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EACA stands for «Encuentros de Álgebra Computacional y Aplicaciones» 
(Meetings on Computer Algebra and Applications). These meetings are 
organized by the Spanish «Red Temática de Cálculo Simbólico, Álgebra 

Computacional y Aplicaciones» (EACA Network on Symbolic Computation, 
Computer Algebra and Applications). Their purpose is twofold: first, to provide 
an appropriate meeting point both for researchers specializing in these areas and 
for those who use them in their own research activities, and second, to support and 
encourage participation by young researchers.

Over the years these meetings have achieved greater international recognition, 
especially from members of the Symbolic Computation community. They started 
in Santander in 1995 and have been held annually in Sevilla, Granada, Sigüenza, 
Tenerife, Barcelona, and Ezcaray. Starting in 2002 in Valladolid, they have been 
held biannually in Santander, Sevilla, Granada, Santiago de Compostela, Alcalá 
de Henares, Barcelona, Logroño and Zaragoza (in July 2018). Although the 
seventeenth edition was scheduled to be held in Castelló de la Plana in 2020, it 
had to be postponed due to the COVID-19 pandemic ,until June 2022, the current 
edition.

The EACA Network organizes a variety of International Schools, workshops, 
and symposiafocusing on the following subject areas:

• Effective Methods in Algebra, Analysis, Geometry and Topology,
• Algorithmic Complexity,
• Scientific Computation by means of Symbolic-Numerical Methods,
• Symbolic-Numeric Software Development,
• �Analysis, Specification, Design and Implementation of Symbolic Computation 

Systems,
• Applications in Science and Technology.
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The XVII Meeting on Computer Algebra and Applications (EACA 2022) will 
take place in Castelló de la Plana, at Universitat Jaume I, from June 20 to June 
22. This activity of the EACA network is part of the «Redes de Investigación» 
Dynamisation Actions RED2018-102583-T, partially supported by the Spanish 
research ministry and agency MCIN/AEI/10.13039/501100011033/.

This book contains the extended abstracts of the accepted contributions and the 
plenary talks for this 17th edition of EACA. There are a total of 27 contributions, 
accepted after a standard referee process, and 5 plenary talks. The plenary speakers 
are:

• Rocío González Díaz, Universidad de Sevilla (Spain),
• Gregor Kemper, Technische Universität München (Germany),
• Pierre Lairez, INRIA Saclay Île-de-France (France),
• Sonia Pérez Díaz, Universidad de Alcalá (Spain), and
• Diego Ruano, Universidad de Valladolid (Spain).

We would like to express our sincere gratitude to the members of the Scientific 
Committee, chaired by Manuel Ladra (Universidad de Santiago de Compostela), 
María Emilia Alonso (Universidad Complutense de Madrid), Enrique Artal 
(Universidad de Zaragoza), Marta Casanellas (Universitat Politècnica de Catalunya), 
Francisco J. Castro (Universidad de Sevilla), Carlos D’Andrea (Universitat de 
Barcelona), Ignacio García Marco (Universidad de La Laguna), Philippe Gimenez 
(Universidad de Valladolid), José Gómez-Torrecillas (Universidad de Granada), 
Laureano González-Vega (Universidad de Cantabria), Jorge Martín Morales 
(Universidad de Zaragoza), Francisco J. Monserrat (Universitat Politècnica de 
València), Sonia Pérez (Universidad de Alcalá), and Ana Romero (Universidad de 
la Rioja). Our gratitude also goes to Universitat Jaume I, Instituto Universitario de 
Matemáticas y Aplicaciones de Castellón (IMAC), Escola Superior de Tecnologia 
i Ciències Experimentals de la Universitat Jaume I, Fundació Universitat Jaume 
I-Empresa (FUE) and to the following institutions that have offered us financial 
support:

• Ministerio de Ciencia e Innovación,
• Foundation Compositio Mathematica,
• Diputació de Castelló.
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Finally, we would like to give special thanks to Helena Martín Cruz and Elvira 
Pérez Callejo for their dedication and collaboration in the organization of this 
event.
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wish all the participants in this meeting a successful and fruitful conference and a 
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The organizing committee:

C. Galindo, P. Gimenez, F. Hernando

F. Monserrat , J. J. Moyano
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PARTIAL FUNCTIONS INDUCED BY MORPHISMS BETWEEN OF PERSISTENCE
MODULES

R. GONZALEZ-DIAZ, M. SORIANO-TRIGUEROS, AND A. TORRAS-CASAS

ABSTRACT. Persistence modules are fundamental algebraic structures in topological data analysis.
One often needs to understand morphisms between a pair of persistence modules as these appear
very naturally in practical situations. Even though one might express such morphisms as the direct
sum of indecomposable modules, in most cases the decomposition is out of our reach. We define
an easy-to-compute partial function relating the interval decomposition of the domain and codomain
of such morphisms. This approach gives information about the inner structure of the morphism in a
computable way, allowing their use in topological data analysis.

1. BACKGROUND ON PERSISTENCE MODULES

A persistence module 𝑉 is a functor from ℝ to Vect, the category of vector spaces over a field
𝑘 with unit denoted by 1𝑘. In other words, 𝑉 is a set of vector spaces 𝑉𝑡 for all 𝑡 ∈ ℝ and a set of
linear maps 𝜌𝑠𝑡 ∶ 𝑉𝑠 → 𝑉𝑡 for all pairs 𝑠 ≤ 𝑡, such that 𝜌𝑠𝑡◦𝜌𝑟𝑠 = 𝜌𝑟𝑡 if 𝑟 ≤ 𝑠 ≤ 𝑡 and 𝜌𝑡𝑡 = Id𝑉𝑡

for all
𝑡 ∈ ℝ; where Id𝑉𝑡

denotes the identity map. The linear maps 𝜌𝑠𝑡 will be called the structure maps
of 𝑉 .
A morphism between persistence modules, 𝑓 ∶ 𝑉 → 𝑈 , is a natural transformation between

them. It consists of a set of linear functions {𝑓𝑡 ∶ 𝑉𝑡 → 𝑈𝑡} which commutes with respect to the
structure maps.
We will use enriched numbers, 𝔼 = ℝ × {+,−} ∪ {−∞,∞}, to represent intervals:

❲⋅, ⋅❳ 𝑞− 𝑞+ ∞
−∞ (−∞, 𝑞) (−∞, 𝑞] (−∞,∞)
𝑝− [𝑝, 𝑞) [𝑝, 𝑞] [𝑝,∞)
𝑝+ (𝑝, 𝑞) (𝑝, 𝑞] (𝑝,∞)

Example 1.1. Given an interval ❲𝑎, 𝑏❳ ⊂ ℝ, let us consider a persistent module 𝑘
❲𝑎,𝑏❳ given by

𝑘
❲𝑎,𝑏❳𝑡 =



𝑘 if 𝑡 ∈ ❲𝑎, 𝑏❳,
0 otherwise,

with 𝜌𝑠𝑡 = Id𝑘 for all 𝑠, 𝑡 ∈ ❲𝑎, 𝑏❳ with 𝑠 ≤ 𝑡. We call 𝑘
❲𝑎,𝑏❳ an interval module.

Example 1.2. Given two interval modules 𝑘
❲𝑎,𝑏❳ and 𝑘

❲𝑐,𝑑❳ with 𝑐 ≤ 𝑎 ≤ 𝑑 ≤ 𝑏, we define a
morphism 𝑓 ∶ 𝑘

❲𝑎,𝑏❳ → 𝑘
❲𝑐,𝑑❳ as

𝑓𝑡 =


Id𝑘 if 𝑡 ∈ ❲𝑎, 𝑑❳,
0 otherwise.

The authors have been partially supported by the Agencia Estatal de Investigación/10.13039/501100011033 grant
PID2019-107339GB-100 and the Agencia Andaluza del Conocimiento grant P20-01145.

The talk at the EACA 2022 meeting was given by the first author.
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Note that in Example 1.2, all inequalities 𝑐 ≤ 𝑎 ≤ 𝑑 ≤ 𝑏 must hold, since otherwise 𝑓 cannot
commute with the structuremaps from 𝑘

❲𝑎,𝑏❳ and 𝑘
❲𝑐,𝑑❳. The next theorem justifies the use of interval

modules as the building blocks of persistence modules.

Theorem 1.3. [1] Let 𝑉 be a persistence module. Suppose that 𝑉 satisfies some mild assumptions.
Then 𝑉 decomposes uniquely, up to isomorphisms, as:

𝑉 ≃


𝐼∈𝑆
𝑚𝐼𝑘𝐼

where 𝑆 is a set of intervals and 𝑚𝐼 their multiplicity.

By Theorem 1.3, a persistent module 𝑉 is completely determined up to isomorphism by the set
bar (𝑉 ) = {(𝐼, 𝑚𝐼 )}𝐼∈𝑆 . From bar (𝑉 ) we may define the ordered set {❲𝑎𝑖, 𝑏𝑖❳}𝑁𝑖=1 where each
interval 𝐼 appears as many times as its multiplicity 𝑚𝐼 .
A barcode basis  for 𝑉 is a choice of an isomorphism:

𝛼 ∶
𝑁


𝑖=1
𝑘
❲𝑎𝑖,𝑏𝑖❳ → 𝑉 .

Wemay restrict each summand of 𝛼 to its domain intervalmodule 𝛼𝑖 ∶ 𝑘
❲𝑎𝑖,𝑏𝑖❳ → 𝕍 for all 1 ≤ 𝑖 ≤ 𝑁 .

We will write 𝛼𝑖 ∼ ❲𝑎𝑖, 𝑏𝑖❳ and denote a barcode basis by the set = {𝛼𝑖}𝑁𝑖=1.

Example 1.4. Let 𝑉 ≃ 𝑘
❲0−,4−❳⊕𝑘

❲1+,3+❳ be a persistence module. We take the barcode basis given
by 𝛼1 ∼ ❲0−, 4−❳ and 𝛼2 ∼ ❲1+, 3+❳, and depict the interval decomposition as:

0 1 2 3 4

𝛼1
𝛼2

Unfortunately, the decomposition of morphisms between persistence modules is much more com-
plex than that of persistence modules. In particular, the set of possible indecomposables is known
to be wild in the general case [2]. We are interested in computable tools to distinguish between such
morphisms.

2. THE INDUCED PARTIAL FUNCTION

In this section, given 𝑓 ∶ 𝑉 → 𝑈 , we propose a partial function, 𝑓 , relating bar (𝑉 ) with
bar (𝑈 ). Differences between𝑓 and𝑔 will outline differences between the original morphisms
𝑓 and 𝑔.
Given 𝐼 ∈ bar (𝑉 ) and 𝐽 ∈ bar (𝑈 ),𝑓 returns𝑓 (𝐼, 𝐽 ) ∈ ℕ ∪ {0} such that



𝐽
𝑓 (𝐼, 𝐽 ) ≤ 𝑚𝐼.

One may interpret𝑓 as a partial function that sends intervals in bar (𝑉 ) to intervals in bar (𝑈 ).
Given a subset of a base  ⊆  = {𝛼𝑖}𝑁𝑖=1 for 𝑉 , we define ⟨⟩ as the submodule of 𝑉 given by

the image of 𝛼 ∶
⨁

𝛼𝑖∈ 𝑘
❲𝑎𝑖,𝑏𝑖❳ → 𝑉 . We will denote by 𝑡 the base for ⟨⟩𝑡 for all 𝑡 ∈ ℝ, which

corresponds to the set


𝛼𝑖𝑡(1𝑘) ∣ 𝛼𝑖 ∈  with 𝛼𝑖 ∼ ❲𝑎𝑖, 𝑏𝑖❳ such that 𝑡 ∈ ❲𝑎𝑖, 𝑏𝑖❳


.
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Note that a barcode base leads to a pointwise base, that is, ⟨𝑡⟩ = ⟨⟩𝑡 for all 𝑡 ∈ ℝ.
Let 𝑐 ∈ 𝔼 and let 𝑡 ∈ ❲𝑐,∞❳. We consider the following operators over 𝑉 :

Im+
𝑐𝑡(𝑉 ) ∶=



𝑠∈❲𝑐,𝑡+❳
Im(𝜌𝑠𝑡), Im−

𝑐𝑡(𝑉 ) ∶=


𝑠∈❲−∞,𝑐❳
Im(𝜌𝑠𝑡), for 𝑡 ∈ ❲𝑐,∞❳;

Ker+𝑐𝑡(𝑉 ) ∶=


𝑠∈❲𝑐,∞❳

Ker(𝜌𝑠𝑡), Ker−𝑐𝑡(𝑉 ) ∶=


𝑠∈❲𝑡−,𝑐❳
Ker(𝜌𝑠𝑡), for 𝑡 ∈ ❲−∞, 𝑐❳.

Even though these operators do not depend on a base, they can be expressed using a fixed one. In
order to achieve this, we need the following subsets of a base for 𝑉 :

∙ ±
𝑎 =



𝛼𝑖 ∈  ∣ 𝛼𝑖 ∼ ❲𝑎𝑖, 𝑏𝑖❳ such that 𝑎𝑖 ≤ 𝑎 for +
𝑎 or 𝑎𝑖 < 𝑎 for −

𝑎


,
∙ ±

𝑏 =


𝛼𝑖 ∈  ∣ 𝛼𝑖 ∼ ❲𝑎𝑖, 𝑏𝑖❳ such that 𝑏𝑖 ≤ 𝑏 for +
𝑏 or 𝑏𝑖 < 𝑏 for −

𝑏



.

Lemma 2.1. Im±
𝑎𝑡(𝑉 ) = ⟨±

𝑎𝑡⟩ and Ker±𝑏𝑡(𝑉 ) = ⟨±
𝑏𝑡⟩ for all 𝑡 ∈ ❲𝑎, 𝑏❳.

Given 𝑡 ∈ ❲𝑎, 𝑏❳, let us define the following subspaces of 𝑉 (𝑡):
𝑉 +
❲𝑎,𝑏❳𝑡 = Im+

𝑎𝑡 ∩ Ker+𝑏𝑡 and 𝑉 −
❲𝑎,𝑏❳𝑡 = Im−

𝑎𝑡 ∩ Ker+𝑏𝑡 + Im+
𝑎𝑡 ∩ Ker−𝑏𝑡 .

Now, let+
❲𝑎,𝑏❳ = +

𝑎 ∩+
𝑏 and

−
❲𝑎,𝑏❳ = (+

𝑎 ∩−
𝑏 ) ∪ (

−
𝑎 ∩+

𝑏 ). We obtain the following result.

Proposition 2.2. 𝑉 +
❲𝑎,𝑏❳𝑡 = ⟨+

❲𝑎,𝑏❳𝑡⟩ and 𝑉 −
❲𝑎,𝑏❳𝑡 = ⟨−

❲𝑎,𝑏❳𝑡⟩ for all 𝑡 ∈ ❲𝑎, 𝑏❳.

The spaces 𝑉 ±
∗ can be used to find the decomposition of 𝑉 : see [1]. Next, we link 𝑉 ±

∗ with 𝑈±
∗

to define 𝑓 . Consider ❲𝑎, 𝑏❳ ∈ bar (𝑉 ) and ❲𝑐, 𝑑❳ ∈ bar (𝑈 ). Given 𝑡 ∈ ❲𝑎, 𝑏❳ ∩ ❲𝑐, 𝑑❳, let us
define 𝑋

❲𝑎,𝑏❳❲𝑐,𝑑❳𝑡 and𝑓 as:

𝑋
❲𝑎,𝑏❳❲𝑐,𝑑❳𝑡 ∶=

𝑓𝑡
�

𝑉 +
❲𝑎,𝑏❳𝑡



∩ 𝑈+
❲𝑐,𝑑❳𝑡

𝑓𝑡
�

𝑉 −
❲𝑎,𝑏❳𝑡



∩ 𝑈+
❲𝑐,𝑑❳𝑡 + 𝑓𝑡

�

𝑉 +
❲𝑎,𝑏❳𝑡



∩ 𝑈−
❲𝑐,𝑑❳𝑡

,

𝑓 (❲𝑎, 𝑏❳, ❲𝑐, 𝑑❳) = dim



lim
→

𝑡∈❲𝑎,𝑏❳∩❲𝑐,𝑑❳
𝑋

❲𝑎,𝑏❳❲𝑐,𝑑❳𝑡



.

Theorem 2.3. [3]𝑓 is well-defined and linear:
𝑓 1⊕𝑓 2 (❲𝑎, 𝑏❳, ❲𝑐, 𝑑❳) = 𝑓 1 (❲𝑎, 𝑏❳, ❲𝑐, 𝑑❳) +𝑓 2 (❲𝑎, 𝑏❳, ❲𝑐, 𝑑❳).

3. MATRIX ALGORITHM

In this section we will calculate𝑓 from a pair of bases and  for 𝑉 and 𝑈 respectively. We
will use the interval notation 𝐼 = ❲𝑎, 𝑏❳ and 𝐽 = ❲𝑐, 𝑑❳. Let 𝑡 ∈ ℝ, and consider the inclusion
𝜄𝐼𝑡 ∶ 𝑉 +

𝐼𝑡 → 𝑉𝑡 and the projection 𝜋𝐽𝑡 ∶ 𝑈𝑡 → 𝑈𝑡∕𝑈−
𝐽𝑡. We will use the matrix form of the

composition 𝜋𝐽𝑡◦𝑓𝑡 ◦ 𝜄𝐼𝑡 on the bases+
𝐼𝑡 and 𝑡 ⧵ −

𝐽𝑡:

𝐼𝐽𝑡 ∶=

⎛

⎜

⎜

⎜

⎝

−
𝐼𝑡 +

𝐼𝑡 ⧵
−
𝐼𝑡

+
𝐽𝑡 ⧵ 

−
𝐽𝑡 Block 1 Block 2

𝑡 ⧵ +
𝐽 ∗ ∗

⎞

⎟

⎟

⎟

⎠

Consider the reduced matrix 𝐼𝐽𝑡 obtained after a Gaussian elimination of 𝐼𝐽𝑡 by using left to
right column additions. For our calculation, we define some submatrices of𝐼𝐽𝑡 as follows. First,
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Note that in Example 1.2, all inequalities 𝑐 ≤ 𝑎 ≤ 𝑑 ≤ 𝑏 must hold, since otherwise 𝑓 cannot
commute with the structuremaps from 𝑘

❲𝑎,𝑏❳ and 𝑘
❲𝑐,𝑑❳. The next theorem justifies the use of interval

modules as the building blocks of persistence modules.

Theorem 1.3. [1] Let 𝑉 be a persistence module. Suppose that 𝑉 satisfies some mild assumptions.
Then 𝑉 decomposes uniquely, up to isomorphisms, as:

𝑉 ≃


𝐼∈𝑆
𝑚𝐼𝑘𝐼

where 𝑆 is a set of intervals and 𝑚𝐼 their multiplicity.

By Theorem 1.3, a persistent module 𝑉 is completely determined up to isomorphism by the set
bar (𝑉 ) = {(𝐼, 𝑚𝐼 )}𝐼∈𝑆 . From bar (𝑉 ) we may define the ordered set {❲𝑎𝑖, 𝑏𝑖❳}𝑁𝑖=1 where each
interval 𝐼 appears as many times as its multiplicity 𝑚𝐼 .
A barcode basis  for 𝑉 is a choice of an isomorphism:

𝛼 ∶
𝑁


𝑖=1
𝑘
❲𝑎𝑖,𝑏𝑖❳ → 𝑉 .

Wemay restrict each summand of 𝛼 to its domain intervalmodule 𝛼𝑖 ∶ 𝑘
❲𝑎𝑖,𝑏𝑖❳ → 𝕍 for all 1 ≤ 𝑖 ≤ 𝑁 .

We will write 𝛼𝑖 ∼ ❲𝑎𝑖, 𝑏𝑖❳ and denote a barcode basis by the set = {𝛼𝑖}𝑁𝑖=1.

Example 1.4. Let 𝑉 ≃ 𝑘
❲0−,4−❳⊕𝑘

❲1+,3+❳ be a persistence module. We take the barcode basis given
by 𝛼1 ∼ ❲0−, 4−❳ and 𝛼2 ∼ ❲1+, 3+❳, and depict the interval decomposition as:

0 1 2 3 4

𝛼1
𝛼2

Unfortunately, the decomposition of morphisms between persistence modules is much more com-
plex than that of persistence modules. In particular, the set of possible indecomposables is known
to be wild in the general case [2]. We are interested in computable tools to distinguish between such
morphisms.

2. THE INDUCED PARTIAL FUNCTION

In this section, given 𝑓 ∶ 𝑉 → 𝑈 , we propose a partial function, 𝑓 , relating bar (𝑉 ) with
bar (𝑈 ). Differences between𝑓 and𝑔 will outline differences between the original morphisms
𝑓 and 𝑔.
Given 𝐼 ∈ bar (𝑉 ) and 𝐽 ∈ bar (𝑈 ),𝑓 returns𝑓 (𝐼, 𝐽 ) ∈ ℕ ∪ {0} such that



𝐽
𝑓 (𝐼, 𝐽 ) ≤ 𝑚𝐼.

One may interpret𝑓 as a partial function that sends intervals in bar (𝑉 ) to intervals in bar (𝑈 ).
Given a subset of a base  ⊆  = {𝛼𝑖}𝑁𝑖=1 for 𝑉 , we define ⟨⟩ as the submodule of 𝑉 given by

the image of 𝛼 ∶
⨁

𝛼𝑖∈ 𝑘
❲𝑎𝑖,𝑏𝑖❳ → 𝑉 . We will denote by 𝑡 the base for ⟨⟩𝑡 for all 𝑡 ∈ ℝ, which

corresponds to the set


𝛼𝑖𝑡(1𝑘) ∣ 𝛼𝑖 ∈  with 𝛼𝑖 ∼ ❲𝑎𝑖, 𝑏𝑖❳ such that 𝑡 ∈ ❲𝑎𝑖, 𝑏𝑖❳


.
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Note that a barcode base leads to a pointwise base, that is, ⟨𝑡⟩ = ⟨⟩𝑡 for all 𝑡 ∈ ℝ.
Let 𝑐 ∈ 𝔼 and let 𝑡 ∈ ❲𝑐,∞❳. We consider the following operators over 𝑉 :

Im+
𝑐𝑡(𝑉 ) ∶=



𝑠∈❲𝑐,𝑡+❳
Im(𝜌𝑠𝑡), Im−

𝑐𝑡(𝑉 ) ∶=


𝑠∈❲−∞,𝑐❳
Im(𝜌𝑠𝑡), for 𝑡 ∈ ❲𝑐,∞❳;

Ker+𝑐𝑡(𝑉 ) ∶=


𝑠∈❲𝑐,∞❳

Ker(𝜌𝑠𝑡), Ker−𝑐𝑡(𝑉 ) ∶=


𝑠∈❲𝑡−,𝑐❳
Ker(𝜌𝑠𝑡), for 𝑡 ∈ ❲−∞, 𝑐❳.

Even though these operators do not depend on a base, they can be expressed using a fixed one. In
order to achieve this, we need the following subsets of a base for 𝑉 :

∙ ±
𝑎 =



𝛼𝑖 ∈  ∣ 𝛼𝑖 ∼ ❲𝑎𝑖, 𝑏𝑖❳ such that 𝑎𝑖 ≤ 𝑎 for +
𝑎 or 𝑎𝑖 < 𝑎 for −

𝑎


,
∙ ±

𝑏 =


𝛼𝑖 ∈  ∣ 𝛼𝑖 ∼ ❲𝑎𝑖, 𝑏𝑖❳ such that 𝑏𝑖 ≤ 𝑏 for +
𝑏 or 𝑏𝑖 < 𝑏 for −

𝑏



.

Lemma 2.1. Im±
𝑎𝑡(𝑉 ) = ⟨±

𝑎𝑡⟩ and Ker±𝑏𝑡(𝑉 ) = ⟨±
𝑏𝑡⟩ for all 𝑡 ∈ ❲𝑎, 𝑏❳.

Given 𝑡 ∈ ❲𝑎, 𝑏❳, let us define the following subspaces of 𝑉 (𝑡):
𝑉 +
❲𝑎,𝑏❳𝑡 = Im+

𝑎𝑡 ∩ Ker+𝑏𝑡 and 𝑉 −
❲𝑎,𝑏❳𝑡 = Im−

𝑎𝑡 ∩ Ker+𝑏𝑡 + Im+
𝑎𝑡 ∩ Ker−𝑏𝑡 .

Now, let+
❲𝑎,𝑏❳ = +

𝑎 ∩+
𝑏 and

−
❲𝑎,𝑏❳ = (+

𝑎 ∩−
𝑏 ) ∪ (

−
𝑎 ∩+

𝑏 ). We obtain the following result.

Proposition 2.2. 𝑉 +
❲𝑎,𝑏❳𝑡 = ⟨+

❲𝑎,𝑏❳𝑡⟩ and 𝑉 −
❲𝑎,𝑏❳𝑡 = ⟨−

❲𝑎,𝑏❳𝑡⟩ for all 𝑡 ∈ ❲𝑎, 𝑏❳.

The spaces 𝑉 ±
∗ can be used to find the decomposition of 𝑉 : see [1]. Next, we link 𝑉 ±

∗ with 𝑈±
∗

to define 𝑓 . Consider ❲𝑎, 𝑏❳ ∈ bar (𝑉 ) and ❲𝑐, 𝑑❳ ∈ bar (𝑈 ). Given 𝑡 ∈ ❲𝑎, 𝑏❳ ∩ ❲𝑐, 𝑑❳, let us
define 𝑋

❲𝑎,𝑏❳❲𝑐,𝑑❳𝑡 and𝑓 as:

𝑋
❲𝑎,𝑏❳❲𝑐,𝑑❳𝑡 ∶=

𝑓𝑡
�

𝑉 +
❲𝑎,𝑏❳𝑡



∩ 𝑈+
❲𝑐,𝑑❳𝑡

𝑓𝑡
�

𝑉 −
❲𝑎,𝑏❳𝑡



∩ 𝑈+
❲𝑐,𝑑❳𝑡 + 𝑓𝑡

�

𝑉 +
❲𝑎,𝑏❳𝑡



∩ 𝑈−
❲𝑐,𝑑❳𝑡

,

𝑓 (❲𝑎, 𝑏❳, ❲𝑐, 𝑑❳) = dim



lim
→

𝑡∈❲𝑎,𝑏❳∩❲𝑐,𝑑❳
𝑋

❲𝑎,𝑏❳❲𝑐,𝑑❳𝑡



.

Theorem 2.3. [3]𝑓 is well-defined and linear:
𝑓 1⊕𝑓 2 (❲𝑎, 𝑏❳, ❲𝑐, 𝑑❳) = 𝑓 1 (❲𝑎, 𝑏❳, ❲𝑐, 𝑑❳) +𝑓 2 (❲𝑎, 𝑏❳, ❲𝑐, 𝑑❳).

3. MATRIX ALGORITHM

In this section we will calculate𝑓 from a pair of bases and  for 𝑉 and 𝑈 respectively. We
will use the interval notation 𝐼 = ❲𝑎, 𝑏❳ and 𝐽 = ❲𝑐, 𝑑❳. Let 𝑡 ∈ ℝ, and consider the inclusion
𝜄𝐼𝑡 ∶ 𝑉 +

𝐼𝑡 → 𝑉𝑡 and the projection 𝜋𝐽𝑡 ∶ 𝑈𝑡 → 𝑈𝑡∕𝑈−
𝐽𝑡. We will use the matrix form of the

composition 𝜋𝐽𝑡◦𝑓𝑡 ◦ 𝜄𝐼𝑡 on the bases+
𝐼𝑡 and 𝑡 ⧵ −

𝐽𝑡:

𝐼𝐽𝑡 ∶=

⎛

⎜

⎜

⎜

⎝

−
𝐼𝑡 +

𝐼𝑡 ⧵
−
𝐼𝑡

+
𝐽𝑡 ⧵ 

−
𝐽𝑡 Block 1 Block 2

𝑡 ⧵ +
𝐽 ∗ ∗

⎞

⎟

⎟

⎟

⎠

Consider the reduced matrix 𝐼𝐽𝑡 obtained after a Gaussian elimination of 𝐼𝐽𝑡 by using left to
right column additions. For our calculation, we define some submatrices of𝐼𝐽𝑡 as follows. First,
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ignore columns which are not zero on all rows in 𝑡 ⧵ +
𝐽 . Then, select the submatrices with rows

in +
𝐽𝑡 ⧵

−
𝐽𝑡 and columns in either

+
𝐼𝑡, 

−
𝐼𝑡 or

+
𝐼𝑡 ⧵

−
𝐼𝑡. We name the resulting matrices as+

𝐼𝐽𝑡,
−

𝐼𝐽𝑡 and𝐼𝐽𝑡. Note that−
𝐼𝐽𝑡 is contained within Block 1, 

𝑓
𝐼𝐽𝑡 within Block 2 and

+
𝐼𝐽𝑡 within

both. The following result relates these submatrices with 𝑋𝐼𝐽𝑡, see [3, Theorem 5.5].

Theorem 3.1. 𝑋𝐼𝐽𝑡 ≃ ⟨+
𝐼𝐽𝑡⟩



⟨−
𝐼𝐽𝑡⟩ ≃ ⟨𝐼𝐽𝑡⟩ for all 𝑡 ∈ 𝐼 ∩ 𝐽 .

Here, ⟨𝑅⟩ denotes the linear span of the set of the columns of 𝑅. We could then take the colimit
of ⟨𝐼𝐽𝑡⟩ to obtain 𝑓 (𝐼, 𝐽 ). In practice, the colimit will be given by evaluating ⟨𝐼𝐽𝑑⟩ (that is,
evaluating𝐼𝐽𝑡 in a value 𝑡 < 𝑑 close enough to 𝑑) and𝑓 (𝐼, 𝐽 ) is obtained by counting pivots.

Example 3.2. Let 𝐽1 = ❲0−, 3−❳, 𝐽2 = ❲1−, 4−❳ as well as 𝐼1 = ❲1−, 5−❳, 𝐼2 = ❲2−, 4−❳ and
𝐼3 = ❲2−, 5−❳. We also consider 𝑉 ≃ 𝑘𝐼1 ⊕ 𝑘𝐼2 ⊕ 𝑘𝐼3 and 𝑈 ≃ 𝑘𝐽1 ⊕ 𝑘𝐽2 . We take the canonical
bases = {𝛼1, 𝛼2, 𝛼3} for 𝑉 and  = {𝛽1, 𝛽2} for 𝑈 (see below).

0 1 2 3 4 5

𝛽1 𝛽2
𝛼1 𝛼2𝛼3

𝑈

𝑉
𝑓

Next, we consider a morphism 𝑓 ∶ 𝑉 → 𝑈 which is determined (due to commutativity) by:
𝛼11 ↦ 𝛽11 + 𝛽12 , and 𝛼22 ↦ 𝛽21 + 𝛽22 , and 𝛼23 ↦ 2𝛽21 + 𝛽22 .

Note that we have used the notation 𝛾𝑡
𝑖 = 𝛾𝑖𝑡(1𝑘) for 𝑡 ∈ ℝ and 𝛾 = 𝛼, 𝛽 and 1 ≤ 𝑖 ≤ 3. We obtain

the matrices 𝐼𝑖𝐽𝑗∗ for all 1 ≤ 𝑖 ≤ 3 and all 1 ≤ 𝑖𝑗 ≤ 2, which we reduce if necessary:

𝐼1𝐽13− = 𝐼2𝐽13−



1
1



, 𝐼3𝐽13− =


1 1 2
1 1 1



↦ 𝐼3𝐽13− =


1 0 1
1 0 0



,

𝐼3𝐽24− = 𝐼2𝐽24−
�

1


, 𝐼3𝐽24− =
�

1 1 1


↦ 𝐼3𝐽24− =
�

1 0 0


.
Altogether, we obtain:

𝐼1𝐽13− = 𝐼2𝐽13− = , 𝐼3𝐽13− =
�

1


, and also
𝐼1𝐽24− = 𝐼2𝐽24− =

�

1


, 𝐼3𝐽24− = .
Hence,𝑓 is interpreted as 𝐼1 ↦ 𝐽2, 𝐼2 ↦ 𝐽2 and 𝐼3 ↦ 𝐽1.
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𝐽𝑡 ⧵
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𝐼𝐽𝑡 and𝐼𝐽𝑡. Note that−
𝐼𝐽𝑡 is contained within Block 1, 
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+
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
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ALGEBRAIC CODING THEORY AND SOME OF ITS APPLICATIONS

DIEGO RUANO

Abstract. In this talk, we will see how computer algebra can be applied to coding the-
ory and some of its applications: secret sharing, multi-party computation, post-quantum
cryptography, stabilizer quantum codes and private information retrieval.

1. Coding theory

Motivation? Data transmitted through modern digital communication systems may
be corrupted by noise, resulting in a mismatch between the symbols sent and the symbols
received. This may happen in satellite or mobile phone communication, and in internet
connections, but also when storing data on a computer.

What is it? Error-correcting codes guarantee reliable and fast transmission of informa-
tion in these systems by adding extra symbols to the information sent. Say that A would
like to transmit some information to B. A will then create a codeword consisting of the
information itself plus some additional symbols (this is called encoding) and subsequently
send it to B. Even if B receives a corrupted (“noisy”) version of the codeword sent, the
extra symbols added in the encoding will allow B to recreate the original codeword in the
decoding process, at least with high probability.

Challenge? The challenge is to construct codes which apart from correcting many errors
using as few extra symbols as possible, can also provide fast en- and decoding algorithms.
Moreover, implementations over a small finite field are desirable for practical implementa-
tions [36].

Performance? A linear code has three parameters [n, k, d], where k is the number of
information symbols, n is the total number of symbols (i.e. there are n − k redundant
symbols) and d is the minimum distance of the code. The minimum distance d tells us how
many symbols may be corrected, since one can correct up to d/2 symbols, and it is equal
to the minimum number of non-zero coordinates of a non-zero codeword. Hence, for a fixed
value n, the aim is to obtain a linear code with k and d as high as possible. Obtaining
codes with good parameters is a no trivial task since, although linear codes are just a vector
subpace over a finite field, the minimum distance is not invariant by linear transformations.
Moreover, given a generic code, computing its minimum distance is a difficult problem
(NP-hard).

