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Abstract
Natural hazards like floods, cyclones, earthquakes, or, tsunamis have deep impacts on the environment and society causing

damage to both life and property. These events can cause widespread destruction and can lead to long-term socio-economic

disruption often affecting the most vulnerable populations in society. Computational modeling provides an essential tool to

estimate the damage by incorporating spatial uncertainties and examining global risk assessments. Classical stationary

models in spatial statistics often assume isotropy and stationarity. It causes inappropriate smoothing over features having

boundaries, holes, or physical barriers. Despite this, nonstationary models like barrier model have been little explored in

the context of natural disasters in complex land structures. The principal objective of the current study is to evaluate the

influence of barrier models compared to classical stationary models by analysing the incidence of natural disasters in

complex spatial regions like islands and coastal areas. In the current study, we have used tsunami records from the island

nation of Maldives. For seven atoll groups considered in our study, we have implemented three distinct categories of

stochastic partial differential equation meshes, two for stationary models and one that corresponds to the barrier model

concept. The results show that when assessing the spatial variance of tsunami incidence at the atoll scale, the barrier model

outperforms the other two models while maintaining the same computational cost as the stationary models. In the broader

picture, this research work contributes to the relatively new field of nonstationary barrier models and intends to establish a

robust modeling framework to explore spatial phenomena, particularly natural hazards, in complex spatial regions having

physical barriers.
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1 Introduction

A 2019 United Nations report indicates that the world’s

population is expected to reach 11 billion by 2100. By then,

it is estimated that nearly 75 percent of the population will

live in urban areas. According to the scientific community,

climate conditions would be very different from what we

are currently experiencing. Even by 2030, there will be a

33 percent rise in the overall quantity of urban land in high-

frequency flood zones compared to 2015 (Güneralp et al.

2015). Natural hazards pose significant threats to both the

environment and human settlements. These hazards can

directly impact geomorphological and hydrological pro-

cesses, as well as biodiversity, with potentially severe

consequences for society (Zorn and Komac 2013; Emmer

2018). Scientific literature indicates the significant impact

of climate change and natural disasters on populations that

are vulnerable to these events (Briere and Elliott 2000;

Correa et al. 2011; Benevolenza and DeRigne 2019).

Additionally, there have been researches conducted on

exposure to natural disasters in the general population and

society (Cannon 1994; Cutter 1996; Zhou et al. 2014;

Aksha et al. 2019; Raker 2020). It is therefore imperative

to thoroughly evaluate the risks associated with natural

hazards in order to make informed decisions regarding
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spatial planning and risk-prevention measures (Spence

2004; Botzen and Van Den Bergh 2009; Cui et al. 2021).

This proactive approach is essential for ensuring the sus-

tainability of ecosystems (Sudmeier-Rieux 2006; Gunder-

son 2010) and minimizing the impact of natural hazards on

both the environment and human settlements (Small and

Nicholls 2003; Bornstein et al. 2013; Oliveira et al. 2020)

over the coming decades. International organizations, such

as the World Bank, the European Union (EU), and the

United Nations (UN), among others, are aware of the

necessity to take into account the long-term effects of

natural disasters. Additionally, according to the intergov-

ernmental panel on climate change (IPCC), ‘‘successful

risk reduction and adaptation strategies consider the

dynamics of vulnerability and exposure and their rela-

tionships with socioeconomic processes, sustainable

development, and climate change‘‘.

A large number of existing studies in the broader liter-

ature have examined the impact of extreme climatic con-

ditions on natural disasters (Sauerborn and Ebi 2012;

Phillips et al. 2015; Chaudhuri et al. 2021; Osberghaus and

Fugger 2022; Raju et al. 2022). As a result of unpre-

dictable climate change, population growth, and increas-

ingly urbanized societies, a better understanding and

prediction of natural disasters has become undoubtedly

important (SafarianZengir et al. 2019). Modeling natural

disasters is crucial to characterize these phenomena and

provide tools to counteract them. Estimating natural haz-

ards, including spatial effects and local conditions, will

help in the management and even allow anticipation of

events (Cutter and Finch 2008). The 2015–2030 Sendai

framework for disaster risk reduction recognizes this need

and emphasizes the significance of having strategies in

place to mitigate uncontrolled development in hazardous

areas in order to better prepare for the disasters that our

planet may experience in the future.

Several studies attempt to model natural hazards in order

to examine global risk assessments (Morjani et al. 2007;

Serra et al. 2013; Calkin and Mentis 2015; Riley et al.

2016; Pittore et al. 2017; Sarkissian et al. 2020). Some of

them address the propagation of tsunami and its impact

(Sarri et al. 2012; Hayashi et al. 2013; Shao et al. 2019;

Rezaldi et al. 2021; Sugawara 2017). In this line, to analyse

the spatial distribution of regions affected by natural haz-

ards, statistical inference comes along with Bayesian

methodology. Generally, Bayesian statistics are utilized in

natural hazards engineering to deal with large-scale prob-

lems that involve different types of data inputs and

explicitly handle uncertainties (Zheng et al. 2021). For

example, studies like (Gaume et al. 2010; Costa and Fer-

nandes 2017; Han and Coulibaly 2017; Barbetta et al.

2018; Bolle et al. 2018) provide a comprehensive review of

the applications of Bayesian statistics in flood assessment

and monitoring. Besides, Grezio et al. (2009) have pre-

sented the challenges in selecting proper models to quan-

tify the uncertainties in the maximum tsunamigenic

magnitudes. Literature shows the application of Bayesian

inference in analysing probabilistic tsunami hazards

(Knighton and Bastidas 2015; Risi and Goda 2017; Smit

et al. 2017).

A Bayesian approach with Markov chain Monte Carlo

(MCMC) simulation methods has traditionally been used to

fit generalized linear mixed models (GLMM) (Wikle et al.

1998). In this context, Shin et al. (2015) have explored the

application of the Bayesian MCMC method to estimate the

extreme magnitude of tsunamigenic earthquakes. However,

MCMC models require considerable computing time for

large datasets (Rue et al. 2009; Smedt et al. 2015). Hence,

instead of using MCMC, we can use integrated nested

Laplace approximation (INLA) methodology, developed

by Rue et al. (2009), as it offers faster computation times

and is much easier to fit complex models (Ruiz-Cárdenas

et al. 2012). As recommended by Lindgren et al. (2011),

while processing spatial data we can utilize INLA in con-

junction with stochastic partial differential equations

(SPDE) to balance the speed and accuracy of the models.

