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1. Experimental Section

1.1 Synthesis of the monomeric ionic liquids

[2-(acryloyloxy)ethylltrimethyl-ammonium chloride (AcrEMA-CI) was purchased from
Sigma Aldrich and used as starting reagent for synthesizing AcrEMA-N(CN),, AcrEMA-
BF,;, AcrEMA-TFSI by anion exchange reaction, without further purification. In the case
of using AcrEMA-CI as mlL, it was necessary to evaporate the water since the
commercial product contain 20 wt% of water.

[2-(acryloyloxy)ethyl]trimethyl-ammonium iodide (AcrEMA-I) was synthesized
according to a procedure described elsewhere.?

[2-(acryloyloxy)ethylltrimethyl-ammonium  dicyanamide  (AcrEMA-N(CN),), [2-
(acryloyloxy)ethyl]trimethyl-ammonium tetrafluoroborate (AcrEMA-BF,), [2-
(acryloyloxy)ethyl]trimethyl-ammonium bis(trifluoromethane)sulfonimide (AcrEMA-
TFSI) were synthesized from commercial AcrEMA-CI by an anion exchange with silver
dicyanamide, sodium tetrafluoroborate and lithium bis(trifluoromethane)sulfonimide,
respectively, according to a similar protocol reported.? AcrEMA-TFSI synthesis is fully
detailed. LiNTf, (42.7g, 148 mmol) was dissolved in water (40 mL) and it was added
dropwise to an aqueous solution (40 mL) of [2-(acryloyloxy)ethyl]trimethyl-ammonium
chloride (24 g, 124 mmol). The mixture formed two liquid phases and it was stirred
rapidly for 18 h at room temperature. The phases were then separated and the aqueous
phase was extracted three times with dichloromethane (100 mL). The combined organic
phases were washed three times with water (125 mL) and dried over MgSO, anhydride.
The product was further dried under reduced pressure at 45 °C for 3 h. The yield was 91
% (49.5 g).

1.2. Synthesis of CsPbXs (X = Br and Cl:Br combinations)

CsPbX3; PNCs were prepared by a hot-injection method by mixing both the Cs-oleate and
PbX, solutions in stoichiometric amounts with some modifications. To prepare the Cs-
oleate solution, 0.407 g Cs,C0O;5 (202126, 99.9 %, Sigma-Aldrich), 1.5 mL oleic acid (OA,
364525, 90 %, Sigma-Aldrich) and 20 mL of 1-octadecene (1-ODE, 0806, 90 %, Sigma-
Aldrich) were mixed into a 50 mL-three neck flask, under vacuum for 30 min at 80 2C
under vigorous stirring. The temperature was increased to 120 2C and kept under
vacuum for 30 min. The mixture was heated at 150 °C under N, atmosphere, until
complete Cs,CO; dissolution. The resultant transparent solution was kept at 120 °C
before use.

For the synthesis of CsPbBr; and CsPbCls,Br, 0.8 g PbBr, (abcr; AB202085, 99.998%) and
the corresponding Cl:Br molar ratios (3:1 and 1:1) (PbCl,, abcr, AB202087, 99.999%,
ABCR) were mixed with 50 mL 1-ODE into a 100 mL-three neck flask and degasified at
120 °C for 1 h under stirring. Then, 5.0 mL of each preheated OA and oleylamine (HT-
OA100, 98 %, Sigma-Aldrich) were added to the flask to promote the PbX, dissolution.
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Then, the temperature of PbX, mixture was rapidly increased to reach 180 °C and 4 mL
of preheated Cs-oleate was swiftly injected, obtaining a green precipitate in the colloidal
solution. The flask was immediately added into an ice bath for 5 s to quench the reaction
mixture. To isolate the final product, PNCs are centrifuged at 5000 for 5 min with methyl
acetate (MeOAc, 296996, 99.5%, Sigma Aldrich) (30 mL of PNCs liquor washed with 60
mL MeOAc). The supernatant is discarded, the PNCs pellets are redispersed in hexane
(CHROMASOLYV, 34859, 99.7 %, Honeywell) at a concentration ~60 mgmL'and stored in
the fridge for 24 h.

1.3 General characterization

1.3.1 Characterization of AcrEMA-TFESI

Elemental Analysis: Calculated (%): C, 27.40; H, 3.68; N, 6.39; S, 14,63; Found (%): C,
26.53; H, 3.68; N, 6.66; S, 14.70.

1H NMR (400 MHz, (CDs),C0O): 6 / ppm = 6.40 (dd, 1H), 6.22 (dd, 1H), 5.99 (dd, 1H), 4.75
(m, 2H), 4.03 (m, 2H), 3.50 (s, 9H)
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Figure S1. 'H NMR (400 MHz) spectra of AcrEMA-TFSI in (CD3),CO

13C NMR (400 MHz, (CD3),CO): & / ppm = 165.7, 132.6, 128.8, 122.8 (q, CF3), 66.0, 59.0,
54.8
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Figure S2. 3C NMR (400 MHz) spectra of AcrEMA-TFSI in (CD5),CO
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Figure S3. ESI-MS spectra of AcrEMA-TFSI in positive mode (up) and negative mode

(down)
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Figure S4. FT-IR spectra of AcrEMA-CI (red) and AcrEMA-TFSI (blue). Disappearance of
the chloride band after the anion exchange reaction with LiNTf,, showing that the

reaction was completed
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Figure S5. DSC-TGA spectra of AcrEMA-TFSI