Reed-Solomon codes? Reed-Solomon codes are widely used since they have optimal
parameters and fast en- and decoding algorithms. However, the length should be smaller
than the finite field size, i.e. one needs a large finite field for a large code.
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MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future”, and Grant PGC2018-096446-B-C21
funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”.
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Relation to Mathematics? Ever since the appearance of the area of coding theory
in the late 1940’s, algebraic, geometric and combinatorial methods have proven paramount
tools for dealing with and describing the problems arising in the construction and usage
of error-correcting codes. As a side effect, many interesting and sometimes challenging
mathematical problems arose in this field.

Relation to Algebra? Evaluation codes have achieved important milestones in coding
theory and are widely used. This is the case of algebraic-geometry codes [31], which are
obtained by evaluating rational functions with bounded poles and zeros at points on an
algebraic curve, and affine variety codes [25], which are obtained by evaluating polynomials
at the zeros of a system of equations given by an ideal in a ring of polynomials, such as
Reed-Muller codes and J-Affine codes [22]. One of the peculiarities of these codes is that
they permit an algebraic formulation, since the parameters of the code are directly related to
the ideal associated with the evaluation application. This means these codes can be studied
with computer algebra techniques, like Gröbner bases, which provides the code with much
more structure and its parameters can be estimated. For example, the footprint of an ideal
provides a lower bound for the minimum distance [26].

Why are they not used by industry? Despite the very useful features of algebraic-
geometry codes and affine-variety codes they do not always meet the requirements of ap-
plications in the industry (in coding theory). However, they can be used for practical
cryptographic applications, as secret sharing, multi-party computation, post-quantum cryp-
tography, quantum stabilizer codes and private information retrieval.

2. Secret Sharing

What is it? A secret sharing scheme is a cryptographic method to encode a secret
into multiple shares subsequently distributed to participants, so that only specified sets of
participants can reconstruct the secret. Secret sharing schemes have been used to store
confidential information to multiple locations geographically apart, and they have several
applications in computer science (see [12] and its references), the main one is multi-party
computation. This is a challenging branch of cryptography where the adversaries are not
only external but may be some of the participants.

Construction? Any linear secret sharing scheme can be obtained using a pair of nested
linear codes [10], this gives the advantage of using the rich theory of linear codes. The first
secret sharing scheme was proposed by Shamir in 1979 and it can be understood as a scheme
coming from a pair of Reed-Solomon codes [42]. We therefore have the following issue: if
we have to consider a large number of participants, we should work over a large finite field,
but a small finite field is desirable for a practical implementation.

More efficient schemes (but not perfect)? Shamir’s secret sharing scheme is a
perfect scheme, in which a set of participants unable to reconstruct the secret has absolutely
no information on the secret. Later, non-perfect secret sharing schemes (or ramp schemes)
were proposed [1] where there are sets of participants that have a non-zero amount of
information about the secret but cannot reconstruct it. In the perfect scheme, the size of a
share must be at least that of the secret. On the other hand, ramp secret sharing schemes
allow shares to be smaller than the size of the secret. They can be much more efficient than
perfect schemes (because of the size of the shares).
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Security? There are two important parameters, the privacy parameter t and the re-
construction parameter r. Any party having t or less shares has no information about the
secret, and any party having r or more shares can recover the secret. For perfect schemes,
one has that r is equal to t + 1. However, for ramp schemes one has a grey area between
r and t of shares that has some partial information about the secret. The threshold gap,
defined as the quantity r− t, is desired to be small. We obtained a family of bounds for the
threshold gap which are tighter than the previously known bounds in [7].

Computing the security parameters? The minimum distance (of one of the codes
and the dual of the other one) gives a bound on r and t. The exact value is given by the
first relative generalized Hamming weight (RGHW) [35], of the pair of nested codes used.
Moreover, if we want to completely characterize the security of a secret sharing scheme, we
need all the RGHWs [33, 29]. These weights are an extension of the definition of minimum
distance for a pair of codes and they are very difficult to compute for arbitrary codes.
We have been able to estimate RGHWs of one-point algebraic geometric codes [29] and
considered asymptotic families of secret sharing schemes with excellent parameters by using
towers of function fields [27, 28].

Challenge? One challenge is to obtain linear codes that provide efficient and fast imple-
mentations over a binary finite field. Moreover, a small threshold gap is desirable. The other
challenge is to focus in partial privacy, allowing that a negligible amount of information is
leaked, one can obtain more efficient implementations.

3. Quantum codes

Motivation? Quantum computers are based on the principles of quantum mechanics
and use subatomic particles (qubits) to hold memory. The construction of efficient devices
of this type would have important consequences because of their computing capabilities. In
fact, as Shor proved, they would break most of the known cryptographic systems. There
is no known efficient quantum computer but it seems that these computers could appear
in a short space of time [8]. Despite quantum mechanical systems being very sensitive to
disturbances and arbitrary quantum states being unable to be replicated, error correction
is possible [38].

Construction? An important class of quantum error-correcting codes are stabilizer
codes, which can be derived from classical codes. An interesting particular case is the
renowned CSS construction which uses a classical linear code containing its dual [4, 32].
This construction can be improved using two nested codes, which is known as Steane’s
enlargement [30, 22]. Many works have concentrated on considering quantum MDS codes
[9], but the length of a quantum MDS code is bounded by the square of the field size plus
one.

Algebraic constructions? J-affine variety codes are a family of affine-variety codes that
allow us to consider subfield subcodes by studying cyclotomic cosets, where we consider our
enlargement and subfield subcodes of affine variety codes [21, 22, 17]. Our research extends
the univariate construction of BCH quantum codes [34] to several variables and uses self-
orthogonality with respect to Hermitian inner product as well, obtaining a wider variety
of parameters. We have also considered evaluation codes at the trace roots to construct
quantum codes [23].
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Extension? This theory has been extended to asymmetric quantum error-correcting
codes which are useful in a model where the probabilities of qubit-flip and phase-shift errors
are different [41]. This generalization is motivated by experiments that show that dephasing
will happen more frequently than relaxation. From a pair of nested linear codes one can
construct an asymmetric quantum code by the CSS construction for asymmetric quantum
codes [4, 32], having a code with two different error correction capabilities for the two
different kind of errors. Entanglement-assisted quantum error-correcting codes (EAQECCs)
[3, 19] enable correction of more errors under certain conditions and they are defined from
classical linear codes with less restrictive conditions about self-orthogonality than the CSS
construction. In fact, we can consider an arbitrary linear code. EAQECCs make use of pre-
existing entanglement between transmitter and receiver to correct more errors. Furthermore,
these two extensions were combined to define Asymmetric Entanglement-Assisted Quantum
Error-Correcting Codes in [20].

Relation to secret sharing? As we showed in [18], these two error correction capa-
bilities are given by the first relative Hamming weight of the code pair and their duals.
Hence, these two values are strongly related to the privacy and reconstruction parameters
of a secret sharing scheme constructed from the same pair of codes.

Challenge? As for classical linear codes, the challenge is to construct codes that, apart
from correcting many errors using as few extra symbols as possible, can also provide fast
en- and decoding algorithms.

4. Multi-party computation

What is it? Multi-party computation studies the case where a group of persons, each
holding an input for a function, wants to compute the output of the function, without
having each individual reveal his or her input to the other parties. Multi-party computation
is possible from secret sharing schemes [12], and hence from coding theory. Component-
wise products of linear codes have been studied for various purposes in recent decades. For
instance, to attack some variants of the McEliece [37] and to decode Reed-Solomon codes.
They are also useful for multi-party computation.

Construction? To evaluate a boolean circuit using a multiparty computation protocol,
one of the best known protocols at present are MiniMac [14] and its successor TinyTable
[13]. They use a linear binary code C, which should prevent cheating. The probability
that a cheating player is caught depends on the minimum distance of C∗2, the square code
of linear code [40], meaning that a high distance on the square will give a higher security.
Simultaneously, it would be beneficial to have a high dimension on the code C to reduce the
communication cost. Additionally, if the minimum distance of the dual of C and C∗2 are
greater than or equal to t + 2, then C can be used to construct a t-strongly multiplicative
secret sharing scheme. Such a secret sharing scheme is enough to construct an information
theoretic secure secret sharing scheme if at most t players are corrupted.

Challenge? These applications show the importance of finding linear codes,in which
both the code itself and the square has good parameters. To be more specific, that the
dimension of C, the minimum distance of the dual of C and the minimum distance of C∗2

are simultaneously high relative to the length of the codes. Choosing a random linear code,
with dimension linear in the length, will, with high probability, give a reasonable minimum
distance. However, this does not hold for the square code [6]. Hence, constructing good
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square codes is a very difficult problem. Nevertheless, good square codes exist, since there
exists an asymptotic family of codes with the previous property [39]. The best binary
construction available in the literature is the one in [5] obtained from cyclic codes, but
their constellation is quite limited. Given a designed minimum distance d we computed in
[24] an affine variety code C such that d(C∗2) ≥ d and the dimension of C is high. The
best constructions we proposed mostly come from hyperbolic codes. Nevertheless, for small
values of d, they come from weighted Reed–Muller codes.

5. Private information retrieval

What is it? A Private Information Retrieval (PIR) scheme is a protocol that allows
retrieving an item from a database server without revealing which item is retrieved, i.e.,
protecting a user from a curious database operator. It is a recent research topic, initiated
by [11], since the usual focus in cybersecurity has been on protecting the information of the
database itself, but not on protecting the user from the database administrator or owner.
This is currently particularly important where users’ privacy is at risk and it helps dissidents,
citizens of oppressive regimes, and internet users to remain anonymous. Further applications
for citizens and companies include an investor that queries the stock-market database for
the value of a certain stock, who may wish to keep private the stock he is interested in.

Construction? The best PIR protocols arise from using a pair of linear codes where the
database is stored in a distributed data storage. There are several proposals in literature,
but the best construction is currently provided by [43] for a situation where there is no active
adversary. It was extended in [16, 44] for addressing a more complete and more realistic
picture: they consider that the servers may collude (ie. they communicate), that there are
byzantine adversaries (adversaries that leak and modify the information) and that the servers
may be non-responding (they are broken, or the communication fails). The construction
is based on generalized Reed-Solomon codes, namely a pair codes, the storage code C and
the query code D. The performance and security are determined by the component-wise
product code of these two codes, C ∗D [40].

Challenge? The best PIR schemes available are implemented over a large finite field.
There is a proposal for using binary Reed-Muller codes [15], since considering a more ef-
ficient family of codes is desirable. In particular, a code over a small finite field, since
generalized Reed-Solomon codes require a high finite field size. We have recently improved
the performance of the binary PIR schemes given in [15] by using binary cyclic codes [2].
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Extension? This theory has been extended to asymmetric quantum error-correcting
codes which are useful in a model where the probabilities of qubit-flip and phase-shift errors
are different [41]. This generalization is motivated by experiments that show that dephasing
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en- and decoding algorithms.
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holding an input for a function, wants to compute the output of the function, without
having each individual reveal his or her input to the other parties. Multi-party computation
is possible from secret sharing schemes [12], and hence from coding theory. Component-
wise products of linear codes have been studied for various purposes in recent decades. For
instance, to attack some variants of the McEliece [37] and to decode Reed-Solomon codes.
They are also useful for multi-party computation.

Construction? To evaluate a boolean circuit using a multiparty computation protocol,
one of the best known protocols at present are MiniMac [14] and its successor TinyTable
[13]. They use a linear binary code C, which should prevent cheating. The probability
that a cheating player is caught depends on the minimum distance of C∗2, the square code
of linear code [40], meaning that a high distance on the square will give a higher security.
Simultaneously, it would be beneficial to have a high dimension on the code C to reduce the
communication cost. Additionally, if the minimum distance of the dual of C and C∗2 are
greater than or equal to t + 2, then C can be used to construct a t-strongly multiplicative
secret sharing scheme. Such a secret sharing scheme is enough to construct an information
theoretic secure secret sharing scheme if at most t players are corrupted.

Challenge? These applications show the importance of finding linear codes,in which
both the code itself and the square has good parameters. To be more specific, that the
dimension of C, the minimum distance of the dual of C and the minimum distance of C∗2

are simultaneously high relative to the length of the codes. Choosing a random linear code,
with dimension linear in the length, will, with high probability, give a reasonable minimum
distance. However, this does not hold for the square code [6]. Hence, constructing good
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square codes is a very difficult problem. Nevertheless, good square codes exist, since there
exists an asymptotic family of codes with the previous property [39]. The best binary
construction available in the literature is the one in [5] obtained from cyclic codes, but
their constellation is quite limited. Given a designed minimum distance d we computed in
[24] an affine variety code C such that d(C∗2) ≥ d and the dimension of C is high. The
best constructions we proposed mostly come from hyperbolic codes. Nevertheless, for small
values of d, they come from weighted Reed–Muller codes.

5. Private information retrieval

What is it? A Private Information Retrieval (PIR) scheme is a protocol that allows
retrieving an item from a database server without revealing which item is retrieved, i.e.,
protecting a user from a curious database operator. It is a recent research topic, initiated
by [11], since the usual focus in cybersecurity has been on protecting the information of the
database itself, but not on protecting the user from the database administrator or owner.
This is currently particularly important where users’ privacy is at risk and it helps dissidents,
citizens of oppressive regimes, and internet users to remain anonymous. Further applications
for citizens and companies include an investor that queries the stock-market database for
the value of a certain stock, who may wish to keep private the stock he is interested in.

Construction? The best PIR protocols arise from using a pair of linear codes where the
database is stored in a distributed data storage. There are several proposals in literature,
but the best construction is currently provided by [43] for a situation where there is no active
adversary. It was extended in [16, 44] for addressing a more complete and more realistic
picture: they consider that the servers may collude (ie. they communicate), that there are
byzantine adversaries (adversaries that leak and modify the information) and that the servers
may be non-responding (they are broken, or the communication fails). The construction
is based on generalized Reed-Solomon codes, namely a pair codes, the storage code C and
the query code D. The performance and security are determined by the component-wise
product code of these two codes, C ∗D [40].

Challenge? The best PIR schemes available are implemented over a large finite field.
There is a proposal for using binary Reed-Muller codes [15], since considering a more ef-
ficient family of codes is desirable. In particular, a code over a small finite field, since
generalized Reed-Solomon codes require a high finite field size. We have recently improved
the performance of the binary PIR schemes given in [15] by using binary cyclic codes [2].
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(2, 5, 6, 7, 8) → −2y1y3
(3, 4, 5, 7, 8) → 2y2y4
(3, 4, 6, 8, 9) → 2y1y4
(3, 5, 6, 7, 9) → 2y2y3
(4, 5, 7, 8, 9) → 2y1y3 − 2y3y4
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y50 (APL(K))5
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Abstract. In this work we study linear non-Gaussian graphical models from the per-
spective of algebraic statistics. These are acyclic causal models in which each variable is
a linear combination of its direct causes and independent noise. The underlying directed
causal graph can be identified uniquely via the set of second and third order moments of
all random vectors that lie in the corresponding model. Our focus is on finding the alge-
braic relations among these moments for a given graph. We show that when the graph is
a polytree these relations form a toric ideal. We construct explicit matrices associated to
treks in the graph. Their entries are the covariances and third order moments, and their
2-minors define our model set-theoretically, and provide a generating set for the vanishing
ideal of the model. Finally, we describe the polytopes of third order moments.

Introduction

Featuring prominently in a wide variety of applications, directed graphical models [?]
capture intuitive cause-effect relations among a set of random variables by hypothesizing
that each variable is a noisy function of its causes. For a number of statistical tasks, such as
model selection, it has proven useful to obtain insights about the algebraic structure of the
moments of the joint distributions in the graphical model for a given graph [?]. A promi-
nent example are results on algebraic relations among second moments, i.e., covariances, in
models that postulate linear functional relationships among the variables [?]. The results
available include in particular, a characterization of the vanishing of subdeterminants of the
covariance matrix, which covers conditional independence in Gaussian models as a special
case. In contrast to earlier work in algebraic statistics, we present here a first systematic
study on algebraic relations that also involve higher moments of such a model.

Let G = (V,E) be a directed acyclic graph (DAG), and let (Xi, i ∈ V ), be a collection
of random variables that represent statistical observations indexed by the vertices in V . A
vertex j ∈ V is a parent of vertex i if there is an edge pointing from j to i, i.e., if (j, i) ∈ E
which we also write as j → i ∈ E. We denote the set of all parents of i by pa(i). The graph
G gives rise to the linear structural equation model consisting of the joint distributions of
all random vectors X = (Xi, i ∈ V ) such that

(1) Xi =


j∈pa(i)

λjiXj + εi, i ∈ V,

The first four authors were supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (Grant agreement No. 883818).

The fifth author was supported by NSERC Discovery Grant (DGECR-2020-00338).
The talk at the EACA 2022 meeting was given by the third author.
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where the εi are mutually independent random variables representing stochastic errors. The
errors are assumed to have expectation E[εi] = 0, finite variance ω

(2)
= E[εi2] > 0, and a

finite third moment ω
(3)
i = E[ε3i ]. No other assumption about their distribution is made

and, in particular, the errors need not be Gaussian. The coefficients λji in (1) are unknown
real-valued parameters, and we fill them into a matrix Λ = (λji) ∈ RV×V by adding a zero
entry when (j, i) /∈ E. We denote the set of all such sparse matrices as RE .

The model. The covariance matrix S and the third moment tensor T of X are given by

S = (sij) = (I − Λ)−TΩ(2)(I − Λ)−1,

T = (tijk) = Ω(3) • (I − Λ)−1 • (I − Λ)−1 • (I − Λ)−1,

where Ω(2) is a diagonal matrix in the set PD(V ) of positive-definite matrices and similarly
Ω(3) ∈ Sym3(V ) is a diagonal symmetric tensor. Here • denotes the Tucker product (see
[?]).

Let G = (V,E) be a DAG. The third-order moment model of G is the set M≤3(G) that
comprises all pairs of covariance matrices and third moment tensors that are realizable under
the linear structural equation model given by G. That is,

M≤3(G) =
�

(I − Λ)−TΩ(2)(I − Λ)−1, Ω(3) • (I − Λ)−1 • (I − Λ)−1 • (I − Λ)−1

:

Ω(2) ∈ PD(V ) diagonal, Ω(3) ∈ Sym3(V ) diagonal, Λ ∈ RE

.

Furthermore, the third-order moment ideal of G is the ideal I≤3(G) of polynomials in the
entries S = (sij) and T = (tijk) that vanish when (S, T ) ∈ M≤3(G).

In this work, we fully explain the situation regarding models M≤3(G) in the case where
G is a polytree, i.e., a directed acyclic graph whose underlying undirected graph is a tree.

1. Simple Trek Parametrization

We now give the definition of the concept of multitrek introduced in [?].

Definition 1.1. A k-trek between k vertices i1, . . . , ik is an ordered collection of directed
paths τ = (P1, . . . , Pk) where Pr has sink ir and they all share the same source v. We call v
the top of the trek and denote it by top(τ). A k-trek is called simple if its top node is the
only node lying on all the k directed paths that form the trek. We denote the set of simple
k-treks between i1, . . . , ik by T (i1, . . . , ik).

The statistical significance of 2-treks is that they provide a combinatorial way to parame-
trize covariance matrices through what is known as the trek rule. This extends analogously
to third-order moment tensors via 3-treks.

Furthermore, an advantage of working with DAGs is that one can simplify the description
given by the trek rule by focusing only on simple treks. In [?, Section 2] it is shown that
simple 2-treks give a different parametrization of the covariance matrix, by introducing a
new set of indeterminates ai for each vertex in the graph defined by

(2) ai :=


l1∈pa(i)


l2∈pa(i)

λl1,iλl2,isl1,l2 + ω
(2)
i .
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This triangular, and thus invertible, transformation allows us to recursively pass from the
diagonal entries in the matrix Ω(2) to the ai. The same is true for the entries of the tensor
Ω(3), via an analogous transformation. We therefore obtain the shorter simple trek rule
parametrization induced by the polynomial ring map

φG : C[sij , tijk | 1 ≤ i ≤ j ≤ k ≤ n] → C[ai, bi, λij | i → j ∈ E],

sij →


τ∈T (i,j)

atop(T )


k→l∈τ

λkl,

tijk →


τ∈T (i,j,k)

btop(T )


m→l∈τ

λml.

This generalizes the corresponding construction in [?], and we can analogously prove:

Proposition 1.2 (Simple trek rule). Let G = (V,E) be a DAG, and let φG be the ring
morphism above. Then the map φG induces a parametrization of the model M≤3(G), and,
therefore, I≤3(G) = kerφG.

In case the graph G is a polytree, the simple trek parametrization simplifies to a monomial
map as T (i1, . . . , ik) has at most one element: the unique simple k-trek between i1, . . . , ik,
if it exists. This implies

Corollary 1.3. If G is a polytree, then the ideal I≤3(G) is toric.

2. Low-Rank Trek-Matrices

In this section we find equations defining the model M≤3(G) when G is a polytree. We
also give generators of the corresponding ideal.

Definition 2.1. Let G be a polytree. Let i, j ∈ V be two vertices such that a 2-trek between
i and j exists. We define the trek-matrix between i and j as

Ai,j :=


sik1 · · · sikr ti1m1 · · · tiqmq

sjk1 · · · sjkr tj1m1 · · · tjqmq


,

where
• k1, . . . , kr are vertices such that top(i, ka) = top(j, ka) for a = 1, . . . , r, and
• (l1,m1),. . . ,(lq,mq) are such that top(i, lb,mb) = top(j, lb,mb) for b = 1, . . . , q.

The next two results explain how to cut out the variety.

Lemma 2.2. Let G = (V,E) be a polytree, and i, j ∈ V . Then
(a) if there is no 2-trek between i and j, then sij ∈ I≤3(G), and for all k ∈ V such that

there is no 3-trek between i, j and k, we have that tijk ∈ I≤3(G).
(b) if there is an edge between i and j, the 2-minors of the trek-matrix Ai,j lie in I≤3(G).

Theorem 2.3. Let G be a polytree and J be the ideal generated by the linear generators of
I≤3(G) and the 2-minors of the matrices Ai,j for i → j ∈ E. Then,

M≤3(G) = V(J) ∩ (PD(V )× Sym3(V )).

To obtain the generators of the ideal we need further polynomials arising from minors:
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The next two results explain how to cut out the variety.

Lemma 2.2. Let G = (V,E) be a polytree, and i, j ∈ V . Then
(a) if there is no 2-trek between i and j, then sij ∈ I≤3(G), and for all k ∈ V such that

there is no 3-trek between i, j and k, we have that tijk ∈ I≤3(G).
(b) if there is an edge between i and j, the 2-minors of the trek-matrix Ai,j lie in I≤3(G).

Theorem 2.3. Let G be a polytree and J be the ideal generated by the linear generators of
I≤3(G) and the 2-minors of the matrices Ai,j for i → j ∈ E. Then,

M≤3(G) = V(J) ∩ (PD(V )× Sym3(V )).

To obtain the generators of the ideal we need further polynomials arising from minors:
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Theorem 2.4. The third-order moment ideal I≤3(G) of the model M(≤3)(G) is generated
by the linear generators of I≤3(G) and the minors of matrices Aij for all i, j such that a
trek between them exists.

To prove this theorem we show that this generating set is a Markov basis; for any binomial
in I≤3(G) we can apply an element of the set to reduce the distance between the two
monomial terms.

3. Moment Polytopes

Given a polytree G = (V,E), for any minimal 3-trek between i, j, k,we define the vec-
tor eijk ∈ R|V |+|E| of exponents of the monomial φG(tijk) = btop(i,j,k) l→m∈T (i,j,k) λlm ∈
R[bl, λlm]. Let (z,y) be the coordinates of eijk, where z = (zl)l∈V are the exponents of b
for  ∈ V and y = (ylm)l→m∈E are the exponents of λm for  → m ∈ E.

Definition 3.1. Given a polytree G, its associated third-order moment polytope is

P
(3)
G = conv (eijk : i, j, k such that a 3-trek between i, j and k exists) .

The natural next step is to find the inequalities that cut out the polytope.

Theorem 3.2. For a fully observed polytree G, the third-order moment polytope P
(3)
G is the

solution to the following set of equations and inequalities

(3) zl ≥ 0 for all l ∈ V,

(4) ylm ≥ 0 for all l → m ∈ E,

(5)

l∈V

zl = 1,

(6) 2zl +


h∈pa(l)

yhl − ylm ≥ 0 for all m such that l → m ∈ E,

(7) 3zl +


h∈pa(l)

yhl −


m∈ch(l)

ylm ≥ 0 for all l ∈ V.
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Resumen. Se presenta un algoritmo para calcular las asíntotas generalizadas o g-asíntotas
de una curva algebraica plana, C, definida implícitamente en C2. Las g-asíntotas genera-
lizan el concepto clásico de asíntota de una curva definida por un polinomio de la forma
yg(x)−f(x). Para ello, se definen los conceptos de ramas infinitas y ramas convergentes, y
se establecen los fundamentos a partir de los cuales se definirán las g-asíntotas, es decir, las
curvas aproximantes y las curvas perfectas. Estos conceptos constituyen una herramienta
fundamental para analizar el comportamiento de una curva en el infinito.

Introducción

En este trabajo se presenta una solución algorítmica que permite determinar el compor-
tamiento en el infinito de una curva algebraica plana, C, mediante el cálculo de las asíntotas
generalizadas, o g-asíntotas, de sus ramas en puntos con coordenadas suficientemente gran-
des. Este concepto, generaliza el concepto clásico de asíntota y sus métodos de cálculo (véase
p.e. [1, 2]).

De manera intuitiva, dada una curva C, se dice que C es una g-asíntota de C, si C es una
curva del menor grado posible que aproxima a C en el infinito (véase [3, 4]).

El algoritmo que se presenta en la Sección 3, se sustenta sobre los estudios preliminares de
la Sección 1, así como en los conceptos de curva perfecta y g-asíntota definidos en la Sección
2. Además, en la Sección 3 se presenta el algoritmo y un ejemplo que ilustra el método que
se desarrolla en este trabajo.

Además, señalar que las novedades respecto los trabajos previos se basan en una mejora e
implementación de los resultados que aquí se exponen, ilustrándolos mediante un algoritmo
cuya complejidad se reduce al cálculo de una serie de Puiseux.

1. Preliminares y notación

En esta sección se introducen los conceptos de ramas infinitas, ramas convergentes y
curvas aproximantes, derivados de investigaciones previas (ver [3, 4, 5, 6]).

Sea una curva algebraica plana irreducible, C, definida en el espacio afín por un poli-
nomio irreducible f(x, y) ∈ R[x, y] en el cuerpo C. Debido a las implicaciones prácticas,
se asume que la curva es real y, por ello, el polinomio implícito viene definido sobre R.
Sea C∗ ⊂ P2(C) su correspondiente curva proyectiva definida por el polinomio homogé-
neo F (x, y, z) = fd(x, y) + zfd−1(x, y) + z2fd−2(x, y) + . . . + zdf0(x, y) ∈ R[x, y, z], con
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Theorem 2.4. The third-order moment ideal I≤3(G) of the model M(≤3)(G) is generated
by the linear generators of I≤3(G) and the minors of matrices Aij for all i, j such that a
trek between them exists.

To prove this theorem we show that this generating set is a Markov basis; for any binomial
in I≤3(G) we can apply an element of the set to reduce the distance between the two
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R[bl, λlm]. Let (z,y) be the coordinates of eijk, where z = (zl)l∈V are the exponents of b
for  ∈ V and y = (ylm)l→m∈E are the exponents of λm for  → m ∈ E.

Definition 3.1. Given a polytree G, its associated third-order moment polytope is

P
(3)
G = conv (eijk : i, j, k such that a 3-trek between i, j and k exists) .

The natural next step is to find the inequalities that cut out the polytope.

Theorem 3.2. For a fully observed polytree G, the third-order moment polytope P
(3)
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p.e. [1, 2]).

De manera intuitiva, dada una curva C, se dice que C es una g-asíntota de C, si C es una
curva del menor grado posible que aproxima a C en el infinito (véase [3, 4]).
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2. Además, en la Sección 3 se presenta el algoritmo y un ejemplo que ilustra el método que
se desarrolla en este trabajo.

Además, señalar que las novedades respecto los trabajos previos se basan en una mejora e
implementación de los resultados que aquí se exponen, ilustrándolos mediante un algoritmo
cuya complejidad se reduce al cálculo de una serie de Puiseux.

1. Preliminares y notación

En esta sección se introducen los conceptos de ramas infinitas, ramas convergentes y
curvas aproximantes, derivados de investigaciones previas (ver [3, 4, 5, 6]).

Sea una curva algebraica plana irreducible, C, definida en el espacio afín por un poli-
nomio irreducible f(x, y) ∈ R[x, y] en el cuerpo C. Debido a las implicaciones prácticas,
se asume que la curva es real y, por ello, el polinomio implícito viene definido sobre R.
Sea C∗ ⊂ P2(C) su correspondiente curva proyectiva definida por el polinomio homogé-
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d := grado(C), y sean los puntos de infinito de C∗ de la forma (1 : m : 0),m ∈ C (en caso de
existir el punto de infinito (0 : 1 : 0), se aplica un cambio lineal de coordenadas).

En estas condiciones, a partir de la curva definida por el polinomio g(y, z) = F (1 : y : z)
y calculando las series de Puiseux, ϕi, i = 1 . . . gradoy(g) de g(y, z) = 0 alrededor de
z = 0, se obtienen las ramas de C (véase [4]). En lo que sigue denotamos como ϕ(t) =

m + a1t
N1/N + a2t

N2/N + a3t
N3/N + · · · , ai = 0, ∀i ∈ N, con Ni ∈ N, i = 1, . . ., y

0 < N1 < N2 < · · · a una de estas series. Por tanto g(ϕ(t), t) = 0 en un entorno de t = 0
donde ϕ(t) converge.

Definición 1.1. Se denomina rama infinita de la curva plana afín C, en el punto de infinito
P = (1 : m : 0), m ∈ C, al conjunto B = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M}, donde
r(z) = zϕ(z−1) = mz+a1z

1−N1/N +a2z
1−N2/N +a3z

1−N3/N + · · · y M es un cierto número
natural.

Definición 1.2. Dadas dos ramas, B = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} y B =
{(z, r(z)) ∈ C2 : z ∈ C, |z| > M}, se dice que son convergentes si ĺımz→∞(r(z)− r(z)) = 0.

Definición 1.3. Sea una curva algebraica plana C con una rama infinita B. Se dice que una
curva D se aproxima a C en su rama infinita B, si ĺımz→∞ d((z, r(z)),D) = 0 (d(p,D) =
mı́n{d(p, q) : q ∈ D}).

En [4] se demuestra que si C es una curva plana con una rama infinita B entonces, una
curva plana C aproxima a C en B si y sólo si C tiene una rama infinita B tal que B y B son
convergentes.

2. Asíntotas generalizadas y curvas perfectas

A partir de los conceptos introducidos en la Sección 1, se obtienen las siguientes defini-
ciones (véase [3]).

Definición 2.1. Una curva de grado d es una curva perfecta si no puede ser aproximada
por ninguna curva de grado menor que d.

Obsérvese que una curva C que no sea perfecta puede aproximarse por otras curvas de
menor grado.

Definición 2.2. Sea una curva algebraica plana C con una rama infinita B. Una curva, C,
es una g-asíntota o asíntota generalizada de C en B, si es una curva perfecta que aproxima
a C en B (en lo sucesivo se utilizará el término asíntota para referirse a estas).

Sea C con una rama B = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M}, donde r(z) = mz +

a1z
1−N1/N + · · · + akz

1−Nk/N + ak+1z
1−Nk+1/N + · · · , con a1, a2, . . . ∈ C \ {0},m ∈ C,

N,N1, N2 . . . ∈ N, y 0 < N1 < N2 < · · · . Supongamos que Nk ≤ N < Nk+1, i.e. los
términos ajz1−Nj/N con j ≥ k + 1 tienen exponente negativo. En lo que sigue, escribimos

r(z) = mz + a1z
1−n1/n + · · ·+ akz

1−nk/n + ak+1z
1−Nk+1/N + · · ·

con mcd(N,N1, . . . , Nk) = b,Nj = njb, N = nb, j = 1, . . . , k. Es decir, simplificamos los
exponentes tal que mcd(n, n1, . . . , nk) = 1. Nótese que 0 < n1 < n2 < · · · , nk ≤ n, y
N < nk+1, i.e. los términos ajz

1−Nj/N con j ≥ k + 1 tienen exponentes negativos. Sea

46

CÁLCULO DE ASÍNTOTAS GENERALIZADAS DE CURVAS ALGEBRAICAS 3

r(z) =mz+ a1z
1−n1/n+ · · ·+ akz

1−nk/n los términos con exponente no negativo de r(z).
Aplicando el cambio z = tn, se obtiene la parametrización propia de una curva C

P(t) = (tn, mtn+ a1t
n−n1+ · · ·+ akt

n−nk ) ∈ C[t]2,
donde n, n1, . . . , nk∈ N, mcd(n, n1, . . . , nk) = 1, y 0< n1< · · ·< nk, que es una asíntota de
C (véase [3]).

3. Algoritmo para calcular asíntotas de curvas definidas implícitamente

El siguiente algoritmo calcula las parametrizaciones de las asíntotas de las ramas infinitas
de la curva C. Además, se ilustra el algoritmo con un ejemplo.