However, there are limited contributions using INLA-

SPDE approach in the context of natural disasters such as

earthquakes or tsunamis. Recently, Wilson (2020) used

Bayesian spatial modeling with INLA to analyse earth-

quake damages from geolocated cluster data. To date, no

literature has documented applications of INLA-SPDE to

tsunamis in the particular territory of the Maldives which

involves a very advanced methodology to handle its

irregular and complex land structure (Riyaz and Suppasri

2016). Analyzing tsunami propagation at the island scale is

essential to develop well-informed policies for disaster

management and to design effective countermeasures. But

due to the large domain and high resolution required for

modeling, it is also challenging to study tsunami propa-

gation across multiple atolls at the island scale (Rasheed

et al. 2022).

The current study is conducted to model and estimate

the spatial autocorrelation of tsunami data in the islands of

Maldives. The initial point of this work is to explore the

application of SPDE with INLA for Maldives tsunami data

(HDX 2022), including SPDE triangulations for spatial

effect. Maldives consists of 1200 dispersed islands on both

sides of the equator. Collection of these islands along with

lagoon and reef areas form the complex atoll system of the

country as depicted in Fig. 1. It is worthy to mention that,

the traditional SPDE method triangulates the entire study

area based on continuous geographic boundaries (Krainski

et al. 2018). A problem arises while designing the mesh for

the entire country’s boundary region or, for boundaries of

individual atolls. Although the records of tsunami-affected
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regions are discrete spatial sites situated exclusively on

land on reefs for individual islands, the mesh is generated

for the entire region inside the geographical boundary

including the lagoon and ocean surface. So, it is not real-

istic and ambiguous especially when we are interested to

explore the spatial correlation of tsunami data precisely on

the land regions. This leads to the motivation of designing

SPDE triangulation precisely on land on reefs for indi-

vidual islands. However, a stationary model can not be

aware of the coastline and the island boundaries and will

inappropriately smooth over the features. In spatial mod-

eling, classical models are unrealistic when they smooth

over holes or physical barriers. This might result in another

unrealistic assumption. In the research work by Bakka

et al. (2019) a new nonstationary model has been con-

structed for INLA having syntax very similar to the sta-

tionary model. The model, named as barrier model is more

realistic with both sparse data and complex barriers and

computational cost is the same as for the stationary models

(Bakka et al. 2019). Literature shows, there are limited

studies that examine how to use barrier models in the field

of spatial statistics, despite the fact that the methodology is

practical and scientifically robust for analyzing spatial

regions with physical barriers or holes. Islands and coastal

regions with their unique characteristics and spatial

dynamics, present an ideal setting for the application of

nonstationary methods. However, the extent to which these

approaches have been studied and applied in coastal

regions remains relatively limited. Only a few

notable works, such as the studies by Jónsdótir et al.

(2019), Martinez-Minaya et al. (2019), Bi et al. (2020) and

Jaksons et al. (2022), along with the research conducted by

Kaurila et al. (2022), have ventured into exploring this

domain. These selected works serve as valuable contribu-

tions to the understanding of nonstationary methods in

coastal spatial analysis. However, given the vast potential

and unique characteristics of coastal regions, further

research efforts are essential not only to enhance our

understanding of coastal spatial processes but also to

unlock valuable insights and potential applications for

nonstationary approaches in other domains. It is important

to mention that in the aforementioned studies, barrier

models have been developed with the assumption that

water is treated as normal terrain. These models take into

account the specific coastlines and boundaries as physical

barriers. In the present study, we have explored the barrier

model in a converse mode where water bodies (ocean and

lagoons) act as barriers for the dispersed islands and natural

hazards are the sample events considered precisely on the

land area of the islands.

The motivation and aim of this paper are two-fold. On

one side we provide a modeling framework to explore and

analyze the spatial variation in the incidence of natural

disasters such as tsunamis in complex spatial regions like

islands and coastal areas. In the current study, we have

assessed the impact of the tsunami on coastal communities

by quantifying the number of individuals indirectly affec-

ted by the event. By examining the population residing in

the coastal regions of Maldives who experienced various

consequences resulting from the tsunami, such as dis-

placement, loss of livelihoods, and disruption of essential

services, we can gauge the wider repercussions on these

communities (Fujima et al. 2006). This approach enables a

scientific evaluation of the extent to which the effects of

tsunami reverberated beyond the immediate areas of

impact, providing a comprehensive understanding of the

overall societal impact experienced by the coastal com-

munities in Maldives. In particular, the occurrence of tsu-

nami has been analyzed with three spatial modeling

scenarios using mesh for the entire geographical boundary

of atolls, mesh precisely on land on reefs for islands in

individual atolls, and barrier models for atolls. The second

aim roots in providing an advanced and realistic compu-

tational strategy to design and customize meshes and

nonstationary barrier models to examine the spatial

dependencies of natural hazards in complex distributed

land structures like islands and coastal areas. We present a

comparative analysis between the nonstationary barrier

model and two traditional stationary approaches. The first

approach utilizes SPDE triangulation for the entire region,

Fig. 1 Republic of Maldives geographical location and island

structure
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while the second approach generates SPDE triangulation

precisely on the land on reefs. The evaluation of these

models relies on quantifying the consequential impact of

tsunamis, specifically in terms of the number of indirectly

affected individuals on the land on reefs for individual

islands. It can be applied in diverse sectors where complex

physical barriers are present in road networks (Dawkins

et al. 2021), disease control interventions (Cendoya et al.

2022), and categorical areas with different land use.

The study is conducted on 190 records of tsunami-af-

fected islands from the year 2004. R (version R 4.1.2)

programming language (R Core Team 2022) has been used

for statistical computing and graphical analysis. As part of

the data cleaning process and to design some maps, we

have used ArcGIS Pro (version 3.0.1) (Redlands CESRI

2022). All computations are conducted on a quad-core Intel

i9-4790 (3.60 GHz) processor with 32 GB (DDR3-1333/

1600) RAM.

The rest of the paper is organized as follows. Section 2

introduces the study area and offers some insights into the

dataset used in the current study, accompanied by com-

prehensive figures and tables. A description of the model-

ing framework comes in Section 3. The design and

mathematical concepts of the barrier model are discussed

in Sect. 3.1. Model fitting along with model evaluation

techniques are reported in Sect. 3.2. Section 4 is devoted to

present the results and related discussions of the mesh

structures and models. Some concluding remarks come in

Section 5.

2 Data

The Republic of Maldives is located in the southwestern

region off the coast of India in the Indian Ocean. This

unique island nation is one of the smallest countries in Asia

having a chain of coral islands across an archipelago more

than 800 kilometers long and 130 kilometers wide. The

archipelago consists of about 1190 coral islands grouped

into 20 natural atolls. Out of which 189 islands are

inhabited (Isles, The Presidents Office 2022). Figure 1

illustrates the geographical location of the Maldives and

the complex island structure for the atolls of the country.

