and IH/FL; FL,
BG, IH, BG/FL, and IH/FL; and FL, BG, BW, and IH/FL, respectively. The largest
differences are provided between the profiles of the first and second archetypoids. They
only coincide in feature BG for the first archetypoid and features BG/FL and BW/FL
for the second archetypoid. Therefore, the archetypal profiles returned using the richer
information of curves cannot be retrieved using multivariate data. The same occurs in
[41], where results with 3D landmarks and multivariate data were also compared.

6 Conclusion

We have used archetypal analysis for the first time in elastic shape analysis. We have
applied ADA to the projections with MDS of two distances (d2 and d4s). ADA has
allowed us to see which the archetypal curves were and relate the rest of the curves to
said archetypoids by the α coefficients. As curves are complex data, exploration and
visualization of the data set are simplified by ADA. We have seen the application in a
real problem concerning footwear. Furthermore, our proposal is scalable.

If we wanted to find the archetypal curves and the data set has different groups,
the same idea as in [20] could be considered: using a clustering algorithm to find the
groups and then applying ADA to find the archetypal curves of each group.
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In future work, ADA could be replaced in our methodology by robust ADA [78]
when dealing with outliers. Furthermore, our methodology could be extended to irreg-
ular or sparsely sampled curves [79]. A new line of research could involve using the
distances and ADA in a different data science problem, such as the detection of outlier
curves by extending the idea proposed by [80]. Furthermore, the fields of application
are numerous, from medicine [81] to industry [82] or computer animation [83].
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