Data: C, curva algebraica plana irreducible definida por f(x, y) ∈ R[x, y]
Result: Asíntotas de C
begin

F (x, y, z) ← CurvaProyectiva(C)
P1, . . . , Pn ← PuntosdeInfinito(F (x, y, 0))
g(y, z) ← F (1, y, z)
φ1, . . . , φm ← RaícesdePuiseux (g(y, 0))

foreach φi de Pi do
ri(z) ← zφi(z

−1), Bi ← {(z, ri(z)) ∈ C2 : z ∈ C, |z| > Mi} /* Def. 1.1 */
ri(z) ← miz + a1,iz

1−n1,i/ni + · · ·+ aki,jz
1−nki,i

/ni /* Def. 2.2 */
Pi(t) ← (tni , r̃i(t

ni)) ∈ C[t]2
end
return Ci ← Pi(t), i = 1, . . . , n

end
Para calcular las series de Puiseux puede utilizarse el paquete algcurves incluido en el

sistema informático de álgebra Maple. También cabe señalar que el algoritmo anterior se ha
implementado en Maple. Como se ha comentado anteriormente la complejidad del algoritmo
depende de la complejidad de la expansión en series de Puiseux (véase [7]).

Ejemplo 3.1. Sea una curva C, de grado d = 6, definida por el polinomio irreducible
f(x, y) = y6 + 2y5x + 3x2 + 4xy ∈ R[x, y]. Como f6(x, y) = y6 + 2y5x, se tiene que los
puntos de infinito son P1 = (1 : 0 : 0) y P2 = (1 : −2 : 0).

1. Sea P1 = (1 : 0 : 0)
Iteración 1: Se tiene la rama infinita, B1 = {(z, r1(z)) ∈ C2 : z ∈ C, |z| > M1} con

r1(z) = −481/5

2
z − −721/5

12
z−3 +

1081/5

18
z−7 − −1621/513

432
z−11 + . . . .

a) r̃1(z) = −481/5

2
z. b) P1(t) = (t5,−481/5

2
t).

2. Sea P2 = (1 : −2 : 0)
Iteración 2: Se tiene la rama infinita, B2 = {(z, r2(z)) ∈ C2 : z ∈ C, |z| > M2} con

r2(z) = −2z − 5

32
z−3 + . . . .

a) r̃2(z) = −2z. b) P2(t) = (t,−2t).
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F (x, y, z) ← CurvaProyectiva(C)
P1, . . . , Pn ← PuntosdeInfinito(F (x, y, 0))
g(y, z) ← F (1, y, z)
φ1, . . . , φm ← RaícesdePuiseux (g(y, 0))

foreach φi de Pi do
ri(z) ← zφi(z

−1), Bi ← {(z, ri(z)) ∈ C2 : z ∈ C, |z| > Mi} /* Def. 1.1 */
ri(z) ← miz + a1,iz

1−n1,i/ni + · · ·+ aki,jz
1−nki,i

/ni /* Def. 2.2 */
Pi(t) ← (tni , r̃i(t

ni)) ∈ C[t]2
end
return Ci ← Pi(t), i = 1, . . . , n

end
Para calcular las series de Puiseux puede utilizarse el paquete algcurves incluido en el

sistema informático de álgebra Maple. También cabe señalar que el algoritmo anterior se ha
implementado en Maple. Como se ha comentado anteriormente la complejidad del algoritmo
depende de la complejidad de la expansión en series de Puiseux (véase [7]).

Ejemplo 3.1. Sea una curva C, de grado d = 6, definida por el polinomio irreducible
f(x, y) = y6 + 2y5x + 3x2 + 4xy ∈ R[x, y]. Como f6(x, y) = y6 + 2y5x, se tiene que los
puntos de infinito son P1 = (1 : 0 : 0) y P2 = (1 : −2 : 0).

1. Sea P1 = (1 : 0 : 0)
Iteración 1: Se tiene la rama infinita, B1 = {(z, r1(z)) ∈ C2 : z ∈ C, |z| > M1} con

r1(z) = −481/5

2
z − −721/5

12
z−3 +

1081/5

18
z−7 − −1621/513

432
z−11 + . . . .

a) r̃1(z) = −481/5

2
z. b) P1(t) = (t5,−481/5

2
t).

2. Sea P2 = (1 : −2 : 0)
Iteración 2: Se tiene la rama infinita, B2 = {(z, r2(z)) ∈ C2 : z ∈ C, |z| > M2} con

r2(z) = −2z − 5

32
z−3 + . . . .

a) r̃2(z) = −2z. b) P2(t) = (t,−2t).
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En la Figura 1 se representa la curva C y sus asíntotas generalizadas C1 y C2, definidas
por las parametrizaciones P1 y P2, respectivamente.

Figura 1. Asíntotas infinitas C1 (beige) y C2 (rosa) de la curva C.

4. Conclusiones

Las g-asíntotas determinan el comportamiento de una curva en el infinito. Con ellas, se
pueden establecer modelos predictivos o de cálculo de tendencias, que mejoren los resultados
de la regresión lineal simple. Además, como trabajo futuro, se plantea generalizar estos
resultados a curvas definidas por una parametrización ([5, 6]), así como para superficies y
estudiar las familias de asíntotas existentes.
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Abstract. By using subresultants we characterise when multiple roots of univariate
polynomials can be described as rational functions of the coefficients of the considered
polynomial and in such a case, we provide closed formulae for those functions.

Introduction

By using subresultants we characterise those univariate polynomials with multiple roots
such that these roots can be described rationally in terms of the coefficients of the considered
polynomial. Moreover we show how these rational functions can be computed and as a by–
product, we obtain information about the real roots of the considered polynomial. This
technique (for degree four) has been very useful when determining the intersection curve
of two quadrics in [4]. This new approach will prove that the topology of quartic and
quintic curves can be computed easily even if the curve is not in general position and enable
characterisation of the type of the curve arising when intersecting two ellipsoids.

1. GCD and Real Root counting through subresultants

Subresultants are the tool to use when determining the gcd of two univariate polynomials
or the number of different real roots of an univariate polynomial involving parameters or
algebraic numbers as coefficients.

Definition 1.1. Let P (T ) =
p

i=0 aiT
i, Q(T ) =

q
i=0 biT

i ∈ R[T ] with p ≥ q and j =

0, . . . , q−1. Taking δk = (−1)k(k+1)/2, the j–th subresultant polynomial of P and Q is ([3]):

Sresj(P,Q)=(−1)jδp−j−1



ap ap−1 ap−2 ... ... a0

. . . . . . . . . . . .
ap ap−1 ap−2 ... ... a0

bq bq−1 bq−2 ... ... ... b0

. . . . . . . . . . . .
bq bq−1 bq−2 ... ... ... b0

1 −T

. . . . . .
1 −T






q−j


p−j


j

The j–th subresultant coefficient sresj(P,Q) is the coefficient of T j in Sresj(P,Q).

Both authors have been partially supported by PID2020-113192GB-I00/AEI/10.13039/501100011033
from the Spanish State Research Agency (Ministerio de Ciencia e Innovación).

The talk at the EACA 2022 meeting was given by the second author.
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En la Figura 1 se representa la curva C y sus asíntotas generalizadas C1 y C2, definidas
por las parametrizaciones P1 y P2, respectivamente.
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4. Conclusiones

Las g-asíntotas determinan el comportamiento de una curva en el infinito. Con ellas, se
pueden establecer modelos predictivos o de cálculo de tendencias, que mejoren los resultados
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Abstract. By using subresultants we characterise when multiple roots of univariate
polynomials can be described as rational functions of the coefficients of the considered
polynomial and in such a case, we provide closed formulae for those functions.

Introduction

By using subresultants we characterise those univariate polynomials with multiple roots
such that these roots can be described rationally in terms of the coefficients of the considered
polynomial. Moreover we show how these rational functions can be computed and as a by–
product, we obtain information about the real roots of the considered polynomial. This
technique (for degree four) has been very useful when determining the intersection curve
of two quadrics in [4]. This new approach will prove that the topology of quartic and
quintic curves can be computed easily even if the curve is not in general position and enable
characterisation of the type of the curve arising when intersecting two ellipsoids.

1. GCD and Real Root counting through subresultants

Subresultants are the tool to use when determining the gcd of two univariate polynomials
or the number of different real roots of an univariate polynomial involving parameters or
algebraic numbers as coefficients.

Definition 1.1. Let P (T ) =
p

i=0 aiT
i, Q(T ) =

q
i=0 biT

i ∈ R[T ] with p ≥ q and j =

0, . . . , q−1. Taking δk = (−1)k(k+1)/2, the j–th subresultant polynomial of P and Q is ([3]):

Sresj(P,Q)=(−1)jδp−j−1



ap ap−1 ap−2 ... ... a0

. . . . . . . . . . . .
ap ap−1 ap−2 ... ... a0

bq bq−1 bq−2 ... ... ... b0

. . . . . . . . . . . .
bq bq−1 bq−2 ... ... ... b0

1 −T

. . . . . .
1 −T






q−j


p−j


j

The j–th subresultant coefficient sresj(P,Q) is the coefficient of T j in Sresj(P,Q).
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There are many different ways of defining and computing subresultants (see [1, 3]). The
use here of only one sequence for dealing with the gcd and the real root counting problems
leads to the “unusual" introduction of the sign (−1)jδp−j−1 in the previous definition.

Subresultant coefficients, sresj(P,Q), provide the gcd of P and Q since:

(1) Sresi(P,Q) = gcd(P,Q) ⇐⇒ sresj(P,Q) = 0 ∀j < i, sresi(P,Q) = 0

The subresultant sequence of P , p = deg(P ), is the subresultant sequence for P and P :
Sresp(P ) = P , Sresp−1(P ) = P  and Sresj(P ) = Sresj(P, P

) (0 ≤ j < p − 1). The j–th
subresultant coefficient of P is sresj(P ) = coefj(Sresj(P )). The number of different real
roots of P depends on the signs of such coefficients, so for a list I ∈ (R − {0})i, we define
V(I) and P(I) as the numbers of sign variations and sign permanences respectively.

Definition 1.2.
Let a0 = 0, a1, . . . , an be elements in R with the following distribution of zeros:

I = {a0, ..., ai1 , 0k1 , ai1+k1+1, ..., ai2 , 0
k2 , ai2+k2+1, ..., ai3 , 0, . . . . , 0, ait−1+kt−1+1, ..., ait , 0

kt},

where 0k means “k zeros” and any written ai is not 0. Denoting i0 + k0 + 1 = 0, we define:

C(I) =
t

s=1

�
P({ais−1+ks−1+1, . . . , ais})−V({ais−1+ks−1+1, . . . , ais})


+

t−1
s=1

εis

where εis is equal to 0 if ks is odd and (−1)
ks
2 sign (ais+ks+1/ais) otherwise.

We now show the relation between subresultants and the number of real roots (see [1]).

Theorem 1.3. For P ∈ R[T ], C({sresdeg(P )(P ), . . . , sres0(P )}) = #{α ∈ R : P (α) = 0}.

Finally, we define sk(P ) and sk,j(P ) or, when clear, just sk and sk,j , by the equality:

Sresk(P )
def
= sk(P )T k + sk,k−1(P )T k−1 + . . .+ sk,1(P )T + sk,0(P ) .

2. Multiple real roots of univariate polynomials through subresultants

Here we introduce formulas describing the multiple roots of an univariate polynomial in
terms of their coefficients. This will be always possible for degree ≤ 5 and in most cases for
degrees 6 and 7. It will be also characterised when possible in the general case. Recently
([2]), the multiplicity structure of a univariate polynomial has been characterised in terms
of its coefficients. The formulae here introduced may for example be used to describe de y-
coordinates of the points on a critical line of a real algebraic plane curve defined implicitely
when computing its topology (see [1]).

Cases deg(P ) ∈ {2, 3} are not considered here since they are very easy to deal with.

2.1. deg(P) = 4. If a4 = 0 then P (T ) = a4T
4 + ... + a1T + a0 factors, when there are

multiple roots, in five possible ways:
(1) P (T ) = a4(T − β)4 with β ∈ R.
(2) P (T ) = a4(T − β)3(T − γ) with β, γ ∈ R and β = γ.
(3) P (T ) = a4(T − β)2(T − γ)2 with β, γ ∈ R and β = γ.
(4) P (T ) = a4(T − γ)2(T − γ)2 with γ ∈ C− R.
(5) P (T ) = a4(T−β)2(T−γ1)(T−γ2) with γ1 = γ2 (if γ1 ∈ C−R then γ2 = γ1 ∈ C−R).
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Polynomials si and si,j characterise each possibility in the following way (see (1)):
(1) If s0 = s1 = s2 = 0 then P (T ) = a4(T − β)4 and β = −s3,2/3s3 = −a3/4a4.
(2) If s0 = s1 = 0, s2 = 0, s22,1 − 4s2s2,0 = 0 then P (T ) = a4(T − β)3(T − γ) with

β = γ ∈ R and β = −s2,1/(2s2) and γ = a0/(a4β
3) when β = 0. If β = 0 then

γ = a3/a4 with a3 = 0.
(3) If s0 = s1 = 0, s2 = 0, s22,1 − 4s2s2,0 > 0 then P (T ) = a4(T − β1)

2(T − β2)
2 with

β1, β2 ∈ R and s2(T − β1)(T − β2) = Sres2(P ) = s2T
2 + s2,1T + s2,0.

(4) If s0 = s1 = 0, s2 = 0, s22,1 − 4s2s2,0 < 0 then P (T ) = a4(T − γ)2(T − γ)2 with
γ ∈ C− R and s2(T − γ)(T − γ) = Sres2(P ) = s2T

2 + s2,1T + s2,0.
(5) If s0 = 0 and s1 = 0 then P (T ) = a4(T − β)2(T − γ1)(T − γ2) with γ1 = γ2 (if

γ1 ∈ C − R then γ2 = γ ∈ C − R) and β = −s1,0/s1 and (T − γ1)(T − γ2) =
P (T )/(a4(T − β)2).

In all cases we have characterised the real roots, simple or multiple, of any degree 4 poly-
nomial with multiple roots as explicit functions of the coefficients of P .

2.2. deg(P) = 5. If a5 = 0 then P (T ) = a5T
5 + ... + a1T + a0 factors, when there are

multiple roots, in nine possible ways. We only show how to proceed in the following cases:
(1) P (T ) = a5(T − β)4(T − γ) with β, γ ∈ R.
(2) P (T ) = a5(T − β)3(T − γ1)(T − γ2) with β, γ1, γ2 ∈ R and γ1 = γ2.

We define τ0(T ) = P (T ) and, for k ≥ 1, τk(T ) = gcd(τk−1, τ

k−1). Polynomials si(P ) will

characterise each possibility for gcd(P, P ) = τ1(P ) (see (1)). We only consider two cases
here (the remaining seven cases follow in a similar way):

(1) If s0(P ) = s1(P ) = s2(P ) = 0 and s3(P ) = 0 then τ1(T ) = Sres3(P ). Two cases
arise: P (T ) = a5(T − β)4(T − γ) or P (T ) = a5(T − β)3(T − γ)2 with β = γ ∈ R.

(2) If s0(P ) = 0, s1(P ) = 0 then τ1(T ) = Sres1(P ). The only possible cases are:
(a) P (T ) = a5(T − β)2(T − γ1)(T − γ2)(T − γ3) with β = γ1 = γ2 = γ3 ∈ R.
(b) P (T ) = a5(T − β)2(T − γ1)(T − γ2)(T − γ2) with β = γ1 ∈ R and γ2 ∈ C−R.

In order to separate the cases when deg(τ1(T )) = 3 we note that τ1(T ) = Sres3(τ0).
In the first case we have τ1(T ) = s3(τ0)(T − β)3 and in the second one we have τ1(T ) =
s3(τ0)(T − β)2(T − γ). s0(τ1) and s1(τ1) will separate these two cases:

• if s0(τ1) = s1(τ1) = 0 then τ1(T ) = s3(τ0)(T − β)3 and P (T ) = a5(T − β)4(T − γ).
• if s0(τ1) = 0, s1(τ1) = 0 then τ1(T ) = s3(τ0)(T − β)2(T − γ) and P (T ) = a5(T −
β)3(T − γ)2.

In the first case we have β = −s3,2(P )/(3s3(P )) and γ = −a0/(a5β
4). And in the sec-

ond one, we have τ2(T ) = Sres1(τ1) = s1(τ1)(T − β), β = −s1,1(τ1)/s1(τ1) and γ =
−s3,0(P )/(s3(P )β2).

In both cases, 2(a) and 2(b), we have β = −s1,1(P )/s1(P ) and they are separated by
analysing the signs of a5, s3(P ), s2(P ) and s1(P ):

• Case 2(a): C({a5, 5a5, s3(P ), s2(P ), s1(P ), 0}) = 4.
• Case 2(b): C({a5, 5a5, s3(P ), s2(P ), s1(P ), 0}) = 2.

In case 2(a) we have (T − γ1)(T − γ2)(T − γ3) = P (T )/(a5(T − β)2) and in case 2(b) we
have (T − γ1)(T − γ2)(T − γ2) = P (T )/(a5(T − β)2). Both polynomials have no multiple
roots, and we know that they have exactly three and one different real roots respectively.
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We now show the relation between subresultants and the number of real roots (see [1]).

Theorem 1.3. For P ∈ R[T ], C({sresdeg(P )(P ), . . . , sres0(P )}) = #{α ∈ R : P (α) = 0}.

Finally, we define sk(P ) and sk,j(P ) or, when clear, just sk and sk,j , by the equality:

Sresk(P )
def
= sk(P )T k + sk,k−1(P )T k−1 + . . .+ sk,1(P )T + sk,0(P ) .
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Here we introduce formulas describing the multiple roots of an univariate polynomial in
terms of their coefficients. This will be always possible for degree ≤ 5 and in most cases for
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4 + ... + a1T + a0 factors, when there are

multiple roots, in five possible ways:
(1) P (T ) = a4(T − β)4 with β ∈ R.
(2) P (T ) = a4(T − β)3(T − γ) with β, γ ∈ R and β = γ.
(3) P (T ) = a4(T − β)2(T − γ)2 with β, γ ∈ R and β = γ.
(4) P (T ) = a4(T − γ)2(T − γ)2 with γ ∈ C− R.
(5) P (T ) = a4(T−β)2(T−γ1)(T−γ2) with γ1 = γ2 (if γ1 ∈ C−R then γ2 = γ1 ∈ C−R).
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Polynomials si and si,j characterise each possibility in the following way (see (1)):
(1) If s0 = s1 = s2 = 0 then P (T ) = a4(T − β)4 and β = −s3,2/3s3 = −a3/4a4.
(2) If s0 = s1 = 0, s2 = 0, s22,1 − 4s2s2,0 = 0 then P (T ) = a4(T − β)3(T − γ) with

β = γ ∈ R and β = −s2,1/(2s2) and γ = a0/(a4β
3) when β = 0. If β = 0 then

γ = a3/a4 with a3 = 0.
(3) If s0 = s1 = 0, s2 = 0, s22,1 − 4s2s2,0 > 0 then P (T ) = a4(T − β1)

2(T − β2)
2 with

β1, β2 ∈ R and s2(T − β1)(T − β2) = Sres2(P ) = s2T
2 + s2,1T + s2,0.

(4) If s0 = s1 = 0, s2 = 0, s22,1 − 4s2s2,0 < 0 then P (T ) = a4(T − γ)2(T − γ)2 with
γ ∈ C− R and s2(T − γ)(T − γ) = Sres2(P ) = s2T

2 + s2,1T + s2,0.
(5) If s0 = 0 and s1 = 0 then P (T ) = a4(T − β)2(T − γ1)(T − γ2) with γ1 = γ2 (if

γ1 ∈ C − R then γ2 = γ ∈ C − R) and β = −s1,0/s1 and (T − γ1)(T − γ2) =
P (T )/(a4(T − β)2).

In all cases we have characterised the real roots, simple or multiple, of any degree 4 poly-
nomial with multiple roots as explicit functions of the coefficients of P .

2.2. deg(P) = 5. If a5 = 0 then P (T ) = a5T
5 + ... + a1T + a0 factors, when there are

multiple roots, in nine possible ways. We only show how to proceed in the following cases:
(1) P (T ) = a5(T − β)4(T − γ) with β, γ ∈ R.
(2) P (T ) = a5(T − β)3(T − γ1)(T − γ2) with β, γ1, γ2 ∈ R and γ1 = γ2.

We define τ0(T ) = P (T ) and, for k ≥ 1, τk(T ) = gcd(τk−1, τ

k−1). Polynomials si(P ) will

characterise each possibility for gcd(P, P ) = τ1(P ) (see (1)). We only consider two cases
here (the remaining seven cases follow in a similar way):

(1) If s0(P ) = s1(P ) = s2(P ) = 0 and s3(P ) = 0 then τ1(T ) = Sres3(P ). Two cases
arise: P (T ) = a5(T − β)4(T − γ) or P (T ) = a5(T − β)3(T − γ)2 with β = γ ∈ R.

(2) If s0(P ) = 0, s1(P ) = 0 then τ1(T ) = Sres1(P ). The only possible cases are:
(a) P (T ) = a5(T − β)2(T − γ1)(T − γ2)(T − γ3) with β = γ1 = γ2 = γ3 ∈ R.
(b) P (T ) = a5(T − β)2(T − γ1)(T − γ2)(T − γ2) with β = γ1 ∈ R and γ2 ∈ C−R.

In order to separate the cases when deg(τ1(T )) = 3 we note that τ1(T ) = Sres3(τ0).
In the first case we have τ1(T ) = s3(τ0)(T − β)3 and in the second one we have τ1(T ) =
s3(τ0)(T − β)2(T − γ). s0(τ1) and s1(τ1) will separate these two cases:

• if s0(τ1) = s1(τ1) = 0 then τ1(T ) = s3(τ0)(T − β)3 and P (T ) = a5(T − β)4(T − γ).
• if s0(τ1) = 0, s1(τ1) = 0 then τ1(T ) = s3(τ0)(T − β)2(T − γ) and P (T ) = a5(T −
β)3(T − γ)2.

In the first case we have β = −s3,2(P )/(3s3(P )) and γ = −a0/(a5β
4). And in the sec-

ond one, we have τ2(T ) = Sres1(τ1) = s1(τ1)(T − β), β = −s1,1(τ1)/s1(τ1) and γ =
−s3,0(P )/(s3(P )β2).

In both cases, 2(a) and 2(b), we have β = −s1,1(P )/s1(P ) and they are separated by
analysing the signs of a5, s3(P ), s2(P ) and s1(P ):

• Case 2(a): C({a5, 5a5, s3(P ), s2(P ), s1(P ), 0}) = 4.
• Case 2(b): C({a5, 5a5, s3(P ), s2(P ), s1(P ), 0}) = 2.

In case 2(a) we have (T − γ1)(T − γ2)(T − γ3) = P (T )/(a5(T − β)2) and in case 2(b) we
have (T − γ1)(T − γ2)(T − γ2) = P (T )/(a5(T − β)2). Both polynomials have no multiple
roots, and we know that they have exactly three and one different real roots respectively.
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We have characterised the multiple real roots of any degree 5 polynomial with multiple
roots as explicit functions of its coefficients. Simple real roots of these polynomials are also
characterised in the same way (but cases 2(a) and 2(b) require a cubic squarefree equation).

2.3. The general case. When the degree of P is 6 or 7, we cannot proceed as before in
all cases. The unique cases where the previous strategy fails are the following:

• P (T ) = a6(T − γ1)
2(T − γ2)

2(T − γ3)
2 with γ1 = γ2 = γ3 ∈ R.

• P (T ) = a6(T − γ1)
2(T − γ2)

2(T − γ2)
2 with γ1 ∈ R and γ2 ∈ C− R.

• P (T ) = a7(T − γ1)
2(T − γ2)

2(T − γ3)
2(T − γ4) with γ1 = γ2 = γ3 = γ4 ∈ R.

• P (T ) = a7(T − γ1)
2(T − γ2)(T − γ3)

2(T − γ3)
2 with γ1 = γ2 ∈ R and γ3 ∈ C− R.

In all the remaining cases we can proceed as before concerning multiple real roots. In all
cases we can compute a squarefree polynomial whose real roots are the simple real roots of
the considered polynomial. The analysis above can be generalised as follows.

Theorem 2.1. Let P (T ) be a polynomial in R[T ] factorizing in the following way:

P (T ) =
r

i=1

(T−βi)
mi

r+s
i=r+1

((T − γi)(T − γi))
mi

t
k=1

(T−δk)

t+q
k=t+1

(T−φk)(T−φk) =
n

=0

aT


with mi > 1 and βi, δk ∈ R and γi, φk ∈ C− R (all of them different). Then:
(1) If there are no repetitions in m1,m2, . . . ,mr+s then every βi can be described ex-

plicitely like a rational function of the a’s.
(2) If the repeated elements in m1,m2, . . . ,mr appear at most twice and every mi, 1 ≤

i ≤ r, does not appear in mr+1,mr+2, . . . ,mr+s then every βi can be described
explicitely like a rational function of the a’s involving in some cases the square root
of a polynomial in the a’s known to be strictly positive.

The hypotheses in Theorem 2.1 are equivalent to, with the squarefree decomposition
P = P 1

1 ...P
k
k , imposing, deg(Pi) ∈ {0, 1, 2}, with Pi irreducible when quadratic, for all

i ≥ 2.
Proving this theorem is easy, using the squarefree decomposition of P (T ). Our proof

provides the algorithm producing the desired description for the multiple real roots of P (T )
and the squarefree polynomial whose real roots are the simple real roots of P (T ).
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roots as explicit functions of its coefficients. Simple real roots of these polynomials are also
characterised in the same way (but cases 2(a) and 2(b) require a cubic squarefree equation).
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N XNX t = 0 M XMX t = 0
N M f(λ) = det(λN + M) = c0λ

3 + c1λ
2 + c2λ + c3 ∆

f(λ) g(λ) := f(λ− a2) = c0λ
3 + c1λ

2 + c2λ+ c3
N M

N M

N M
M N f(λ) = 0
M N f(λ) = 0
M N f(λ) = 0

−a2 (−∞,−a2)
−a2,−a2,−δ2/a2 a2 > δ
M N f(λ) = 0

M N f(λ) = 0
−a2

M N
f(λ) = 0 −a2

a2 ≤ δ
M N a2 = δ f(λ) = 0

−a2

M N f(λ) = 0
−a2 −a2 −δ2/a2 a2 < δ

ci ci f(λ)
∆

f(λ) g(λ)

N M
M N ∆ > 0 c1 > 0 c2 > 0
M N ∆ = 0 c1 > 0 c2 > 0
M N ∆ > 0 c1 < 0 c2 < 0,

−c0 c1 −c2 c3 c3 = 0 c2 = 0 a2 > δ
M N ∆ < 0
M N ∆ > 0, c2 < 0, c1 < 0.
M N
a2 ≤ δ ∆ = 0 c2 < 0, c1 < 0
M N a2 = δ ∆ = 0 c1 <
0, c2 < 0 c3 < 0 c2 > 0 c1 > 0 c3 = 0 c1 > 0 c2 < 0
M N a2 < δ c3 = 0 c2 = 0
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N M

M N

M =



a11 a12 a13
a12 a22 a23
a13 a23 a33


 , N =



b11 b12 b13
b12 b22 b23
b13 b23 b33


 ,

L3 := det(M) L0 = detN

M2 :=


a11 a12
a12 a22


, T1 := detM2, N2 =


b11 b12
b12 b22


.

M T1 > 0 (a11 + a22)L3 < 0 N detN2 = 0
a11 > 0, a22 > 0, L3 < 0, L0 < 0 M

XMX T < 0
L1 := L0Trace(N

−1M) L2 := L3Trace(M
−1N) T := T1Trace(M2

−1N2)
M N

F (λ) = det(λN+M) = L0λ
3 + L1λ

2 + L2λ+ L3,

∆ = −27L2
0L

2
3 + 18L0L1L2L3 + L2

1L
2
2 − 4L3

1L3 − 4L0L
3
2

S1

M1 : (x− xc)
2 + (y − yc)

2 = −L3/T1,

N1 : d11x
2 + d22y

2 + 2d12xy + 2d13x+ 2d23y + d33 = 0.

A S1 M1 N1

M1 N1

F (λ) = (detA)2 det(λN1 +M1).

S2 M1 N1

M2 : (x
 − xc) + (y − yc)

2 = −L3/T1,

N2 : E1x
2 − 2E2y

 = 0,

E1 = d11 + d22 = T/T1, E2 =
√
−L0/

√
T .

N2 E2 a2 =
E2/E1

f(λ) = det

λN̂2/E2 + M̂2


= c0λ

3 + c1λ
2 + c2λ+ c3,

c0 = (detA)−2L0/E
3
2 c1 = (detA)−2L1/E

2
2 c2 = (detA)−2L2/E2 c3 = (detA)−2L3

sign(ci) = sign(Li) i = 0, . . . , 3
G(λ) = F (λ− a2) = c0λ

3 + c1λ
2 + c2λ+ c3

c0 = −1/a2, c1 = (detA)−2(−3L0a
2/E3

2 + L1/E
2
2),

c2 = (detA)−2(3L0a
4/E3

2 − 2L1a
2/E2

2 + L2/E2),

c3 = (detA)−2(−L0a
6/E3

2 + L1a
4/E2

2 − L2a
2/E2 + L3).
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T > 0 E2 > 0 a2 = E2/E1 E1 = T/T1 c1
I5 := −3L0T1 +L1T c2 I4 := 3L0T

2
1 − 2L1TT1 +L2T

2 c3
I3 := −L0T

3
1 +L1TT

2
1 −L2T

2T1 +L3T
3. I2 := −T 3

1L0 +L3T
3

M N
M N ∆ > 0 (L1 > 0 L2 > 0)
M N ∆ = 0 (L1 > 0 L2 > 0)
M N ∆ > 0 I4 < 0 I5 < 0
M N ∆ < 0
M N
{I2 = 0 ∆ = 0 L1 < 0 L2 < 0 I3 < 0 (I4 > 0 I5 > 0)}

{∆ = 0 L1 < 0 L2 < 0 I3 = 0 I5 > 0 I4 < 0}
{∆ = 0 L1 < 0 L2 < 0 I3 = 0 I5 = 0 I4 = 0}

M N ∆ = 0 I3 = 0
I4 = 0 I5 < 0
M N

I2 ≤ 0,∆ = 0, I4 < 0, I5 < 0
M N {∆ > 0, L1 < 0, L2 < 0, I4 > 0} {∆ > 0, L1 <
0, L2 < 0, I5 ≥ 0, I4 ≤ 0, I3 < 0} {I3 = 0, I4 = 0, I5 > 0}
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BOHEMIAN MATRICES: A SOURCE OF CHALLENGES

E. CHAN, R. CORLESS, L. GONZALEZ-VEGA, J. R. SENDRA, AND J. SENDRA

Abstract. A family of Bohemian matrices is a set of matrices where the entries are
independently sampled from a finite set, usually of integers. Such families arise in many
applications (e.g. compressed sensing) and the properties of matrices selected “at random"
from such families are of practical and mathematical interest. Studying these matrices
leads to many unanswered questions. In the abstract, we focus on two different problems:
the study of some properties of a family of upper Hessenberg Toeplitz structured Bohemian
matrices, and the analysis of generalized (inner) Bohemian inverses.

Introduction

A matrix is called Bohemian if its entries come from a fixed finite discrete (and hence
bounded) set, usually of integers called the population P . We look at Bohemian matrices,
and specifically those with entries from P = {−1, 0,+1}. The name is a mnemonic for
Bounded Height Matrix of Integers. Such objects arise naturally in many applications.
For instance, in signal processing, where they use Bernoulli matrices, or error correcting
codes working with Hadamard matrices, etc. Other fields where they can be applied are
combinatorics or graph theory, among others.

Bohemian families have been studied for a long time, although not under that name. For
instance, Olga Taussky-Todd’s paper “Matrices of Rational Integers" [19] begins by saying:

“This subject is very vast and very old. It includes all of the arithmetic
theory of quadratic forms, as well as many of other classical subjects, such as
latin squares and matrices with elements +1 or −1 which enter into Euler’s,
Sylvester’s or Hadamard’s famous conjectures."

Taussky-Todd also discussed matrices with small integer entries in [20]. The paper [14],
by C. W. Gear, is another instance. These families are interesting objects of study in them-
selves, and susceptible to brute-force computational experiments (both ideas are studied
in [20]) as well as to asymptotic analysis. Such experiments have generated many conjec-
tures, some of which are listed on the Characteristic Polynomial Database [21]. Matrices
with a population P = {−1, 0,+1} occur naturally as exemplars of “sign-pattern matrices”,
see [5] and [15]. For early theorems, see [16].

The inspiration of the authors in [10], [12],[13], and [22] for studying these types of
problems originated when exploring density plots of the eigenvalues of such types of random
matrices. See http://www.bohemianmatrices.com.

The authors were partially supported by the grant PID2020-113192GB-I00 (Mathematical Visualization:
Foundations, Algorithms and Applications) from the Spanish MICINN.

The talk at the EACA 2022 meeting has been given by the fifth author.
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The idea of visualizing the eigenvalues of random samples of matrices is not new. L.
N. Trefethen [23], used this idea to visualize the pseudospectra of several test matrices.
Related to the eigenvalues of matrices, many authors have studied the zeros of polynomials
whose coefficients belong to discrete sets of integers. Early studies by Odlyzko and Poonen
[18] focused on the zeros of polynomials with coefficients in {0, 1}. More recently, the
distributions of the roots of Littlewood polynomials [17] have been studied in [1], [3], [4],
and [11]. In Figure 11, we can visualize the Bohemian eigenvalues of a sample of 1 million
100 × 100 upper Hessenberg matrices with a Toeplitz structure. The entries are sampled
from the population {−1, 1}, the entries on the main diagonal are fixed at 0, and entries on
the subdiagonal are fixed at 1. See http://www.bohemianmatrices.com/gallery/.

Figure 1. A density plot in the complex plane of the Bohemian eigenvalues
of a sample of 1 million 100× 100 upper Hessenberg Toeplitz matrices.