The natural hazards dataset of Maldives for the year

2004, contains 190 records of tsunami affected islands, all

being inhabited islands, and provides the number of direct

and indirect affected people for individual islands. The

dataset is published by an open data sharing platform,

Humanitarian Data Exchange (HDX) managed by the

United Nations Office for the Coordination of Humanitar-

ian Affairs (OCHA) under a creative commons attribution

4.0 international license (HDX 2022). We note that the

shape files for atolls and islands of Maldives are accessed

from the open data portal1 of the Maldives Land and

Survey Authority, Republic of Maldives. These shape files

possess a resolution of 1:4000 m. A spatial dataset of

natural hazards like cyclones, typhoons, storms, floods, and

water shortages of Maldives can be accessed from the same

open portal of the Humanitarian Data Exchange (HDX)

disaster dataset of Maldives (HDX 2022). We have used

tsunami data as a showcase for the current study. The

dataset for 190 islands provides detailed information about

deaths, injuries, destroyed houses, and also about people

who were directly and indirectly affected by the tsunami.

In order to simplify the modeling process, we have used the

number of indirectly affected people as the response vari-

able. The specific coordinates of tsunami-affected islands

are derived from the Humanitarian Data Exchange (HDX)

disaster dataset of Maldives (HDX 2022), with the coor-

dinates provided in the World Geodetic System 1984

(WGS84) coordinate reference system. It is worth noting

that the shape files utilized in the study also employ the

same reference system.

According to an independent evaluation report (2012)

by the Asian Development Bank, the 2004 tsunami had a

devastating impact on the island nation of Maldives. The

country experienced a disaster of national proportions, with

39 islands severely damaged (Asian Development Bank

2012). Figure 2 (left) depicts the locations of tsunami

affected islands for individual atolls of the Maldives which

include enclosed lagoon or basin, fore reef, sub tidal reef,

pass reef flat, and land on reefs. An interactive map of the

Maldivian island structure and tsunami affected locations is

published in an ArcGIS online map, which can be accessed

through this link2. The present study focuses on assessing

the impact of the tsunami on coastal communities in

Maldives through a comprehensive analysis of 12 distinct

atolls spanning the entire country from north to south.

These atolls include Haa Alifu, Haa Dhaalu, Shaviyani,

Noonu, Raa, Baa, Kaafu, Meemu, Laamu, Gaafu Alifu,

Gaafu Dhaal and Seenu as highlighted in Fig. 2 (right). By

strategically selecting these atolls, we ensure that the study

covers the entire geographical range of the country,

encompassing all 39 islands highly affected by the tsunami.

Additionally, the chosen atolls cover key urban areas, such

as the capital city of Malé, as well as other significant cities

in Maldives. Atolls with a considerably lower number of

tsunami-affected islands are intentionally excluded from

this study to maintain a focused and representative analy-

sis. As discussed in Section 1 the atolls of Maldives are a

collection of disjoint islands, similarly, almost all the atolls

are disjoint land surfaces. But some atolls such as Haa

1 readme.nemap.mv
2 www.arcgis.com/apps/dashboards/4412602f03254dad8933444

1ad2e633c
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Alifu, Haa Dhaalu, Shaviyani, and Noonu atolls in the

north, in the north-west Raa and Baa atolls, and in the south

Gaafu Alifu and Gaafu Dhaal, these three regional groups

share common boundaries. In the current study, these eight

atolls, based on their common geographical boundaries are

considered as three distinct combined spatial regions.

Details about the regional integration are depicted in

Figs. 6, 7, and 8 in the Appendix. In the rest of the study,

we have referred to these three atolls groups as, Shaviyani

group, Baa group, and Gaafu Dhaal group respectively.

Considering these 3 merged atoll groups, the initial 12

unique atolls are now reduced to 7 distinct atoll groups,

which are the focal point of investigation in the present

study.

These integrations allow us to explore a substantial

number of tsunami-hit islands in continuous spatial

regions. We report that the present study examines 135

islands from 7 different atolls or groups of atolls as shown

in Fig. 2 (right). This is approximately 71 percent of the

total 190 tsunami-affected islands of Maldives. Detail

records of the number of affected islands and indirectly

affected people for the selected atolls are reported in

Table 1.

Figure 3 (left) shows the locations of tsunami affected

regions of Baa group atolls. Figure 3 (right) depicts

detailed island distribution on reef areas for the same. In

both cases, tsunami affected regions are highlighted in red.

We report that all datasets used in the current study are

collected from sources without restrictions and that have

open access.

3 Methodology

Random spatial events generate irregularly scattered point

patterns over areas of interest. In these cases, spatial point

process models are useful tools to perform precise statis-

tical analysis (Juan et al. 2012; Loo et al. 2011; Karaganis

and Mimis 2006). Moreover, we can find recent studies

(Verdoy 2019; Opitz et al. 2020) on spatial point processes

that are able to identify spatial auto-correlations and

interactions between points in the pattern. From Fig. 3

(left) it seems that atolls with enclosed lagoon and land on

reefs are continuous land structures. But each atoll is

originally a collection of the number of distributed islands

as depicted in Fig. 3 (right). By considering the total

number of indirectly affected people from individual tsu-

nami-hit islands, we open the door to consider Poisson

regression models in combination with a Bayesian frame-

work. Instead of using MCMC, we have used computa-

tionally faster solutions for latent Gaussian models by

using a Laplace approximation for the integrals with the

INLA method (Rue et al. 2009). It focuses on models that

can be expressed as latent Gaussian Markov random fields

(GMRF) (Rue and Held 2005).

Our approach combines a spatial Poisson regression

method with an INLA Bayesian framework. In particular,

let Yi and Ei be the observed and expected number of

indirectly affected victims of the tsunami on the i-th island.

We assume that conditional on the relative risk, qi, the
number of observed events follows a Poisson distribution:

Yijqis Poðki ¼ EiqiÞ ð1Þ

where the log-risk is modeled as

logðqiÞ ¼ b0 þ Zibi þ ni þ �i ð2Þ

Here, ni accounts for the spatially structured random

effects and �i stands for an unstructured zero mean Gaus-

sian random effect and logGamma precision parameters 0.5

and 0.01, defined as penalized complexity (PC) priors

(Simpson et al. 2017). Zi represents the covariates. It is

worth noting that, no covariates are included in our study.