1.3.2 Characterization of the films
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Figure S6. FT-IR spectra of a film D (blue) and D-1 film (red)
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Figure S7. TGA spectra (up) and the DTG spectra (down) of all the different PILX@PS1

formulations capable to stabilize CsPbBr;

Table S1. Summary of the Tynst Obtained from the above TGA spectra for the different
formulations evaluated and the monomeric ionic liquid (AcrEMA-TFSI)

Formulation Tonset (°C)
A-1 385
B-1 369
C-1 373
D-1 372
D 387
H-1 375
AcrEMA-TFSI 361
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Figure S8. Absorbance spectra of D (blue) and D-1 (red)
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Figure S9. Transmittance spectra of B (blue) and B-1 (red)



2. Optimization of formulation

Table S2. Summary of monomers employed and their capacity to form a film and to
stabilize the PS1 after polymerization

Entr ] Film Film
try Monomeric lonic Liquids Observations : . . .
Formation Photoluminiscence
1 AcrEMA-CI Insoluble X X
monomer
2 AcrEMA-I Insoluble X X
monomer
3 AcrEMA-N(CN), Soluble v X
monomer
4 AcrEMA-BF, Insoluble X X
monomer
5 AcrEMA-TFSI Soluble \ \Y
monomer
25
—— PILD@PS1 2%
. ——PILD@PS1 1%
5 204 PILD@PS7 0,5%
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Figure S10. Photoluminescence (PL) spectra of PILD@PS1 films using different
perovskite concentrations (2 wt%, 1 wt%, 0.5 wt%)



Perovskites PILA PILB Pure PNCs
PLQY nm PLQy nm PLQY nm
CsPbBr, 50 512 45 510 80 505
CsPbBr, 5Cl, 5 1,5 448 1,2 450 4 458
CsPbBry,sCl,,s 1,2 413 1,4 413 6 436

CsPbCl, sBr, ¢

CsPbCl, ,cBrg -5

Figure S11. Summary of the PLQY and wavelength (in nm) of the different perovskites
embedded with two different formulations (PILA and PILB), see Figure 1B, and without

embedding (Pure PNCs). And their respective film colours
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3. Stability Tests
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Figure S12. Stability study in the dark measuring the photoluminescence quantum
yield (PLQY) along more than 400 days for CsPbCl, sBr, 5 (Y=2) and CsPbCl; ,5Brg 75 (Y=3)
encapsulated into PILB formulation
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Figure S$13. Stability study in the dark measuring the PLQY along more than 400 days
using all the formulations capable to stabilize CsPbBrs. PILA, PILB and PILC are the best
formulation for stabilizing PNCs, keeping the PLQY of the films around 50 and 60%. On
the contrary, the PLQY of not embedded PS1 decreases 70% in less than 200 days.
However, not all the polymeric matrices are good for stabilizing CsPbBr; since PILD and
PILH lost partially and even totally their photoluminescence after some time.
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Figure S14. Images of a B-1 film obtained by A) SEM, and B) profilometry

Table S3. Chemical atomic composition of pristine CsPbBr; PNCs and B-1 samples

C (0] Pb Br Cs N F S
Perovski Pb Br/P
erovskite 1 %) (at%) (at%) (at%) (at%) (at%) (at%) (ats%) /PP Br/Pb
Pristine

73.85 @ 20.34 1.03 2.69 0.64 1.45 - - 0.62 2.61
PNCs
B-1 57.61 | 18.67 0.03 0.06 0.03 5.55 12.84 5.21 1.00 2.00
A g ® B} Fis | ©

#3 o F Gzl
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Binding energy (eV) Binding energy (eV) Binding energy (V)

Figure S15. A) XPS survey and HR-XPS; B) F 1s; and C) S 2p spectra for pristine CsPbBr;
PNCs and B-1 samples
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4. Application
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Figure S16. UV-Vis spectra during methyl red degradation under visible light A) control
experiment (Blank); B) using PILB film
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B) MRsolido, scan neg, MeOH, 20V
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Figure S17. ESI-MS spectra of pure methyl red (MRsolido) and MR after
photodegradation (MR1) using B-1 film as photocatalyst. The representative peaks of
MR disappeared, appearing new peaks A) in positive mode; B) in negative mode
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Figure S18. FT-IR spectra before and after photocatalysis reaction of A) a B film and, B)
a B-1 film
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Figure $19. Colour of the films B-1 (left) and B (right) after the third cycle
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Figure S20. Photoluminescence spectra of initial B-1 film and after 3 cycles of 22h
immersed into a solution of MR and illuminated with visible light
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Figure S21. The absorption spectra during MR photodegradation after introducing
pristine CsPbBr; dissolved in hexane as photocatalyst illuminating 22h with visible light.
The methyl red solution (MR-initial) was measured neat (before adding PNCs) and after
adding the PNCs (MR-PS-initial). After 22h, not only MR but also the PNCs signal
disappeared
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Figure S22. A) UV-Vis spectra showing the MR photodegradation using B-1 film and a
hole scavenger (MeOH) during 22h illuminating with visible light; B) Comparison of the
kinetics of the blank, B, B-1 and B-1 with a hole scavenger (MeOH). The graphic shows
that using a hole scavenger, B-1 film have same behaviour as B film. Therefore, the PNCs

are not involving in the process, the perovskite photodegradation is being blocked by
MeOH
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