Specializing in Bohemian families with the same strong structure (e.g. upper Hessenberg,
Toeplitz, circulant, etc.) has shown to be more successful in developing an understand-
ing of relationships within these families. The study of eigenvalues of structured Bohemians
(e.g. tridiagonal, complex symmetric) has recently been undertaken and several puzzling fea-
tures result from extensive experimental computations. For instance, some of the images at
http://www.bohemianmatrices.com/gallery show common features including “holes”. These
visible features of graphs of roots and eigenvalues from structured families of polynomi-
als and matrices have been previously studied. One well-known set of polynomials whose
roots produce interesting pictures are the Littlewood polynomials, p(x) =

n
i=0 aix

i , where
ai ∈ {−1,+1}. These polynomials have been studied in [1], [3], and [4]. Similarly, polynomi-
als with coefficients {0, 1} (also called Newman polynomials) have been studied by Odlyzko
and Poonen [18].

1. Motivation

To start with, the natural first question is: why Bohemian Matrices? The original moti-
vation of the authors of [8] was to test problems for various algorithms. An overview of some
of the original interest in Bohemian matrices can be found in [6], [7], [8] and [22]. An in-
teresting challenge is to analyze the distribution of the eigenvalues for particular structured
bohemains. These distributions turn out to be helpful for understanding some properties.

1Picture in Figure 1 has been taken, and is available at http://www.bohemianmatrices.com/gallery/.

58

BOHEMIAN MATRICES: A SOURCE OF CHALLENGES

This exploration has been inspired by many questions, most of which are computational.
For instance, for a given dimension and population, the set of Bohemian matrices is finite,
but:

: How many are singular?
: How many distinct characteristic polynomials does the family have? Which is the

maximum height?
: How many distinct eigenvalues does the family contain? How many are real?
: Which eigenvalue has the highest density?
: How many distinct Jordan canonical forms are there?
: Characterize the set of non-singular Bohemian with inverse being Bohemian w.r.t.

the same population.
: Characterize the set of Bohemians with generalized inverse being Bohemian w.r.t.

the same population.
: What can we say about Sylvester matrices of polynomials with coefficients in the

fixed population?
: . . . . . . . . .

Answering these questions yields challenges and, in turn, provides new opportunities.
However, difficulties quickly appear. For instance, the number of possible Bohemian matri-
ces of dimension n is typically quadratically exponential (exp (cn2) for some c), depending
on the matrix structure.

2. Study of some Bohemian Problems

Taking a look at the tentative (certainly incomplete) list of questions mentioned above,
one can broadly consider two types of problems. Some with a clearly computational flavor,
even, enumerative, as for instance computing the number of singular bohemian matrices
of a fixed order a population, and others of a more theoretical nature that focus on the
existence of bohemian matrices after an algebraic manipulation, such as knowing which
invertible bohemian matrices have bohemian inverses. In this talk, we will describe some of
our results in two different problems, each belonging to each of these two focus.

On one hand, we study some properties of a family of upper Hessenberg Toeplitz struc-
tured Bohemian matrices. In this context, we analyze the characteristic polynomials and we
obtain formulas on the “maximal characteristic polynomial height” for the matrices not only
upper Hessenberg, but Toeplitz. We also give an answer to the question on which matrices
reach the maximum characteristic height; these results appear in [8].

On the other, we analyze the structure of the set of Bohemian matrices, with a fixed
population, and of some particular form, which generalized inner inverse is again Bohemian.
This analysis has to be seen as a first step toward the characterization of Bohemian matrices
with Moore-Penrose inverse being Bohemian too. The results presented in this second
problem are taken from [9].
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Abstract. Many of today’s problems can be posed as a system of equations with the
form Ax = b. When A has the form

A =

d
i=1

idn1 ⊗ . . . idni−1 ⊗Ai ⊗ idni+1 ⊗ · · · ⊗ idnd ,

we say that A is a Laplacian matrix. For example, these matrices appear when discretizing
some PDEs, such as the Poisson equation, and are an interesting object of study since the
Proper Generalized Decomposition algorithm converges very quickly with the solution of
the associated linear system.

This made us wonder if a generic square matrix M ∈ GL(RN ) could be decomposed in
some way so that the study of the associated linear problem Mx = b would be simpler.
In the main theorem of this work, we present a decomposition of the space RN×N that
will help us to determine the matrix decomposition we are looking for. In addition, we
will show the procedure to be carried out for it in the form of an algorithm.

Introduction and Motivation

Linear systems are widely used to approach computational models in applied sciences, e.g.
in mechanics after the discretization of a partial differential equation. There are numerous
mechanisms to deal with this type of problem. However, most of them lose efficiency as
the size of the matrices or vectors involved increases. This effect is known as the curse of
dimensionality problem. To try to solve this drawback, we can use tensor-based algorithms
[5], since their use significantly reduces the number of operations that we must employ [2].

One of the most popular techniques among the algorithms based on tensor products
strategies [3] is the Proper Generalized Decomposition (PGD) family, based on the Greedy
Rank-One Update (GROU) algorithm [4, 7]. We observe, from the study of this procedure
to solve high-dimensional linear systems, that there is a type of matrices for which the
algorithm works particularly well: very fast convergence and a very good approximation of
the solution. These are Laplacian-Like matrices, which have the form

A =
d

i=1

id[ni] ⊗Ai
.
=

d
i=1

idn1 ⊗ · · · ⊗ idni−1 ⊗Ai ⊗ idni+1 ⊗ · · · ⊗ idnd
,

and which can be easily related with the classical Laplacian operator [6].
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Introduction and Motivation
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mechanisms to deal with this type of problem. However, most of them lose efficiency as
the size of the matrices or vectors involved increases. This effect is known as the curse of
dimensionality problem. To try to solve this drawback, we can use tensor-based algorithms
[5], since their use significantly reduces the number of operations that we must employ [2].
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A =
d

i=1

id[ni] ⊗Ai
.
=

d
i=1

idn1 ⊗ · · · ⊗ idni−1 ⊗Ai ⊗ idni+1 ⊗ · · · ⊗ idnd
,
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For example, this is the case with the famous Poisson equation −∆φ = f . Using derivative
approximations and finite difference methods, we can write the Poisson equation in discrete
form as a linear system A ·φijk = −fijk, where A is a block matrix (details in [4]). In Figure
1, we compare the CPU time employed in solving this discrete Poisson problem, with A
written in Laplacian form, when we solve the problem by using the Greedy Algorithm and
by the Matlab operator x = A\b, for different number of nodes in (0, 1)3.

Figure 1. CPU-Time comparative

1. The Laplacian Decomposition. Main result

Suppose we have a linear system of the form Ax = b, with A a square matrix in RN×N .
We want to approximate the matrix A by means of a matrix in Laplacian form LA ∈ RN×N ,
and solve the associated Laplacian linear system LAx = b, in order to approximate the
solution of the original system x∗ by the solution obtained from the Laplacian system x∗

L.
To do this, we present the following result:

Theorem 1.1. The set of Laplacian matrices L is a subspace of RN×N that contains the
identity matrix, idN . Moreover, if N = n1 · · ·nd, there is a linear subspace ∆ ⊂ L,

∆ =

d
i=1

span{idN}⊥i ,

where span{idN}⊥i is the orthogonal complement of span{idN} in span{idni} ⊗ Rni×ni for
1 ≤ i ≤ d, such that idN /∈ ∆.

Since RN×N = ∆⊕∆⊥, we can decompose any square matrix into its Laplacian approx-
imation (which is computed by projecting onto ∆) and a linearly independent matrix to it.
Furthermore, if we work with the Frobenius norm, span{idN}⊥i = {id[ni]⊗Ai : tr(Ai) = 0},
so A ∈ ∆ iff

A =
d

i=1

id[ni] ⊗Ai, with tr(Ai) = 0, i = 1, . . . , d.

In order to be able to project in ∆ and calculate the Laplacian decomposition of A, we
need to calculate the Ai matrices in some way. Relying on the property that says that
tr(ST ) = 0 if S and T are symmetric and skew-symmetric matrices respectively, we propose
the following result:
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Theorem 1.2. Let A ∈ RN×N with N = n1 · · ·nd, and given d skew-symmetric matrices
Bi ∈ Rni×ni , 1 ≤ i ≤ d, we can calculate one projection of A in ∆ =

d
i=1 span{idN}⊥i as

P∆(A) =

d
i=1

idn1 ⊗ · · · ⊗ idni−1 ⊗

Xi +X

i


Bi ⊗ idni+1 ⊗ · · · ⊗ idnd

,

where Xi are obtained by solving the successive minimization problems

min
Xi∈Rni×ni



A−
d

i=1

id[ni] ⊗

Xi +X

i


Bi



 .

The proof of this result poses an iterative argument similar to the procedure of the
Alternating Least Square (ALS) algorithm, where the error given by the norm of the residue
is reduced by updating the terms that are part of the Laplacian decomposition. This
procedure can be described by the following algorithm, given in pseudocode form:

Algorithm 1 Laplacian decomposition Algorithm
1: procedure Lap(A, iter_max, tol)
2: choose Bi ∈ Rni×ni skew-symmetric matrices, for i = 1, 2 . . . , d.
3: iter = 1, Lap = 0
4: while iter < iter_max do
5: A ← A− Lap
6: for k = 1, 2, . . . , d do
7: Pk(A) = idn1 ⊗ · · · ⊗ idnk−1

⊗ (Xk +X
k )Bk ⊗ idnk+1

⊗ · · · ⊗ idnd

8: Xk ← minXk
A−

k
i=1 Pi(A)

9: Lap = Lap+ Pk(A)
10: end for
11: if A− Lap2 < tol then goto 15
12: end if
13: iter = iter+ 1
14: end while
15: return Lap
16: end procedure

2. A numerical example

Let us consider the simple graph G(V,E), with V = {1, 2, . . . , 6} the set of nodes and
E = {(1, 2), (1, 4), (2, 3), (2, 5), (3, 6), (4, 5), (5, 6)} the set of edges. Then, the adjacency
matrix of G is

A =




0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 0 0 1
1 0 0 0 1 0
0 1 0 1 0 1
0 0 1 0 1 0




.

We want to find a Laplacian decomposition of the matrix A ∈ R6×6 and for this, we need to
set the basis on which to project. Since n1 = 2, n2 = 3, we choose for example the following
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Let us consider the simple graph G(V,E), with V = {1, 2, . . . , 6} the set of nodes and
E = {(1, 2), (1, 4), (2, 3), (2, 5), (3, 6), (4, 5), (5, 6)} the set of edges. Then, the adjacency
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
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skew-symmetric matrices as the basis

B1 =


0 1
−1 0


and B2 =


0 1 0
−1 0 −1
0 1 0


.

We then search for X1 ∈ R2×2, X2 ∈ R3×3 matrices so that

P∆(A) = (X1 +X
1 )B1 ⊗ idn2 + idn1 ⊗ (X2 +X

2 )B2,

would be the best Laplacian approximation of the matrix A for the chosen parameterization.
If we proceed according to the algorithm, that is, calculate Xi so that

min
Xi

A−
i

k=1

Pk(A)F , where Pk(A) = id[nk] ⊗ (Xk +X
k )Bk,

we obtain that
X1 =


1/2 0
0 −1/2


and X2 =


1/4 0 1/4
0 −1/2 0

1/4 0 1/4


.

To determine how good the Laplacian approximation obtained is, we calculate the value of
the residue; since ||A− P∆(A)|| = 0, the matrix A ∈ ∆, and we can write it as

A =


0 1
1 0


⊗ idn2 + idn1 ⊗


0 1 0
1 0 1
0 1 0


= P∆(A).

Finally, the “goodness” of the approximation depends on the basis chosen. For example, if
we replace b23 = 1 and b32 = −1 in B2, we cannot obtain an exact Laplacian decomposition
of A.
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JUMPING WALLS AND TOPOLOGICAL TYPE OF PLANE CURVES

FERRAN DACHS-CADEFAU

Abstract. In their respective PhD theses, Järvilehto (in [6]) and Tucker (in [9]) studied
the relation between the jumping numbers of a curve and their equisingularity class. In
this note we present how we can recover the equisingularity class of a tuple of analytically
irreducible plane curves and the one of its product from its associated jumping walls, and
show that in fact, we have enough information with the jumping numbers of each of the
branches and those of the product of each pair.

Introduction

In this note we will consider a germ (X,O) of a smooth complex surface, the local ring
OX,O at O, and fff = (f1, . . . , fr) will be a tuple of curves (at the moment, not necessarily
analytically irreducible), define Ci ≡ {fi = 0}. We will briefly recall some notations that
can be found in more detail in [1] and [2].

Definition 0.1. A log-resolution of (X,D), with D a given divisor on X, is a proper
birational map π : X  → X such that X  is smooth; and the divisor π∗D + Exc(π) has
simple normal crossings.

Associated with the log-resolution, we have the relative canonical divisor Kπ, which is
defined as follows Kπ = KX − π∗(KX) =

s
i=1 kiEi ∈ Div(X ) where KX and KX are

canonical divisors of X  and X respectively, and Ei, with i = 1, . . . , s are the exceptional
and non-exceptional divisors1. The relative canonical divisor can be computed using the
adjunction formula.

The main objects we are interested in are the mixed multiplier ideals.

Definition 0.2. Let fff := (f1, . . . , fr) be a tuple of curves, define Ci ≡ {fi = 0} and let
π : X  → X be a log-resolution of the product of all the fi’s, with Fi := π∗Ci. Fix a point
ccc := (c1, . . . , cr) ∈ Rr

0 the corresponding mixed multiplier ideal is defined as

J (Cccc) := J (Cc1
1 · · ·Ccr

r ) = π∗OX (Kπ − c1F1 − · · · − crFr) .
In the case r = 1, they are known as multiplier ideals.

It is important to note that as in the case of multiplier ideals, mixed multiplier ideals are
complete for any tuple of curves and λλλ.

Another definition that we need in this note is the following:

Definition 0.3. With the above notation, and given λλλ := (λ1, . . . , λr) ∈ Rr
0, we define:

• The region of λλλ as: Rfff (λλλ) =

λλλ ∈ Rr

0

J

fffλ


⊇ J

�
fffλ



1Note that in the latter the ki’s are 0.
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Abstract. In their respective PhD theses, Järvilehto (in [6]) and Tucker (in [9]) studied
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⊇ J

�
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

1Note that in the latter the ki’s are 0.
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• The constancy region of λλλ as: Cf (λλλ) =

λλλ ∈ Rr

0

J

fffλ


= J

�
fffλ



The boundary of the region of λλλ is the jumping wall. In the case r = 1 this notion is the
jumping numbers. It is important to note that as the multiplier ideals, they are independent
of the chosen resolution. In order to describe the regions and jumping walls we need the
following definitions:

Definition 0.4. Given a log-resolution π : X  −→ X of X with exceptional divisors Ei, we
define the following:

• Given two divisors D and D in X , we will say that they are equivalent if they
define the same complete ideal, i.e., π∗OX(−D) = π∗OX(−D).

• A divisor D is antinef if −D · Ei  0, for all exceptional divisors Ei.
• Given a divisor D, there is a unique equivalent antinef divisor D̃ called antinef

closure of D. This divisor D̃ is explicitly described by a procedure called unloading.
• We will say that Ei is a dicritical divisor for D if −D · Ei > 0.

We are interested in dicritical divisors because of the following equivalence.

Theorem 0.5 (Lipman [8]). There is a one-to-one correspondence between antinef divisors
in Div(X ) and complete ideals in OX,O.

As already mentioned, mixed multiplier ideals are complete ideals, so we can describe
them by means of antinef divisors. We can therefore describe the regions as follows.

Theorem 0.6 (Alberich-Carramiñana, Àlvarez Montaner, Dachs-Cadefau [1]). Let fff :=
(a1, . . . , ar) be a tuple of curves and let Dλλλ =

s
j=1 e

λλλ
jEj be the antinef closure of

λ1F1 + . . .+ λrFr −Kπ for a given λλλ := (λ1, . . . , λr) ∈ Rr
0. Then the region of λλλ is the

minimal convex polyhedron determined by

e1,jz1 + . . .+ er,jzr < kj + 1 + eλλλj

with Ej either exceptional or non-exceptional, and Fk =
s

i=1 ei,kEi and zi are variables.

1. Topological type

In the case of analytically irreducible plane curves and by extension the case of simple
ideals, there is a well-known relation between the equisingularity type and the jumping
numbers.

Theorem 1.1 (Järvilehto, Thm 9.8 in [6]). The jumping numbers of an analytically irre-
ducible plane curve C which are less than one determine the equisingularity class of C.

The proof of this Theorem is constructive, so given the jumping numbers, we can recover
the equisingularity class of the curve. However this result does not hold when we drop the
condition of being irreducible. For example, consider the following two curves (see [9]):

• C1 =

(y5 − x2)(y3 − x2)(y3 − x4)(y2 − x7) = 0


, and

• C2 =

(y5 − x2)(x3 − y2)(x3 − y4)(y2 − x7) = 0


.

Both of them have the same jumping numbers. A natural question would therefore be: do
the jumping numbers of the germ of a plane curve determine the equisingularity classes of
its branches (Tucker in [9])? Unfortunately the answer to this question is also negative.
Consider the following example:
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• C1 =

(y4 − 2x3y2 + x6 − 4x10 − x17)(x4 − 2x2y5 − 4xy8 + y10 − y11) = 0


, and

• C2 =

(y4 − 2x3y2 + x6 − 4x9y − x15)(x4 − 2x2y5 + y10 − 4xy9 − y13) = 0


.

Both curves have the same jumping numbers, with the same multiplicities, and the branches
composing C1 are not equisingular to any branch composing C2. It seems clear that we need
another invariant than the jumping numbers in order to determine the equisingularity class.
We could ask, what information could we get from the jumping walls? More precisely, given
a set of jumping walls, under which assumptions can we determine the equisingularity class
of all the curves associated to each axis and the product of all of them?

It seems clear that from Theorem 1.1 that each axis should represent an analytically
irreducible curve, because if not, we cannot recover the equisingularity class of the branch.
With this assumption, we can recover the equisingularity class of each of the branches, so
the only missing piece of information is the intersection multiplicity. But this multiplicity
can be recovered by the following result (see for example [3, Thm 4.5]).
Theorem 1.2. The intersection multiplicity of two branches C1 and C2 is equal to the
multiplicity of the branch C1 in the exceptional divisor Ei such that Ei · C̃2 = ∅, where C̃2

is the strict transform of C2. Or equivalently, to the multiplicity of the branch C2 in the
exceptional divisor Ei such that Ei · C̃1 = ∅, where C̃1 is the strict transform of C1.

Thanks to this result, we can state the following theorem that allows us to find the
equisingularity class by means of the algorithm 1.4.
Theorem 1.3. The jumping walls determine the equisingularity class of a tuple of curves.
Algorithm 1.4. Input: The jumping walls of a tuple of curves.
Output: The equisingularity class of each of the curves and of the product of all of them.

• From the jumping numbers of each curve recover the equisingularity class by using
the results of Järvilehto.

• From the last of the necessary jumping numbers for one of the branches, determine
the equation of the facet of the jumping wall containing the jumping number. The
intersection number with the other curves are the coefficients.

However, we can go a bit further, namely, as can be deduced from the algorithm and the
proof of Theorem 1.3, we do not use all the information given by the jumping walls, in fact
many of them are redundant. In fact, we need even less information:
Theorem 1.5. The jumping numbers of a curve together with the jumping numbers of each
pair of its branches determine its equisingularity class.

So the equisingularity class can be found using the following algorithm.
Algorithm 1.6. Input: The jumping numbers of a curve together with the jumping num-
bers of each pair of its r branches.
Output: The equisingularity class of each of the branches and of the product of all of them.

• From the jumping numbers of each curve recover the equisingularity class by using
the results of Järvilehto.

• Identify the first jumping number of the product that cannot be associated to a
rupture, dicritical or non-exceptional divisor for one of the branches and with that
determine the intersection multiplicity.2

2The details of this second step require some extra notions that can be found in [5].
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Theorem 1.1 (Järvilehto, Thm 9.8 in [6]). The jumping numbers of an analytically irre-
ducible plane curve C which are less than one determine the equisingularity class of C.
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Example 1.7. Assume that we have the jumping walls of Figure 1. From there, we can
get the jumping numbers of both curves and of the product.

Once we have the jumping numbers, we find that the first curve has two Puiseux pairs,
{2, 3}, {3, 7}, and the second has {2, 3}, {4, 11}.

If we want to use Algorithm 1.4, we have to pick the jumping number needed to determine
the equisingularity class of one of the curves, namely 25

66 for the first one. It is contained
in the hyperplane 66z1 + 84z2 = 25 and the intersection multiplicity is therefore 84. This
means the product of C1 and C2 has the dual graph of Figure 2, where the rupture divisors
are represented by white dots, while the strict transforms are represented by green dots.

C̃1

C̃2

1

Figure 1: Jumping Walls Figure 2: Dual graph of the product
of C1 and C2.

If instead we use Algorithm 1.6, the jumping number of the product we are interested
in is 8

49 , and this gives us, as expected, the same dual graph and the same intersection
multiplicity, 84.
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THE BENEFITS OF CLUSTERING IN
CYLINDRICAL ALGEBRAIC DECOMPOSITION

TERESO DEL RÍO AND MATTHEW ENGLAND

Abstract. Cylindrical Algebraic Decomposition (CAD) is a very powerful algorithm
with many potential applications. However, its doubly-exponential complexity limits its
usability. In this document we demonstrate how the techniques of adjacency and clustering
would reduce the double exponent of CAD complexity.

1. Introduction

Cylindrical Algebraic Decomposition (CAD), was introduced by Collins in [5]. Given an
ordering in n variables (e.g. x1  ...  xn) a CAD is a decomposition of Rn into cells
(i.e. connected regions). These cells must be semi-algebraic and for any pair of cells their
projections with respect to the given ordering are either equal or disjoint (cylindricity).

A CAD can be produced with respect to a set of polynomials in such a way that each
of the polynomials is sign-invariant on each of the cells. This is very powerful, and in
particular, it can be used to solve any Tarski formulae described by the given polynomials
and any associated Real Quantifier Elimination problem, if an appropriate variable ordering
is chosen.

CAD has been applied in a wide variety of problems, such as disproving an existent
biological conjecture [9], analysing numerical schemes [11] and the "piano movers" problem
[12]. However, CAD has a doubly-exponential worst case complexity in the number of
variables [4], meaning that problems with many variables cannot yet be tackled. It is only
thanks to 40 years of research that it is possible to apply CAD to the problems above [3].

One interesting improvement was introduced by Arnon in [1] in the early days of CAD.
It consisted of clustering adjacent cells in which the sign of the given polynomials was
invariant, to study them together. This idea brought savings in small examples, but at
that time few algorithms to find adjacencies existed, and those that did were comparatively
expensive. Over time, better projection algorithms were designed, reducing the amount
of computations needed to build a CAD, and when using those new projections it was no
longer possible to cluster using adjacency as presented in [1]. For these reasons, and perhaps
because Arnon left academia, adjacency and clustering have not been major topics of CAD
research and are not used in many CAD implementations.

However, the theory on finding adjacencies has improved since Arnon’s original work, first
with the local box algorithms of [7] and more recently the validated numerics approach of
Strzebonski in [10], which gives a powerful and cheap algorithm to find adjacencies in CAD.

The first author is supported by Coventry University and the second by EPSRC grant EP/T015748/1:
Pushing Back the Doubly-Exponential Wall of Cylindrical Algebraic Decomposition (DEWCAD)..
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Abstract. Cylindrical Algebraic Decomposition (CAD) is a very powerful algorithm
with many potential applications. However, its doubly-exponential complexity limits its
usability. In this document we demonstrate how the techniques of adjacency and clustering
would reduce the double exponent of CAD complexity.

1. Introduction

Cylindrical Algebraic Decomposition (CAD), was introduced by Collins in [5]. Given an
ordering in n variables (e.g. x1  ...  xn) a CAD is a decomposition of Rn into cells
(i.e. connected regions). These cells must be semi-algebraic and for any pair of cells their
projections with respect to the given ordering are either equal or disjoint (cylindricity).

A CAD can be produced with respect to a set of polynomials in such a way that each
of the polynomials is sign-invariant on each of the cells. This is very powerful, and in
particular, it can be used to solve any Tarski formulae described by the given polynomials
and any associated Real Quantifier Elimination problem, if an appropriate variable ordering
is chosen.

CAD has been applied in a wide variety of problems, such as disproving an existent
biological conjecture [9], analysing numerical schemes [11] and the "piano movers" problem
[12]. However, CAD has a doubly-exponential worst case complexity in the number of
variables [4], meaning that problems with many variables cannot yet be tackled. It is only
thanks to 40 years of research that it is possible to apply CAD to the problems above [3].

One interesting improvement was introduced by Arnon in [1] in the early days of CAD.
It consisted of clustering adjacent cells in which the sign of the given polynomials was
invariant, to study them together. This idea brought savings in small examples, but at
that time few algorithms to find adjacencies existed, and those that did were comparatively
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Strzebonski’s results imply that the potential of clustering can be exploited if the necessary
theory were extended to the modern projection algorithms such as [8]. In preparation and
motivation for such developments, we present here the theoretical complexity benefits of
clustering, namely a reduction in the double exponent of the worst case complexity bound.

2. Cylindrical Algebraic Decomposition

The CAD algorithm requires a variable ordering (e.g. x1  ...  xn) and can be split
into two phases: projection and lifting. In the projection phase, a projection operator is
applied to a set of polynomials in n variables to obtain a set of polynomials without the
largest variable in the ordering. This is done recurrently until a set of polynomials in one
variable is found. The set of polynomials with only the first i variables will be denoted Si.

This allows the next phase, the lifting phase. Here a CAD of R is built using S1, then on
top of it, a CAD of R2 is constructed using S2, and we continue recursively until the desired
CAD of Rn is obtained. The CAD of Ri will be denoted as CADi.

CADI is built from Si and CADi−1 by taking each cell of CADi−1, substituting its
sample point into Si, isolating roots, and inferring the behaviour in the whole cell from this
analysis of the sample. In order for the cells generated in Rj to be sign-invariant we need
to prove that the structure of the roots of Si is invariant over the cell in CADi−1. This
property is called delinability. The following theorem of Collins gives this assurance for his
projection operator.

Theorem 2.1. (Theorem 5 of [5]) Let T be a non-empty set of non-zero real polynomials in
r real variables, r ≥ 2. Let A be a connected subset of Rr−1. Let P be the Collins projection
of T . If every element of P is sign-invariant on A, then the roots of T are delineable on A.

More modern projection operators can achieve such a property with fewer polynomials.
For example, the Lazard projector operator [8] satisfies the following theorem.

Theorem 2.2. Let T be a non-empty set of non-zero real polynomials in r real variables,
r ≥ 2. Let A be a connected subset of Rr−1. Let P be the Lazard projection of T . If every
element of P is Lazard valuation invariant on A, then the polynomials in T are Lazard
analytic delineable on A.

3. Adjacency and Clustering

In the theorems above, the projections satisfy neither cylindricity nor the semi-algebraic
property over the region A: only connectedness is needed. In [1], Arnon took advantage
of this by realizing that if two cells A and B are adjacent (i.e. their union is connected)
and they share the same sign for all the relevant polynomials, then Theorem 2.1 could be
applied to the union of those two cells A ∪B.

For example, in the CAD of x2−y = 0 depicted on in Figure 1, the blue two-dimensional
cell and the purple one-dimensional cell have a connected union and share the same sign
for the polynomial. This implies that in any further lifting phase we could cluster them
and analyse them together rather than lifting over them separately. Moreover, the same
reasoning applies for clustering the pink and the purple cell, and so on.

It is also possible to cluster together the two green one dimensional cells with the single
point cell at the turning point of the curve. In total, we would be able to cluster the original
9 cells into 3 clusters, reducing by a third the effort needed to lift over this CAD.
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Figure 1. CAD of x2 − y = 0 for the variable ordering x  y.

4. Complexity analysis

To give a complexity analysis of CAD we must understand how polynomial degrees grow
during the projection phase. Given a set of polynomials that has a degree of most d in each
of its variables, it is possible to show that the Lazard projection set of those polynomials
has a degree of at most d2 in each of its variables [6]. Likewise, it can be shown that the
Collins projection set of those polynomials has a degree of at most d6 in each.

This implies that if the original set of polynomials Sn has n variables and a degree of at
most d on each of them, then the set Si will have a degree of at most d6n−i+1 in each variable
if Collins projection is used, and degree d2

n−i+1 in each variable if Lazard projection is used.
The most expensive routine in the CAD algorithm is the real root isolation, and the

number of root isolations needed to build a CAD is proportional to the number of cells
generated. In order to study the worst case complexity of the CAD algorithm we can
therefore+ study the maximum number of cells that can be generated.

It is important to note that if the number of cells of CADi is ci and the sum of the
total degrees of the biggest variable in Si+1 is di+1 then the number of cells of CADi+1 is
ci+1 ≤ ci(2di+1 + 1) [6]. Applying this recursively, the maximum number of cells that can
be generated including all the intermediate CADs is

n
i=1

i
j=1

(2dj + 1),

resulting in an O(d
6n

5 ) worst case number of cells for Collins and O(d2
n
) for Lazard.

However, using the upper bound of the number of sign-invariant connected components
of a set of polynomials given in [2], it can be shown using Stirling’s approximation that given
a polynomial with a degree of at most d on each of its n variables the maximum number of
sign-invariant clusters is of the order O(dn)n.

When clustering, the maximum number of cells that can therefore be generated including
all the intermediate CADs is

2d1 + 1 +
n

i=2

(2di + 1)(di−1i)
i,

resulting in O(d6
n−1

) cells for Collins and O(d2
n−1

) for Lazard.
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Strzebonski’s results imply that the potential of clustering can be exploited if the necessary
theory were extended to the modern projection algorithms such as [8]. In preparation and
motivation for such developments, we present here the theoretical complexity benefits of
clustering, namely a reduction in the double exponent of the worst case complexity bound.

2. Cylindrical Algebraic Decomposition

The CAD algorithm requires a variable ordering (e.g. x1  ...  xn) and can be split
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Figure 1. CAD of x2 − y = 0 for the variable ordering x  y.

4. Complexity analysis

To give a complexity analysis of CAD we must understand how polynomial degrees grow
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if Collins projection is used, and degree d2

n−i+1 in each variable if Lazard projection is used.
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number of root isolations needed to build a CAD is proportional to the number of cells
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ci+1 ≤ ci(2di+1 + 1) [6]. Applying this recursively, the maximum number of cells that can
be generated including all the intermediate CADs is

n
i=1

i
j=1

(2dj + 1),

resulting in an O(d
6n

5 ) worst case number of cells for Collins and O(d2
n
) for Lazard.

However, using the upper bound of the number of sign-invariant connected components
of a set of polynomials given in [2], it can be shown using Stirling’s approximation that given
a polynomial with a degree of at most d on each of its n variables the maximum number of
sign-invariant clusters is of the order O(dn)n.
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2d1 + 1 +
n

i=2

(2di + 1)(di−1i)
i,

resulting in O(d6
n−1

) cells for Collins and O(d2
n−1

) for Lazard.
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5. Conclusion

The improvements, a reduction by one of the double exponent, might not look impressive
at first glance, but are in fact significant in the context doubly-exponential growth. For
example, in Lazard projection the maximum number of cells generated if clustering would
be the square root of the maximum number of cells generated without using clustering. This
means that for n = 6 we would build at most 4, 294, 967, 296 cells when clustering compared
to the 18, 446, 744, 073, 709, 551, 616 without using clustering.

Furthermore, when clustering is not employed the number of cells in an intermediate CAD
is a multiple of the number of cells in the previous CAD. However, when using clustering
that is not necessarily the case, and the number of cells could decrease in some cases.

Finally, it is important to note that considering that the computations of adjacencies
did not have a significant effect with respect to the cost of the CAD in [10], the usage of
clustering to create a CAD would be very unlikely to slow down the process.

We hope this helps motivate the CAD community to bring Arnon’s idea back to the
forefront of CAD research, so that it can be coupled with the other achievements, and
further push back the doubly-exponential wall of CAD!
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Abstract. This work presents some improvements on the efficiency of both Kenzo and
SageMath, by means of parallelization techniques and an existing interface that connects
both systems.

Introduction

Kenzo [2] is a computer algebra system devoted to algebraic topology which in particular
implements several algorithms to compute homology groups of infinite structures using
the method of effective homology [4]. In addition, it also permits homotopy groups to
be computed algorithmically combining the Whitehead tower method [5] and the effective
homology technique. As far as we know, Kenzo is the only program able to carry out this
kind of computations on infinite structures, which makes it a powerful software. In order to
increase and ease the use of Kenzo, we developed an interface and an optional package of
Kenzo within Sagemath [1]. That work permitted the use of Kenzo and some of its external
packages without any Common Lisp knowledge, and enhanced the SageMath system with
new capabilities in algebraic topology (dealing in particular with simplicial objects of infinite
nature).

In this work, we improve the efficiency of our Kenzo–SageMath interface by combining
the power of both computer algebra systems, considering in particular the computation of
homology groups. On the one hand, we use parallel computations in SageMath (using mul-
tiprocessing in Python) to accelerate Kenzo computations. On the other hand, Kenzo can
improve SageMath capabilities beyond topological computations. One such example is the
Smith normal form of an integer matrix, for which Kenzo provides a faster implementation
than Pari (which is what SageMath uses).

1. Computation of homology groups in Kenzo

The computation of homology groups in Kenzo is performed by means of the effective
homology method [4]. When an object (e.g., a simplicial set) X is built in Kenzo, a particular
case of homology equivalence C∗(X)⇐⇐⇒⇒E∗ is automatically constructed, where C∗(X) is
the chain complex associated with X and E∗ is a chain complex of finite type (called
effective) such that its homology groups are isomorphic to those of C∗, H∗(C) ∼= H∗(E).
Since E∗ is finitely generated in each degree, the homology groups of E∗ can be determined
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Abstract. This work presents some improvements on the efficiency of both Kenzo and
SageMath, by means of parallelization techniques and an existing interface that connects
both systems.