But it is possible to incorporate relevant covariates into

similar models in future studies (Rue et al. 2009). We

assigned a vague prior to the vector of coefficients b ¼
ðb0; . . .; bpÞ which is a zero mean Gaussian distribution

Fig. 2 Left: Locations of tsunami affected islands for individual atolls

of Maldives. Right: Study area (integrated 7 groups of atolls

highlighted)
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with precision 0.001. All parameters associated to log-

precisions are assigned inverse Gamma distributions with

parameters equal to 1 and 0.00005. In the current study, we

have chosen to provide default prior distributions for all

parameters in R-INLA. These have been chosen partly

based on priors commonly used in the literature (Martins

et al. 2013; Blangiardo and Cameletti 2015; Rue et al.

2016; Moraga 2020). As we run several cases with dif-

ferent priors, we find that our results are robust against

other alternative priors.

To bypass the problem of inefficiency in the estimation

under a general INLA approximation, we have used

another computationally tractable approach based on SPDE

models (Lindgren et al. 2011). On one hand, we used

SPDE to transform the initial Gaussian Field (GF) with

Matérn covariance function to a GMRF. In particular, the

spatial random process n, here represented by nð:Þ explic-
itly denotes dependence on the spatial field, follows a zero-

mean Gaussian process with Matérn covariance function

represented as

CovðnðxiÞ; nðxjÞÞ ¼
r2

2m�1CðmÞ ðjjjxi � xjjjÞmKmðjjjxi � xjjjÞ

ð3Þ

where Kmð:Þ is the modified Bessel function of second

order, and m[ 0 and j[ 0 are the smoothness and scaling

parameters, respectively. INLA approach constructs a

Matérn SPDE model, with spatial range r and standard

deviation parameter r.
The parameterized model we follow is of the form

ðj2 � DÞða=2ÞðsSðxÞÞ ¼ WðxÞ ð4Þ

where D ¼
Pd

i¼1
o2

ox2i
is the Laplacian operator, a ¼ ðmþ

d=2Þ is the smoothness parameter, s is inversely propor-

tional to r, W(x) is a spatial white noise and j[ 0 is the

scale parameter, related to range r, defined as the distance

at which the spatial correlation becomes small. For each m,

empirically derived definition r ¼
ffiffiffiffiffi
8m

p
=j with r corre-

sponding to the distance where the spatial correlation is

close to 0.1 (Blangiardo and Cameletti 2015). Note that we

have d ¼ 2 for a two-dimensional process, and we fix m ¼
1 so that a ¼ 2 in our case.

INLA-SPDE requires a triangulation or mesh structure

to interpolate discrete event locations to estimate a con-

tinuous process in space (Krainski et al. 2018). In the

current study, the spatial coordinates of each tsunami-af-

fected island are employed as the target sites over which

we have constructed the meshes using Delaunay triangu-

lation technique. It is important to highlight that the SPDE

triangulation techniques utilized in the study have been

classified into two distinct categories: stationary and non-

stationary approaches. These approaches are applied to the

selected seven atoll groups as part of the analysis. Addi-

tionally, within the stationary category, two subcategories

have been defined. The first subcategory involved the

creation of an SPDE mesh that encompasses the entire

study area, including both islands and water bodies. The

Table 1 Records of tsunami

effects in the selected 12

Maldivian atolls

Atoll Num of affected islands Num of indirectly affected people

Haa Alifu 14 15711

Haa Dhaalu 13 7677

Shaviyani 14 12305

Noonu 13 9045

Raa 15 13539

Baa 13 13457

Kaafu 9 6591

Meemu 8 7780

Laamu 12 7790

Gaafu Alifu 9 6832

Gaafu Dhaal 9 4470

Seenu 6 2742

Fig. 3 Tsunami affected regions of Baa and Raa atolls. Left:
Boundaries of atolls. Right: Boundaries of land on reefs for

component islands
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second subcategory focused on the design of SPDE mesh

precisely on the land surface, specifically targeting the land

on reefs. While the second category employed a nonsta-

tionary approach, which primarily revolved around the

development of barrier models. Section 3.1 provides a

detailed discussion of the theoretical background and

application techniques associated with the nonstationary

barrier models.

A comprehensive understanding of individual mesh

configurations for all seven atoll groups is reported in

Appendix Section B. This includes the mesh structures

used for both stationary models and the non-stationary

model. Specific details of these mesh structures can be

found under the heading ‘‘Mesh of Atolls‘‘ in Appendix

Section B. However, for the purpose of demonstrating the

applications of both stationary and non-stationary models

in a clear and understandable manner, we have selected

Seenu atoll as an illustrative example. By focusing on

Seenu Atoll, we aim to provide a comprehensive expla-

nation and facilitate a better understanding of the

methodology and findings of our study.

Because of the highly distributed nature of the island

structure in each atoll, a continuous spatial structure is

initially chosen for modeling, and triangulation is per-

formed on the entire study area. According to Verdoy

(2019), the best fitting mesh should have enough vertices

for effective prediction, but the number should be within a

limit to have control over the computational time. Based on

this principle, a series of meshes with varying numbers of

vertices are constructed for each of the three modeling

scenarios mentioned in Section 1. Finally from the battery

of meshes, the best-fitting mesh is selected. In each case,

the deviance information criterion (DIC), Watanabe-

Akaike information criterion (WAIC), and computation

time are used to assess the performance of the models and

to select the best fitting model by balancing model accu-

racy against complexity (Spiegelhalter et al. 2002).

After comparing the performance of the models with

different meshes, the best-performing models have been

selected, and the meshes used in those models are referred

to as the best-fitted meshes. These best-fitted meshes strike

a balance between model accuracy and computational

efficiency, ensuring that the models can provide accurate

and reliable results in a reasonable amount of time. The left

panel of Fig. 4 depicts the selected mesh for the entire

Seenu atoll, which includes both the land on reefs (high-

lighted in blue) and the surrounding lagoons and water

bodies. The grey representation within the figure illustrates

the SPDE mesh, which consists of 1189 vertices. Addi-

tionally, the locations of the islands affected by the tsunami

are marked in red, providing a visual reference for their

positioning within the context of the SPDE mesh and the

Seenu atoll.

From Fig. 4 (left) it is obvious that the SPDE mesh is

generated for the entire geographic boundary of the atoll,

including the water bodies like the lagoon and ocean sur-

face. However, the records of the tsunami-affected areas

are limited to discrete spatial sites that are located on land

on reefs for individual islands. Thus, the traditional sta-

tionary method of SPDE triangulation using the boundary

of the entire region is not realistic. As a result, we need to

design triangulation only using boundaries of the land on

reefs for individual islands in the atoll. Recent studies

(Chaudhuri et al. 2022, 2023) explore the application of

explicit network triangulation where SPDE mesh is

restricted to linear networks rather than the entire study

area. Using a similar methodology, we have designed

SPDE mesh precisely on land on reefs instead of defining

the entire atoll boundary. As mentioned earlier, balancing

between precision and computation time we have fine-

tuned the number of vertices to identify the best-fitted

mesh. The grey representations on the right panel of Fig. 4

depict the best fitting mesh having 427 vertices projected

only on the land on reefs. Locations of tsunami-affected

islands are marked in red.

According to Wood et al. (2008) and Bakka et al.

(2019), the default stationary method of designing trian-

gulation only on the land on reefs has a serious drawback in

that the Neumann boundary condition is often unrealistic

and severely impacts the results. A comprehensive dis-

cussion of the challenges associated with boundary con-

ditions and other limitations has been discussed in

Section 4.

3.1 Barrier model

The models designed using SPDE triangulations discussed

in the previous subsection assume stationarity and isotropy

that is, the autocorrelation between two locations depends

solely on the Euclidean distance. But coastal areas and

regions with physical barriers often exhibit complex spatial

patterns due to the presence of features such as coastlines,

islands, or channels. These patterns cannot be adequately

represented by stationary models that assume spatial

homogeneity. Thus, while modeling events on dispersed

island structures stationarity is an unrealistic assumption

(Bakka et al. 2018). Similar coastline problems are repor-

ted by Ramsay (2002), Wood et al. (2008), and Scott-

Hayward et al. (2014). Moreover, stopping the triangula-

tion at the coastline imposes the Neumann boundary con-

ditions, also leading to unrealistic models (Bakka et al.

2018). This issue is common while exploring coastline and

complex island problems. Other examples of physical

barriers include road networks, power lines, categorical

health sectors, and areas with different land use. To deal

with the coastline problem, several studies proposed
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solutions by computing the shortest distance in water

(Wang and Ranalli 2007; Scott-Hayward et al. 2014;

Miller and Wood 2014). Ramsay (2002) proposed a

methodology defining boundary conditions that use a

smoothing penalty together with the Neumann boundary

condition. Furthermore, Wood et al. (2008) and Sangalli

et al. (2013) demonstrate alternative solutions based on the

Dirichlet boundary condition where a known value or,

function is used along the boundary.

The comprehensive literature review reveals a clear

requirement for a generalized model that effectively retains

the primary strengths of previous approaches while

simultaneously addressing and overcoming their main

weaknesses. The generalized model should exhibit

robustness in relation to the process of selecting the

boundary polygon. Moreover, it should maintain a com-

putational cost comparable to the stationary alternatives. It

should also incorporate a smoothness parameter and a

range parameter, which collectively determine the distance

of spatial similarity (Bakka et al. 2019). Additionally, it is

essential to emphasize that the ease of use for researchers

in practical applications should not significantly exceed

that of the stationary models, thus maintaining usability

parity. In this line, Bakka et al. (2019) proposed an

approach to handle nonstationary and anisotropic spatial

processes with emphasis to handle complex archipelago

structures in which the coastline is used as a physical

barrier (Bakka et al. 2019). In their proposal, Bakka et al.

(2019) approximated them using a finite element method

based on the SPDE method. A system of two SPDEs is

presented in this case, one for the barrier area, and the other

for the remaining area. The following system of stochastic

differential equations has a solution that is specifically a

nonstationary spatial effect, denoted by u(s).

uðsÞ � r:
r2b
8
ruðsÞ ¼ rb

ffiffiffi
p
2

r

ruWðsÞ; for s 2 Xb;

uðsÞ � r:
r2

8
ruðsÞ ¼ r

ffiffiffi
p
2

r

ruWðsÞ; for s 2 Xn;

ð5Þ

where u(s) is the spatial effect, Xb is the barrier area and Xn

is the remaining area and their disjoint union gives the

whole study area X. Ranges for the barrier and remaining

areas are represented by r and rb respectively. ru is the

marginal standard deviation. r is equal to ð o
ox ;

o
oyÞ and

W(s) stands for white noise.

It is worth noting that the barrier model is based on

viewing the Matérn correlation as a collection of paths

through a simultaneous autoregressive (SAR) model, rather

than as a correlation function on the shortest distance

between two points. The local dependencies aremanipulated

to cut off paths crossing the physical barriers. In the next step,

the new SAR model is formulated to SPDE format to rep-

resent the Gaussian field, with a sparse precision matrix that

is automatically positive definite (Bakka et al. 2019).

In the study by Bakka et al. (2019), the water body has

been considered as normal terrain, and distinct coastlines

and boundaries are used as physical barriers. In contrast, in

the current study, we have defined boundary polygons of

individual land on reefs for each island as our study area

and the water body acts as the physical barrier. Besides,

tsunami-hit locations are the sample events considered

precisely on the land area of the islands. Figure 5 depicts

the barrier object (left panel) and barrier object with tri-

angulations (right panel) generated using inla.bar-

rier.polygon function from the R-INLA package. However,

it includes a modification where the triangulation is

designed using a barrier model where the water bodies

(ocean and lagoons) act as physical barriers. Within the left

Fig. 4 Left: SPDE triangulation with tsunami-affected regions for the entire atoll boundary. Right: Triangulation generated only for land on reefs
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panel of Fig. 5, the grey region signifies the physical bar-

rier, while the white area represents the land on reefs where

the analysis of spatial dependency is conducted. Mean-

while, the right panel showcases the triangulation, includ-

ing the physical barrier in grey. In both panels, the points

marked in red indicate the locations of areas affected by

tsunamis, which are utilized as event locations in the

model. Furthermore, this section serves as an opportunity

to present Seenu atoll as an example case for our discus-

sion. For additional details and mesh structures of barrier

objects of other atoll groups, please refer to Appendix

Section B under the heading ‘‘Mesh of Atolls’’.

3.2 Model fitting

Based on the discussions in the previous subsections we

designed a set of hierarchical Bayesian models with Poisson

likelihood and PC priors (see Eq. 2). The steps for modeling

the application include the spatial effect created with the

mesh using the spatial locations by Matérn covariance and

then implemented using individualmesh structures.We have

also considered independent and identically distributed

Gaussian random effect, represented as iid in the modeling

process. In total, we have fitted 7 different models for each

atoll group. Meshes used in both stationary and nonstation-

ary models for individual atoll groups are reported in

Appendix Section B. The seven models represent different

combinations of mesh types, incorporating independent and

identically distributed (iid) random effects in both stationary

and nonstationary scenarios. In order to assess the signifi-

cance of spatial effects, one of the models employed in the

study intentionally omits any consideration of spatial effects.

It is worth mentioning that, no covariates are used in

designing the models for the current study. Details of each

model are shown in Table 2. The dependent variable across

all models is the number of individuals indirectly affected by

tsunami.