Introduction

Kenzo [2] is a computer algebra system devoted to algebraic topology which in particular
implements several algorithms to compute homology groups of infinite structures using
the method of effective homology [4]. In addition, it also permits homotopy groups to
be computed algorithmically combining the Whitehead tower method [5] and the effective
homology technique. As far as we know, Kenzo is the only program able to carry out this
kind of computations on infinite structures, which makes it a powerful software. In order to
increase and ease the use of Kenzo, we developed an interface and an optional package of
Kenzo within Sagemath [1]. That work permitted the use of Kenzo and some of its external
packages without any Common Lisp knowledge, and enhanced the SageMath system with
new capabilities in algebraic topology (dealing in particular with simplicial objects of infinite
nature).

In this work, we improve the efficiency of our Kenzo–SageMath interface by combining
the power of both computer algebra systems, considering in particular the computation of
homology groups. On the one hand, we use parallel computations in SageMath (using mul-
tiprocessing in Python) to accelerate Kenzo computations. On the other hand, Kenzo can
improve SageMath capabilities beyond topological computations. One such example is the
Smith normal form of an integer matrix, for which Kenzo provides a faster implementation
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by means of elementary operations on matrices. In this way, the homology groups of the
object X, which can be of infinite nature, can also be determined (thanks to the isomorphism
H∗(X) ∼= H∗(C∗(X)) ∼= H∗(E)). Given a chain complex C∗, its homology groups Hn(C∗)
are defined as Hn(C∗) = Ker dn/ Im dn+1, where d∗ denotes the differential map of the
complex. These groups are determined in Kenzo by means of the following algorithm.

Algorithm 1: Homology groups of a chain complex.
Input: A chain complex C∗ with effective homology and an integer n.
Output: The homology group Hn(C∗).

1 Consider the effective chain complex associated with C∗, denoted E∗.
2 Construct the differential matrix of E∗ of degree n, denoted Dn.
3 Construct the differential matrix of E∗ of degree n+ 1, denoted Dn+1.
4 Compute the kernel of Dn, denoted Kn, by diagonalization techniques [3].
5 Return the quotient of Kn by Dn+1, by again using diagonalization techniques.

Using profiling, we detected that 99% of the required time was devoted to instructions in
lines 2 and 3 of Algorithm 1, i.e., determining the differential matrices of the effective chain
complex. This is due to the fact that these matrices are built by determining the image of
the differential map of each generator of the chain complex E∗ on the required degrees, and
the differential morphisms of the effective chain complex E∗ are constructed by means of
complicated maps describing the effective homology of the object [4].

2. Improving Kenzo and SageMath

The existing interface between SageMath and Kenzo [1] connects both programs via the
ECL library (a library interface to Embeddable Common Lisp), which is itself loaded as
a C-library. This enables the interface to be very fast, and the efficiency between native
Kenzo and Kenzo loaded in Sagemath is similar. The idea of this work is to exploit both
systems to improve the efficiency of computations. All the code is publicly available at
https://github.com/jodivaso/EACA22.

2.1. Improving Kenzo via SageMath. We applied parallelization techniques to Kenzo
thanks to the SageMath interface, i.e., we use existing multiprocessing Python libraries to
run parallel computations in Kenzo. Unlike other programming languages, Python mul-
tithreading (via threading and asyncio Python packages) does not allow parallelization,
but only concurrency. This is due to the existence of a Global Interpreter Lock (GIL),
whose purpose is to allow only one thread to hold the control of the Python interpreter.
The standard way to run a task in Python in parallel is therefore by means of indepen-
dent subprocesses, without sharing memory among them. However, programmers need to
somehow share objects between subprocesses (for example, to share the input matrix with
the subprocess that will compute something of it). This is solved thanks to serialization
(or pickle in Python jargon): the process whereby a Python object is converted into bytes.
If the main process needs to send two different matrices to two subprocesses (like if we
parallelize lines 2 and 3 in Algorithm 1), then two serializations are performed (one for each
matrix). The matrices are then unpickled in the subprocesses, computation is performed in
each subprocess, and the results are also serialized and finally unpickled in the main process.
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The Kenzo interface defines the class KenzoObject, which is simply a wrapper in Sage
around a Kenzo object, i.e., it only contains an EclObject. However, pickling over an
EclObject is not supported, since ECL does not natively support serialization of its objects.
To overcome this limitation, we have now added an attribute named command, in which we
store how the object has been built. This variable stores the commands to reconstruct
the Kenzo object by means of Python code (which internally will run Lisp code thanks to
the interface). KenzoObject now has two attributes: the EclObject already built and the
command to build it. We do this for each object that can be constructed in Kenzo via the
interface (Cartesian product, wedge, loop space, join, spheres, . . . ).

To serialize a KenzoObject (as well as any of its inherited classes, like KenzoChainComplex)
the trick is to define our own method to serialize (pickle), which will only serialize the
command, but not the EclObject. We also defined the deserializing method (unpickle),
where the command is executed to reconstruct the EclObject. We can therefore input and
output KenzoObjects between processes. We parallelize Algorithm 1 in two ways:

(1) Computing Dn and Dn+1 in two different processes (parallelism by matrices).
(2) Separately computing the columns of Dn and Dn+1 in m processes, and then recon-

structing Dn and Dn+1 (parallelism by columns).

The former is done by means of multiprocessing.pool. Only Python code is necessary
to obtain parallelism. The latter requires to develop new Lisp code that, given E∗, a degree k
and two indexes i and j, computes the columns from i to j of Dk. Additionally, we also have
an optional parameter to select the number of cores to use (to maximize the performance,
by default is set to the available number of logical cores). Finally, we reconstruct each of
the matrices from their columns and continue with the process.

Our benchmarks show that execution times improve noticeably, although it depends on
the space. For instance, to compute the homology in dimension 13 of the cartesian product
of the Eilenberg–MacLane spaces K(Z, 3) and K(Z/5Z, 7) requires 6627.8s without doing
any parallelism, 6457.28s using the parallelism by matrices and 1734.5s using parallelism by
columns. The computing time is thus reduced by around 75% in such an example.

The figures presented above show the execution times (on a logarithmic scale) of the
computation of homology in different dimensions of:

(1) Cartesian product of the Eilenberg–MacLane spaces K(Z, 3) and K(Z/5Z, 7).
(2) Cartesian product of the loop space of the Eilenberg–MacLane space K(Z, 3) and

the 3-sphere.
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(3) Join product of S and the loop space of S, where S is the wedge of a 2-sphere and
a 3-sphere.

The figures show that computing times do not improve greatly using parallelism by ma-
trices. This is due to the fact that the computation of Dn+1 is usually much harder than
Dn, consuming most of the time. Parallelization by columns improves computation times
with respect to the version with no parallelism, and in most cases in a notably manner. The
exception is in low dimensions, whose execution is almost immediate (less than one second).
In those cases it is slower due to the overhead of running subprocesses, serializations and so
on. The experiments have been performed on an Intel i7-4790, with 8 logical cores. In prin-
ciple, we could expect to reduce the computing time by a factor of 8, but in this problem it
is not possible since the computation of each column does not require the same time: some
of them are harder and cause the bottleneck. Nevertheless, the improvement is important.

2.2. Improving SageMath via Kenzo. Kenzo
relies on the Smith form of integer matrices for
its computations. As a result, it includes an op-
timized implementation. With the appropriate
glue code, Kenzo implementation can be used
from SageMath. We compared the performance
of this approach with the native SageMath im-
plementation (provided by Pari).

It can be seen that Kenzo implementation is
clearly faster than native SageMath, for both
dense and sparse matrices. The difference for
matrices of size 100 is about one order of mag-
nitude. Kenzo has also much more predictable
timings.
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Abstract. The goal of this survey is to review several recent results concerning the
level of a polynomial, and to see how it is related with notions coming from Number and
Singularity Theory.

Introduction

Let k be any perfect field and R = k[x1, ..., xd] its polynomial ring in d variables. In
this case it is known [Gro67, IV, Théorème 16.11.2] that the ring DR of k–linear differential
operators on R is the R-algebra (which we take here as a definition)

DR := R Dxi,t | i = 1, . . . , d and t ≥ 1 ⊆ Endk(R),

generated by the operators Dxi,t, defined as

Dxi,t(x
s
j) =

�
s
t


xs−t
i , if i = j and s ≥ t,

0, otherwise .

For a non-zero f ∈ R, let Rf be the localization of R at f ; the natural action of DR on R

extends in a unique way to Rf and it is known that m ≥ 1 exists such that Rf = DR
1
fm . In

characteristic 0 there are examples where the minimal such that m is strictly larger than 1
(e.g. [ILL+07, Example 23.13]). On the other hand, if char(k) = p > 0 one may always take
m = 1 ([ÀMBL05, Theorem 3.7 and Corollary 3.8]). This is shown by proving the existence
of a differential operator δ ∈ DR such that δ(1/f) = 1/fp, i.e., δ acts as Frobenius on 1/f.

We will suppose that k is a perfect field with a positive characteristic p. For an integer
e ≥ 0, let Rpe ⊆ R be the subring of all the pe powers of all the elements of R and set
D(e)

R := EndRpe (R), the ring of Rpe-linear ring-endomorphism of R. Since R is a finitely
generated Rp-module, by [Yek92, 1.4.8 and 1.4.9], it is

DR =

e≥0

D(e)
R .

Therefore, for δ ∈ DR, there exists e ≥ 0 such that δ ∈ D(e)
R but δ ∈ D(e)

R for any e < e.
This number e is called the level of δ. For a polynomial f , the level is defined as the lowest
level of an operator δ such that δ(1/f) = 1/fp.
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(3) Join product of S and the loop space of S, where S is the wedge of a 2-sphere and
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Abstract. The goal of this survey is to review several recent results concerning the
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(e.g. [ILL+07, Example 23.13]). On the other hand, if char(k) = p > 0 one may always take
m = 1 ([ÀMBL05, Theorem 3.7 and Corollary 3.8]). This is shown by proving the existence
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The goal of this survey is to review several recent results concerning the level of a poly-
nomial, and to see how they are related with notions coming from Number and Singularity
Theory.

1. How to calculate the level?

In order to provide effective tools for computing the level of a polynomial, we now review
the so–called ideal of pe–th roots.

Definition 1.1. Given g ∈ R and an integer e ≥ 0, we define the ideal of peth roots Ie(g)

as the smallest ideal J ⊆ R such that g ∈ J [pe].

Remark 1.2. Under our assumptions, R is a free Rpe-module with basis given by the mono-
mials {xα | ||α|| ≤ pe − 1}. A polynomial g ∈ R can therefore be written as

g =


0≤||α||≤pe−1

gp
e

α xα,

for unique gα ∈ R. Then Ie(g) is the ideal of R generated by elements gα [BMS08, Propo-
sition 2.5].

The next result says that we can use ideals of pe–th roots to calculate the level; more
precisely:

Proposition 1.3. The descending chain R = I0(f
p0−1) ⊇ I1(f

p−1) ⊇ If
p2−1

2 ⊇ . . . stabilizes
rigidly, i.e., there is a minimal e ≥ 1 such that Ie−1(f

pe−1−1) = Ie+t(f
pe+t−1−1) for any

integer t ≥ 0. Moreover, level(f) = e = min{s ≥ 1 : fps−p ∈ Is(f
ps−1)[p

s]}.

2. An algorithm to compute the level

Let k be a computable perfect field of prime characteristic p (e.g., k is finite). Let
R = k[x1, . . . , xd], and let f ∈ R be a non-zero polynomial. We now describe an algorithm
that computes not only the level of f, but also a differential operator δ ∈ DR such that
δ(1/f) = 1/fp. The interested reader may wish to consult [BDSV15] for further details.

• Step 1. Find the smallest integer e ∈ N with the property that Ie(f
pe−p) =

Ie−1(f
pe−1−1) = Ie(f

pe−1).
• Step 2. For e ∈ N as in Step 1 write fpe−1 =

n
i=1 c

pe

i µi, where {µ1, . . . , µn} is
the basis of R as an Rpe-module consisting of all the monomials xa11 · · ·xadd , with
ai ≤ pe−1 for all i = 1, . . . , d. In this situation, we can see that, for all i = 1, . . . , n,
there is δi ∈ D(e)

R such that δi(µj) = 1 if i = j and δi(µj) = 0 if i = j.
• Step 3. Since 1 ∈ D(e)

R , for e ∈ N as in Step 1 we have

fpe−p ∈ D(e)
R (fpe−p) = Ie(f

pe−p)[p
e] = Ie(f

pe−1)[p
e] = (c1, . . . , cn)

[pe].

In particular there is α1, . . . , αn ∈ R such that fpe−p =
n

i=1 αic
pe

i . Let δi ∈ D(e)
R as

in Step 2, so that δi(f
pe−1) = cp

e

i , and set δ :=
n

i=1 αiδi ∈ D(e)
R . With this choice
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we have

δ(fpe−1) = δ




n
j=1

cp
e

j µj


 =

n
i,j=1

cp
e

j αiδi(µj) =

n
i=1

αic
pe

i = fpe−p,

and using δ ∈ D(e)
R we finally obtain δ(1/f) = (1/f)p.

3. The level of an elliptic curve

In this section, let f ∈ Fp[x, y, z] be a cubic homogeneous polynomial such that E := V (f)
is an elliptic curve over Fp; it is known that we can write fp−1 = c(xyz)p−1 + . . . for
some c ∈ Fp. In this way, we can say that E is ordinary if c = 0, and supersingular
otherwise. It turns out that level(f) gives a full characterization on whether E is ordinary
or supersingular.

Theorem 3.1. ([BDSV15, Theorem 1.1]) E is ordinary if and only if level(f) = 1; on the
other hand, E is supersingular if and only if level(f) = 2.

4. The level of an hyperelliptic curve

Theorem 3.1 was generalized for hyperelliptic curves of arbitrary genus g ≥ 2; indeed,
let C := {(x : y : z) ∈ P2

Fp
: f(x, y, z) = 0}, where f is a homogeneous polynomial of

degree 2g+1 defined over Fp. If Jac(C) denotes its Jacobian, then it is well known [Mum08,
Proposition on page 60] that for any integer n > 0,

Jac(C)[n](Fp) =


(Z/nZ)2g if char(k)  n,
(Z/pmZ)i if n = pm, p = char(k) and m > 0,

where i can take every value in the range 0 ≤ i ≤ g, and is called the p-rank of C.

Definition 4.1. The curve C is said to be ordinary if its p-rank is maximal, i.e., equal to
the genus of C. The curve C is said to be supersingular (resp. superspecial) if Jac(C) is
isogenous (resp. isomorphic) over Fp to the product of g supersingular elliptic curves.

The generalization of Theorem 3.1 reads as follows [BCBFY18, Theorems 1.3, 3.5 and
3.9]:

Theorem 4.2. Let f ∈ R be a homogeneous polynomial in three variables and of degree
2g + 1, such that C ∼= V (f) ⊂ P2 defines a hyperelliptic curve over Fp of genus g, and
assume p > 2g2 − 1. Then:

(i) level(f) = 2 if C is ordinary,
(ii) level(f) > 2 if C is supersingular but not superspecial.

5. The level of a pair of polynomials

In [BNT20], the authors propose the following generalization of the level of a polynomial.

Definition 5.1. Given polynomials f, g with coefficients in a field k of prime characteristic
p and f = 0, we define the level of (g, f) as

level(g, f) := inf{e ≥ 0 : ∃δ ∈ D(e) such that δ(g/f) = (g/f)p} ∈ N0 ∪ {∞}.
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When g = 1, we denote level(f) instead of level(1, f); this is the notion of level of a
polynomial introduced in [BDSV15, Definition 2.6].

In contrast to what happens when g = 1, in general the level of a pair is not always finite.

Example 5.2. ([BNT20, Proposition 4.9]) Let R = Fp[x, y], and let f = xp+1 + yp+1 and
g = x. Then level(g, f) = ∞. In particular, no δ ∈ DR exists with δ(g/f) = gp/fp.

6. Some final remarks

In Section 2 we introduce an algorithm to calculate the level; in [BHK+19] the authors
present an alternative method for computing it in terms of local cohomology. It is also
possible [For18] to compute the level of a polynomial f in terms of the F–jumping numbers
of the hypersurface defined by f.
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ON THE RANK OF POWERS OF A NON-DEGENERATE QUADRATIC FORM

COSIMO FLAVI

ABSTRACT. A decomposition of a homogeneous polynomial is a representation of that polynomial
as a sum of powers of linear forms; in particular, the minimum number of addends in this sum is
said to be the rank of the polynomial. We analyze a way to determine explicit decompositions of
a polynomial corresponding to a power of a non-degenerate quadratic form. The main instrument
used in this context is the Apolarity Lemma, which is a classic result relating the summands of a
decomposition to its apolar ideal.

INTRODUCTION

Tensor decomposition has many applications in several scientific areas, such as psychology, geo-
physics and medicine (see [4, Chapter 1] for further details). This subject has recently begun to be
addressed by using methods of algebraic geometry.

Considering a finite-dimensional vector space V with dimV = n, defined in a field K such that
char(K) = 0, its d-th tensor power can be described as the space

V⊗d = span{ v1 ⊗·· ·⊗ vd | v1, . . . ,vd ∈V } .
Given a tensor f ∈V⊗d , the natural number given by

rk( f ) = min


r ∈ N

 g =
r

∑
j=1

v j,1 ⊗·· ·⊗ v j,d : v j,i ∈V



is said to be the rank of the tensor f .
An important subspace of V⊗d is represented by the d-th symmetric power of V , which can be
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Now, fixing an arbitrary basis of V , it is quite simple to show that the symmetric algebra of the
space V , which is the direct sum

S(V ) =
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SdV,
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in a natural way the rank of a polynomial, corresponding to the natural number

rk(h) = min


r ∈ N

 h =
r

∑
j=1

(a1, jx1 + · · ·+an, jxn)
d : ai, j ∈K


.

81



ALBERTO F. BOIX

When g = 1, we denote level(f) instead of level(1, f); this is the notion of level of a
polynomial introduced in [BDSV15, Definition 2.6].

In contrast to what happens when g = 1, in general the level of a pair is not always finite.

Example 5.2. ([BNT20, Proposition 4.9]) Let R = Fp[x, y], and let f = xp+1 + yp+1 and
g = x. Then level(g, f) = ∞. In particular, no δ ∈ DR exists with δ(g/f) = gp/fp.

6. Some final remarks

In Section 2 we introduce an algorithm to calculate the level; in [BHK+19] the authors
present an alternative method for computing it in terms of local cohomology. It is also
possible [For18] to compute the level of a polynomial f in terms of the F–jumping numbers
of the hypersurface defined by f.
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COSIMO FLAVI

ABSTRACT. A decomposition of a homogeneous polynomial is a representation of that polynomial
as a sum of powers of linear forms; in particular, the minimum number of addends in this sum is
said to be the rank of the polynomial. We analyze a way to determine explicit decompositions of
a polynomial corresponding to a power of a non-degenerate quadratic form. The main instrument
used in this context is the Apolarity Lemma, which is a classic result relating the summands of a
decomposition to its apolar ideal.

INTRODUCTION

Tensor decomposition has many applications in several scientific areas, such as psychology, geo-
physics and medicine (see [4, Chapter 1] for further details). This subject has recently begun to be
addressed by using methods of algebraic geometry.
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The problem of the determination of the rank of a polynomial, also known as the Waring rank,
has been a central issue in classical algebraic geometry and it is particularly important for the main
applications of the theory of symmetric tensors.

1. OBJECTIVES

The main object analyzed in this context corresponds to the non-degenerate quadratic form

qn = x2
1 + · · ·+ x2

n,

defined on the field C. The goal is therefore to determine some suitable decompositions of its
powers. In other words, we aim to write some explicit decompositions as a sum of 2s-powers of
linear forms of the homogeneous polynomial

qs
n =

�
x2

1 + · · ·+ x2
n
s
,

trying to point out the minimal ones, establishing its rank.
This represents a classic problem, already addressed by B. Reznick in [5], in which he provides

some of its real decompositions for specific values assumed by n and s.
In the case of two variables, such that n = 2, it is quite simple. In that case we easily obtain

rkqs
n = s+1

and the coefficients of the linear forms constituting the decompositions obtained by B. Reznick cor-
respond exactly to the coordinates of the vertices of regular 2s-gon, clearly considered as projective
points.

In the case of three variables, that is n = 3, B. Reznick shows some minimal real decomposi-
tions for the values s = 1,2,3,4. By analyzing the disposition of the set of points in these first
decompositions, we can observe some kind of symmetry in how they are arranged. In particular,
for s = 1 the points represent the vertices of a regular octahedron, for s = 2 we obtain the vertices
of a regular icosahedron and finally, for s = 4, the points of the decomposition form correspond to
an icosahedron and a dodecahedron together. With this, the main idea is to try to generalize these
arrangements of points, possibly observing common features.

2. METHODOLOGY

The tools purposed to be used are related to apolarity theory, the details of which can be found
in [3]. Considering the symmetric algebras respectively of V and its dual space V ∗, denoted by

R =K[x1, . . . ,xn] S(V ), D =K[y1, . . . ,yn] S(V ∗),

the apolarity action of D on R is defined on the monomials by

◦ : D×R R
�
yα ,xβ

 ∂
∂xα


xβ


.

Moreover, for every homogeneous polynomial h ∈ Rd , the catalecticant map of h is the map

Cath : D×R R
g g◦h.
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Now, the kernel of this map, which is called the apolar ideal of the polynomial h and is denoted
by

h⊥ = Ker(Cath),

is the main instrument we aim to use to determine some suitable decomposition of the form qs
n, by

using a very important related result, that is the Apolarity Lemma.

Lemma 2.1 (Apolarity Lemma). Let A = {[L1], . . . , [Lr]} ⊂ P
�
S1V


and h ∈ SdV . Then the follow-

ing conditions are equivalent:
(i) h = ∑r

i=1 aiLd
i , for some a1, . . . ,ar ∈K;

(ii) I(A)⊆ h⊥.

This permits us to identify the decompositions of qs
n as sets of points whose ideal is contained in

(qs
n)

⊥.
Using the representations presented by B. Reznick, once we have analyzed in detail how the

apolar ideal of qs
n is structured, it would be possible to consider its decompositions as the zero-

dimensional variety and focus on a suitable characteristic of the subspace generating the corre-
sponding ideals.

3. RESULTS

Considering the Laplace operator

∆=
n

∑
j=1

∂ 2

∂y2
j

and for each d ∈ N, the space of harmonic homogeneous polynomials of degree d on C, given by

H d
n (C) = {h ∈ C[y1, . . . ,yn] | ∆h = 0} ,

it is possible, especially considering that H d
n (C) is an irreducible On(C)-module (see [2] for de-

tails), to prove that

(qs
n)

⊥ =

H s+1

n (C)

.

It has therefore been possible to determine which polynomials generate the ideals of the decompo-
sitions provided by B. Reznick.

As for the case n = 2, in addition to the decompositions already known for the real case, we have
analyzed all possible complex decompositions and, as we expected, there is a unique representation
up to an orthogonal complex transformation. This decomposition is greatly simplified by choosing
another coordinates system, which provides a more uniform description of the apolar ideal. Indeed,
considering the linear polynomials

u = y1 + iy2, v = y1 − iy2,

from which it holds

∆=
∂ 2

∂u ∂v
,

we obtain

Hd(C) = span


ud ,vd

.
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Analogously, for the case of three variables, the representations of these forms appear to be more
effective if we consider another system of coordinates, formed by the elements

u =
y1 + iy2

2
, v =

y1 − iy2

2
, z = y3,

and in this way we can rewrite the Laplace operator as

∆=
∂ 2

∂u ∂v
+

∂ 2

∂ z2 .

This system also seems to be quite useful by considerations relating the representations theory
(see [1]). Indeed, since H d

n (C) is an irreducible On(C)-module of the Lie algebra sl2C, which
is essentially unique, we can then determine a particular basis, whose elements are obtained as
eigenvectors of a specific differential operator which can be written in a quite elegant way, just
using the new coordinates system.

A first analysis, trying to generalize the configurations of the first cases, focused on the arrange-
ment of the points, which were arranged in a equirotated way on several planes. With the assistance
of the Macaulay2 software, it was possible to verify the correctness of the decompositions pro-
vided by B. Reznick but unfortunately, this kind of configuration does not seem to be effective in
determining suitable decompositions for the successive cases.

Despite this, the use of Macaulay2 enabled us to obtain a similar decomposition for the case
s = 5, formed by 23 points which, however, are not all real.

As a result, since by the rank of the various components of the catalecticant map we know that

rk(qs
n)≥


s+2

2


,

the main idea, based on the information available, would be to try to analyze the possible relation

rk(qs
n)

?
=


s+2

2


+


s−1

2


.

One way which could be considered would be to consider an ideal of points that is generated by
polynomials belonging to the same orbit with respect to the action of the orthogonal group On(C).
Indeed, this applies to cases above.
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Abstract. We consider an homogeneous ideal I in the polynomial ring S = Fq[x1, . . . ,
xm] over a finite field Fq and the finite set of projective rational points X that it defines
in the projective space Pm−1. We concern ourselves with the problem of computing the
vanishing ideal I(X). This is usually done by adding the equations of the projective space
I(Pm−1) to I and computing the radical. We give an alternative and more efficient way
using the saturation with respect to the homogeneous maximal ideal.

Introduction

The aim of this work, based on [4], is to compute the vanishing ideal of a finite set of
points in the projective space over a finite field. The motivation comes from Coding Theory,
in which some projective codes are defined using these type of ideals. In the affine case,
the computation of the vanishing ideal of a finite set of points is straightforward, but the
projective case poses some additional problems. It is known that the vanishing ideal can be
obtained computing the radical of a certain ideal, and we show that it can also be obtained
computing the saturation with respect to the homogeneous maximal ideal, which is more
efficient.

Let Fq be a finite field, and let S = Fq[x1, . . . , xm] be the polynomial ring with standard
grading. Let I ⊂ S be an ideal. We denote by X = VFq(I) = {P1, . . . , Pn} ⊂ Am the finite
set of rational points in which all the polynomials of I vanish. We can then consider the
vanishing ideal of X, I(X). With this notation we define the following evaluation map:

evX : S/I(X) → Fn
q , f + I(X) → (f(P1), . . . , f(Pn)) .

By the definition of I(X), this evaluation map is an isomorphism of Fq-vector spaces. If
we consider L a vector subspace of S/I(X), we can define the affine variety code C(I, L) as
the image of L under the evaluation map evX . That is:

C(I, L) = evX(L) = {evX(f + I(X)) | f + I(X) ∈ L}.
In the light of this definition one may wonder how to compute the ideal I(X). In this

affine setting, the answer is quite straightforward. The ideal Iq = I+ xq1−x1, . . . , x
q
m−xm
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satisfies
VFq

(Iq) = VFq(Iq) = VFq(I) = VFq(I(X)) = X.

By Seidenberg’s Lemma [8, Prop. 3.7.15], Iq is radical. Hence, in this case Iq = I(X)
and we obtain the vanishing ideal directly.

Following a similar idea, one can consider evaluation codes over the projective space Pm−1.
Let I ⊂ S be an homogeneous ideal. Again, we consider X = VPm−1(I) = {[P1], . . . , [Pn]} ⊂
Pm−1 the finite set of projective points defined by I with representatives Pi. Denoting the
vanishing ideal of X by I(X), we can define the following Fq-linear map for each degree d:

evd : Sd → Fn
q , f →


f(P1)

f1(P1)
, . . . ,

f(Pn)

fn(Pn)


,

where fi ∈ Sd are fixed homogeneous polynomials verifying fi(Pi) = 0. Then the image of
Sd under evd, denoted by CX(d), is called a projective Reed-Muller type code of degree d on
X. By definition, I(X)d = ker evd. Thus, Sd/I(X)d ∼= CX(d). It can easily be checked that
the basic parameters of the code (length, dimension and minimum distance) do not depend
on the choice of the polynomials fi. These codes have been studied in various contexts
[2, 3, 5].

In order to compute I(X), as in the affine case, a natural idea would be to add the
equations of the projective space to the ideal I, and check whether the resulting ideal is
radical. These equations correspond to the generators of the vanishing ideal of the set of all
points in Pm−1 [10]:

I(Pm−1) = {xqixj − xix
q
j , 1 ≤ i < j ≤ m}.

We can define Iq = I + I(Pm−1) and as before, if this ideal were radical, then it would
be equal to I(X). However, we have observed that this ideal is radical only in very specific
cases. In general, computing the radical may be computationally intensive. It is thus an
interesting problem to find an easier way to compute I(X).

In Theorem 2.2, we prove that we can compute the vanishing ideal I(X) using the satu-
ration with respect to the homogeneous maximal ideal:

I(X) = (I + I(Pm−1)) : m∞).

We then ask ourselves if there are many cases in which there is no need to use the
saturation, i.e., I + I(Pm−1) = I(X). The answer is that this rarely happens, because it
is equivalent to the question of whether Iq is radical or not. Following this direction, in
Proposition 2.5, we show that there are finite sets of points X ⊂ Pm−1 such that there is no
ideal I ⊂ S, besides I(X), such that I + I(Pm−1) = I(X).

1. The vanishing ideal of a finite set of projective points

The vanishing ideal of a finite set of points satisfies many properties. We list some of
them below, starting with the following lemma from [9, Cor. 6.3.19].

Lemma 1.1. Let [α] ∈ Pm−1, with α = (α1, . . . , αm), and let I[α] = I({[α]}) its vanishing
ideal. Then

I[α] = ({αixj − αjxi | 0 ≤ i < j ≤ m}) .

Corollary 1.2. The ideal I[α] is prime, deg(S/I[α]) = 1 and ht(I[α]) = m− 1.
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If we have a finite subset X ⊂ Pm−1, then

I(X) =


[β]∈X

I[β].

Taking into account that each I[β] is prime, the previous expression is an irredundant
primary decomposition of I(X).

The next result is often referred as additivity of the degree [7, Lem. 5.3.11].

Proposition 1.3. Let I ⊂ S be an homogeneous ideal and let I = q1 ∩ · · · ∩ qm be its
irredundant primary decomposition. Then

deg(S/I) =


ht(qi)=ht(I)

deg(S/qi).

Corollary 1.4. Let X ⊂ Pm−1 be a finite subset. Then deg(S/I(X)) = |X|, ht(I(X)) =
m− 1, and S/I(X) is Cohen-Macaulay.

2. Computing the vanishing ideal using saturation

The computation of the vanishing ideal only makes sense when X = VPm−1(I) = ∅. We can
get X = ∅ in several ways, for example, if I is 0-dimensional, or if it has positive dimension
but no common zero of the homogeneous polynomials in I is in Pm−1 for the corresponding
field Fq. The following lemma gives an algebraic characterization of this property.

Lemma 2.1. Let I ⊂ S be an homogeneous ideal. Then X = VPm−1(I) = ∅ if and only if
(I(Pm−1) : I) = I(Pm−1).

The following theorem gives a more efficient way of computing the vanishing ideal I(X)
than the usual way using the radical.

Theorem 2.2. Let I be an homogeneous ideal such that (I(Pm−1) : I) = I(Pm−1). Let
X = VPm−1(I) and m = (x1, . . . , xm) the homogeneous maximal ideal. Then

I(X) = (I + I(Pm−1)) : m∞.

Example 2.3. We consider the 3-dimensional rational normal scroll defined by the equa-
tions given by the 2× 2 minors of the following matrix:

M =


x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 z0 z1 z2 z3 z4
x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 z1 z2 z3 z4 z5


,

and let I be the homogeneous ideal defined by these equations. The number of rational
points of this variety on Fq is (q2+q+1)(q+1) [2, Cor. 2.3]. We first consider the case with
q = 9. In this situation, |X| = 910, and the computation of the saturation with Macaulay2
[6] takes 3.65 seconds. However, the computation of the radical of Iq takes 1108.15 seconds,
which shows the big difference in efficiency between the two methods.

If we consider the case q = 11 instead, we have |X| = 1596. The saturation takes 5.08
seconds, and Macaulay2 [6] is not able to compute the radical of the ideal.

For this example, we have also considered Magma [1], which seems to have a well-
optimized algorithm for computing the radical over fields of positive characteristic. Al-
though the efficiency gap is reduced, the saturation is still more efficient than computing
the radical.
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which shows the big difference in efficiency between the two methods.

If we consider the case q = 11 instead, we have |X| = 1596. The saturation takes 5.08
seconds, and Macaulay2 [6] is not able to compute the radical of the ideal.

For this example, we have also considered Magma [1], which seems to have a well-
optimized algorithm for computing the radical over fields of positive characteristic. Al-
though the efficiency gap is reduced, the saturation is still more efficient than computing
the radical.
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Remark 2.4. In some cases, we can obtain the vanishing ideal using the saturation with
respect to a smaller ideal. For example, if we have a polynomial f ∈ S such that f ∈ I[Pi],
for every [Pi] ∈ X, i.e., f does not vanish at any of the points of X, then we get

(Iq : f
∞) =


 

[Pi]∈X

(I[Pi] : f
∞)


 ∩ (Q : f∞) =


[Pi]∈X

I[Pi] = I(X).

Having seen how to compute the vanishing ideal I(X), one may wonder if there are many
cases in which Iq is saturated. An equivalent question would be to ask when the equality
I + I(Pm−1) = I(X) holds. It is easy to see that if we take I = I(X), the vanishing ideal
of a finite set of points X ⊂ Pm−1, then I(X) + I(Pm−1) = I(X). We can also find some
nontrivial examples, but in most cases we have encountered, Iq was not saturated. The next
result shows that there are some finite sets of points X such that there are no nontrivial
homogeneous ideals I with VPm−1(I) = X verifying I + I(Pm−1) = I(X).