As we have a battery of competing models, we compare

them using the deviance information criterion (DIC)

(Spiegelhalter et al. 2002), which is a Bayesian model

comparison criterion, represented as

DIC ¼ goodness of fit þ complexity ¼ DðhÞ þ 2pD

where DðhÞ is the deviance evaluated at the posterior mean

of the parameters, and pD denotes the effective number of

parameters, which measures the complexity of the model

(Spiegelhalter et al. 2002). An alternative is the Watanabe

Akaike information criterion (WAIC) which follows a

more strict Bayesian approach to construct a criterion

(Watanabe 2010). pWAIC is similar to pD in the original

DIC (Gelman et al. 2014). The lowest values of DIC and

WAIC suggest the best-fitted model.

4 Results and discussion

As outlined in Section 3, our study employs a range of

methodological approaches to analyze the spatial vari-

ability in the occurrence of natural disasters, specifically

focusing on tsunamis in complex spatial regions having

physical barriers. In this study, we have selected seven atoll

groups located across the northernmost to the southernmost

regions of Maldives, serving as a representative showcase.

Each atoll group possesses unique characteristics, distin-

guished by factors such as shape, land area, and number

and size of component islands, as well as the number of

islands affected by tsunami. Additionally, the distributions

of tsunami-affected islands within these atoll groups dis-

play unique patterns. In the two northern atoll groups

(Shaviyani and Baa), the locations of affected islands are

observed both along the coastline and within the enclosed

Fig. 5 Left: Barrier object. Right: Barrier object with SPDE triangulation
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boundaries of the reefs (refer to Figs. 9, 10). Conversely, in

the central and southern atoll groups, the majority of tsu-

nami-affected regions are concentrated along the periphery

of the land on reefs (see Figs. 11, 12, 13, 14, 15).

In our analysis, we utilized two different scenarios when

creating the SPDE triangulations: one for the entire region

and another only focused on the land on reefs. Conse-

quently, there exists a wide variation in the number of

nodes (vertices) for each atoll group between these two

cases. Table 4 in the Appendix shows a comparative

overview of the node counts for each atoll group in both

scenarios. It is observed that while considering the entire

region, the number of nodes ranges from 1189 in Seenu

atoll to 3001 in Gaffu Dhaal atoll group. Conversely, when

considering only the land on reefs, the node counts are

considerably smaller, ranging from 427 in Seenu to 1561 in

Meemu atoll. Notably, the largest disparity between these

two approaches is observed in the case of the Gaffu Dhaal

atoll group, with a variation from 3001 to 1283 nodes.

Using these meshes, we applied two models to analyze the

spatial dependencies of natural hazards in each atoll group.

In addition to compare the performance of these two

stationary models, we have implemented a nonstationary

barrier model. The nonstationary model differentiates

between component islands with ocean or lagoon areas in

between, enabling the analysis of the atoll as a whole while

considering the boundaries of land on reefs for individual

islands. These characteristics directly influence the good-

ness-of-fit of the models, allowing for a comprehensive

assessment of their effectiveness in capturing the spatial

dynamics and patterns of the studied phenomena. By con-

sidering these characteristics, we gain valuable insights into

the unique features and complexities of the spatial region,

contributing to a better understanding of the performance

and suitability of the models for analyzing the given context.

Specifically, we conducted five stationary models and two

nonstationary models. Table 2 provides a comprehensive list

of the models considered, and in the subsequent sections, we

present and discuss the results of the model fittings with a

focus on specific aspects of the atolls.

Table 3 shows the DIC and WAIC values, which serve

as widely utilized diagnostics for evaluating the quality of

models in a Bayesian context (Rue et al. 2009). We report

that the values in bold signify the best-fit models for each

atoll group. Lower values indicate better model perfor-

mance. Our observations indicate that, based on the DIC

criteria, the nonstationary model incorporating the iid

(Model 6) outperforms other models for nearly all atolls.

However, it is important to note that both Model 6 and

Model 7 exhibit better performance than Model 5, while

Model 2 and Model 3 outperform Model 1 for each atoll.

These findings suggest that the choice of mesh, specifically

considering the entire region of atolls that includes physical

barriers such as lagoons and the ocean, has a substantial

impact on model performance. Consequently, the station-

ary model considering only land on reefs and the nonsta-

tionary barrier model, which accounts for the exclusion of

physical barriers, outperform the other stationary model

and provide a more realistic representation of the spatial

characteristics.

Another interesting observation is related to the use of

iid random effects. When comparing pairs of models with

and without the use of iid for both stationary and nonsta-

tionary models (M1–M5, M2–M7, and M3–M6), it

becomes evident that models incorporating iid consistently

outperform their respective contrasting models. This sug-

gests that the inclusion of independent and identically

distributed random effects has a significant impact on

model performance when combined with spatial effects.

However, we do observe some disparities in certain atoll

groups. For instance, the Shaviyani and Baa atoll groups

exhibit exceptionally high DIC values for Model 2. These

two atolls are characterized because the events occur both,

on the coastline and also in the pieces of land inside the

boundary reef (see Figs. 9, 10). This distribution could

explain why the model which applies SPDE, considering

only the land on reef region, does not work properly in

these two cases as the mesh used does not take into account

the space between the component islands. In contrast, when

applying the models to the Kaafu, Laamu, and Gaafu Dhaal

Table 2 Competing models

with choice of SPDE mesh and

iid

Model iid SPDE mesh (entire region) SPDE mesh (only land) Barrier model

M1 �
M2 �
M3 �
M4 �
M5 � �
M6 � �
M7 � �
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atolls, lead to negligible differences between the stationary

model only on land on reefs and nonstationary barrier

model. This suggests that both types of models perform

similarly in these atoll groups. It is possible that the

structures of these atolls play an important role in this

similarity. The tsunami-affected islands in these atolls are

primarily concentrated on the boundary of the reefs, with

only one instance in the case of Gaafu Dhal atoll where the

event is located in the middle of the atoll (as depicted in

Fig. 14). This particular distribution of events on the

boundaries can explain the similarities observed between

the two models used. In this case, the mesh structures do

not encounter major challenges in accurately modeling the

events, as they are primarily focused on the boundaries.

Therefore, distinguishing between land and water (as done

in the barrier model) may have less importance in these

atolls, leading to comparable performance between the

stationary and nonstationary models.

In the case of the Meemu atoll, all models show almost the

sameDICvalues. This can be attributed to the characteristics of

the atoll,which consists of a single land region andwhere all the

tsunami events are located around the boundary reef (see

Fig. 12). Consequently, in this scenario, the distinction between

boundaries andwater using ameshmaynot be relevant, as there

are only events within a single land region. As a result, the

model’s fit remains consistent irrespective of whether the

applied mesh considers the atoll as a whole, treats the compo-

nent islands individually, or employs the barrier model. Fur-

thermore, when examining the atoll located further south

(Seenu), noticeable distinctions arise when comparing the sta-

tionarymodelswith the nonstationarymodel, particularlywhen

iids are not included. These results are surprising because the

structure of the territory of this atoll and the locations of the

events are similar to that observed in the previously mentioned

atoll groups. One notable distinction is that the Seenu atoll

exhibits a relatively lower number of locations affected by

tsunamis compared to the other atolls considered. Conse-

quently, the number of events emerges as an important factor

influencing the model fit in this particular context.

The comparison between stationary and nonstationary

models at the atoll level provides valuable insights into the

spatial variation of tsunamis in complex spatial regions like

the islands of Maldives. The results suggest that a barrier

model is an effective and realistic option, particularly in sit-

uations with regions having physical barriers. Notably, the

findings also highlight the significance of the locations of

Table 3 DIC and WAIC values according to the seven models and for

the considered atolls

Atoll Model DIC WAIC

M1 552.98 556.60

M2 3917.20 4810.94

M3 553.91 557.87

Shaviyani M4 539.73 532.89

M5 535.86 526.98

M6 534.90 524.98

M7 535.41 526.42

M1 329.8 427.19

M2 4386.85 6046.55

M3 329.88 427.51

Baa M4 263.83 262.44

M5 259.25 256.30

M6 259.51 256.74

M7 259.60 257.21

M1 229.88 1376.15

M2 229.49 1375.69

M3 229.50 1375.57

Kaafu M4 133.02 133.78

M5 131.75 132.66

M6 131.30 132.15

M7 131.24 132.04

M1 73.46 71.42

M2 73.46 71.42

M3 73.44 71.37

Meemu M4 73.44 71.40

M5 73.46 71.42

M6 73.44 71.37

M7 73.46 71.41

M1 363.83 1809.40

M2 363.39 1810.52

M3 363.25 1810.53

Laamu M4 141.59 137.53

M5 141.65 137.62

M6 141.65 137.61

M7 141.66 137.62

M1 225.70 1708.00

M2 225.55 1707.99

M3 225.42 1708.09

Gaa Dhalu M4 203.35 197.51

M5 203.43 197.65

M6 203.43 197.48

M7 203.43 197.61

M1 151.59 265.83

M2 151.55 265.79

M3 78.64 76.53

Seenu M4 78.50 76.35

M5 78.60 76.48

M6 78.64 76.53

Table 3 (continued)

Atoll Model DIC WAIC

M7 78.61 76.48
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events, as observed in the case of Shaviyani and Baa atoll

groups, where it has a substantial impact on the model fit. It

can be stated that, through the utilization of nonstationary

barrier models, we can capture the intricate spatial variations

and complexities present in coastal and island regions.

Regarding the limitations and challenges, the most

important one is related to boundary effects in the SPDE-

INLA approximation. This approach creates artifact spatial

dependencies on the boundary. In a standard mesh, as long as

it is well constructed, the boundaries are in the outer limits of

the spatial domain of interest and, therefore, those depen-

dencies can be identified and eliminated. However, in a more

complex mesh, such as barrier models, the boundaries lie

within the spatial domain of interest. This fact makes it diffi-

cult, sometimes excessively, to identify and subsequently

eliminate artifact spatial dependencies. Another important

constraint lies in the choice of the range fraction, represented

as rb
r (refer to Eq. 5). This parameter introduces a degree of

arbitrariness into the model results. The choice of an inap-

propriate range fraction can significantly impact the model

outcomes and their interpretation. It is essential to select an

appropriate range fraction that effectively captures the spatial

dynamics of the barrier and aligns with the specific charac-

teristics of the studied region. Another limitation arises when

dealing with physically thin barriers. The barrier model may

yield ambiguous results in such cases, as its ability to accu-

rately capture the effects of these thin barriers is inherently

limited. This introduces uncertainties in the model outcomes,

and caution should be exercised when interpreting the results

in such scenarios. Conversely, when modeling artificial

thicker barriers, there is a risk of overlapping segments, cre-

ating fictitious spatial structures that do not correspond to the

actual physical characteristics of the region. These overlaps

can distort the model’s output and compromise the reliability

of the results. Therefore, when dealing with thin barriers that

require manual adjustment, it becomes crucial to exercise

careful consideration in selecting the appropriate barrier

thickness parameter. Additionally, the investigation of tsu-

nami propagation across multiple atolls at the island scale

presents considerable difficulties, necessitating the use of

high-resolution shape files. However, the availability of

enhanced spatial resolution maps of the Maldives enables the

development of detailed island-specific structures and the

creation of more efficient nonstationary models.

5 Conclusions

The barrier model exhibits robustness in relation to the

process of selecting the boundary polygon in a more real-

istic environment. Furthermore, it maintains a

computational cost comparable to the stationary alterna-

tive. The model also incorporates a smoothness parameter

and a range parameter, which collectively determine the

spatial similarity distance.

This study exhibits certain limitations, such as the

presence of boundary effects, the requisite for precise fine-

tuning of the range fraction, and the optimal thickness of

the barrier. Despite these difficulties, in this work, we have

managed to identify them. However, a different approxi-

mation is needed in which the SPDE-INLA approximation

does not cause these fictitious spatial dependencies.

Moreover, these fictitious dependencies cause a very low

predictive capacity of the model. Consequently, it is

essential for future research to prioritize the exploration

and development of an alternative approach that eliminates

these artificial dependencies, thereby enhancing the mod-

el’s predictive performance and enabling more reliable and

robust spatial analysis.

However, this study demonstrates notable advantages.

Primarily, the proposed nonstationary technique outper-

forms the traditional stationary spatial models to analyse

the spatial dependencies of natural hazards in complex

distributed land structures like islands and coastal areas. It

entails equivalent computational expenses as the stationary

spatial models, thereby streamlining their analysis. In

general, the proposed model is easy to use and can deal

with both sparse data and complex land structures having

physical barriers. It provides a more accurate representa-

tion of the spatial dynamics of natural hazards that facili-

tates the identification of vulnerable areas, enabling

targeted mitigation measures to be implemented. Addi-

tionally, understanding the spatial variability of natural

hazards aids in post-effect disaster management. It allows

for the assessment of the extent and severity of the impact

on coastal communities, enabling efficient allocation of

resources for response and recovery efforts. This knowl-

edge of spatial dependency could be incorporated to the

development of coastal communities that possess resilience

and are better equipped to effectively mitigate and respond

to future natural hazards.