Proposition 2.5. Let X ⊂ Pm−1 be a finite set of points such that the degree of the elements
of a minimal generating set of I(X) is lower than q + 1. Then I + I(Pm−1) = I(X) if and
only if I = I(X).
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Abstract. Let R be a commutative ring with the property that unimodular vectors can
be completed to invertible matrices. Such a ring is called Hermite in the sense of Lam [4].
In this note we construct a canonical form for matrix pairs (A, b), where A ∈ Rn×n and
b ∈ Rn×1, under the feedback equivalence relation: (A, b) and (A, b) are equivalent if and
only if A = PAP−1 + PbK and b = Pb, for some matrices P ∈ GLn(R) and K ∈ R1×n.

When R is a principal ideal domain, the canonical form is easily computed by using
standard Hermite and Smith normal forms. When R is a polynomial ring K[x1, . . . , xt],
with K a field, the previously obtained canonical form remains valid, and can be deter-
mined by means of effective calculations. Our procedure consists mainly of elementary
operations, combined with an adaptation of the currently available algorithms to solve the
unimodular completion problem, used in the context of the Quillen-Suslin’s theorem that
solves Serre’s conjecture.

Introduction

Throughout this paper, all rings R will be assumed to be commutative and with unit
element 1. An m-input, n-dimensional linear dynamical system over a ring R, or simply a
system of size (n,m) over R is a pair of matrices Σ = (A,B) with A ∈ Rn×n and B ∈ Rn×m.

Objects of this type originate in the study of linear control systems with continuous time
x(t) = Ax(t) + Bu(t), or with discrete time x(t + 1) = Ax(t) + Bu(t), where x(t) is the
n-dimensional vector of states, and u(t) is the m-dimensional vector of inputs. The reader
is referred to [1, 2] to see the applications of this topic in Control Theory.

In this study, we will treat systems as purely algebraic objects (pairs of finite matrices
with coefficients in a commutative ring).

Two systems (A,B) and (A, B) of the same size (n,m) are called feedback equivalent if
there are invertible matrices P ∈ GLn(R), Q ∈ GLm(R) and a matrix K ∈ Rn×m such that
A = PAP−1 + PBK and B = PBQ.

We will be dealing with single-input systems, which is the case when m = 1. In particular,
the matrix Q appearing in the definition of feedback equivalence is now of size 1× 1 (i.e. a
scalar q) and can be assumed to be 1, after substituting P by qP . Two single-input systems
(A, b) and (A, b) are therefore equivalent if A = PAP−1 + PbK and b = Pb, for P,K of
appropriate sizes. In this case, we say that (A, b) and (A, b) are equivalent via (P,K).
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As with many equivalence relations, some typical problems appear, e.g. the obtention of
canonical forms and the determination of a complete set of invariants. The “ideal” canonical
form we all dream of is the following:

(1) Â =




0 · · · 0 0
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0


 ∈ Rn×n, b̂ =




1
0
...
0


 ∈ Rn×1,

where b̂ is a cyclic vector for Â, that is to say, the n×n matrix [b̂|Âb̂| · · · |Ân−1b̂] is invertible,
in fact, it is the n × n identity matrix. A necessary and sufficient condition for a system
(A, b) to be feedback equivalent to the form (1) is the property of being reachable (see [2]).
The system (A, b) is reachable if the columns of the reachability matrix

A∗b = [b|Ab| · · · |An−1b]

generate Rn. For non-necessarily reachable systems, the following number associated to a
system is defined. The residual rank of (A, b) is

res.rk(A, b) = max{i : Ui(A
∗b) = R},

where Ui(A
∗b) denotes the ideal of R generated by the i× i minors of the matrix A∗b, with

the convention U0(A
∗b) = R. Reachable systems have a residual rank equal to n.

The purpose of this paper is for a single-input n-dimensional system (A, b) of residual
rank r, r ≥ 1, to derive an algorithm to obtain a pseudo-canonical form with a block of size
r in the form of (1). The canonical form will be explicitly constructed by means of effective
calculations, for some special rings R. We refer the reader to [1, 2, 8] for further details
about systems over commutative rings.

1. Theoretical solution in Hermite rings

A ring R is said to be Hermite in the sense of Lam (see [4]) if unimodular vectors can be
completed to invertible matrices, or equivalently, if finitely generated stably-free R-modules
are free. In particular, for every unimodular vector b ∈ Rn (U1(b) = R) there is an n × n
invertible matrix P such that P · b is the first basic vector of Rn, i.e. b is the first column
of P−1. The above class of rings should not be confused with Hermite rings in the sense
of Kaplansky, which means that for every matrix B there is an invertible matrix P such
that PB is lower triangular. Hermite (Kaplansy) implies Hermite (Lam), but the converse
is not true, a counterexample is K[x, y], with K a field. An example of a ring that is not
even Hermite (Lam) is given in [7]. Examples of Hermite rings include all rings for which
finitely generated projective modules are free, and in particular, all rings for which the
Serre’s conjecture is solved.

Before stating our main results, we need to define the concept of augmentation of a system.
Given a single-input n-dimensional system Σ = (A, b), we construct an (n+ 1)-dimensional
system, called its 1-augmentation, as

A(Σ) =


0 0
b A


,


1
0


,

where the zero blocks are of appropriate sizes.
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The r-augmentation of Σ is defined inductively as Ar(Σ) = A
�
Ar−1(Σ)


, so that:

A2(Σ) =






0 0 0
1 0 0
0 b A


 ,




1
0
0




 , . . . ,Ar(Σ) =






0 0 0
Ir−1 0 0
0 b A


 ,




1
0
0




 ,

where Ir−1 denotes an identity block of size r − 1.
The main result of this section is based on the the property Kr studied in [8].

Theorem 1.1 (cf. Proposition 2.5 in [8]). If R is an Hermite ring and (A, b) is a single-
input n-dimensional system with res.rk(A, b) = r, r ≥ 1, then we have:

(i) (A, b) is feedback equivalent to a system of the form

Ar(Ar, br) =






0 0 0
Ir−1 0 0
0 br Ar


 ,




1
0
0




 ,

for some (n− r)-dimensional system (Ar, br) with residual rank zero.
(ii) The feedback equivalence class of (A, b) is completely determined by that of (Ar, br). In

particular, the feedback classification of n-dimensional systems of residual rank r is reduced
to that of (n− r)-dimensional systems of residual rank 0.

From the proof of the previous theorem we extract an algorithmic procedure.

Algorithm 1.2. Input: system (A, b) with dimension n and residual rank r.
Output: matrices P,K and an (n−r)-dimensional system (Ar, br) with residual rank 0 such
that (A, b) is feedback equivalent to Ar(Ar, br) via (P,K).

• If r = 0 then stop with output: A0 = A, b0 = b, P = In and K = 0.

• If r ≥ 1 (i.e. b is unimodular), find P0 such that P0 · b =

1
0


, and define (A1, b1) as

the corresponding blocks in P0AP
−1
0 =


∗ ∗
b1 A1


.

– If r = 1 then stop, output the system (A1, b1) and the matrices (P0,K0), where
K0 is −(first row of P0AP

−1
0 ).

– If r > 1, a recursive call to the algorithm with input (A1, b1) and residual rank
r − 1 gives as output the system (A

r, b

r) and the matrices (P ,K ).

Output: system (Ar = A
r, br = br) and matrices (P,K) given by:

P =


1 −K P 

0 P 


· P0, K = −(first row of PAP−1).

2. Effective calculations in special Hermite rings

A very important step in Algorithm 1.2 is the second: given a unimodular vector b ∈ Rn,
find an n×n invertible matrix P0 such that P0b is the first basic vector of Rn. Although this
is theoretically possible in every Hermite ring, in practical applications we need a ring where
effective computations are possible. If R is a principal ideal domain, the standard Hermite
and Smith normal form algorithms solve this step. When the Hermite ring considered is
R = K[x1, . . . , xt], with K a field, our effective calculations are performed by adapting the
algorithms proposed in [3, 5, 6].
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−1
0 =


∗ ∗
b1 A1


.

– If r = 1 then stop, output the system (A1, b1) and the matrices (P0,K0), where
K0 is −(first row of P0AP

−1
0 ).

– If r > 1, a recursive call to the algorithm with input (A1, b1) and residual rank
r − 1 gives as output the system (A

r, b

r) and the matrices (P ,K ).

Output: system (Ar = A
r, br = br) and matrices (P,K) given by:

P =


1 −K P 

0 P 


· P0, K = −(first row of PAP−1).

2. Effective calculations in special Hermite rings

A very important step in Algorithm 1.2 is the second: given a unimodular vector b ∈ Rn,
find an n×n invertible matrix P0 such that P0b is the first basic vector of Rn. Although this
is theoretically possible in every Hermite ring, in practical applications we need a ring where
effective computations are possible. If R is a principal ideal domain, the standard Hermite
and Smith normal form algorithms solve this step. When the Hermite ring considered is
R = K[x1, . . . , xt], with K a field, our effective calculations are performed by adapting the
algorithms proposed in [3, 5, 6].
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Example 2.1. We conclude with a solved example. Over the ring R = Z2[x, y], consider
the 3−dimensional single-input system (A, b) with residual rank 2, where:

A =




y2 + xy + 1 y y
y2 + 1 1 (1 + x) y2 + xy

y2 + y + x2 y + x xy + 1


 , b =




1
x
1


 .

Take P0 =




1 0 0
x 1 0
1 0 1


 satisfying P0b =




1
0
0


. Then, from P0AP

−1
0 we extract the blocks

A1 =


xy + 1 (x+ 1)y2

x (x+ 1)y + 1


and b1 =


1
0


.

Now, a recursive call to the algorithm with input (A1, b1) yields the one-dimensional system
(A

2, b

2) = (y + 1, x) with residual rank 0, together with the matrices (P ,K ) given by

P  =


1 y
0 1


and K  =


0 1


. The final output is (A2, b2) = (y + 1, x), with matrices

P =




y + x+ 1 1 y
y + x 1 y
1 0 1


 , K =


y2 + y y2 + 1 y2 + y


,

satisfying PAP−1 + PbK = A2(y + 1, x) =




0 0 0
1 0 0
0 x y + 1


 and Pb =




1
0
0


 .
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Abstract. An effective computation of a basis of the nontrivial centralizer of a differential
operator is the first step towards a Picard-Vessiot theory for spectral problems. A method
is presented to calculate the centralizer of an order three ordinary differential operator,
applying G. Wilson’s results on almost-commuting operators.

1. Almost-commuting operators

Let (K, ∂) be a differential field of zero characteristic with algebraically closed field of
constants C. Let us consider an ordinary differential operator L ∈ K[∂] in normal form:

(1) L = ∂n + un−2∂
n−2 + · · ·+ u1∂ + u0 .

Centralizers C(L) ⊂ K[∂] have quotient fields that are function fields of one variable, and
therefore they can be seen as affine rings of curves, and in a formal sense these are spectral
curves [5]. In general, it is important to note that these curves may not be planar, and the
basis of the centralizer C(L) as a C[L]-module could have more than two generators. Given
any M ∈ C(L)\C[L] we then have the inclusions C[L] ⊂ C[L,M ] ⊆ C(L), and each of them
could be strict. We will call L,M a Burchnall-Chaundy (BC) pair if the ring C[L,M ] equals
the centralizer C(L).

Following [6], we say that an operator A almost commutes with L if the operator [L,A]
has order ≤ n− 2. By Proposition 2.4 in [6], we have:

(a) For each m > 0 there is a unique operator Pm of the form

Pm = ∂m + pm−2∂
m−2 + · · ·+ p1∂ + p0 ,

such that Pm almost commutes with L and has the following property: Each pj be-
longs to the ring of differential polynomials C{u0, u1, . . . , un−2} and is homogeneous
of weight m− j, if we give u

(k)
i weight n− i+ k.

(b) Each operator that almost commutes with L is a linear combination of the Pm’s.
The first problem that arises is to calculate the family of operators {Pm}∞m=1 associated

with the operator L and which gives a C vector space of operators that almost commute
with L. In [6] this family is defined as Pm =

�
Lm/n


+
, where (L)1/n is nth-root of L in the

local ring of pseudodifferential operators C((∂−1)) and (Q)+ stands for the differential part
of a pseudodifferential operator Q.
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Abstract. An effective computation of a basis of the nontrivial centralizer of a differential
operator is the first step towards a Picard-Vessiot theory for spectral problems. A method
is presented to calculate the centralizer of an order three ordinary differential operator,
applying G. Wilson’s results on almost-commuting operators.

1. Almost-commuting operators

Let (K, ∂) be a differential field of zero characteristic with algebraically closed field of
constants C. Let us consider an ordinary differential operator L ∈ K[∂] in normal form:

(1) L = ∂n + un−2∂
n−2 + · · ·+ u1∂ + u0 .

Centralizers C(L) ⊂ K[∂] have quotient fields that are function fields of one variable, and
therefore they can be seen as affine rings of curves, and in a formal sense these are spectral
curves [5]. In general, it is important to note that these curves may not be planar, and the
basis of the centralizer C(L) as a C[L]-module could have more than two generators. Given
any M ∈ C(L)\C[L] we then have the inclusions C[L] ⊂ C[L,M ] ⊆ C(L), and each of them
could be strict. We will call L,M a Burchnall-Chaundy (BC) pair if the ring C[L,M ] equals
the centralizer C(L).

Following [6], we say that an operator A almost commutes with L if the operator [L,A]
has order ≤ n− 2. By Proposition 2.4 in [6], we have:

(a) For each m > 0 there is a unique operator Pm of the form

Pm = ∂m + pm−2∂
m−2 + · · ·+ p1∂ + p0 ,

such that Pm almost commutes with L and has the following property: Each pj be-
longs to the ring of differential polynomials C{u0, u1, . . . , un−2} and is homogeneous
of weight m− j, if we give u

(k)
i weight n− i+ k.

(b) Each operator that almost commutes with L is a linear combination of the Pm’s.
The first problem that arises is to calculate the family of operators {Pm}∞m=1 associated

with the operator L and which gives a C vector space of operators that almost commute
with L. In [6] this family is defined as Pm =

�
Lm/n


+
, where (L)1/n is nth-root of L in the

local ring of pseudodifferential operators C((∂−1)) and (Q)+ stands for the differential part
of a pseudodifferential operator Q.
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We propose the following procedure to calculate the family of differential operators that
almost commute with a given operator.
The Procedure. Given L as in (1) and a generic order m operator P =

m
j=0 Yj∂

j , where
Yj are differential variables over K, we obtain the commutator: [L,P ] =

n+m−1
s=0 Fs(Yj , ui)∂

s,
where Fs(Yj , ui) are differential polynomials in the unknowns Yj . According to (b), solving
for Yj the differential system

n+m−1
s=n−1 Fs(Yj , ui)∂

s = 0, we obtain differential polynomi-
als yj(ui, Ck) in the ui and integration constants Ck, k = 1, . . . ,m + 1. Replacing Yj by
yj(ui, Ck) , P becomes

m
k=0CkPk and Fs becomes

(2) Fs(yj(ui, Ck), ui) = Ts(ui, Ck) =
m
k=0

CkTs,k(ui), s = 0, . . . , n− 2,

with commutators [L,Pm] = T0,m + T1,m∂ + · · ·+ Tn−2,m∂n−2, for m > 0.

For example, applying this result to the formal operator L3 = ∂3 + u1∂ + u0 , we can
guarantee the existence of an infinite family of differential operators {Pm}∞m=1 such that
[Pm, L3] is an operator of order at most 1, that is

(3) [Pm, L3] = T0,m + T1,m∂ ,

with T0,m and T1,m differential polynomials in the variables u0, u1 over K. Hence the above
procedure gives the following result.

Proposition 1.1. Let us consider an irreducible third order operator in K[∂] in normal
form L3 = ∂3 + u1∂ + u0. The following statements are equivalent:

(1) There is an operator M of order at most m in the centralizer C(L3).

(2) The system
m
k=0

T0,kCk = 0 ,

m
k=0

T1,kCk = 0 , can be solved for a finite set of

constants C = {ck}k≤m, with Ts,k = Ts,k(u0, u1) differential polynomials in u0, u1.

It should be noted that the system given in (2) of the previous proposition is a linear
combination of the classical Boussinesq systems that we will present below.

2. The Boussinesq hierarchy and Centralizers

Next, we present the third order operators associated to classical Boussinesq systems as
treated in [1], in order to effectively compute the basis {Pm}∞m=1 announced in (b), to obtain
equations (3). In consequence, we rewrite L3 as

(4) L3 = ∂3 + q1∂ +
1

2
q1 + q0.

Using the notation of [1], we consider a differential recursion given by two sequences of
differential polynomials fn,i, gn,i in the ring of differential polynomials C{u0, u1}. By direct
computation we verify that:

(5) Bsq3n+3+i = RBsq3n+i, with Bsq3n+i =


3∂fn,i
3∂gn,i


for i = 1, 2,
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and initial conditions (f0,1, g0,1) = (0, 1), (f0,2, g0,2) = (1, 0), and we define the vectors:

(6) vn+1,i = R∗vn,i, vn,i =


fn,i
gn,i


and v0,1 :=


0
1


, v0,2 :=


1
0


,

for matrices of pseudodifferential operators:

(7) R =


R1 R2

R3 R4


, R∗ = ∂−1R∂ =


∂−1R1∂ ∂−1R2∂
∂−1R3∂ ∂−1R4∂



and pseudodifferential operators:

R1 = 3q0 + 2q0∂
−1, R2 = 2∂2 + 2q1 + q1∂

−1, R4 = 3q0 + q0∂
−1,

R3 = −1

6
∂4 − 5

6
q1∂

2 − 5

4
q1∂ − 2

3
q21 −

3

4
q1 +


−2

3
q1q


1 −

1

6
q1


∂−1.

The systems of differential polynomials presented in (5) are called classical Boussinesq sys-
tems and this family is called the Boussinesq hierarchy. Let us define

P3n+i = P3n−3+iL3 + Ln,i where(8)

Ln,i = fn,i∂
2 +


gn,i −

1

2
∂fn,i


∂ +


1

6
∂2fn,i − ∂gn,i +

2

3
q1fn,i


.(9)

We will call the differential operators P3n+i(u0, u1) defined in (8) the formal Boussinesq
differential operators, and they are associated to the operator L3 through the matrices of
pseudodifferential operators R and R∗. This relation will be reflected in (10).

Lemma 2.1. For i = 1, 2 and n = 1, 2, . . . , we have

(10) [P3n+i, L3] = T0,3n+i + T1,3n+i∂, with

T0,3n+i

T1,3n+i


:=


1
2∂ 1
1 0


·Bsq3n+i .

Furthermore, fixing weights as in Section 1, (a) the differential polynomial fn,i is homoge-
neous of degree 3n+ i− 2, and gn,i is homogeneous of degree 3n+ i− 1.

Proof. First, observe that, by [1], (5.6), we have the formula

(11) [P3n+i, L] = 3∂(fn+1,i)∂ + 3


1

2
∂2(fn+1,i) + ∂(gn+1,i)


.

By induction on n considering (5), the equality (10) holds. On the other hand, the property
on the weight of the coefficients of fn,i and gn,i can be proved by induction on n . 

Theorem 2.2. For i = 1, 2 and each positive integer n ≥ 1, the differential operator
P3n+i = ∂3n+i+p3n+i−2∂

3n+i−2+ · · ·+p1∂+p0 satisfies: Each coefficient pj is homogeneous
of weight 3n + i − j, if we give u

(k)
i weight 3 − i + k, i = 1, 2. In addition, the following

equality of differential operators is fulfilled:

(12) P3n+i =

L
(3n+i)/3
3


+

.

Proof. We will proceed by induction on n. From (8), (9) and Lemma 2.1, the operator P3n+i

has the required weighed coefficients. By (11), P3n+i and L almost commute. Wilson’s result
on the uniqueness of the almost commuting basis, Section 1, (a) implies (12). 
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It should be noted that the system given in (2) of the previous proposition is a linear
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tems and this family is called the Boussinesq hierarchy. Let us define
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
.(9)

We will call the differential operators P3n+i(u0, u1) defined in (8) the formal Boussinesq
differential operators, and they are associated to the operator L3 through the matrices of
pseudodifferential operators R and R∗. This relation will be reflected in (10).
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
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
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
.

By induction on n considering (5), the equality (10) holds. On the other hand, the property
on the weight of the coefficients of fn,i and gn,i can be proved by induction on n . 

Theorem 2.2. For i = 1, 2 and each positive integer n ≥ 1, the differential operator
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(k)
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
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3


+

.

Proof. We will proceed by induction on n. From (8), (9) and Lemma 2.1, the operator P3n+i

has the required weighed coefficients. By (11), P3n+i and L almost commute. Wilson’s result
on the uniqueness of the almost commuting basis, Section 1, (a) implies (12). 
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We will use the family of operators that almost commute with L3 to build a basis for
its centralizer. Whenever the centralizer of L in K[∂] is non-trivial, i.e. C(L) = C[L], the
results of K. Goodearl in [2] allow the description of a basis of C(L) as a C[L]-module. In
particular, by [2], Theorem 1.2, we know that the rank of C(L3) as a free C[L3]-module is
a divisor of 3. There therefore are only two options, either the rank is 1 and then C(L3)
is trivial C(L3) = C[L3], or the rank is 3 and then C(L3) = C[L3, A1, A2], where Ai is an
operator of order congruent with i mod 3, and they have minimal order for this property.
We would like to emphasize that the key fact is to decide whether C(L3) is non-trivial or
even better, determine L3 such that C(L3) is non-trivial. This is precisely the purpose of
this work.

Theorem 2.3. Let L = ∂3 + ũ1∂ + ũ0 be an operator such that (ũ0, ũ1) satisfies one of
the Boussinesq systems defined in (5). Then L has a nontrivial centralizer in K[∂] that
equals the free C[L]-module of rank 3 with basis {1, A1, A2}, with Ai = P3ni+i(ũ0, ũ1, c̃i) of
minimal order 3ni + i, i = 1, 2 and ni ≥ 0 and c̃i ∈ Cni+1.

Proof. By Lemma 2.1, P3ni+i(ũ0, ũ1, c̃i) belongs to the centralizer. In addition, we know
that the rank of C(L) as a free C[L]-module equals 3, thus its basis must be {1, A1, A2},
with Ai as defined above. 

As a consequence of theorems 2.2 and 2.3, we conclude that the basis of the centralizer
C(L) can be computed by means of the procedure described in Section 1. To illustrate
our results, we perform our methods on L = ∂3 − 6

x2∂ + 12
x3 + h, with h = 0, to obtain

A1 = ∂4 − 8
x2∂

2 + 24
x3∂ − 24

x4 and A2 = ∂5 − 10
x2∂

3 + 40
x3∂

2 − 80
x4∂ + 80

x5 in notations of 2.3.
An effective computation of the basis of the centralizer is the first step towards an effective
Picard-Vessiot theory for spectral problems iniciated in [3] and [4] for second order operators.
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ABSTRACT. In this paper we describe the mathematical foundations of a new approach to semi-
supervised Machine Learning. Using techniques of Symbolic Computation and Computer Algebra,
we apply the concept of persistent homology to obtain a new semi-supervised learning method.

INTRODUCTION

Machine Learning and Deep Learning methods have become the state-of-the-art approach for
solving data classification t asks. I n o rder t o u se t hose m ethods, i t i s n ecessary t o a cquire and
label a considerable amount of data; however, this is not straightforward in some fields, since data
annotation is time consuming and may require expert knowledge. This challenge can be tackled
by means of semi-supervised learning methods that take advantage of both labelled and unlabelled
data. In our team we have applied this Machine Learning paradigm in various applied projects
(e.g. [3]). In this paper, we present a new semi-supervised learning method based on techniques
from Topological Data Analysis. In particular, we have used a homological approach that consists
of studying the persistence diagrams associated with data from binary classification t asks using
the bottleneck and Wasserstein distances. In addition, we have carried out a thorough analysis
of the developed method using 5 structured datasets. The results show that the semi-supervised
method developed in this work outperforms both the results obtained with models trained with
only manually labelled data, and those obtained with classical semi-supervised learning methods,
improving the models by up to a 16%.

1. CONCEPTUAL PRESENTATION

Our method falls within the discipline of Topological Data Analysis (hereinafter TDA), a field
devoted to extracting topological and geometrical information from data. And the problem under-
taken is motivated by the challenge of obtaining enough annotated data to apply Machine Learning
techniques. To that end, a family of methods that has been successfully applied in the literature is
semi-supervised learning. Semi-supervised learning methods provide a means of using unlabelled
data to improve models’ performance when we have access to a large corpus of data that is difficult
to annotate. Traditional semi-supervised learning algorithms, such as Label Spreading [4] and La-
bel Propagation [5], focus on the distance among the data points to annotate unlabelled data points;
i.e. on the metric and density characteristics of the data in a dataset. However, there are contexts
where metric approaches could be misleading. As shown in Figure 1, distances are not the right
discriminators in complex situations and, therefore other ideas are needed. Our inspiration comes
from the Manifold Hypothesis [2], which explores when high dimensional data could tend to lie in
low dimensional manifolds. Roughly speaking, our method works under the hypothesis that each

This work was partially supported by the projects PID2020-115225RB-I00 and PID2020-116641GB-I00, funded by
MCIN/AEI/10.13039/501100011033 and by “European Union NextGenerationEU/PRTR”.
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FIGURE 1. Example with two “connected manifolds”

class in the dataset lies on a manifold. In particular, homological information should be respected
when we add an unlabelled point to one of the classes. Our method is therefore as follows: given
two sets of data points A and B, corresponding to the points labelled with class 1 and class 2, re-
spectively, we assume there are two manifolds associated with each set, MA and MB respectively;
now, given an unlabelled data point x, if x belongs to class 1, for instance, then A ∪ {x} would
lie on a manifold more similar to MA than the manifold corresponding to B ∪ {x} with respect to
MB .

All the code developed for this project and also the conducted experiments are available at the
project webpage https://github.com/adines/TTASSL.

2. DESCRIPTION OF THE METHOD

In this section, we describe the semi-supervised learning algorithm that we have designed to
tackle binary classification tasks. We start with a set X1 of points from class 1, a set X2 of points
from class 2, and a set X of unlabelled points. The objective of our algorithms is to annotate the
elements of X by using topological properties of X1 and X2. We assume some familiarity with
notions employed in TDA such as Vietoris-Rips filtration (we denote the Vietoris-Rips filtration
associated with a set X by VX ), persistence diagrams (we denote the persistence diagram associated
with a filtration F by P (F )), and the bottleneck and Wasserstein distances (denoted by dB and dW
respectively). For a detailed introduction to these topics see [6].

Our semi-supervised learning algorithm takes as input the sets X1 and X2, a point x ∈ X , a
threshold value t, and a flag that indicates whether the bottleneck or the Wasserstein distance should
be used. We denote the chosen distance as d. The output produced by our algorithm is whether the
point x belongs to X1, X2 or none of them. In order to decide the output of the algorithm, our
hypothesis is that if a point belongs to X1, analogously for X2, then when adding the point to the
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manifold on which X1 lies, the topological variation will be minimal; whereas if the point does not
belong to X1, the variation will be greater. In particular, we proceed as follows:

(1) Construct the Vietoris-Rips filtrations VX1 , VX2 , VX1∪{x} and VX2∪{x};
(2) Construct the persistence diagrams P (VX1), P (VX2), P (VX1∪{x}) and P (VX2∪{x});
(3) Compute the distances d(P (VX1), P (VX1∪{x})) and d(P (VX2), P (VX2∪{x})), from now

on d1 and d2 respectively;
(4) If both d1 and d2 are greater than the threshold t, return none; otherwise, return the set

associated with the minimum of the distances d1 and d2.
The algorithm above is diagrammatically described in Figure 2, and it is applied to all the points

of the set of unlabelled points X .

distance 0.1285

distance 0.4958

FIGURE 2. Example of the application of our method using the bottleneck distance, and
using 0.6 as threshold value.

3. EVALUATION

Table 1 presents the results with 5 different datasets taken from the UCI Machine Learning
Repository [1], training the models with two machine learning algorithms, which are Support Vec-
tor Machines (SVM in the table) and Random Forest (RF), and comparing our method with three
classical semi-supervised learning techniques (namely, Label Propagation [5], Label Spreading [4],
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TABLE 1. Accuracy results for the SVM and RF classifiers trained with data annotated
for each of the annotation methods (classical and homological) together with the results
obtained with the initial data (base) in the 5 structured datasets. The best result for each
dataset is highlighted in bold face.

Banknote Breast Cancer Ionosphere Prima Indian Sonar Mean (std)
Method SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF

Base 97.0 88.6 89.3 96.1 80.0 93.3 65.7 60.8 61.3 64.5 78.7(15.2) 80.7(16.7)

Label Propagation 97.4 93.2 90.3 89.3 86.7 86.7 64.3 68.5 58.1 54.8 79.3(17.1) 78.5(16.3)
Label Spreading 97.4 93.2 90.3 89.3 86.7 86.7 64.3 68.5 58.1 54.8 79.3(17.1) 78.5(16.3)

Self Training classifier 95.1 93.6 35.9 35.9 85.0 86.7 66.4 66.4 58.1 67.7 68.1(23.2) 70.1(22.4)

Bottleneck threshold 0.8 99.2 92.4 93.2 91.3 78.3 95.0 63.6 64.3 61.3 64.5 79.1(17.0) 81.5(15.6)
Bottleneck threshold 0.6 99.2 91.3 89.3 90.3 75.0 88.3 59.4 63.6 48.4 45.2 74.3(20.9) 75.7(20.6)
Bottleneck threshold 0.4 97.4 90.5 87.4 85.4 78.3 86.7 63.6 62.9 45.2 45.2 74.4(20.5) 74.1(19.5)
Bottleneck threshold 0.2 97.4 90.5 87.4 85.4 78.3 86.7 63.6 62.9 45.2 45.2 74.4(20.5) 74.1(19.5)
Bottleneck threshold 0.0 97.4 90.5 87.4 85.4 78.3 86.7 63.6 62.9 45.2 45.2 77.1(22.6) 74.1(19.5)

Wasserstein threshold 0.8 97.4 89.8 92.2 88.4 80.0 95.0 68.5 67.8 61.3 64.5 79.9(15.3) 81.1(13.9)
Wasserstein threshold 0.6 99.2 93.6 89.3 87.4 70.0 91.7 61.5 61.5 74.2 61.3 78.9(15.2) 79.1(16.3)
Wasserstein threshold 0.4 97.0 96.2 87.4 87.4 76.7 81.7 60.8 62.9 71.0 71.0 78.6(14.1) 79.8(13.2)
Wasserstein threshold 0.2 97.0 96.2 87.4 87.4 76.7 81.7 60.8 62.9 71.0 71.0 78.6(14.1) 79.8(13.2)
Wasserstein threshold 0.0 97.0 96.2 87.4 87.4 76.7 81.7 60.8 62.9 71.0 71.0 78.6(14.1) 79.8(13.2)

and Self Training) to annotate the unlabelled data. From these results, we can extract several con-
clusions: our method improves the base results in 8 out of the 10 models and obtains better results
than the classical semi-supervised learning techniques in 8 out of the 10 models.

4. CONCLUSIONS AND FURTHER WORK

In this paper, we have studied the application of Topological Data Analysis techniques to the
semi-supervised learning setting. The results show that our method can create classification mod-
els that achieve better results than those obtained when using classical semi-supervised learning
methods. We plan to extend our work in different ways. First of all, the proposed method can be
expanded to multi-class classification tasks, and, an iterative version of the algorithm can be easily
developed. In addition, we plan to design new semi-supervised learning algorithms based on other
notions from TDA, taking further advantage of the Manifold Hypothesis.
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TABLE 1. Accuracy results for the SVM and RF classifiers trained with data annotated
for each of the annotation methods (classical and homological) together with the results
obtained with the initial data (base) in the 5 structured datasets. The best result for each
dataset is highlighted in bold face.

Banknote Breast Cancer Ionosphere Prima Indian Sonar Mean (std)
Method SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF

Base 97.0 88.6 89.3 96.1 80.0 93.3 65.7 60.8 61.3 64.5 78.7(15.2) 80.7(16.7)

Label Propagation 97.4 93.2 90.3 89.3 86.7 86.7 64.3 68.5 58.1 54.8 79.3(17.1) 78.5(16.3)
Label Spreading 97.4 93.2 90.3 89.3 86.7 86.7 64.3 68.5 58.1 54.8 79.3(17.1) 78.5(16.3)

Self Training classifier 95.1 93.6 35.9 35.9 85.0 86.7 66.4 66.4 58.1 67.7 68.1(23.2) 70.1(22.4)

Bottleneck threshold 0.8 99.2 92.4 93.2 91.3 78.3 95.0 63.6 64.3 61.3 64.5 79.1(17.0) 81.5(15.6)
Bottleneck threshold 0.6 99.2 91.3 89.3 90.3 75.0 88.3 59.4 63.6 48.4 45.2 74.3(20.9) 75.7(20.6)
Bottleneck threshold 0.4 97.4 90.5 87.4 85.4 78.3 86.7 63.6 62.9 45.2 45.2 74.4(20.5) 74.1(19.5)
Bottleneck threshold 0.2 97.4 90.5 87.4 85.4 78.3 86.7 63.6 62.9 45.2 45.2 74.4(20.5) 74.1(19.5)
Bottleneck threshold 0.0 97.4 90.5 87.4 85.4 78.3 86.7 63.6 62.9 45.2 45.2 77.1(22.6) 74.1(19.5)

Wasserstein threshold 0.8 97.4 89.8 92.2 88.4 80.0 95.0 68.5 67.8 61.3 64.5 79.9(15.3) 81.1(13.9)
Wasserstein threshold 0.6 99.2 93.6 89.3 87.4 70.0 91.7 61.5 61.5 74.2 61.3 78.9(15.2) 79.1(16.3)
Wasserstein threshold 0.4 97.0 96.2 87.4 87.4 76.7 81.7 60.8 62.9 71.0 71.0 78.6(14.1) 79.8(13.2)
Wasserstein threshold 0.2 97.0 96.2 87.4 87.4 76.7 81.7 60.8 62.9 71.0 71.0 78.6(14.1) 79.8(13.2)
Wasserstein threshold 0.0 97.0 96.2 87.4 87.4 76.7 81.7 60.8 62.9 71.0 71.0 78.6(14.1) 79.8(13.2)

and Self Training) to annotate the unlabelled data. From these results, we can extract several con-
clusions: our method improves the base results in 8 out of the 10 models and obtains better results
than the classical semi-supervised learning techniques in 8 out of the 10 models.