Appendices

A: Atolls merged

See Figures 6, 7 and 8.
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Fig. 6 Combined Spatial region

for Haa Alifu, Haa Dhaalu,

Shaviyani and Noonu atolls
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Fig. 7 Combined Spatial region

for Raa and Baa atolls
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B: Mesh of atolls

See Figures 9, 10, 11, 12, 13, 14, 15 and Table 4.

Fig. 8 Combined Spatial region

for Gaafu Alifu and Gaafu

Dhaal atolls

Fig. 9 Shaviyani atoll
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Fig. 10 Baa atoll

Fig. 11 Kaafu atoll

Fig. 12 Meemu atoll
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Table 4 Number of vertices in SPDE mesh for seven atoll groups

Atoll group SPDE mesh (entire region) SPDE mesh (only land)

Shaviyani 1629 564

Baa 1672 856

Kaafu 2031 941

Meemu 2926 1561

Laamu 2590 1150

Gaafu Dhaal 3001 1283

Seenu 1189 427

Stochastic Environmental Research and Risk Assessment

123



Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Ethical statement Author and co-authors testify that, this manuscript

is original, has not been published before and is not currently being

considered for publication elsewhere. We know of no conflicts of

interest associated with this publication and there has been no

financial support for this work.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Aksha SK, Juran L, Resler LM, Zhang Y (2019) An analysis of social

vulnerability to natural hazards in nepal using a modified social

vulnerability index. Int J Disaster Risk Sci 10:103–116

Asian Development Bank (2012) Maldives: Tsunami emergency

assistance project. Retrieved October 12, 2021. From https://

www.adb.org/documents/ maldives-tsunami-emergency-assis-

tance-project

Bakka H, Rue H, Fuglstad GA, Riebler A, Bolin D, Illian J, Krainski

E, Simpson D, Lindgren F (2018) Spatial modeling with

R-INLA: areview. WIREs Comput Stat 10(6)

Bakka H, Vanhatalo J, Illian JB, Simpson D, Rue H (2019) Non-

stationary gaussian models with physical barriers. Spat Stat

29:268–288. https://doi.org/10.1016/j.spasta.2019.01.002

Barbetta S, Coccia G, Moramarco T, Todini E (2018) Real-time flood

forecasting downstream river confluences using a Bayesian

approach. J Hydrol 565:516–523. https://doi.org/10.1016/j.jhy

drol.2018.08.043

Benevolenza MA, DeRigne L (2019) The impact of climate change

and natural disasters on vulnerable populations: a systematic

review of literature. J Human Behav Soc Environ 29(2):266–281

Bi R, Jiao Y, Bakka H, Browder JA (2020) Long-term climate ocean

oscillations inform seabird bycatch from pelagic longline fishery.

ICES J Mar Sci 77(2):668–679

Blangiardo M, Cameletti M (2015) Spatial and spatio-temporal

Bayesian models with R-INLA. John Wiley Sons, Ltd.

Bolle A, das Neves, L., Smets, S., Mollaert, J., Buitrago, S. (2018) An

impact-oriented early warning and bayesian-based decision

support system for flood risks in zeebrugge harbour. Coast Eng

134:191–202. https://doi.org/10.1016/j.coastaleng.2017.10.006

Bornstein L, Lizarralde G, Gould KA, Davidson C (2013) Framing re-

sponses to post-earthquake haiti: how representations of disas-

ters, recon-struction and human settlements shape resilience. Int

J Disaster Resilience Built Environ 4(1):43–57

Botzen W, Van Den Bergh J (2009) Managing natural disaster risks in

a changing climate. Environ Hazards 8(3):209–225

Briere J, Elliott D (2000) Prevalence, characteristics, and long-term

sequelae of natural disaster exposure in the general population.

J Traumat Stress 13:661–679

Calkin DE, Mentis M (2015) Opinion: The use of natural hazard

modeling for decision making under uncertainty. For Ecosyst

2(1). https://doi.org/10.1186/s40663-015-0034-7

Cannon T (1994) Vulnerability analysis and the explanation of

’natural’disasters. Disasters Develop Environ 1:13–30

Cendoya M, Hubel A, Conesa D, Vicent A (2022) Modeling the

spatial distribution of xylella fastidiosa: A nonstationary

approach with dispersal barriers. Phytopathology, 112 (5),

1036-1045. https://doi.org/10.1094/phyto-05-21-0218-r

Chaudhuri S, Juan P, Mateu J (2022) Spatio-temporal modeling of

traffic accidents incidence on urban road networks based on an

explicit network triangulation. J Appl Stat, pp 1–22. https://doi.

org/10.1080/02664763.2022.2104822

Chaudhuri S, Juan P, Serra L (2021) Analysis of precise climate

pattern of Maldives. A complex island structure. Regional Stud

Mar Sci 44:101789. https://doi.org/10.1016/j.rsma.2021.101789

Chaudhuri S, Saez M, Varga D, Juan P (2023) Spatiotemporal

modeling of traffic risk mapping: a study of urban road networks

in Barcelona, Spain. Spat Stat 53:100722

Correa E, Ramı́ez F, Sanahuja H (2011) Populations at risk of disaster

Costa V, Fernandes W (2017) Bayesian estimation of extreme flood

quantiles using a rainfall-runoff model and a stochastic daily

rainfall generator. J Hydrol 554:137–154. https://doi.org/10.

1016/j.jhydrol.2017.09.003

Cui P, Peng J, Shi P, Tang H, Ouyang C, Zou Q, Liu L, Li C, Lei Y

(2021) Scientific challenges of research on natural hazards and

disaster risk. Geogr Sustain 2(3):216–223

Cutter SL (1996) Vulnerability to environmental hazards. Prog

Human Geogr 20(4):529–539

Cutter SL, Finch C (2008) Temporal and spatial changes in social

vulnerability to natural hazards. Proc Nat Acad Sci

105(7):2301–2306. https://doi.org/10.1073/pnas.0710375105

Dawkins LC, Williamson DB, Mengersen KL, Morawska L,

Jayaratne R, Shaddick G (2021) Where is the clean air?

A Bayesian decision framework for personalised cyclist route

selection using R-INLA. Bayesian Anal 16 (1). https://doi.org/

10.1214/19-ba1193

Emmer A (2018) Geographies and scientometrics of research on

natural hazards. Geosciences 8(10):382. https://doi.org/10.3390/

geosciences8100382

Fujima K, Shigihara Y, Tomita T, Honda K, Nobuoka H, Hanzawa M,

Fujii H, Ohtani H, Orishimo S, Tatsumi M, Koshimura S-I

(2006) Sur-vey results of the Indian Ocean tsunami in the

Maldives. Coast Eng J 48(2):81–97. https://doi.org/10.1142/

s0578563406001337

Gaume E, Gaál L, Viglione A, Szolgay J, Kohnová S, Blöschl G
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