4. CONCLUSIONS AND FURTHER WORK

In this paper, we have studied the application of Topological Data Analysis techniques to the
semi-supervised learning setting. The results show that our method can create classification mod-
els that achieve better results than those obtained when using classical semi-supervised learning
methods. We plan to extend our work in different ways. First of all, the proposed method can be
expanded to multi-class classification tasks, and, an iterative version of the algorithm can be easily
developed. In addition, we plan to design new semi-supervised learning algorithms based on other
notions from TDA, taking further advantage of the Manifold Hypothesis.
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A GENERALIZATION OF EFFECTIVE SERRE SPECTRAL SYSTEMS
FOR m-MULTICOMPLEXES

DANIEL MIGUEL, ANDREA GUIDOLIN, ANA ROMERO, AND JULIO RUBIO

Abstract. In a previous study [2], we gave an algorithm to construct a spectral system
from a tower of fibrations of simplicial sets, which encompasses all the information provided
by the successive Serre spectral sequences of each fibration. The spectral system was built
over generalized multicomplexes that come from the associated chain complexes of the
simplicial sets. In this work we show that a similar spectral system can be constructed
over a broader class of multicomplexes, and that we have effective homology for it.

Introduction

A spectral system is an algebraic construction that was introduced by Benjamin Matschke
in [4]. It generalizes classical spectral sequences, allowing the treatment of more complex
structures and combinations of them. However, these richer structures also present similar
computational problems, such as the non-existence of algorithms to compute differentials
and the finiteness of the involved mathematical objects. These problems can be solved for
concrete situations using the effective homology technique [8], as was shown in a series of
works including [3] and [6]. As a consequence, despite the existence of a broader theoretical
setting, we are restricted to the framework of previous computational works, based on
generalized filtered chain complexes of free Z-modules.

A generalized filtered chain complex is a chain complex (C∗, d) together with a family of
subcomplexes {FiC∗}i∈I indexed by a poset I such that FiCn ⊆ FjCn if i ≤ j and n ∈ Z.
A spectral system [4] over C∗ is defined by taking the quotients

Sn [z, s, p, b] =
FpCn ∩ d−1(FzCn−1)

d(FbCn+1) + FsCn
,

for z ≤ s ≤ p ≤ b ∈ I, together with the induced differentials. We will work with the poset
D(Zm) of downsets of Zm, which are subsets p of Zm such that if (p1, ..., pm) ∈ p, then
(q1, ..., qm) ∈ p if qi ≤ pi for i = 1, ...,m.

Whenever a chain complex presents computational setbacks, we try to find an equivalent
chain complex where we can work out our problem. On the one hand, a reduction C∗⇒⇒D∗
between two chain complexes is a triple (f, g, h) (f : C∗ → D∗, g : D∗ → C∗ and h : C∗ →
C∗+1) such that f and g are chain complex morphisms, fg = IdD, gf + dCh+ hdC = IdC ,
fh = 0, hg = 0 and hh = 0. And on the other hand, a chain complex is said to be effective if
it is finitely generated (with distinguishable basis) and has computable differentials. Finally,

This work was supported by grants PID2020-115225RB-I00 and PID2020-116641GB-I00 funded by
MCIN/ AEI/ 10.13039/501100011033, and by the Wallenberg AI, Autonomous Systems and Software Pro-
gram (WASP) funded by the Knut and Alice Wallenberg Foundation.

The talk at the EACA 2022 meeting was given by the first named author.
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we say that a chain complex has effective homology if there is a chain of reductions from
itself to an effective chain complex. Effective homology was introduced by Francis Sergeraert
(see [8], [7]), and it is implemented for several problems in the program Kenzo ([1]).

The usual setup for this kind of object comes from a more topological framework, by
means of fibrations (twisted cartesian products) of simplicial sets and associated chain com-
plexes. That is the case of the Serre homology spectral sequence for towers of fibrations,
which was successfully tackled in [2]. This work will serve us as guide, as we explain in
the next section. Another example is the more recent work [5], concerning both Eilenberg–
Moore and Serre spectral sequences.

1. Systems of towers of fibrations

A tower of fibrations consists of m ordered fibrations such that the total space of each
fibration is the base of the next one. Knowing the homology of the first base space and
the homology of all the fibers, it is possible to use the homology Serre spectral sequence
successively, and determine the homology of the last total space (up to differential and ex-
tension problems). However, in [4] the author provided a new theoretical approach through
spectral systems, and in our previous work [2] a constructive version was proved for twisted
cartesian products of simplicial sets and implemented in Kenzo. The main results of [2] can
be summed up in the following theorem.

Theorem 1.1. Let G0, ..., Gm−1 be simplicial groups, and let E0, ..., Em−1, B be simplicial
sets. Suppose that we have a tower of m fibrations, Gi → Ei → Ei+1 for 0 ≤ i < m − 1
and Gm−1 → Em−1 → B, given all of them by twisted cartesian products (Ei

∼= Gi×τi Ei+1,
Em−1

∼= Gm−1 ×τm B). If G0, ..., Gm−1, B are 1-reduced and have effective homology, then
• we can construct a spectral system over D(Zm), by means of Serre filtrations, over

the chain complex C∗(G0×τ0 (G1×τ1 (...(Gm−1×τm B)...))). The terms of the 2-page
are given by:

Sn(P ;m) = Hpm(B;Hpm−1(Gm−1; ...Hp1(G1;Hp0(G0)),

with P := (p1, ..., pm) ∈ Zm and p0 := n − p1 − ... − pm. Moreover, the spectral
system converges to H(E0).

• We have effective homology for the complex C∗(G0×τ0 (G1×τ1 (...(Gm−1×τmB)...))),
and we can define a spectral system over the correspondent effective chain complex
isomorphic to the previous one from the 2-page.

To prove this result, on the one hand, we give effective homology for C∗(G0 ×τ0 (G1 ×τ1

(...(Gm−1×τmB)...))). First, successive applications of the Twisted Eilenberg-Zilber theorem
(which involves the Basic Perturbation Lemma, see [7]) give us the perturbed chain complex
C∗ := C∗(G0)⊗t0 (C∗(G1)⊗t1 (...⊗tm−2 (C∗(Gm−1)⊗tm−1 C∗(B))...)). Its differential can be
seen as dC = d⊗+δC , d⊗ being the differential of the usual tensor product and δC being the
resulting perturbation from those successive applications of the mentioned theorem. Finally,
we give effective homology for C∗, by taking the tensor products of the reductions for the
factors of C∗ and adding δC as a perturbation.

On the other hand, we define the filtrations that determine the Serre spectral sequence.
These are defined using the downsets Tm

P , introduced in [4]. Consider the function φ : Zm →
Zm, given by φ(x1, ..., xm) = (

m
i=1 xi,

m
i=2 xi, ..., xm). We define Tm

P , for P ∈ Zm, to be
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the set {X ∈ Zm|φ(X) ≤lex φ(P )}, ≤lex being the lexicographic order. For these filtrations
to be well defined, they must have good behaviour with respect to dC and the other (similar)
differentials of the complexes involved in the reductions. Moreover, one must prove that the
nilpotency conditions which are necessary hypotheses for the Perturbation Lemma (see [7])
are satisfied. This is achieved as a consequence of the following:

1) We have a generalized filtration over D(Zm) on C∗ defined by means of the downsets
of the form Tm

P , P ∈ Zm. We consider the modules of the form Cj0(G0) ⊗t0

(Cj1(G1) ⊗t1 (... ⊗tm−2 (Cjm−1(Gm−1) ⊗tm−1 Cjm(B))...)) on that complex and for
each of its generators σ, we put Jσ := (j1, ..., jm). Then FTm

P
is defined to be the

free Z-module generated by the σ ∈ C∗ such that Jσ ∈ Tm
P . Then it is extended

naturally to the whole Zm.
2) The perturbation δC of the differential on C∗ can be expressed as δC = δ0+IdG0⊗δ1+

...+IdG0...Gm−2⊗δm−1. Each of the δi decreases the degree of C∗(Gi+1)⊗ti+1 ...⊗tm−1

C∗(B) by at least two units. This implies that the differential dC is compatible with
the filtration (d(FTm

P
) ⊆ FTm

P
) and that in addition, the nilpotency conditions for

the perturbation lemmas are satisfied.

2. Generalization for multicomplexes

The goal of this work is to look for more general complexes that can take the place of C∗,
suitable for the spectral system and the effective homology. We define the following objects:

Definition 2.1. An m-multicomplex M∗ is a collection of modules over a ring indexed
over Zm+1 with homomorphisms di0,...,im−1 : Mj0,...,jm → Mj0+i0−1,...,jm−1+im−1−im−2,jm−im−1

of multidegree (i0 − 1, i1 − i0, ..., im−1 − im−2,−im−1), with i0, ..., im−1 ∈ Z≥0, such that
i0+l0=k0,...,im−1+lm−1=km−1

di0,...,im−1dl0,...,lm−1 = 0, for some k0, ..., km−1 in Z.

For m = 1, we recover the standard definition of multicomplex [9]. The complex C∗ of
the previous section can be seen as m-multicomplex, by first taking Mj0,...,jm = Cj0(G0)⊗t0

(Cj1(G1) ⊗t1 (... ⊗tm−2 (Cjm−1(Gm−1) ⊗tm−1 Cjm(B))...)). Then we can see the untwisted
tensor product’s differential as different arrows with multidegrees il = 0 for l ≥ k and il = 1
for l < k, k = 0, ...,m. The other perturbations δk have indexes il = 1 for l < k and il ≥ 2
for l ≥ k, k = 0, ...,m− 1. However, we have now more possibilities, since it does not have
to come from a twisted cartesian product. Reciprocally, an m-multicomplex gives a chain
complex by considering its totalization.

As with C∗, we can see every multicomplex as a perturbed version of a simpler multicom-
plex (corresponding to the untwisted tensor product). Indeed, we can take the arrows that
correspond to the tensor product’s differential, d⊗, described in the previous paragraphs,
and then consider the rest as a perturbation δM . Then, we can define an analogous filtration
using the multidegree of the modules composing the m-multicomplex.

Definition 2.2. In Mj0,...,jm , and for each generator σ, we put Jσ := (j1, ..., jm). Then FTm
P

is defined as the free Z-module generated by the σ ∈ M∗ such that Jσ ∈ Tm
P . If for every

di0,...,im−1 in δM we have il ≥ 1, then the filtration is well defined.

Suppose we have effective homology for a multicomplex (M∗, d⊗), M∗⇐⇐DM∗⇒⇒EM∗.
Then we want to know if we have also effective homology and a well-defined filtration for
the perturbed chain complex (M∗, d⊗ + δM ), and if we obtain a similar spectral system.
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we say that a chain complex has effective homology if there is a chain of reductions from
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are given by:
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• We have effective homology for the complex C∗(G0×τ0 (G1×τ1 (...(Gm−1×τmB)...))),
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i0+l0=k0,...,im−1+lm−1=km−1

di0,...,im−1dl0,...,lm−1 = 0, for some k0, ..., km−1 in Z.

For m = 1, we recover the standard definition of multicomplex [9]. The complex C∗ of
the previous section can be seen as m-multicomplex, by first taking Mj0,...,jm = Cj0(G0)⊗t0

(Cj1(G1) ⊗t1 (... ⊗tm−2 (Cjm−1(Gm−1) ⊗tm−1 Cjm(B))...)). Then we can see the untwisted
tensor product’s differential as different arrows with multidegrees il = 0 for l ≥ k and il = 1
for l < k, k = 0, ...,m. The other perturbations δk have indexes il = 1 for l < k and il ≥ 2
for l ≥ k, k = 0, ...,m− 1. However, we have now more possibilities, since it does not have
to come from a twisted cartesian product. Reciprocally, an m-multicomplex gives a chain
complex by considering its totalization.

As with C∗, we can see every multicomplex as a perturbed version of a simpler multicom-
plex (corresponding to the untwisted tensor product). Indeed, we can take the arrows that
correspond to the tensor product’s differential, d⊗, described in the previous paragraphs,
and then consider the rest as a perturbation δM . Then, we can define an analogous filtration
using the multidegree of the modules composing the m-multicomplex.

Definition 2.2. In Mj0,...,jm , and for each generator σ, we put Jσ := (j1, ..., jm). Then FTm
P

is defined as the free Z-module generated by the σ ∈ M∗ such that Jσ ∈ Tm
P . If for every

di0,...,im−1 in δM we have il ≥ 1, then the filtration is well defined.

Suppose we have effective homology for a multicomplex (M∗, d⊗), M∗⇐⇐DM∗⇒⇒EM∗.
Then we want to know if we have also effective homology and a well-defined filtration for
the perturbed chain complex (M∗, d⊗ + δM ), and if we obtain a similar spectral system.
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Theorem 2.3. Let (M∗, d⊗ + δM ) be a bounded m-multicomplex such that ij ≥ 2 for every
di0,...,im−1 in δM and every j = 0, ...,m− 1. Suppose that we have effective homology for the
complex (M,d⊗) such that the maps f and g of all the reductions maintain all the indexes
of the multicomplex, whereas all h are a sum of maps such that each of them raises the sum
of the k rightmost indexes in at most one unit, for 1 ≤ k ≤ m. Then:

1) We have effective homology for the complex (M,d⊗ + δM ).
2) There are well defined spectral systems, associated to the generalized filtration F ,

and those on M∗ and EM∗ are isomorphic from the 2-page.

Finally, we have a generalization for multicomplexes that are tensor products of chain
complexes, obtaining a formula for the 2-page.

Theorem 2.4. Let M∗ = (C0
∗ ⊗C1

∗ ⊗ ...⊗Cm
∗ , d⊗+ δM ) be a bounded m-multicomplex such

that the multidegree is given by the degrees of the tensor product. If the hypotheses of the
previous theorem are satisfied, then the 2-page of the spectral system has the form:

Sn(P ;m) = Hpm(C
m;Hpm−1(C

m−1; ...Hp1(C
1;Hp0(C

0)),

with P := (p1, ..., pm) ∈ Zm and p0 := n− p1 − ...− pm.

Our results are being implemented as part of a new module for the Kenzo system, and
will be available at: https://github.com/DanielMT1997/Kenzo-external-modules.
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Abstract. Let k be a perfect field. Let X be an integral k-variety. Let m ∈ N. We
study, from the theoretical and computational points of view, the component Gm(X) of
the jet scheme Lm(X) defined to be the Zariski closure of the set of truncated arcs with
a regular base-point. When char(k) = 0 and X is a weighted homogeneous plane curve
singularity, we provide a Gröbner basis of the ideal N1(X) defining G1(X) as a reduced
closed subscheme of L1(X). More generally, we prove that Gm(X) can be described from
any smooth birational model of X. When X is supposed to be affine embedded in AN

k ,
this description provides an algorithm, valid for fields of arbitrary characteristic, which
computes a Gröbner basis of a presentation of Gm(X) in A

(m+1)N
k from the datum of a

given explicit smooth affine birational model of X. We finally present some applications.

Introduction

Let k be a perfect field. Let X be a k-variety, i.e., a k-scheme of finite type. For every
element m ∈ N∪{∞}, we define the jet scheme Lm(X) of level m ∈ N and the arc scheme
L∞(X) associated with X by the functorial property

HomSchk
(Spec(A),Lm(X)) ∼= HomSchk

(Spec(A[[T ]]/Tm+1), X)

for every k-algebra A, and with the convention that A[[T ]]/Tm+1 = A[[T ]] when m = ∞.
When m runs over N, the m-jet schemes, together with the morphisms θmn,X induced by the
projections k[[T ]]/Tm → k[[T ]]/Tn, with m ≥ n, form a projective system of k-schemes
whose limit exists in Schk and coincides with the arc scheme of X. Let θm,X : L∞(X) →
Lm(X) be the canonical morphism of k-schemes. Note that θ10,X canonically is the tangent
bundle defined from the tangent space TX := L1(X) ∼= Spec(Ω1

X/k) of X to X.
For n ∈ N, m ∈ N ∪ {∞} we denote k[x1, . . . , xn]m := k[(xi,j); 1 ≤ i ≤ n, 0 ≤ j ≤ m]

which is a k[x1, . . . , xn]-module via the identification of k[x1, . . . , xn]0 and k[x1, . . . , xn]. For
every f ∈ k[x1, . . . , xn], there exists a unique family (fs)0≤s≤m of elements in k[x1, . . . , xn]m
such that the following equality holds in the ring k[x1, . . . , xn]m[[t]]:

f






m
j=0

xi,jt
j




0≤i≤n


 =

m
s=0

fs


(xi,j)0≤i≤n

0≤j≤s


ts (mod tm+1). (1)

Let X be an affine k-variety such that O(X) = k[x1, . . . , xn]/I. We define the ideal Im
of the ring k[x1, . . . , xn]m to be Im := fs : f ∈ I, 0 ≤ s ≤ m. Then [1, Ch. 3, 2.3.5 and
example 3.3.4] ensure that Lm(X) = Spec(k[x1, . . . , xn]m/Im).

The talk at the EACA 2022 meeting was given by the first named author.
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of the ring k[x1, . . . , xn]m to be Im := fs : f ∈ I, 0 ≤ s ≤ m. Then [1, Ch. 3, 2.3.5 and
example 3.3.4] ensure that Lm(X) = Spec(k[x1, . . . , xn]m/Im).

The talk at the EACA 2022 meeting was given by the first named author.
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Let m ∈ N. If X is smooth over k, then the morphism θm0,X is an affine bundle with fiber

A
m dim(X)
k (see [1, Ch. 3, Prop. 3.7.5]). Hence, if besides the k-variety X is assumed to be

integral, then the jet scheme Lm(X) is also smooth and integral. For any integral k-variety
X, the picture is more complicated. The reduced closed subscheme of Lm(X)

Gm(X) := (θm0,X)−1(Reg(X)) = Lm(Reg(X)).

is an irreducible component of Lm(X) with dimension (m + 1) dim(X), called the general
component of Lm(X). The possible other irreducible components of Lm(X) dominate
Sing(X). The general component of a jet scheme is connected to the geometry of the base
variety X; indeed it plays a role in different situations (see section 3). Given an affine k-
variety X = Spec(k[x1, . . . , xn]/I), our aim is to present some methods to describe, from the
theoretical and effective points of view, the prime ideal Nm(X) of k[x1, . . . , xn]m defining
Gm(X) as a reduced closed subscheme of Lm(An

k).

1. The general component of an affine plane curve defined by a
homogeneous or weighted homogeneous polynomial

Let k be a field of characteristic zero. In [4], we provide theoretically a Gröbner basis (for
a specific lexicographic monomial order) of Nm(X), for X an integral plane k-curve defined
by a homogeneous or weighted homogeneous polynomial.

1.1. Let us consider the k-derivation D of k[x, y]1 given by D := x1∂x0 + y1∂y0 . We denote
by Di the i-th iterate of D.
Theorem 1.1. Let k be a field of characteristic 0. Let X = Spec(k[x, y]/f) be an integral
curve defined by a homogeneous polynomial f ∈ k[x, y] = k[x, y]0 different from x and y.
The family formed by f , y1x0 − y0x1 and Di(f)/i for every integer i∈{1, . . . , deg(f)} is a
Gröbner basis of the ideal N1(X) for the monomial order y1>lex y0>lex x1>lex x0 in k[x, y]1.
Note that if f = x (analogously for f = y) then X is smooth and N1(X) = f1 = x0, x1.

1.2. Let f ∈ k[x, y] be a reduced polynomial. We say that f is weighted homogeneous of
weight (w1, w2, w) if we have, in the polynomial ring k[x, y][t], the equality f(tw1x, tw2y) =
twf(x, y). If the field k is algebraically closed, this is equivalent to the existence of a k-
automorphism σ of the ring k[x, y], an integer  ≥ 1, a pair of coprime integers (r, s) with
r ≥ s, and λ1, . . . , λ ∈ k× such that σ(f) = xεyε

 
i=1 x

r − λiy
s with ε, ε ∈ {0, 1}.

In this setting, we set D̃−1 := Dλi,−1 := sy1x0 − ry0x1 and Dλi,ji := λis
jiys−ji

0 yji1 −
rjixr−ji

0 xji
1 , where ji ∈ {0, . . . , s}. For every i ∈ {1, . . . , }, if ji ∈ {−1, . . . , s}, we denote

Dj1,...,j :=
Dλ1,j1 · · · Dλt,j .

Theorem 1.2. Let k be a field of characteristic zero. Let X = Spec(k[x, y]/f) be an
integral k-curve defined by a weighted homogeneous polynomial f ∈ k[x, y]. Let k be an
algebraic closure of k and (eλ)λ∈Λ a basis of the k-vector space k. With the preceding
notation, we assume that in k[x, y], we can write f = xεyε

 
i=1 x

r−λiy
s with ε, ε ∈ {0, 1}.

We consider the family of elements of k[x, y]1:
B = {D̃−1, x

ε
h1
yε


h2

Dj1,...,j : ji ∈ {−1, . . . , s}, i ∈ {1, . . . , }, h1, h2 ∈ {0, 1}}.
Then, the set C = {Pλ : P =


λ∈Λ Pλeλ, P ∈ B} is a Gröbner basis of N1(X) for the

monomial order y1 >lex y0 >lex x1 >lex x0 in k[x, y]1.
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2. Algorithms for computing the general component

In general, if the variety X does not satisfy the assumptions in theorems 1.1 or 1.2, or if
m > 1, we do not know an explicit presentation of Nm(X). In [5], for any integral variety
X defined over a perfect field k, we obtain a description of Gm(X) in terms of any smooth
birational model of X. Using this, we provide two algorithms for computing Nm(X).

Theorem 2.1. Let k be a perfect field. Let m ≥ 1 be an integer. Let X,X  be integral k-
varieties. We assume that X  is smooth over k. Let h : X  → X be a birational morphism.
We denote by hm : Lm(X ) → Lm(X) the canonical morphism induced by h. Then,

Gm(X) = θm,X(L∞(X) \ L∞(Sing(X))) = hm(Lm(X )).

In particular, if the arc scheme L∞(X) is irreducible, then the general component Gm(X)
coincides with the Zariski closure of the image of L∞(X) by θm,X .

The k-variety X  being smooth, Lm(X ) also is; in particular it is reduced. Hence Gm(X) is
the scheme-theoretic image of hm, which is quasi-compact. This proves the following result.

Corollary 2.2. Let k be a perfect field and m ≥ 1 be an integer. Let X be an integral affine
k-variety with O(X) = k[x1, . . . , xn]/I. Let X  be a smooth affine variety and h : X  → X
be a birational morphism. We denote by hm : Lm(X ) → Lm(X) the canonical morphism
induced by h, by πm : k[x1, . . . , xn]m → k[x1, . . . , xn]m/Im the canonical morphism and by
h
m : O(Lm(X)) → O(Lm(X )) the morphism of k-algebras induced by hm. Then we have

Nm(X) = Ker(h
m ◦ πm).

All the objects involved in the corollary can be effectively computed. Thus we obtain the
following algorithm.

Algorithm 1: Computation of Nm(X) from an arbitrary smooth birational model.
Input : Presentations of O(X) ∼= k[x1, . . . , xn]/I and O(X ) ∼= k[y1, . . . , y]/J , the morphism

h : O(X) → O(X ), m ∈ N.
Output : the ideal Nm(X) of k[x1, . . . , xn]m.

Compute O(Lm(X)) ∼= k[x1, . . . , xn]m/Im and O(Lm(X )) ∼= k[y1, . . . , y]m/Jm (see (1)).
Compute the induced morphism h

m : k[x1, . . . , xn]m → k[y1, . . . , y]m/Jm.
return Ker(h

m)

2.1. There are various ways of obtaining smooth birational models of an integral variety
(e.g., normalization for curves, resolution of singularities). Note that the inclusion U → X
satisfies the required properties, for every open subscheme U of Reg(X). In particular, we
can choose H ∈ k[x1, . . . , xn] such that U = {H = 0} ⊂ Reg(X) and in this case Nm(X) =
(Im : H∞) (see [5] for justification and references). The saturation being computable, we
obtain another algorithm for computing Nm(X) (see [3] for a first version).

Algorithm 2: Computation of Nm(X) using a standard open subscheme of Reg(X).
Input : A presentation of O(X) ∼= k[x1, . . . , xn]/I, m ∈ N.
Output : the ideal Nm(X) of k[x1, . . . , xn]m.

Compute the Jacobian ideal Jac of I; choose H ∈ Jac \ I.
Compute O(Lm(X)) ∼= k[x1, . . . , xn]m/Im using (1).
return (Im : H∞), here H is seen as an element of k[x1, . . . , xn]m.
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3. Applications

3.1. Let X be an integral k-variety, m ∈ N. By the very definition of Gm(X) we deduce
that Lm(X) is irreducible if and only if Gm(X) = Lm(X), i.e., Nm(X) = Im if X is affine.
There is a connection between the topology of the jet schemes and the singularities of X
(see the theorem of Mustaţă below) which may justify the interest in understanding Gm(X).
Theorem 3.1 ([6, Theorem 0.1]). Let k be an algebraically closed field of characteristic zero
and X be locally a complete intersection k-variety. Then the variety X only has rational
singularities if and only if the schemes Lm(X) are irreducible for every integer m ≥ 1.

3.2. If the arc scheme L∞(X) is assumed to be irreducible (e.g., if dim(X) = 1 by [1, Ch.
3, Lemma 4.3.1]; or char(k) = 0 by the Kolchin irreducibility theorem [2, IV/6/Exercise 3d])
then theorem 2.1 implies that Nm(X) =

√
I∞ ∩ k[x1, . . . , xn]m. Hence our study provides

a description of the nilpotent functions of the arc scheme. In the spirit of theorem 3.1, we
may ask about a possible relation of the reducedness of L∞(X) and the singularities of X.

3.3. For X = Spec(k[x, y]/f) an integral plane curve and m = 1 there are some implica-
tions of our study in terms of differential operators. Let D be the set of differential oper-
ators of k[x, y] and Vd−1 be the left k[x, y]-submodule of D generated by the homogeneous
differential operators D =

d
i=0 ai∂

i
x1
∂d−i
x2

(here ai ∈ k[x, y]) such that D(fd) ∈ f. We
consider the morphism of left k[x, y]-modules (·) : k[x, y]1 → D defined by

d
i=0 aix

i
1y

d−i
1 →d

i=0(−1)iai∂
i
y∂

d−i
x . Let N d

1 (X) be the set of homogeneous elements of N1(X) of degree d
in x1, y1. The following result appears in [7] when char(k) = 0 and in [5] under this form.
It implies that we can use our study to determine Vd−1.
Theorem 3.2. Let k be a perfect field. Let d ≥ 1 be an integer such that d! is prime to the
characteristic exponent of k. The morphism (·)d : N d

1 (X) → Vd−1 induced by restriction of
(·) is an isomorphism of left k[x, y]-modules.
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ON THE GENERATORS OF THE VALUE SEMIGROUP AT INFINITY
ASSOCIATED TO A CURVE WITH ONLY ONE PLACE AT INFINITY

CARLOS-JESÚS MORENO-ÁVILA AND JULIO-JOSÉ MOYANO-FERNÁNDEZ

Abstract. Let C be a curve with only one place at infinity, and let SC,∞ be its semigroup
at infinity. It is known that this semigroup is generated by a δ-sequence in N>0. In this
work we study the family of δ-sequences which generate the same semigroup SC,∞ at
infinity. We also introduce the minimal δ-sequences as those with the least length among
all the δ-sequences generating the same semigroup at infinity. This is based on a joint
work in progress with C. Galindo and F. Monserrat.

Preliminaries

We set the following notation: write N for the set of nonnegative integers. For n ∈ N, we
will write N>n for the infinite subset {n+1, n+2, . . .} ⊆ N. Moreover, set [n] := {1, . . . , n}
and [0, n] := {0, 1, . . . , n}.

Let k be a field, and let k be the algebraic closure of k. Set P2 = P2
k for the projective

plane over k. Let L be the line at infinity in the compactification of the affine plane to P2.
An absolutely irreducible curve C of P2 (i.e. irreducible as a curve in P2

k
) is said to have

only one place at infinity if the intersection C ∩ L is a single point p and C has only one
rational (i.e. defined over k) branch at p. The point p is then said to be the point at infinity.

The geometry around the point at infinity of a curve C as above was first studied by
Abhyankar and Moh [1] by means of what they called the semigroup at infinity: let K be
the quotient field of the local ring OC,p associated with a curve C with only one place at
infinity at p. For convenience, we will fix homogeneous coordinates (X : Y : Z) on P2, and
we can assume without loss of generality that p = (1 : 0 : 0). The equation Z = 0 will
describe the line at infinity. Set affine coordinates (x, y) in the chart Z = 0, as well as affine
coordinates (u = y/x, v = 1/x) around the point at infinity. We shall assume that the curve
C is defined by a monic polynomial f(x, y) ∈ k[x][y] in the indeterminate y with coefficients
in k[x].

Since the germ of C at p defines a discrete valuation ν := νC,p on K, i.e. the valuation
associated to the only valuation ring Rν not containing the affine k-algebra for the chart
Z = 0 of C and dominating OC,p, we define:
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3. Applications
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i
1y

d−i
1 →d

i=0(−1)iai∂
i
y∂

d−i
x . Let N d

1 (X) be the set of homogeneous elements of N1(X) of degree d
in x1, y1. The following result appears in [7] when char(k) = 0 and in [5] under this form.
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1 (X) → Vd−1 induced by restriction of
(·) is an isomorphism of left k[x, y]-modules.
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ON THE GENERATORS OF THE VALUE SEMIGROUP AT INFINITY
ASSOCIATED TO A CURVE WITH ONLY ONE PLACE AT INFINITY

CARLOS-JESÚS MORENO-ÁVILA AND JULIO-JOSÉ MOYANO-FERNÁNDEZ

Abstract. Let C be a curve with only one place at infinity, and let SC,∞ be its semigroup
at infinity. It is known that this semigroup is generated by a δ-sequence in N>0. In this
work we study the family of δ-sequences which generate the same semigroup SC,∞ at
infinity. We also introduce the minimal δ-sequences as those with the least length among
all the δ-sequences generating the same semigroup at infinity. This is based on a joint
work in progress with C. Galindo and F. Monserrat.

Preliminaries

We set the following notation: write N for the set of nonnegative integers. For n ∈ N, we
will write N>n for the infinite subset {n+1, n+2, . . .} ⊆ N. Moreover, set [n] := {1, . . . , n}
and [0, n] := {0, 1, . . . , n}.

Let k be a field, and let k be the algebraic closure of k. Set P2 = P2
k for the projective

plane over k. Let L be the line at infinity in the compactification of the affine plane to P2.
An absolutely irreducible curve C of P2 (i.e. irreducible as a curve in P2

k
) is said to have

only one place at infinity if the intersection C ∩ L is a single point p and C has only one
rational (i.e. defined over k) branch at p. The point p is then said to be the point at infinity.

The geometry around the point at infinity of a curve C as above was first studied by
Abhyankar and Moh [1] by means of what they called the semigroup at infinity: let K be
the quotient field of the local ring OC,p associated with a curve C with only one place at
infinity at p. For convenience, we will fix homogeneous coordinates (X : Y : Z) on P2, and
we can assume without loss of generality that p = (1 : 0 : 0). The equation Z = 0 will
describe the line at infinity. Set affine coordinates (x, y) in the chart Z = 0, as well as affine
coordinates (u = y/x, v = 1/x) around the point at infinity. We shall assume that the curve
C is defined by a monic polynomial f(x, y) ∈ k[x][y] in the indeterminate y with coefficients
in k[x].

Since the germ of C at p defines a discrete valuation ν := νC,p on K, i.e. the valuation
associated to the only valuation ring Rν not containing the affine k-algebra for the chart
Z = 0 of C and dominating OC,p, we define:
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Definition 0.1. Let C be a curve with one place at infinity given by p. The semigroup at
infinity of C is the additive sub-semigroup of N

SC,∞ := {−ν(z) : z ∈ OC(C \ {p})}

The semigroup SC,∞ is numerical, i.e. it has a finite complement in N; more precisely:

Definition 0.2. For g ≥ 0, let ∆ = (δi)
g
i=0 be a sequence in Ng+1

>0 . We say that ∆ is a
δ-sequence in N>0 (or simply a δ-sequence) if the following conditions hold:

(1) If di = gcd(δ0, δ1, . . . , δi−1), for 1 ≤ i ≤ g + 1, and ni = di/di+1, 1 ≤ i ≤ g, then
dg+1 = 1 and ni > 1 for every i ∈ [g].

(2) For i ∈ [g], the integer niδi belongs to the semigroup Nδ0 + Nδ1 + · · ·+ Nδi−1.
(3) δ0 > δ1 and δi < ni−1δi−1 for every i ∈ [g].

We will denote by δi(∆) the ith generator of the δ-sequence ∆, and we will drop ∆ if no
confusion arises. The numerical semigroup generated by a δ-sequence ∆ will be denoted by
S∆. The fact that δ-sequences in N>0 are indeed generators of the semigroup SC,∞ is due to
Abhyankar and Moh [1]. Following their construction, the element δ0 acquires a geometric
meaning: this is the degree of C. Moreover, the sequence n(∆) = {ni(∆)}gi=1 will be called
the n-sequence of ∆.

In this paper, we present an extended abstract of a work in progress with C. Galindo
and F. Monserrat [2], in which among other issues, we inquire concerning the combinatorial
properties of the δ-sequences which allow us to understand the singularity at infinity. In
particular, given a curve C as above, we look for minimal δ-sequences, in the sense that
they have the least possible length, but generate the same semigroup at infinity SC,∞; they
are interesting since no minimal set of generators is known. For further reading, we refer to
Galindo and Monserrat [3, 4] and references therein.

1. δ-sequences and their refinements

The δ-sequences Ng+1
>0 generating SC,∞ are of finite length and they are not unique: in fact,

there exist infinitely many δ-sequences of different lengths generating the same semigroup
at infinity. Geometrically, this means that it is possible to find different curves C having
the same semigroup at infinity but with germs at p which are not equisingular, i.e. which
have different value semigroups at p.

The aim of this short note is to give a flavour of the task of finding (finitely many)
significant families of δ-sequences generating the same semigroup at infinity. First of all, we
deal with a technical result.

Proposition 1.1. Let g ≥ 0 be an integer. A sequence ∆ = (δi)
g
i=0 in Ng+1

>0 is a δ-sequence
if and only if there exists another sequence (nj)

g
j=1 in Ng+1

>0 with nj > 1 for all j, such that

δi = ai

g
j=i+1

nj ,

where n0 = a0 = 1, gcd(ni, ai) = 1, ai < nini−1ai−1 for 1 ≤ i ≤ g (by convention, we setg
j=i+1 nj = 1 if i = g) and, when i ≥ 2, the integer ai belongs to the semigroup spanned by

the values ai−1 and


+1≤j≤i−1 nja, for  = 0, 1, . . . , i− 2.
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As a consequence we obtain the following.

Corollary 1.2. Let δ0 be a positive integer. There exist finitely many δ-sequences ∆ whose
first element is δ0.

From Proposition 1.1, we deduce that there is no δ-sequence with the same δ0 whose
length is larger than 1 plus the number of prime factors of δ0.

Given a δ-sequence ∆, we want to investigate under which conditions we can add elements
to ∆ in such a way that the nature of being δ-sequence generating the same numerical
semigroup is preserved. With this aim in mind, we introduce the concept of refinement of
a δ-sequence in N>0.

Definition 1.3. Let ∆ = (δi)
g
i=0, ∆

 = (δi)
g

i=0 be δ-sequences in N>0. The sequence ∆

is said to be a refinement of ∆ if there exists a subset {i0, i1, . . . , ig} of pairwise different
elements in [0, g] with i0 < i1 < · · · < ig and such that δij = δj for every j ∈ [0, g]. The
cardinality of the set ∆ \∆ is called to be the order of refinement of ∆ with respect to ∆.

For instance, ∆ = (108, 72, 24, 54, 26, 13) is a refinement of order 2 of ∆ = (108, 24, 54, 13).
By looking at the n-sequences n(∆) = (3, 3, 2, 3, 2) resp. n(∆) = (9, 2, 6) = (3 · 3, 2, 3 · 2),
the word “refinement” acquires its meaning: the former n-sequence refines the latter, since
n(∆) concentrates factors of n(∆).

2. Minimal δ-sequences

In this section we introduce the definition of minimal δ-sequence in N>0. They are a sort
of minimal elements in the families of δ-sequences generating SC,∞ which may be thought as
representatives of this semigroup at infinity. The idea is to fix a δ-sequence ∆ in N>0, and
consider nested sequences of δ-sequences containing ∆ and generating the same semigroup.
The minimal δ-sequence will be those of least cardinality.

Definition 2.1. Let ∆ be a δ-sequence in N>0 and S∆ the semigroup spanned by ∆. The
sequence ∆ is said to be a minimal δ-sequence in N>0 if there is no δ-sequence ∆ in N>0

such that ∆ is a refinement of ∆ of order 1 and S∆ = S∆.

Remark 2.2. Note that from a δ-sequence in N>0, one can find other minimal δ-sequences
only by permuting their elements. For instance (15, 12, 10), (15, 10, 12), (12, 10, 15) are
minimal δ-sequences generating the same semigroup.

Definition 2.3. A nested family of δ-sequences in N>0 is a finite or infinite sequence D =
{∆i}i∈I of δ-sequences in N>0 such that ∆i+1 is a refinement of order 1 of ∆i for every
index i ∈ I.

For a fixed curve C as above with only one place at infinity, there is an infinite number
of curves C  with only one place at infinity whose equisingularity class at p is different from
C and both semigroups at infinity SC,∞ and SC,∞ coincide: this is the content of Theorem
2.4. However, as we have seen, that number is finite whenever we restrict ourselves to curves
C  whose degree is less than (or equal to) the degree of C.

Theorem 2.4. Let ∆ = {δ0, δ1, . . . , δg} be a δ-sequence in N>0. Then there exists a nested
infinite family D = {∆i}i≥0 of δ-sequences in N>0 such that ∆0 = ∆ and S∆i = S∆ for
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Definition 0.1. Let C be a curve with one place at infinity given by p. The semigroup at
infinity of C is the additive sub-semigroup of N

SC,∞ := {−ν(z) : z ∈ OC(C \ {p})}

The semigroup SC,∞ is numerical, i.e. it has a finite complement in N; more precisely:

Definition 0.2. For g ≥ 0, let ∆ = (δi)
g
i=0 be a sequence in Ng+1

>0 . We say that ∆ is a
δ-sequence in N>0 (or simply a δ-sequence) if the following conditions hold:

(1) If di = gcd(δ0, δ1, . . . , δi−1), for 1 ≤ i ≤ g + 1, and ni = di/di+1, 1 ≤ i ≤ g, then
dg+1 = 1 and ni > 1 for every i ∈ [g].

(2) For i ∈ [g], the integer niδi belongs to the semigroup Nδ0 + Nδ1 + · · ·+ Nδi−1.
(3) δ0 > δ1 and δi < ni−1δi−1 for every i ∈ [g].

We will denote by δi(∆) the ith generator of the δ-sequence ∆, and we will drop ∆ if no
confusion arises. The numerical semigroup generated by a δ-sequence ∆ will be denoted by
S∆. The fact that δ-sequences in N>0 are indeed generators of the semigroup SC,∞ is due to
Abhyankar and Moh [1]. Following their construction, the element δ0 acquires a geometric
meaning: this is the degree of C. Moreover, the sequence n(∆) = {ni(∆)}gi=1 will be called
the n-sequence of ∆.

In this paper, we present an extended abstract of a work in progress with C. Galindo
and F. Monserrat [2], in which among other issues, we inquire concerning the combinatorial
properties of the δ-sequences which allow us to understand the singularity at infinity. In
particular, given a curve C as above, we look for minimal δ-sequences, in the sense that
they have the least possible length, but generate the same semigroup at infinity SC,∞; they
are interesting since no minimal set of generators is known. For further reading, we refer to
Galindo and Monserrat [3, 4] and references therein.

1. δ-sequences and their refinements

The δ-sequences Ng+1
>0 generating SC,∞ are of finite length and they are not unique: in fact,

there exist infinitely many δ-sequences of different lengths generating the same semigroup
at infinity. Geometrically, this means that it is possible to find different curves C having
the same semigroup at infinity but with germs at p which are not equisingular, i.e. which
have different value semigroups at p.

The aim of this short note is to give a flavour of the task of finding (finitely many)
significant families of δ-sequences generating the same semigroup at infinity. First of all, we
deal with a technical result.

Proposition 1.1. Let g ≥ 0 be an integer. A sequence ∆ = (δi)
g
i=0 in Ng+1

>0 is a δ-sequence
if and only if there exists another sequence (nj)

g
j=1 in Ng+1

>0 with nj > 1 for all j, such that

δi = ai

g
j=i+1

nj ,

where n0 = a0 = 1, gcd(ni, ai) = 1, ai < nini−1ai−1 for 1 ≤ i ≤ g (by convention, we setg
j=i+1 nj = 1 if i = g) and, when i ≥ 2, the integer ai belongs to the semigroup spanned by

the values ai−1 and


+1≤j≤i−1 nja, for  = 0, 1, . . . , i− 2.
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As a consequence we obtain the following.

Corollary 1.2. Let δ0 be a positive integer. There exist finitely many δ-sequences ∆ whose
first element is δ0.

From Proposition 1.1, we deduce that there is no δ-sequence with the same δ0 whose
length is larger than 1 plus the number of prime factors of δ0.

Given a δ-sequence ∆, we want to investigate under which conditions we can add elements
to ∆ in such a way that the nature of being δ-sequence generating the same numerical
semigroup is preserved. With this aim in mind, we introduce the concept of refinement of
a δ-sequence in N>0.

Definition 1.3. Let ∆ = (δi)
g
i=0, ∆

 = (δi)
g

i=0 be δ-sequences in N>0. The sequence ∆

is said to be a refinement of ∆ if there exists a subset {i0, i1, . . . , ig} of pairwise different
elements in [0, g] with i0 < i1 < · · · < ig and such that δij = δj for every j ∈ [0, g]. The
cardinality of the set ∆ \∆ is called to be the order of refinement of ∆ with respect to ∆.

For instance, ∆ = (108, 72, 24, 54, 26, 13) is a refinement of order 2 of ∆ = (108, 24, 54, 13).
By looking at the n-sequences n(∆) = (3, 3, 2, 3, 2) resp. n(∆) = (9, 2, 6) = (3 · 3, 2, 3 · 2),
the word “refinement” acquires its meaning: the former n-sequence refines the latter, since
n(∆) concentrates factors of n(∆).

2. Minimal δ-sequences

In this section we introduce the definition of minimal δ-sequence in N>0. They are a sort
of minimal elements in the families of δ-sequences generating SC,∞ which may be thought as
representatives of this semigroup at infinity. The idea is to fix a δ-sequence ∆ in N>0, and
consider nested sequences of δ-sequences containing ∆ and generating the same semigroup.
The minimal δ-sequence will be those of least cardinality.

Definition 2.1. Let ∆ be a δ-sequence in N>0 and S∆ the semigroup spanned by ∆. The
sequence ∆ is said to be a minimal δ-sequence in N>0 if there is no δ-sequence ∆ in N>0

such that ∆ is a refinement of ∆ of order 1 and S∆ = S∆.

Remark 2.2. Note that from a δ-sequence in N>0, one can find other minimal δ-sequences
only by permuting their elements. For instance (15, 12, 10), (15, 10, 12), (12, 10, 15) are
minimal δ-sequences generating the same semigroup.

Definition 2.3. A nested family of δ-sequences in N>0 is a finite or infinite sequence D =
{∆i}i∈I of δ-sequences in N>0 such that ∆i+1 is a refinement of order 1 of ∆i for every
index i ∈ I.

For a fixed curve C as above with only one place at infinity, there is an infinite number
of curves C  with only one place at infinity whose equisingularity class at p is different from
C and both semigroups at infinity SC,∞ and SC,∞ coincide: this is the content of Theorem
2.4. However, as we have seen, that number is finite whenever we restrict ourselves to curves
C  whose degree is less than (or equal to) the degree of C.

Theorem 2.4. Let ∆ = {δ0, δ1, . . . , δg} be a δ-sequence in N>0. Then there exists a nested
infinite family D = {∆i}i≥0 of δ-sequences in N>0 such that ∆0 = ∆ and S∆i = S∆ for
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every index i. Therefore, if C is a curve with only one place at infinite such that S∆ = SC,∞,
then there exists a curve C  as above such that SC,∞ = S∆, and whose attached δ-sequence
is as large as we desire.

Theorem 2.4 does not hold if multiples of the value δ0 are not allowed.

Theorem 2.5. Let ∆ := ∆0 be a minimal δ-sequence in N>0. Then there exist finitely
many nested families D := {∆i}i≥0 of δ-sequences in N>0 such that δ0(∆i) is not a multiple
of δ0(∆i−1), i.e. δ0(∆i) = aδ0(∆i−1) for a = 1, and S∆ = S∆i for every i ≥ 0. Furthermore,
the cardinality of any family D is also finite.

The following result enlarges the information on nested sequences given in the previous
result, and allows us to give an algorithmic procedure to obtain a minimal δ-sequence from
a δ-sequence in N>0.

Theorem 2.6. Let ∆ = {δ0, δ1, . . . , δg} be a δ-sequence in N>0, and let ∆1 a refinement
of ∆ with ∆1 \ ∆ = {δ} and S∆ = S∆1 . Then there exists an index i0 ∈ [0, g] such that
δ = δi0 ,  > 1.

Given a δ-sequence ∆, we can use the following algorithm for either, deciding that it is a
minimal one, or computing a minimal one generating the same semigroup as ∆.

Algorithm 2.7. Input: A δ-sequence in N>0, say ∆ = {δi}gi=0.

Output: A minimal δ-sequence A in N>0 that generates the semigroup S∆.

— Step 1: Set δi0 the minimum element in A := ∆ and write A = {δi0}.
— Step 2: Set δi1 the minimum element in A \A.
— Step 3: If δi1 is not a multiple of any element in A \ {δi1}, then we keep the same set

A, set A = A ∪ {δi1} and go to Step 2. Otherwise, A := A \ {δi1}.
— Step 4: Check whether A is a δ-sequence in N>0. If this is not the case, A = A∪{δi1}

and A = A ∪ {δi1}.
— Step 5: Repeat the procedure until A = A; after that, go to Step 6.
— Step 6: A is a minimal δ-sequence in N>0 with the same semigroup than ∆.

Clearly if the output is ∆, then it means that ∆ is minimal.
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ALGEBRAIC ANALYSIS OF STABLE COHERENT SYSTEMS

P. PASCUAL-ORTIGOSA, R. IGLESIAS, AND E. SÁENZ-DE-CABEZÓN

Abstract. We define several notions of stability for coherent systems, and give two al-
gebraic methods for computing the reliability of stable coherent systems. The approach
we use is based on the algebraic approach to system reliability and uses Mayer-Vietoris
trees and involutive bases as the main tools. We demonstrate that this approach is com-
putationally e!cient giving some computer experiments.

Introduction

Redundancy is one of the driving forces in the design of coherent systems. The balance
between redundancy and cost optimization is a main criterion in the reliability-based design
of these systems. A first strategy for the construction of redundant reliable systems is
parallelization. A parallel system works whenever at least one of its components is working,
and is therefore a demanding system in terms of resources. A less demanding alternative
is k-out-of-n:G systems, which work whenever at least k of its n components are working
(note that parallel systems are 1-out-of-n:G systems). k-out-of-n systems and their variants
have been extensively studied and are ubiquitous in communication networks and industrial
and applications [8, 16].

1. Fully stable, strongly stable and stable coherent systems

A system is a collection of components with di!erent levels of performance. It is said
to becoherent if the improvement of any component does not lead to a degrading of the
system’s performance. Let S be a coherent system with n components and let FS (resp.
FS) the set of working states or paths of S (resp. minimal paths). We say that S is fully
stable if for any path m ! FS , m = (m1, . . . ,mn) and any component i ! {1, . . . , n} we
have that m"mi +mj = (m1, . . . ,mi " 1, . . . ,mj + 1, . . . ,mn) is also a path of S for any
i #= j ! {1, . . . , n}. In the binary case the only fully stable systems are k-out-of-n systems.
The next two definitions relax the conditions of fully stable systems to describe two less

demanding versions of stability. For these, we need to set a prevalence order among the
components. In the next two definitions S is a coherent system with n components in which
we have established a precedence ordering in the components according to some criterion
like importance or e"ciency, etc...

Definition 1.1. We say that S is strongly stable if for any path m ! FS , m = (m1, . . . ,mn)
and any component i ! {1, . . . , n} we have that m"mi +mj = (m1, . . . ,mj + 1, . . . ,mi "
1, . . . ,mn) is also a path of S for any i > j ! {1, . . . , n}.
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/10.13039/501100011033 (Spain).
The talk at the EACA 2022 meeting was given by the first author.

133



CARLOS-JESÚS MORENO-ÁVILA AND JULIO-JOSÉ MOYANO-FERNÁNDEZ

every index i. Therefore, if C is a curve with only one place at infinite such that S∆ = SC,∞,
then there exists a curve C  as above such that SC,∞ = S∆, and whose attached δ-sequence
is as large as we desire.

Theorem 2.4 does not hold if multiples of the value δ0 are not allowed.

Theorem 2.5. Let ∆ := ∆0 be a minimal δ-sequence in N>0. Then there exist finitely
many nested families D := {∆i}i≥0 of δ-sequences in N>0 such that δ0(∆i) is not a multiple
of δ0(∆i−1), i.e. δ0(∆i) = aδ0(∆i−1) for a = 1, and S∆ = S∆i for every i ≥ 0. Furthermore,
the cardinality of any family D is also finite.

The following result enlarges the information on nested sequences given in the previous
result, and allows us to give an algorithmic procedure to obtain a minimal δ-sequence from
a δ-sequence in N>0.

Theorem 2.6. Let ∆ = {δ0, δ1, . . . , δg} be a δ-sequence in N>0, and let ∆1 a refinement
of ∆ with ∆1 \ ∆ = {δ} and S∆ = S∆1 . Then there exists an index i0 ∈ [0, g] such that
δ = δi0 ,  > 1.

Given a δ-sequence ∆, we can use the following algorithm for either, deciding that it is a
minimal one, or computing a minimal one generating the same semigroup as ∆.

Algorithm 2.7. Input: A δ-sequence in N>0, say ∆ = {δi}gi=0.

Output: A minimal δ-sequence A in N>0 that generates the semigroup S∆.

— Step 1: Set δi0 the minimum element in A := ∆ and write A = {δi0}.
— Step 2: Set δi1 the minimum element in A \A.
— Step 3: If δi1 is not a multiple of any element in A \ {δi1}, then we keep the same set

A, set A = A ∪ {δi1} and go to Step 2. Otherwise, A := A \ {δi1}.
— Step 4: Check whether A is a δ-sequence in N>0. If this is not the case, A = A∪{δi1}

and A = A ∪ {δi1}.
— Step 5: Repeat the procedure until A = A; after that, go to Step 6.
— Step 6: A is a minimal δ-sequence in N>0 with the same semigroup than ∆.

Clearly if the output is ∆, then it means that ∆ is minimal.
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Abstract. We define several notions of stability for coherent systems, and give two al-
gebraic methods for computing the reliability of stable coherent systems. The approach
we use is based on the algebraic approach to system reliability and uses Mayer-Vietoris
trees and involutive bases as the main tools. We demonstrate that this approach is com-
putationally e!cient giving some computer experiments.

Introduction

Redundancy is one of the driving forces in the design of coherent systems. The balance
between redundancy and cost optimization is a main criterion in the reliability-based design
of these systems. A first strategy for the construction of redundant reliable systems is
parallelization. A parallel system works whenever at least one of its components is working,
and is therefore a demanding system in terms of resources. A less demanding alternative
is k-out-of-n:G systems, which work whenever at least k of its n components are working
(note that parallel systems are 1-out-of-n:G systems). k-out-of-n systems and their variants
have been extensively studied and are ubiquitous in communication networks and industrial
and applications [8, 16].

1. Fully stable, strongly stable and stable coherent systems

A system is a collection of components with di!erent levels of performance. It is said
to becoherent if the improvement of any component does not lead to a degrading of the
system’s performance. Let S be a coherent system with n components and let FS (resp.
FS) the set of working states or paths of S (resp. minimal paths). We say that S is fully
stable if for any path m ! FS , m = (m1, . . . ,mn) and any component i ! {1, . . . , n} we
have that m"mi +mj = (m1, . . . ,mi " 1, . . . ,mj + 1, . . . ,mn) is also a path of S for any
i #= j ! {1, . . . , n}. In the binary case the only fully stable systems are k-out-of-n systems.
The next two definitions relax the conditions of fully stable systems to describe two less

demanding versions of stability. For these, we need to set a prevalence order among the
components. In the next two definitions S is a coherent system with n components in which
we have established a precedence ordering in the components according to some criterion
like importance or e"ciency, etc...

Definition 1.1. We say that S is strongly stable if for any path m ! FS , m = (m1, . . . ,mn)
and any component i ! {1, . . . , n} we have that m"mi +mj = (m1, . . . ,mj + 1, . . . ,mi "
1, . . . ,mn) is also a path of S for any i > j ! {1, . . . , n}.
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Definition 1.2. We say that S is stable if for any path m ! FS , m = (m1, . . . ,mn) and the
last working component i of m we have m"mi +mj = (m1, . . . ,mj + 1, . . . ,mi " 1, . . . ) is
also a path of S for any i > j ! {1, . . . , n}.

For any coherent system S we can define the stable and strongly stable closures of S as
respectively the minimal stable and strongly stable systems whose set of paths contain the
set of paths of S. Note that the fully stable closure of a system S is the k-out-of-n system,
where k is the minimum length of any path of S.

2. Algebraic analysis of stable coherent systems

The algebraic approach to system reliability was initiated in [7] and developed in a series
of papers including [11, 12, 13, 14]. The main idea of this approach is to associate a monomial
ideal IS (or a series of monomial ideal in the multi-state case) to a given coherent system S
and compute the reliability of the system in terms of algebraic invariants of the ideal. The
computation of the reliability amounts to computing the probability of the system of being
in a working state, which in the algebraic formulation means being able to enumerate the
monomials in the associated monomial ideal. Such an enumeration can be performed in two
ways. One is to compute the numerator of the Hilbert series of IS (in particular obtained
as an alternated sum of the ranks of the modules in any free resolution of IS so that we
can also obtain bounds for the reliability), and the other way is to give a combinatorial
disjoint decomposition of IS . The first option constitutes an algebraic version of improved
inclusion-exclusion formulas and bounds, cf. [3], while the second option is an algebraic
variant of the Sum of Disjoint Products method [5, 16].
The case of stable coherent systems is particularly well suited to the algebraic approach.

On the one hand, the ideal corresponding to a stable system is a stable ideal, for which an
explicit formulation of their minimal free resolution is known [4], which makes the algebraic
computation of the reliability of S very e"cient in this case, using the Hilbert series of IS .
Furthermore, the support of the minimal free resolution is given by their Mayer-Vietoris
trees, which makes this algorithm a good alternative for the computation of their Hilbert
series [10].
For the reliability ideals of strongly stable systems, we can prove that their minimal

generating set is already a Janet basis [6], and we know that from a Janet basis of a
monomial ideal, we can read o! a combinatorial disjoint decomposition of the ideal [15].
Hence this is an e"cient approach in this case.

3. Computer Experiments

We use the C++ class for algebraic computations implemented in CoCoALib [2] described in
[1] to compute the reliability of some examples. First, we compute the reliability for several
k-out-of-n systems and compare the sizes of their Mayer-Vietoris trees (i.e. the number of
summands of the compact inclusion-exclusion formula given by the Hilbert series) and the
sizes of their Janet bases (i.e. the number of summands in the algebraic Sum of Disjoint
Products formula). Figure 1 shows that in binary k-out-of-n systems, as k increases with
respect to n, the ratio between the size of the Janet basis of the ideal and the size of
its Mayer-Vietoris tree (equiv. its minimal free resolution) increases. The Janet bases of
these systems are much smaller than their Mayer-Vietoris trees (for n large and k small the
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k
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10 JB 10 45 120 210 252 210 120 45 10 1
MVT 1023 4097 7423 7937 5503 2561 799 161 19 1

12 JB 12 66 220 495 792 924 792 495 220 66 12 1
MVT 4095 20481 47103 65537 61183 40193 18943 6401 1519 241 23 1

14 JB 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
MVT 16383 98305 274431 471041 553983 471041 297727 141569 50623 13441 2575 337 27 1

16 JB 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1
MVT 65535 458753 1507327 3080193 4374527 4571137 3629055 2228225 1066495 397825 114687 25089 4031 449 31 1

Table 1. Sizes of Janet bases and Mayer-Vietoris Trees for some binary
k-out-of-n systems

di!erence is very significant). These sizes are presented in Table 1. The shaded region in
Figure 1 indicates where the current implementations of Janet bases performs faster than
the MVT algorithms in CoCoALib.

Figure 1. Ratios between the sizes of the Janet bases and Mayer-Vietoris
Trees (equiv. minimal free resolutions) for several binary k-out-of-n systems

Our second example involves stable systems. Stable and strongly-stable ideals tend to
have high Betti numbers for a given Hilbert function, while their involutive bases tend to be
small. In particular, their Janet bases are given by the set of minimal monomial generators
of the ideal. As an example, Figure 2 shows the number of generators and size of Mayer-
Vietoris trees for all the 1819 strongly stable ideals in 10 variables with a Hilbert function
h = 6t+2. The shaded dots indicate the region where the current implementations of Janet
bases performs faster than the MVT algorithms in CoCoALib.
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CURVES OF CONSTANT WIDTH AND ZINDLER CURVES: DUALITY
AND ALGEBRAIC EQUATIONS

DAVID ROCHERA

Abstract. The relationship between curves of constant width and Zindler curves with
offsets and front track curves is described and generalized to non-convex shapes. A one-to-
one correspondence between hedgehogs of constant width and standard generalized Zindler
curves is provided in terms of a projective hedgehog. With this idea, given a family
of projective hedgehogs defined by trigonometric polynomials as support functions, an
explicit method to compute algebraic equations for the associated curves of constant width
and Zindler curves is possible. This extends the methodology used by Rabinowitz and
Martinez-Maure in particular constant width curves to generate a full family of algebraic
equations, both of curves of constant width and Zindler curves.

Introduction

A planar convex body K is called of constant width if its width, defined as the distance
between any pair of parallel supporting lines to K, is constant in any direction. The bound-
ary of K is called a curve of constant width. There are many known non-circular examples
of this kind of curve (see [5] for an introduction to the topic).

Zindler curves [9] are another kind of curve which is closely related to curves of constant
width. The property that defines a Zindler curve is that all chords that cuts the curve
perimeter (or area) into halves (namely, halving chords), have the same length. Zindler
curves are also the boundaries of figures of constant density 1/2 that float in water in
equilibrium in any position [2].

α

β

r r

γ

Figure 1. A curve α of constant width 2 r, its “dual” Zindler curve β and
their associated middle hedgehog γ.
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We know that there is a “duality” between curves of constant width and Zindler curves
(see e.g. [5]), in the sense that, under some convexity assumptions, a right angle rotation of
the constant width chord in the first case or the halving chord in the second case yields the
other figure as described by the endpoints (see Figure 1). The locus of all these midpoints
also determines another curve called the middle hedgehog, which is a projective hedgehog
by construction.

The duality above can be described by offsets and front tracks. Offset curves are those
which are at a constant distance from another in an orthogonal direction, while front wheel
track curves are those which are found at a constant distance from another (the rear wheel
track curve) in a tangential direction (see Figure 2).

α

αp

ααp 

Figure 2. On the left, an offset αp to a curve α at a distance p. On the
right, the front wheel track curve α to a rear wheel track curve α for a
bicycle of length .

Thanks to these relations, this duality can be easily generalized to a one-to-one corre-
spondence between hedgehogs of constant width and standard generalized Zindler curves
can be proved (Theorem 1.3).

Rabinowitz asked in [6] for algebraic equations describing non-circular constant width
curves. He found a quite complicated expression, and he asked if simpler expressions could
be given. Recently, Martinez-Maure in [4] gave an algebraic equation of a non-circular
constant width curve which is simpler than Rabinowitz’s thanks to the notion of constant
width hedgehogs. In particular, he used a parameterization of the constant width curve by
a support function p(t) = 8− sin(3 t). However, in any case, it seems that the complexity of
general algebraic equations is unavoidable for trigonometric polynomial support functions,
because Bardet and Bayen showed in [1] that the minimum degree of an implicit equation
defining a non-circular constant width curve of this kind is 8.

We propose a method for finding the algebraic equation based on the same technique used
by Rabinowitz in [6] and by Martinez-Maure in [4] by the aid of Chebyshev polynomials.
In addition, we provide an analogous method to obtain similar conclusions in the case of
Zindler curves. The method is reduced to compute the resultant of two polynomials of
degrees 2n+ 2 and n+ 1 (Theorems 2.1 and 2.2), so that symbolic computation is usually
needed to compute the algebraic equation.

1. Duality between curves of constant width and Zindler curves

A curve γ is said to be parameterized by a support function h if it can be written as

γ(t) = h(t) (cos t, sin t) + h(t) (− sin t, cos t),

where h is 2π-periodic. The curve γ is called a hedgehog.
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Definition 1 .1. A h edgehog parameterized by a support function h i s o f constant w idth d
if

h(t) + h(t+ π) = d.

A hedgehog γ is called projective if it is of zero constant width: h(t) + h(t+ π) = 0.

In a hedgehog of constant width, the chord which measures the constant width can be
proven to be orthogonal to the pair of tangent lines.

A common constraint for the definition o f Z indler curves i s t hat the halving chords cut
the curve at precisely two points (and not more). Mampel in [3] considered generalized
Zindler curves dropping this constraint.

Definition 1 .2. A r egular c losed c urve α i s c alled a g eneralized Z indler c urve i f t here is
a continuous motion of a constant length chord with its endpoints along α such that the
length of α is split into two halves by these endpoints.

We will focus on generalized Zindler curves such that for each direction there is one and
only one halving chord. These curves will be called standard generalized Zindler curves.

Hedgehogs of constant width can be related to standard generalized Zindler curves via
offsets and front t racks. This give r ise to the following duality [8]:

Theorem 1.3. There is a one-to-one correspondence between hedgehogs of constant width
and standard generalized Zindler curves.

2. Algebraic equations for constant width curves and Zindler curves

Let γ be a projective hedgehog parameterized by a support function of the kind

(1) p(t) =
1

b
sin

�
n t


,

where b ∈ R and n = 2 k + 1, for k ∈ N. The offset to γ at a distance a is a hedgehog of
constant width 2 a that can be parameterized as:

α(t) =
�
a+ p(t)


(cos t, sin t) + p(t) (− sin t, cos t).

The front wheel track curve to γ at a distance d is a standard generalized Zindler curve for
halving chords of length 2 d. It can be parameterized by

β(t) = p(t) (cos t, sin t) +
�
d+ p(t)


(− sin t, cos t).

The objective is to provide an explicit method to compute the algebraic equation of any of
these curves α and β. The reader can find a detailed description in [7].

Recall that the Chebyshev polynomial of degree n, Tn, can be defined recursively as

T0(x) = 1,

T1(x) = x,

Tn(x) = 2xTn−1(x)− Tn−2(x), n ≥ 2.

Define

(2) pn−1(x) =

n−1
2

k=0


n

2 k


(−1)k x2k (1− x2)

n−2k−1
2 .
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We know that there is a “duality” between curves of constant width and Zindler curves
(see e.g. [5]), in the sense that, under some convexity assumptions, a right angle rotation of
the constant width chord in the first case or the halving chord in the second case yields the
other figure as described by the endpoints (see Figure 1). The locus of all these midpoints
also determines another curve called the middle hedgehog, which is a projective hedgehog
by construction.

The duality above can be described by offsets and front tracks. Offset curves are those
which are at a constant distance from another in an orthogonal direction, while front wheel
track curves are those which are found at a constant distance from another (the rear wheel
track curve) in a tangential direction (see Figure 2).

α

αp

ααp 

Figure 2. On the left, an offset αp to a curve α at a distance p. On the
right, the front wheel track curve α to a rear wheel track curve α for a
bicycle of length .

Thanks to these relations, this duality can be easily generalized to a one-to-one corre-
spondence between hedgehogs of constant width and standard generalized Zindler curves
can be proved (Theorem 1.3).

Rabinowitz asked in [6] for algebraic equations describing non-circular constant width
curves. He found a quite complicated expression, and he asked if simpler expressions could
be given. Recently, Martinez-Maure in [4] gave an algebraic equation of a non-circular
constant width curve which is simpler than Rabinowitz’s thanks to the notion of constant
width hedgehogs. In particular, he used a parameterization of the constant width curve by
a support function p(t) = 8− sin(3 t). However, in any case, it seems that the complexity of
general algebraic equations is unavoidable for trigonometric polynomial support functions,
because Bardet and Bayen showed in [1] that the minimum degree of an implicit equation
defining a non-circular constant width curve of this kind is 8.

We propose a method for finding the algebraic equation based on the same technique used
by Rabinowitz in [6] and by Martinez-Maure in [4] by the aid of Chebyshev polynomials.
In addition, we provide an analogous method to obtain similar conclusions in the case of
Zindler curves. The method is reduced to compute the resultant of two polynomials of
degrees 2n+ 2 and n+ 1 (Theorems 2.1 and 2.2), so that symbolic computation is usually
needed to compute the algebraic equation.

1. Duality between curves of constant width and Zindler curves

A curve γ is said to be parameterized by a support function h if it can be written as

γ(t) = h(t) (cos t, sin t) + h(t) (− sin t, cos t),

where h is 2π-periodic. The curve γ is called a hedgehog.
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The method for computing the algebraic equations of these curves is reduced to the
computation of a resultant, as stated in the following theorems.

Theorem 2.1. The algebraic equation of the constant width curve α can be obtained by
computing the resultant of the polynomials

�
1− s2

 �
a b+ (−1)k Tn(s)− n s pn−1(s)

2 − b2 x2

and
s
�
a b+ (−1)k Tn(s)


+ n

�
1− s2


pn−1(s)− b y,

which are of degrees 2n+2 and n+1, respectively, and where pn−1 is the polynomial defined
by (2).

Theorem 2.2. The algebraic equation of the Zindler curve β can be obtained by computing
the resultant of the polynomials

�
1− c2

 �
−b d− nTn(c) + (−1)k c pn−1(c)

2 − b2 x2

and
c
�
b d+ nTn(c)


+ (−1)k

�
1− c2


pn−1(c)− b y,

which are of degrees 2n+2 and n+1, respectively, and where pn−1 is the polynomial defined
by (2).

These two results also hold in general for hedgehogs of constant width and standard
generalized Zindler curves.

Finally, it can be observed that the polynomials we use to compute the resultant are
very similar for pairs of “dual” curves (constant width curves and Zindler curves), as well as
the resulting algebraic equations. This is particularly clear in some examples, like the one
considered in [7].
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